
PPAD-Hardness via Iterated Squaring Modulo a Composite

Arka Rai Choudhuri∗ Pavel Hubáček† Chethan Kamath‡

Krzysztof Pietrzak§ Alon Rosen¶ Guy N. Rothblum‖

June 5, 2019

Abstract

We show that, relative to a random oracle, solving the End-of-Line problem (which is
PPAD-complete) is no easier than computing the function

f(N, x, T ) = x2
T

mod N,

where N is an n-bit RSA modulus, x ∈ Z∗
N and T ∈ N. It was conjectured by Rivest,

Shamir and Wagner, that, unless the factorization of N is known, the fastest algorithm
for computing f consists of Ω(T ) iterated squaring operations mod N . Under a milder
assumption, namely that computing f takes nω(1) time for some (possibly exponentially)
large T , our construction of End-of-Line cannot be solved in poly(n) time.

We prove our result by reducing f to (a variant of) the Sink-of-Verifiable-Line
problem, which is known to imply PPAD (and in fact CLS) hardness. The main building
block of our reduction is a recently discovered interactive public-coin proof by Pietrzak
for certifying y = f(N, x, T ), which can be made non-interactive using (an analogue of)
the Fiat-Shamir heuristic. The value y can be computed together with the proof in time
poly(n) ·T , and the proof can be verified in time poly(n) · log T . The key technical challenge
in our setting is to provide a means by which the solution y together with a proof can be
computed in small incremental steps, while the correctness of each intermediate state of this
computation can still be verified in time poly(n, log T ).

∗Johns Hopkins University, Baltimore, USA. Email: achoud@cs.jhu.edu. Supported in part by a
DARPA/ARL Safeware Grant W911NF-15-C-0213, and a subaward from NSF CNS-1414023.
†Charles University, Prague, Czech Republic. Email: hubacek@iuuk.mff.cuni.cz. Supported by the

project 17-09142S of GA ČR, Charles University project UNCE/SCI/004, and Charles University project
PRIMUS/17/SCI/9. This work was done under financial support of the Neuron Fund for the support of sci-
ence.
‡IST Austria, Klosterneuburg, Austria. Email: ckamath@ist.ac.at. Supported by the European Research

Council, ERC consolidator grant (682815-TOCNeT).
§IST Austria, Klosterneuburg, Austria. Email: pietrzak@ist.ac.at. Supported by the European Research

Council, ERC consolidator grant (682815-TOCNeT).
¶Efi Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il. supported by

ISF grant No. 1399/17 and via Project PROMETHEUS (Grant 780701).
‖Weizmann Institute of Science, Rehovot, Israel. Email: rothblum@alum.mit.edu. This project has received

funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 819702).



Contents

1 Introduction 1
1.1 Cryptographic hardness in PPAD . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Techniques and Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Definitions 7
2.1 Complexity Classes and Total Search Problems . . . . . . . . . . . . . . . . . . . 7
2.2 The Sink-of-Verifiable-Line Problem . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Relaxed Sink-of-Verifiable-Line Problem . . . . . . . . . . . . . . . . . 8

3 Assumptions 8
3.1 The RSW Time-Lock Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Our Number-Theoretic Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Pietrzak’s Proof System 12
4.1 The Interactive Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 The Non-Interactive Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 The Reduction 15
5.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 The Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Proof of Lemma 2 27



1 Introduction

The complexity class PPAD, defined by Papadimitriou [35], consists of all total search problems
that are polynomial-time reducible to the End-of-Line problem: given a source in a directed
graph where every vertex has both in-degree and out-degree at most one, find a sink or another
source. The End-of-Line problem can be solved in linear time when the graph is given explic-
itly, but there is no known algorithm solving it in polynomial time when the input is an implicit
representation of the graph describing the successor and predecessor of every vertex.

The class PPAD became a subject of intensive study due to its relation to the problem
Nash, of finding a Nash equilibrium in a normal-form game. Papadimitriou showed that Nash
is reducible to End-of-Line, and thus belongs to PPAD. A reduction in the opposite direction
was later established (even for bimatrix games) in a sequence of works by Daskalakis, Goldberg
and Papadimitriou [14], and Chen, Deng and Teng [11].

Currently, no PPAD-complete problem is known to admit a sub-exponential-time worst-case
algorithm. This, together with the increasingly large number of reductions amongst PPAD
complete problems, supports the belief that they are not solvable in polynomial time.Still, even
if we do believe that no PPAD complete problem is solvable in polynomial time in the worst-case,
it is of great interest to rule out the possibility that these problems admit efficient heuristics
that perform well on the average.

1.1 Cryptographic hardness in PPAD

A natural approach for arguing average-case PPAD hardness is to reduce from problems that
originate from cryptography. Such an approach was already advocated in Papadimitriou’s
original paper [35], but up until recently, not much progress has been made in this direction.
This has changed as a result of developments in the study of program obfuscation [3, 20].

As shown by Bitansky, Paneth and Rosen [4] (building on [1]), the task of breaking sub-
exponentially secure indistinguishability obfuscation (iO) is reducible to solving the End-of-
Line problem. This gave the first extrinsic evidence of PPAD hardness and provided a plausible
method to sample potentially hard-on-average End-of-Line instances.

The Bitansky et al. technique was extended by Hubáček and Yogev [24], who established
hardness in CLS, a subclass of PPAD, under the same assumptions. Both results were subse-
quently strengthened. First, by Garg, Pandey and Srinivasan [21], who reduced from breaking
iO with polynomial (instead of sub-exponential) hardness (or alternatively compact public-key
functional encryption) and one-way permutations. Second, by Komargodski and Segev [31],
who reduced from breaking quasi-polynomially secure private-key functional encryption and
sub-exponentially-secure injective one-way functions.

In one way or the other, all of the above assumptions are closely related to iO, whose
attainability is not implausible but nevertheless still lies within the domain of speculation.
Given that many candidate iO schemes have been broken, and that surviving ones are yet to
undergo extensive evaluation by the cryptographic community, it is desirable to base PPAD
hardness on alternative assumptions. A step towards this direction was undertaken in a recent
work by Choudhuri et al. [12] who showed that PPAD-hardness can be based on the assumption
that the Fiat-Shamir transform is (unambiguously) sound for the sumcheck protocol of Lund
et al. [32].

The approach of basing average-case TFNP-hardness on relatively established cryptographic
assumptions has also been successfully applied in the context of complexity classes other than
PPAD. For instance, Papadimitriou [35] showed that one-way permutations imply average-case
hardness in PPP, and Jeřábek [25] showed that the undirected version of End-of-Line, which
is complete for the class PPA, is no easier than FACTORING. It is also known (folklore) that
any assumption that implies the existence of collision-resistant hashing (e.g. hardness of Fac-
toring, SIS or DLP) implies PWPP-hardness. It is currently not known whether any of these

1



results can be extended to PPAD.

1.2 Our Results

Hubáček and Yogev [24] showed that hardness of a structured promise problem called Sink-of-
Verifiable-Line, implies hardness for CLS (and thus also PPAD). Choudhuri et al. [12] defined
a closely related problem called relaxed-Sink-of-Verifiable-Line (rSVL), and adapted
the [24] result so it also applies to rSVL (Lemma 1). Our main result is the construction of
a hard-on average distribution of the rSVL problem based on the hardness of computing the
function

f(N, x, T ) = x2
T

mod N,

where N is the product of two random n/2-bit safe primes (where p is a safe prime if (p− 1)/2
is also a prime), x ∈ Z∗N and T ∈ N. Computing f was suggested as a hard problem by Rivest,
Shamir and Wagner (RSW) [37], who conjectured that for any T , computing f(N, x, T ) either
requires Ω(T ) sequential time or total computation sufficient to factor N .

Our hardness assumption is even milder, as it is sufficient for us that f cannot be computed
in time poly(n) for some (potentially exponentially large) T (see Assumption 2 in §3.2). In other
words, unlike RSW: (1) we do not assume any sequentiality, and (2) we allow an exponential

gap between T and the total computation required to compute x2
T

mod N .
Our reduction also requires assuming access to a random function (in other words, it is

relative to a random oracle), which is used in the context of transforming a log T -round public-
coin interactive proof into a non-interactive one, analogous to the Fiat-Shamir heuristic [18]
(which applies to constant-round public-coin interactive proof systems).

Our main result is stated below. It is an informal restatement of the technical Theorem 1
from §5.3.

Theorem 1 (main, informal). For a security parameter n ∈ N, let N be the product of two
random n/2-bit safe primes and x ∈ Z∗N be sampled uniformly at random. If there exists

T = T (n) ≤ 2n such that no poly(n)-time algorithm, on input (N, x, T ), can compute x2
T

mod N
except with negligible probability then, relative to a random oracle, there exists a family of hard
rSVL instances.

To summarize, this paper demonstrates new ways for sampling hard-on-average PPAD/CLS
instances, based on assumptions of seemingly different nature than those required by prior work
(i.e., number-theoretic, in contrast to ones related to obfuscation), and possibly opens up new
paths for placing Factoring (or closely related problems such as breaking RSA) in PPAD.

1.3 Techniques and Ideas

The structure of our reduction is similar to that of Bitansky et al. [4] who showed how to use a
cryptographic problem that is assumed to be hard in order to sample an instance of Sink-of-
Verifiable-Line (SVL), a structured promise problem that is reducible to End-of-Line.

An instance of the Sink-of-Verifiable-Line problem consists of an implicit representation
of a directed graph with 2m vertices such that every vertex has out-degree one and it is possible
to efficiently test whether a given vertex v lies i successive steps from vertex v0. The goal is to
find the vertex that lies L steps from v0. The graph is implicitly represented by two poly(m)-size
circuits: a successor circuit S that assigns to every vertex v its successor S(v), and a verification
circuit V that, given v and i, is promised to certify whether v = Si(v0).

Consider the following natural approach for reducing the computation of f(N, x, T ) to an
instance of SVL with length parameter L = T and vertices of size n (i.e. m = n). The graph’s
source v0 is a random x ∈ Z∗N , and the successor circuit S is the squaring modulo N function,
yielding the graph:

x→ x2 → x2
2 → x2

3 · · · → x2
T

(modN). (1)

2



Notice that, assuming x2
T

mod N cannot be computed in time poly(n) for a sufficiently large T
(which can be even exponential in n – see Assumption 2 in §3.2), it is hard for any polynomial-
time algorithm to find the node that is T steps from the source x.

In order to complete the reduction to SVL, we need to provide an efficient V that certifies
that a vertex v = y is obtained by invoking S for i successive times on x. This is where Pietrzak’s
proof system for certifying y = f(N, x, T ) comes into play [36].

Pietrzak’s proof system. Pietrzak’s protocol allows a prover to convince a verifier that a
tuple (N, x, T = 2t, y) satisfies the relation y = x2

T
mod N using t = log T rounds of interaction.

It does not require either prover or verifier to know the factorization of N .
The protocol is recursive in the time parameter T . In the first step, the prover sends the

midpoint µ = x2
T/2

mod N as a commitment to the verifier. If

x2
T/2

= µ mod N and µ2
T/2

= y mod N

both hold, then so does the original claim. This reduces the task of proving a statement for
parameter T to proving two statements for parameter T/2. Next, using a random challenge
r, the verifier and prover merge these two statements into a single statement by computing

x′ := xr ·µ mod N and y′ := µr · y mod N and setting y′ = x′2
T/2

mod N as the new statement.
One can show that if the statement (N, x, T, y) is wrong, then with overwhelming probability

over the choice of r so is the new statement (N, x′, T/2, y′). The procedure is repeated t times,
halving the time parameter T each time, until we arrive at a claim for T = 1 at which point
the verifier can efficiently check the correctness itself by performing a single squaring.

The protocol, being public-coin, can be made non-interactive using an analogue of the Fiat-
Shamir transformation. For this, the verifier’s messages (i.e., the r’s) are computed by applying
a hash function H to the prover’s messages. The non-interactive proof on challenge (N, x, T ) is
of the form (N, x, T, y, µ1, . . . , µt), and we denote it by πTx→y.

We point out the following three crucial properties of the protocol where n, if you recall,
denotes the size of N in binary representation:

Property 1: Given (N, x, `, y), computing π`x→y requires `+ poly(n) multiplications in Z∗N
and poly(n) space (if one is not given y, an additional ` multiplication are used to first

compute y = x2
`
, but we’ll always be in a setting where either ` = 1 or y is known).

Property 2: The size of a proof π`x→y is poly(n, log `) bits.

Property 3: Given two proofs π`x→y, π
`
y→z as “advice”, computing the proof π2`x→z can be

efficiently reduced to computing a proof π`x′→y′ .

The reduction. As mentioned above, our goal is to use Pietrzak’s protocol in order to effi-
ciently implement a verification circuit V that, given (v = y, i) verifies that y = x2

i
mod N , i.e.,

that y indeed lies at the i-th position on the line described in (1). A first attempt would be to
augment the vertex labels xi = x2

i
mod N in (1) with a corresponding proof, i.e., consider the

line
π0x0→x0 → π1x0→x1 → π2x0→x2 → · · · → πTx0→xT ,

where the circuit V simply runs the efficient proof verification algorithm of Pietrzak’s protocol.
This change renders the line efficiently verifiable. However, it is now not at all clear how

to implement the successor circuit S efficiently. The labels now comprise of proofs, and S is
consequently required to efficiently “update” a proof πix0→xi to πi+1

x0→xi+1
. To overcome this

issue, we use the ability to “merge” proofs, in the sense that given proofs π`x→y, π
`
y→z one can

efficiently compute a single proof π2`x→z.

3



Given the ability to merge proofs, we can construct a valid SVL instance by considering a
line where going from the i-th vertex to the i+1-th vertex we augment the label (now consisting
of multiple “partial” proofs) with a proof for the single step π1xi→xi+1

, and then merge the latest
proofs as long as they are for the same time parameter (i.e., if the last two proofs are of the
form π`a→b, π

`
b→c merge them into π2`a→c). This results in a line of the form

π0x0→x0 → π1x0→x1 → π2x0→x2 → π2x0→x2 , π
1
x2→x3 → π4x0→x4 → π4x0→x4 , π

1
x4→x5 → · · · ,

where crucially the number of proofs contained in each label always remains below log T .
Strictly speaking, Pietrzak’s proof system does not support efficient merging of proofs as

outlined above. However, it does support somewhat efficient merging as in Property 3. Our
key observation is that this somewhat-efficient merging is already sufficient to construct a valid
SVL instance where both the successor circuit S and verification circuit V run in poly(n) time.

Suppose that we could construct an SVL instance where starting with a label x, after
L(`) invocations of S (for L(·) to be defined) we arrive at a label that contains a proof π`x→y
establishing y = x2

`
mod N . Then we can get an SVL instance where starting with some label

x we arrive at a proof π2`x→z making 3 ·L(`) invocations of S. The idea is to first compute π`x→y
in L(`) steps, then π`y→z in another L(`) steps (while keeping the first proof π`x→y around in the

label), and finally using another L(`) steps to merge those two proofs into π2`x→z using Property 3.
The recursive algorithm outlined above satisfies L(2`) = 3 ·L(`) steps, and as L(1) = 1, solving

this recursion we get L(`) = `log 3. Thus, x2
T

mod N is reached after L(T ) = T log 3 invocations
of S.

One important detail that we have glossed over in the above description is that, given
that the proof system does not have perfect soundness, we need to deal with the existence of
accepting proofs for incorrect statements. We handle this, like in [12], by working with a relaxed
variant of the Sink-of-Verifiable-Line problem which can also be reduced to End-of-Line
and is thus sufficient for establishing average-case hardness in PPAD (in fact, even in CLS). We
show in §5 how exactly the above ideas are used to sample instances of the relaxed-Sink-of-
Verifiable-Line problem.

Comparison with [12]. The result in this paper can be viewed as an alternative instantiation
of the ideas in [12] with are two main differences concerning the underlying assumptions. First,
the hardness assumption in [12] — i.e., the (worst-case) hardness of #P — is weaker than the
concrete number theoretic Assumption 2. However, secondly, the interactive protocol underlying
our construction — i.e., Pietrzak’s protocol [36] — has only logarithmic number of rounds
compared to polynomial number of rounds in the sumcheck protocol [32], which forms the basis
for [12]. Hence, it is potentially easier to instantiate (with a concrete hash function) the Fiat-
Shamir transform for the construction in this paper than in [12]. Taken together, one could
argue that the two results are in some sense incomparable. In addition, the construction in this
paper is conceptually simpler and therefore could lead to simpler algorithms for sampling hard
PPAD instances.

1.4 Open Problems

Our results and techniques motivate several natural research directions.

Removing the Random Oracle: Our construction of a hard-on-average PPAD distribution
employs a random oracle. Specifically, we use it to obtain a non-interactive version of
Pietrzak’s proof for certifying that y = f(N, x, T ) = x2

T
mod N . Given that 1) the

algebraic statement that is being proved has a very specific structure and 2) Pietrzak’s
proof system has statistical soundness, it might be possible to design a non-interactive
proof system for certifying y = f(N, x, T ) directly, i.e., without relying on any general

4



FP

CLS

PPAD

PLS

PPPPPA

TFNP

EOL

Nash

Brouwer

Local-Search

CLO

Tucker

Borsuk-Ulam

Ramsey

cSIS

Blichfeldt

EOML PWPP
SISDLP

Factoring

Figure 1: The TFNP landscape.

transformation such as Fiat-Shamir. Towards this goal, in the context of sumcheck proofs,
the recent work of Choudhuri et al. [12] instantiate the hash function in the Fiat-Shamir
transformation assuming the existence of optimally secure fully homomorphic encryption
schemes against quasi-polynomial time adversaries.

Reducing from factoring: Hardness of integer factoring is necessary for our hardness as-
sumption (Assumption 2) to hold. However, similarly to the RSW assumption or the
RSA assumption, it is not clear if hardness of factoring is sufficient. It is natural to ask if
our techniques can be improved to reduce from a weaker hardness assumption. Note that
our reduction basically shows that the access to an rSVL oracle enables one to compute
exponential powers modulo a composite efficiently. Can this ability be exploited either
towards breaking the RSA assumption or for efficient integer factoring?

Exploiting somewhat-efficient merging of proofs: The crucial observation we make in
this work is that the possibility to merge proofs somewhat-efficiently is sufficient for per-
forming the computation of f(N, x, T ) in an incrementally verifiable manner. This was
exploited to a certain extent in the recent work by Choudhuri et al. [12]. We expect this
technique to find applications in different contexts.

1.5 Related Work

Systematic study of total search problems (i.e., with the guaranteed existence of a solution) was
initiated by Megiddo and Papadimitriou [34], who defined a corresponding complexity class,
called TFNP. They observed that unless NP = co-NP, a “semantic” class such as TFNP is
unlikely to have complete problems. Motivated by this observation, Papadimitriou [35] defined

5



“syntactic” subclasses of TFNP with the goal of clustering search problems based on the various
(non-constructive) existential theorems used to argue their totality (cf. Figure 1). Perhaps the
best known such class is PPAD [35] which captures the computational complexity of finding
Nash equilibria (Nash) in bimatrix games [14, 11], amongst other natural problems [29].

Other subclasses of TFNP include PPA [35], which captures computational problems related
to the Borsuk-Ulam theorem (Borsuk-Ulam) or Tucker’s lemma (Tucker) [16], the class
PLS [26] that was defined to capture the computational complexity of problems amenable to local
search such as Local-Maxcut, and the class CLS [15], which captures finding approximate
local optima of continuous functions (CLO) and contains finding Nash equilibria in congestion
games or solving simple stochastic games of Condon or Shapley. Finally, the classes PPP [35] and
PWPP [25] are motivated by the pigeonhole principle and contain important problems related
to finding collisions in functions. Recently, Sotiraki, Zampetakis and Zirdelis [39] introduced a
PPP-complete problem related to Blichfeldt’s theorem in the theory of lattices (Blichfeldt).
Building on top of that, they showed that a constrained variant of the short integer solution
problem (cSIS) is PPP-complete.

On the face of it, all TFNP problems could be potentially solvable in polynomial time without
defying our understanding of the broader landscape of complexity theory (e.g. no surprising
collapse of any important complexity classes seems to be implied by assuming TFNP ⊂ FP). In
light of this, it is natural to seek “extrinsic” evidence supporting TFNP hardness, for instance
based on computational problems originating in cryptography. This approach would also have
the added benefit of establishing average-case hardness, in some sense also indicating a certain
level of resistance against heuristic algorithms.

Some of the works along these lines were already mentioned in §1.1 [4, 24, 21, 31] — here, we
mention a few more. Hubáček, Naor and Yogev [23] recently constructed hard TFNP problems
from one-way functions (in fact from any average-case hard NP language) under complexity the-
oretic assumptions used in the context of derandomization. Though, it is not known whether
their distribution gives rise to average-case hardness in any of the syntactic subclasses of TFNP.
Komargodski, Naor and Yogev [30] demonstrated a close connection between the Ramsey prob-
lem (Ramsey) and the existence of collision-resistant hashing.

The relatively small progress on showing average-case hardness of total search problems from
weak general assumptions motivated a line of works focusing on limits for proving average-case
hardness. The implausibility of using worst-case NP hardness [26, 34] was later strengthened to
show that it is unlikely to base average-case TFNP hardness even on problems in the polynomial
hierarchy [8], and to show that any randomized reduction from a worst-case NP language to an
average-case TFNP problem would imply that SAT is checkable [33]. A recent result [38] applies
to the whole of TFNP and shows that any attempt for basing average-case TFNP hardness on
(trapdoor) one-way functions in a black-box manner must result in instances with exponentially
many solutions. This is in contrast to all known constructions of average-case hard PPAD
problems that result in instances with small number of solutions.

Orthogonally to the above works, the smoothed complexity approach was recently used to
identify natural distributions of PLS-complete problems (such as the Local-Maxcut or the
problem of finding pure Nash equilibria in network coordination games) that admit polynomial
time algorithms [2, 7].

Prior to our work, arguably the most natural average-case hard distribution of structured
TFNP problems followed from the randomized reduction from Factoring to PPA developed in
the works of Buresh-Oppenheim and Jeřábek [9, 25].

Concurrent work. In a concurrent and independent work, Ephraim et al. [17] construct
objects called “continuous verifable delay functions” and show how they can be used to construct
SVL instances. Their construction is similar to ours except that they use a k+1-ary tree instead
of a ternary tree in our construction. Appropriately setting the parameter k allows them to

6



relax the assumption to the soundness of (i) ω(1)-round Fiat-Shamir transform to construct
hard SVL instances, and (ii) constant-round Fiat-Shamir transform to separate P∩PPAD from
NC. Our construction given in §5 can be thought of as their construction with k set to 2.

2 Definitions

In this section, we recall the basic definitions for total search problems and promise problems
from previous work. In §2.3, we define our relaxed version of Sink-of-Verifiable-Line.

2.1 Complexity Classes and Total Search Problems

An efficiently-verifiable search problem is described via a pair (L,R), where L ⊆ {0, 1}∗ is
an efficiently-recognizable set of instances, and R is an efficiently-computable binary relation
— the class that contains all such problems is known as functional NP (FNP). Such a search
problem is total if for every instance v ∈ L there exists a witness w of length poly(|v|) such that
R(v, w) = 1. The class total FNP (TFNP) consists of all efficiently-verifiable search problem
that are total.

The class polynomial parity argument over directed graphs (PPAD) is a syntactical sub-class
of TFNP which consists of all problems that are polynomial-time reducible to the End-of-Line
problem (also known as the Source-or-Sink problem) [35].

Definition 1. An End-of-Line (EOL) instance (S,P) consists of a pair of circuits S,P :
{0, 1}m → {0, 1}m such that P(0m) = 0m and S(0m) 6= 0m. The goal is to find a vertex
v ∈ {0, 1}m such that P(S(v)) 6= v or S(P(v)) 6= v 6= 0m.

Intuitively, the circuits S and P can be viewed as implementing the successor and predecessor
functions of a directed graph over {0, 1}m, where for each pair of vertices v and u there exists
an edge from v to u if and only if S(v) = u and P(u) = v (note that the in-degree and out-degree
of every vertex in this graph is at most one, and the in-degree of 0m is 0). The goal is to find
any vertex, other than 0m, with either no incoming edge or no outgoing edge. Such a vertex
must always exist by a parity argument.

The class continuous local search (CLS) lies in the intersection of PPAD and PLS and con-
sists of all problems that are polynomial-time reducible to the Continuous-Local-Optimum
problem (cf. [15] for the formal definition). Another problem that is known to lie in CLS (but
not known to be complete) is End-of-Metered-Line [24]. (Below [a] denotes {0, 1, . . . , a}.)

Definition 2. An End-of-Metered-Line (EOML) instance (S,P,M) consists of circuits
S,P : {0, 1}m → {0, 1}m and M : {0, 1}m → [2m] such that P(0m) = 0m 6= S(0m) and M(0m) = 1.
The goal is to find a vertex v ∈ {0, 1}m satisfying one of the following:

(i) End of line: either P(S(v)) 6= v or S(P(v)) 6= v 6= 0m,

(ii) False start: v 6= 0m and M(v) = 1,

(iii) Miscount: either M(v) > 0 and M(S(v))−M(v) 6= 1 or M(v) > 1 and M(v)−M(P(v)) 6= 1.

The goal in EOML is the same as in EOL, but now the task is made easier as one is also
given an “odometer” circuit M. On input a vertex v, this circuit M outputs the number of steps
required to reach v from the source. Since the behaviour of M is not guaranteed syntactically,
any vertex that attests a deviation in the correct behaviour of M also acts as a solution (and
thus puts End-of-Metered-Line in TFNP).

7



2.2 The Sink-of-Verifiable-Line Problem

The Sink-of-Verifiable-Line problem is a promise search problem introduced by Abbot,
Kane and Valiant [1] and further developed by [4]. It is defined as follows:

Definition 3. A Sink-of-Verifiable-Line (SVL) instance (S,V, L, v0) consists of L ∈ [2m],
v0 ∈ {0, 1}m, and circuits S : {0, 1}m → {0, 1}m and V : {0, 1}m × [2m] → {0, 1} with the
guarantee that for every v ∈ {0, 1}m and i ∈ [2m], it holds that V(v, i) = 1 if and only if
v = Si(v0). The goal is to find a vertex v ∈ {0, 1}m such that V(v, L) = 1 (i.e., the sink).

Intuitively, the circuit S can be viewed as implementing the successor function of a directed
graph over {0, 1}m that consists of a single line starting at v0. The circuit V enables to efficiently
test whether a given vertex v is of distance i from v0 on the line, and the goal is to find the
vertex at distance L from v0. Note that not every tuple (S,V, L, v0) is a valid SVL instance
since V might not satisfy the promise about its behaviour. Moreover, there may not be an
efficient algorithm for verifying whether a given tuple (S,V, L, v0) is a valid instance, hence this
problem lies outside of TFNP.

Remark 1. The definition of SVL with an arbitrary source vertex v0, as above, is equivalent to
the definition in [4] where the source is 0m. First, any SVL instance (S,V, L) where the source
is 0m can be trivially transformed to an instance (S,V, L, v0 = 0m). Second, we can reduce
in the opposite direction by shifting the main line by v0 as follows. Given an SVL instance
(S,V, L, v0), define the new SVL instance as (S′,V′, L) with source 0m, where S′(v) := S(v⊕v0)
and V′(v) := V(v ⊕ v0), where ⊕ denotes the bitwise XOR operation. Note that this general
technique can be applied in the context of TFNP to any search problem where part of the
instance is some significant vertex (e.g. the trivial source at 0m in End-of-Line).

2.3 The Relaxed Sink-of-Verifiable-Line Problem

The formal definition of the relaxed Sink-of-Verifiable-Line problem from [12] is given in
Definition 4. The main difference from Definition 3 is that the promise about the behaviour
of the verifier circuit V is relaxed so that V can also accept vertices off the line starting at the
vertex v0. However, any vertex off the main line accepted by V is an additional solution.

Definition 4. A relaxed-Sink-of-Verifiable-Line (rSVL) instance (S,V, L, v0) consists of
L ∈ [2m], v0 ∈ {0, 1}m, and circuits S : {0, 1}m → {0, 1}m and V : {0, 1}m × [2m]→ {0, 1} with
the guarantee that for every (v, i) ∈ {0, 1}m× [L] such that v = Si(v0), it holds that V(v, i) = 1.
The goal is to find one of the following:

(i) The sink: a vertex v ∈ {0, 1}m such that V(v, L) = 1; or

(ii) False positive: a pair (v, i) ∈ {0, 1}m × [L] such that v 6= Si(v0) and V(v, i) = 1.

It is shown in [12] that, despite the relaxed promise, rSVL reduces to EOML and, thus,
average-case hardness of rSVL is sufficient to imply average-case hardness of EOML.

Lemma 1. relaxed-Sink-of-Verifiable-Line is many-one reducible to End-of-Metered-
Line.

3 Assumptions

We begin this section with the Rivest, Shamir and Wagner (RSW) time-lock puzzle and the
hardness assumption that underlies its security (Assumption 1). Then, in §3.2, we describe the
weaker assumption (Assumption 2) used in our variant of Pietrzak’s protocol, to be presented
in §4.

8



3.1 The RSW Time-Lock Puzzle

Rivest, Shamir and Wagner [37] introduced the notion of time-lock puzzles. Such a puzzle is
specified by a sampling algorithm sample which, on input a security parameter n and a time
parameter T , outputs a puzzle instance ι and the corresponding solution σ. The solution σ
can be computed given only the puzzle ι making T simple sequential steps, using an algorithm
solve. The security property requires that even an adversary with polynomially-many parallel
cores cannot compute the solution much faster than the honest (sequential) algorithm.

They also propose a simple and elegant construction: on input (n, T ), a puzzle is sampled
by choosing two random n bit primes p, q (which then define an RSA modulus N = pq) together
with any x ∈ Z∗N . The puzzle and solution are then defined as

ι = (N, x, T ) , σ = f(N, x, T ) = x2
T

mod N.

The solution can be efficiently computed by the puzzle sampling algorithm in two steps using
the knowledge of the group order φ(N) = (p− 1)(q − 1) as

e = 2T mod φ(N) , σ = xe mod N. (2)

It is conjectured in [37] that the fastest way to compute x2
T

mod N is through repeated squaring:

x→ x2 → x2
2 → x2

3 → . . .→ x2
T

(mod N). (3)

In particular, parallelism (beyond what can be used to speed up a single squaring) does not
allow to compute the solution any faster.

Below we state this conjecture explicitly: we use “running time” to denote the total com-
putation of an algorithm, while actual clock time of a computation is referred to by “sequential
computation”. For instance, if the algorithm is given as a circuit, then the running time would
be its size, whereas the sequential computation is its depth.

Assumption 1 ([37]). For a security parameter n ∈ N, let N be the product of two random
n/2-bit primes and x ∈ Z∗N be sampled uniformly at random. For any T ∈ N and any algorithm
A (whose running time is significantly smaller than what is required to factor N) that, on input

(N, x, T ), outputs y = x2
T

mod N with overwhelming1 probability the sequential computation
performed by A is not much less than what is required to compute T sequential squarings in Z∗N .

3.2 Our Number-Theoretic Assumption

The hardness result in this paper is based on a weaker assumption where we just require that
for some superpolynomial T , f(N, x, T ) cannot be computed in polynomial time. The exact
algebraic setting for our assumption, as formally stated in Assumption 2, differs slightly from
that in Assumption 1. First, we require the primes p, q that define the modulus N to be safe
primes (where, recall that, p is safe if (p−1)/2 is also prime). Second, the group that we assume
our hardness is the group of signed quadratic residues (defined below), which is slightly more
structured than Z∗N – this extra structure helps enforce unique proofs for Pietrzak’s protocol
(cf. §4 for the details). However, we justify in Remarks 2 and 4 below that these changes do
not really affect the strength of the assumption.

Signed quadratic residues. For two safe primes p and q, and N := p ·q the signed quadratic
residues [19, 22] is defined as the group

QR+
N := {|x| : x ∈ QRN},

1Recall that a function g : N → [0, 1] is negligible if for every polynomial p(n) ∈ poly(n) there’s an n0 s.t.
g(n) ≤ p(n) for all n ≥ n0. g is overwhelming if 1− g is negligible.

9



where |x| is the absolute value when representing the elements of Z∗N as {−(N − 1)/2, . . . , (N −
1)/2}. Since −1 ∈ Z∗N is a quadratic non-residue with Jacobi symbol +1, the map |·| acts as an
(efficiently-computable) isomorphism2 from QRN to QR+

N , and as a result QR+
N is also a cyclic

group, with the group operation defined as

a ◦ b := |a · b mod N |.

However, unlike for QRN , membership in QR+
N can be efficiently tested since QR+

N = J+
N where

JN is the group of elements with Jacobi symbol +1 and

J+
N := {|x| : x ∈ JN} = JN/{±1}.

In other words, to test whether a given x ∈ Z∗N (represented as {−(N − 1)/2, . . . , (N − 1)/2})
belongs also to QRN+, ensure that x ≥ 0 and that its Jacobi symbol is +1.

The assumption. The hardness assumption that underlies the rSVL instance proposed in
this paper is stated below.

Assumption 2. For a security parameter n, let N = p · q be the product of two random n/2-
bit safe primes p, q and x ∈ QR+

N be sampled uniformly at random. There exists some T =

nω(1), T ≤ 2n, such that no poly(n)-time algorithm, on input (N, x, T ), can output x2
T ∈ QR+

N

except with non-negligible probability.

Remark 2 (On using safe primes). The primes p and q in Assumption 2 are safe primes to
make sure that QR+

N contains no sub-group of small order – this property is exploited later to
prove statistical soundness of the proof system in the next section.

It is conjectured that for some constant c, there are c · 2n/n2 safe n-bit primes (cf. [41]),
so a random n bit prime is safe with probability ≈ c/n. Under the weaker requirement that
there are at least 2n/poly(n) n-bit primes for some polynomial in poly(n), Assumption 1 is at
least as strong as an assumption where we additionally require p and q to be safe, since if a
Θ(1/poly(n)) fraction of all n-bit primes is safe, an N sampled as in Assumption 1 will be the
product of two safe primes with noticeable probability Θ(1/poly(n)2).

Remark 3 (Using other groups and operations). One can prove soundness of the protocol also
when a standard RSA modulus is used (i.e., p and q are just random primes), or in fact any
other group, but then one needs a computational assumption to argue soundness of the protocol,
namely, that it is hard to find elements of small order [6]. So the hardness of our rSVL instance

would rely on hardness of computing x2
T

as in Assumption 2, and additionally on the hardness
of finding some element z where ze = x for some e of polynomial size.

We also note that instead of computing x2
T

, one can use the function xe
T

for any e for which
xe can be computed efficiently given x and e.

Remark 4 (On assumption in (Z∗N , ·) vs. (QR+
N , ◦)). Although Assumption 2 concerns the

hardness of exponentiation with respect to (QR+
N , ◦) (compared to Assumption 1 which applies

to hardness of exponentiation modulo N), we explain below why restricting to QR+
N can only

make the assumption milder. We argue in two steps using the assumption in QRN as the
intermediate step. To be specific, first we show that sinceQRN is a subgroup of Z∗N of sufficiently
large size, Assumption 2 in QRN is at least as strong (Step (i)); then, we exploit the isomorphism
between QRN and QR+

N to argue that if one breaks the assumption in QR+
N then one can break

the assumption also in QRN (Step (ii)).

2Note, however, that the inverse of this isomorphism is hard to compute exactly because of the quadratic
residuosity assumption.

10



Step (i) As |QRN | = |Z∗N |/4, a random element in Z∗N also belongs to QRN with probability
1/4. Thus the reduction, on challenge x ∈ Z∗N , just invokes the algorithm A that
breaks the assumption in QRN on x, and is guaranteed to succeed at least a fourth
of the time A succeeds.

Step (ii) Consider any x ∈ QRN and y := x2
T

mod N . By the properties of the isomorphism,

the image of y in QR+
N is y′ = |x|2T mod N = x2

T ∈ QR+
N . Thus given y′ we know

that y ∈ {y′, N − y′} is one of two possible values. Although the exact value cannot
be computed (as it would contradict the quadratic residuosity assumption), we can
guess one of the two values. Thus the assumption in (QR+

N , ◦) is as strong as the
assumption in (QRN , ·).

Remark 5 (On the range of T ). Note that we allow T to be any superpolynomial value. Even

though it seems that computing x2
T

mod N only can get harder as T increases, we cannot
actually prove this. Therefore, instead of just setting T = 2n, we allow T to take any value to
ensure Assumption 2 really is weaker than Assumption 1.

Let us observe that if T is the product of all n bit primes, then computing x2
T

mod N is
actually trivial as (using T mod φ(φ(N)) = 0 below)

x2
T

mod N = x2
T mod φ(N) mod N = x2

T mod φ(φ(N)) mod φ(N) mod N = x mod N .

As this T is doubly exponentially large (while we require T ≤ 2n) this is not a valid choice,

but this observation indicates why showing that computing x2
T

only gets harder as T increases
might be tricky.

Before moving on the proof system, we point out some properties of the set of generators
of the quadratic residues. This will prove useful later in establishing hardness of the rSVL
instance proposed in §5 (Claim 1.2 in Theorem 1).

Generators of QR+
N . Let’s denote by QR?N ⊂ QR

+
N the set of generators of QR+

N :

QR?N = {x ∈ QR+
N : 〈x〉 = QR+

N} .

If N = p · q = (2p′ + 1)(2q′ + 1) is the product of n/2-bit safe primes, then we have

|QRN | = |QR+
N | = p′ · q′ and |QR?N | = (p′ − 1)(q′ − 1) = p′ · q′ − p′ − q′ + 1 .

Our first observation is that a random element in QR+
N almost certainly also belongs to

QR?N :

Pr
x←QR+

N

[x ∈ QR?N ] = 1− p′ + q′ − 1

p′ · q′
≥ 1− 1

2n/2−2
. (4)

Looking ahead, we will only be able to prove soundness of the protocol for statements (N, x, T, y)
if x ∈ QR?N . Although we can efficiently check if some x is in QR+

N , we cannot efficiently check
if it also belongs to QR?N (without knowing the factorization of N). But as a consequence of
the above observations, an x chosen at random from QR+

N is almost certainly also in QR?N .
Secondly, since the squaring map is an automorphism of QR+

N
3 (and also QRN ) x ∈ QR?N

implies x2 ∈ QR?N . As a result, starting with any x ∈ QR?N , repeated squaring generates a
subset of QR?N : i.e., for any x ∈ QR?N we have

{x, x2, x22 , x23 , . . . , x2(p
′−1)(q′−1)−1} ⊆ QR?N with x2

(p′−1)(q′−1)
= x. (5)

3Note that (a ◦ b)2 = (a ◦ b) ◦ (a ◦ b) = (a ◦ a) ◦ (b ◦ b) = a2 ◦ b2, and since ·2 is a permutation on QR+
N – or on

QRN as originially shown by Blum [5] – it is an automorphism.

11



4 Pietrzak’s Proof System

The key component of our construction is Pietrzak’s interactive protocol for showing that a
tuple (N, x, T, y) satisfies y = f(N, x, T ) mod N [36]. There, the motivation was to construct a
so-called “verifiable delay function” [6]. The protocol we use in this work differs in some minor
aspects from the one in [36]. Most importantly, in order to enforce unique proofs (i.e., for every
challenge (N, x, T ), one cannot find more than one accepting proof), we switch the algebraic
setting of the protocol from Z∗N to QR+

N , the group of signed quadratic residues we defined in
§3.2. The other changes that we introduce make the proof system less efficient but enable a
cleaner description — see Remark 6 for further details.

4.1 The Interactive Protocol

Our variant of Pietrzak’s protocol allows a prover to convince a verifier that a tuple (N, x, T =

2t, y) satisfies the relation y = x2
T

in the group QR+
N (i.e., here x2 := x ◦ x) using log T rounds

of interaction. In the first step, the prover sends the midpoint µ = x2
T/2

as a commitment to
the verifier. Note that if x2

T/2
= µ and µ2

T/2
= y are both true, so is the original claim y = x2

T
.

At this point we have reduced the task to prove a statement for time parameter T to
proving two statements (N, x, T/2, µ) and (N,µ, T/2, y) for time parameter T/2. Next, the
verifier merges these two statements into a single statement (N, x′, T/2, y′) by computing a
random linear combination: using the challenge r it computes x′ := xr ◦ µ and y′ := µr ◦ y.

One can show that with overwhelming probability over the choice of r the following holds:

if the original statement was wrong, i.e., x2
T 6= y, so will the new one, i.e., x′2

T/2

6= y′. This
basic protocol is repeated log T times, halving the time parameter every time, until we arrive
at a claim for T = 1 at which point the verifier can efficiently check correctness without the
help of the prover by making one squaring.

Removing interaction. The interactive proof system just outlined is public-coin and has
an exponentially-small soundness error, which means we could make it non-interactive via the
Fiat-Shamir transform [18]. However, Fiat-Shamir is known to be sound in the random-oracle
model for constant-round interactive protocols, unlike the proof system above which involves
O(log T ) rounds of interaction.

Nonetheless, we show that a close analogue of the Fiat-Shamir transform does yield a non-
interactive protocol that is sound in the random-oracle model. In particular, to remove inter-
action, we derive verifier’s message (i.e., the r’s) in each round by applying a hash function
H : {0, 1}∗ → {0, 1}3n to the prover’s message for that round — the range of H (thought of as
Z23n) is chosen to be sufficiently large so that H(·) mod p′q′, when H is modelled as a random
oracle, is extremely close to uniform over Zp′q′ . As a result, we get a non-interactive proof
system (also with exponentially-small soundness error) for the statement “(N, x, T, y) satisfies

y = x2
T

in QR+
N”.

A number of recent works have aimed at relaxing the assumptions under which the Fiat-
Shamir transformation can be proved sound [28, 27, 10]. In particular, [10] shows that for
statistically-sound protocols, exponentially-hard key-derivation mechanism implies that Fiat-
Shamir is sound. They also construct such KDMs under some strong assumptions related to
learning with errors and the discrete-logarithm problem. Therefore, one could potentially argue
the soundness above under much weaker assumptions than random oracles or indistinguishabil-
ity obfuscation.

Remark 6 (On differences from [36]). In addition to the switch from Z∗N to QR+
N , we have

introduced a few changes to make the proof system simpler at the cost of efficiency. We are
able to employ these changes, listed below, as concrete efficiency is not the focus of our work
— i.e., we only require the circuits S and V in our rSVL instance to be of polynomial size.

12



1. The range of the hash function H is much larger in this work than in [36]. This allows us
to argue that xH(·) mod N is close to uniform.

2. The prover described above uses the minimum space necessary, even though additional
space can significantly improve the efficiency of the computation of the proof.

3. It suffices for us to consider a time parameter of the form T = 2t — the original protocol
is described for arbitrary T .

4. We iterate the protocol until the parameter T = 2t, which is halved in every round, is
down to 1, even though it is more efficient to stop at an earlier round. In other words, the
base proof in our case is of time parameter 1, whereas it was greater than that in [36].

4.2 The Non-Interactive Protocol

We describe here in full detail the non-interactive protocol (prove,verify) that results from the
discussion in the previous section. (prove,verify) will serve as the basis for our main construction
of relaxed-Sink-of-Verifiable-Line in §5. Also described is the simple algorithm solve that
computes the solution (and is identical to the solver of the RSW time-lock puzzle).

• Computing the solution, solve. The algorithm solve on input (N,T, x) ∈ Z × QR+
N × Z

computes and outputs x2
T

by sequentially squaring x T times. Note that the first element
N ∈ Z of the input defines the domain QR+

N of subsequent elements.

• Computing the proof, prove. The algorithm prove on input (N, x, T = 2t, y) ∈ Z×QR+
N ×

Z×QR+
N computes a proof for the claim x2

T
= y as follows. Let (x1, y1) = (x, y) and for

i = 1 . . . t recursively compute:

µi := x2
T/2i

i ∈ QR+
N

ri := H(µi, xi, yi, T/2
i−1)

xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi.

Then prove(N, x, T, y) outputs the proof

πTx→y = (N,T, x, y, µ1, . . . , µt) = (N,T, x, y,µ) ∈ Z2 ×QR+
N
t+2

. (6)

• Verifying a proof, verify. The verification algorithm verify on input π̃Tx→y = (N,T, x, y, µ1, . . . , µt)

first checks that x, y and all µi are in QR+
N — if this check fails verify(π̃Tx→y) outputs 0.

Otherwise let (x1, y1) = (x, y) and then for i = 1 . . . t compute:

ri := H(µi, xi, yi, T/2
i−1)

xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi.

The output of verify(π̃Tx→y) is 1 if x2t+1 = yt+1 and 0 otherwise.

We end the description of (prove,verify) with a comment on notation that will be used in
this paper: we reserve

πTx→y := prove(N, x, T, x2
T

)

to denote honestly computed proofs for true statements, and π̃Tx→y for any string that parses as

a possible proof, i.e., starts with N, x, T, y and is in Z2 ×QR+
N
t+2

.

13



4.3 Soundness

The soundness of the proof system (prove,verify) can be shown in the random-oracle model
assuming that an adversary never finds a “bad query” as defined in Definition 5. To be precise,
we first argue that these bad queries are hard to find provided that the adversary is allowed
bounded number of queries to the random oracle (Lemma 2); conditioned on the adversary not
making a bad query, we prove that soundness is hard to break (Lemma 3).

Definition 5 (Bad query). A query is a tuple (µ, x, y, T ) where µ, x, y ∈ QR+
N and T ∈ Z. Let

r := H(µ, x, y, T ) , x′ := xr ◦ µ and y′ := µr ◦ y.

We say the query (µ, x, y, T ) is bad if x ∈ QR?N and moreover either

(i) x′ 6∈ QR?N ; or

(ii)
(
x2

T 6= y or µ 6= x2
T/2
)

and x′2
T/2

= y′.

Lemma 2 (Bad queries are hard to find). For any N = p · q where p = 2p′ + 1, q = 2q′ + 1 are
(n+ 1)-bit safe primes, the following holds: any adversary that makes at most Q queries to the
random oracle H will make a bad query with probability at most

3 ·Q
2n

The proof of Lemma 2 is an adaptation of [36, Lemma 1] to the setting of QR+
N , and therefore

is given in Appendix A. As a corollary of Lemma 2 we get a strong soundness guarantee for
the proof system. It not only states that it is hard to find proofs for wrong statements, but
it is even hard to find any accepting proofs that differ from honestly generated proofs for true
statements.

Lemma 3 (Soundness). For any N = p · q where p = 2p′ + 1, q = 2q′ + 1 are (n/2)-bit
safe, no adversary that makes at most Q queries to the random oracle H (but is otherwise
computationally unbounded) will find a proof π̃Tx→y where

• x ∈ QR?N (we let the adversary choose T and x, but require x to be in QR?N ).

• verify(π̃Tx→y) = 1 (proof verifies)

• πT
x→x2T

6= π̃Tx→y (proof is different from an honestly generated proof for a true statement)

except with probability ≤ 3 ·Q/2n/2−1.

Proof. Let “break” denote the event that an adversary that makes at most Q queries to the ran-
dom oracle finds a proof π̃Tx→y such that verify(π̃Tx→y) = 1 and πT

x→x2T
6= π̃Tx→y. The probability

of “break” can be bounded as follows:

Pr[break] = Pr[break ∧ (bad query ∨ ¬bad query)]

≤ Pr[break ∧ bad query] + Pr[break ∧ ¬bad query)]

= Pr[break|bad query] · Pr[bad query] ≤ 3 ·Q/2n/2−1

Note that Pr[break ∧ ¬bad query)] = 0 since if no bad queries were made then the proof π̃Tx→y
must equal πT

x→x2T
.

14



4.4 Efficiency

Finally, we point out three properties concerning the efficiency of (prove,verify). In particular
Property 3, which allows for a somewhat-efficient merging of two proofs, will be absolutely
crucial in our construction of hard rSVL instance that follows next in §5.

Property 1 (Cost of computing solutions and proofs). The computational cost incurred to com-

pute x2
T

:= solve(N, x, T ) is T + poly(n) multiplications in (QRN , ◦). The computational cost
incurred to compute πTx→y := prove(N, x, T, y) is also T + poly(n) multiplications in (QRN , ◦).
The space required is poly(n) in both cases.

To see this, note that the cost of computing prove(N, x, T, y) is dominated by computing
the µi’s, which requires T/2 squarings for µ1, T/4 for µ2 etc., for a total of T − 1 squarings.

Property 2 (Size of the proof). The size of a proof πTx→y is O(n · log T ) bits.

Property 3 (Cost of merging proofs). Given two proofs πTx→y, π
T
y→z as “advice”, computing

the proof π2Tx→z can be efficiently reduced to computing a proof πTx′→y′ .

This property emerges from the recursive nature of the protocol: we can completely avoid
computing the µ1 component in the proof π2Tx→z = (N, 2T, x, z, µ1, µ2, . . . , µt+1) since it is already

present in πTx→y in the form of the element y (i.e., µ1 = x2
T

= y). That is, to compute π2Tx→z
given πTx→y and πTy→z, we first compute the merged statement

r := H(y = µ1, x, z, 2 · T ) , x′ := xr ◦ y , y′ := yr ◦ z (7)

and then, making T + poly(n) multiplications, compute its proof

πTx′→y′ = (N,T, x′, y′, µ′1, . . . , µ
′
t) := prove(N, x′, T, y′).

From the proof for the merged statement, we can reconstruct the proof for π2Tx→z as

(N, 2T, x, z, µ1, µ
′
1, . . . , µ

′
t). (8)

5 The Reduction

To construct a hard relaxed-Sink-of-Verifiable-Line instance, we rely on the hardness of
computing x2

T
in the group QR+

N as stated in Assumption 2. In particular, we aim to construct
an efficient successor circuit S such that applying it iteratively to the initial state (x, . . .) we

reach a (final) state (x2
T
, . . .). Meanwhile, every intermediate state can be efficiently certified to

lie on the line using the verifier V — in order to construct such a V, we intend to use Pietrzak’s
proof system for certifying y = x2

T
just described in §4.

We sketch in §5.1 why some simple approaches do not work. The reader, however, can skip
these and directly jump to §5.2 where we discuss the solution using Property 3. But first, we
fix some notation that will be used throughout this section.

Notation. Let Σ be an alphabet (we will use the binary {0, 1} and ternary {0, 1, 2} alphabets).
Σt denotes the set of all strings of length t over Σ; Σ≤t denotes ∪j∈[t]Σj (with the empty string
denoted by ε). For a string a ∈ Σt and j ∈ [t], a[j] refers to the j-th symbol in a. For two
strings a and b, ab represents their concatenation.

We address each node of a complete binary tree of depth t using the binary string that
encodes its position — i.e., a node at level l ∈ [t] is encoded by an l-bit string and, e.g., the
root is ε, its children 0, 1 and so on. An analogous system is used for the complete trinary tree
(cf. Figure 3).

Finally, we reserve “nodes” to refer only to the vertices of a tree, to avoid confusion with
the vertices of the rSVL instance.

15



5.1 Intuition

We consider SVL or rSVL instances where (N, x, T ) is first sampled as in Assumption 2.

Inefficient verifier circuit. The first idea is to sample an SVL instance as (S,V, x, T ) where

V((y, i), j) = 1 ⇐⇒ j = i ≤ T and y = x2
i

S((y, i)) =

 (y, i) if i ≥ T

(y2, i+ 1) otherwise

The only way to solve this instance is to find the end of the line (x2
T
, T ), which under As-

sumption 2 is hard. Unfortunately without knowing the group order φ(N) we can’t realize V
efficiently as computing x2

i
requires i squarings.

Inefficient successor circuit. To allow efficient verification, we can replace the state (x2
i
, i)

with a proof πix→y establishing that x2
i

= y. That is, for xi := x2
i
, we consider an rSVL

instance (S,V, π0x0→x0 , T ) where S and V are defined as

V(π̃ix0→y, j) = 1 ⇐⇒ j = i ≤ T and verify(π̃ix0→y) = 1

S(π̃ix0→y) =


π̃ix0→y if V(π̃ix0→y, i) = 0 or i = T

πi+1
x0→xi+1

else if π̃ix0→y = πix0→xi

unspecified otherwise.

Using soundness as stated in Lemma 3, we can argue that an adversary making a poly(n) number
of oracle queries will not be able to find a wrong accepting proof π̃ix0→y, i.e.,

π̃ix0→y 6= πix0→xi ∧ verify(π̃ix0→y) = 1

happens only with exponentially-small probability. Assuming the adversary does not find such a
wrong proof, the only other way to solve the instance is by finding the correct sink ST (π0x0→x0) =
πTx0→xT (i.e., a solution of type (i) as per Definition 4), which under Assumption 2 is hard.

Unfortunately now it’s not clear how to implement the successor circuit S efficiently, as
computing a proof πi+1

x0→xi+1
seems to require around i exponentiations even when given a proof

for the previous state πix0→xi .
4

A solution assuming efficient merge. Assume it is possible, say using an algorithm merge,
to merge proofs π`x→y and π`y→z into a single proof π2`x→z in just poly(n) steps (rather than
` + poly(n) steps required by Property 3). This allows us to define a very simple hard rSVL
instance using the recursive approach of Valiant [40]: reduce the computation of a proof for
time parameter 2` to the computation of two proofs for time parameter `, and then use merge.
The resulting algorithm f is given in Algorithm 1.

The description of the successor and verifier circuits for the corresponding rSVL instance
can now be obtained by simulating f(N, x, T ) using iterations and stack traces. We will see in

4As a way around the above problem, instead of assuming that S outputs the proof πi+1
x0→xi+1

in one invocation,
we can split this computation into i efficient steps. However, we again run into the problem of implementing V
efficiently, as – when computing this proof in a straight forward manner – we have no efficient way of verifying
that the intermediate states are correct. If we just let V output 1 on states where it can’t verify correctness, we

will introduce “uninteresting” accepting states that neither contain x2
T

0 nor break the soundness of the protocol
(and thus we can’t conclude that solving this instance breaks Assumption 2 or soundness).

16



f(N, x, `)
1: if x 6∈ QR+

N or ` is not a power of 2 then
2: return ⊥ . Invalid input
3: end if
4: if ` = 1 then . Base case
5: return π1x→x2 := prove(N, x, 1, x2)
6: else
7: π

`/2
x→y := f(N, x, `/2) . First recursive call

8: π
`/2
y→z := f(N, y, `/2) . Second recursive call

9: return π`x→z := merge(N, π
`/2
x→y, π

`/2
y→z) . Do the efficient merge

10: end if

Algorithm 1: Recursive description of the rSVL instance with efficient merge.

§5.2 how this can be exactly (and succinctly) accomplished using the tree that captures the
execution of f (see Figure 2.(a)), and limit below to an informal overview.

Let xi := x2
i

as before. Starting at ∅ and ending at πTx→xT , the rSVL instance has a main
line of length T . The first few vertices on this line are:

∅ → {π1x0→x1} → {π
2
x0→x2} → {π

2
x0→x2 , π

1
x2→x3} → {π

4
x0→x4} → {π

4
x0→x4 , π

1
x4→x5} →

{π4x0→x4 , π
2
x4→x6} → · · · → {π

T
x→xT }.

The verifier V simply checks if the input label corresponds to a valid sequence of accepting
proofs, which can be done efficiently. The successor S — given that an input label is a valid
sequence — looks at the last proof in this sequence, denoted π`a→b, adds the base proof π1b→b2
to the sequence and then keeps merging the last two proofs in this sequence as long as they
have the same time parameter. For example, the third label above is obtained by first adding
the base proof π1x1→x2 to the previous label {π1x0→x1} and then doing the merge; the fifth label
is obtained by adding π1x3→x4 to {π2x0→x2 , π

1
x2→x3} and then merging twice.

Note that because of the merging, the number of proofs in the labels is guaranteed to stay
below log T — the size of the input labels is therefore poly(n, log T ). Since πTx→xT contains the

value of xT = x2
T

, finding the sink πTx→xT is hard under Assumption 2. Moreover, coming up
with a state that passes verification but is not of the form Si(∅) for some i requires breaking
soundness of the underlying proof system.

The solution using somewhat-efficient merge. Unfortunately, as noted in Property 3,
Pietrzak’s proof system only allows for somewhat-efficient merging: two proofs π`x→y, π

`
y→z can

be merged into π2`x→z at the cost of computing a proof π`x′→y′ (which still requires i + poly(n)
multiplications). However, as we will explain in the next section, this property already suffices
for a reduction.

5.2 The Reduction

We start below with a recursive formulation of the solution using somewhat-efficient merge as
it is intuitive and easy to understand (and is an extension of the approach using Algorithm 1
we employed when merging is efficient). The description of the successor and verifier circuits is
later obtained by using the standard trick of simulating a recursive algorithm using iterations
and stack traces.

A recursive prelude. The main idea behind our construction is to merge the proofs recur-
sively, exploiting Property 3: given π`x→y and π`y→z, we efficiently reduce the computation of

17



π2`x→z to the computation of the proof π`x′→y′ for x′, y′ as in the merged statement given in
eq.(7). Thus, the computation of a proof for time parameter 2` is reduced to the computation
of 3 proofs for time parameter ` (unlike 2 proofs for the case merging is efficient), which then
can be reduced to computing 3 · 3 proofs of time parameter `/2, and so on and so forth until
` = 1 at which point we can efficiently compute the base proof.

The resulting recursive algorithm f is given in Algorithm 2. Note that the way f is struc-
tured, the whole computation is being carried out in a verifiable manner: the midpoint and the
endpoint are both accompanied by proofs that they are the correct power of x and only certified
values are being used in the subsequent calls.5

f(N, x, `)
1: if x 6∈ QR+

N or ` is not a power of 2 then
2: return ⊥ . Invalid input
3: end if
4: if ` = 1 then . Base case
5: return π1x→x2 := prove(N, x, 1, x2)
6: else
7: π

`/2
x→y := f(N, x, `/2) . First recursive call

8: π
`/2
y→z := f(N, y, `/2) . Second recursive call

9: µ := y, r := H(µ, x, z, `/2) and x′ := xr ◦ µ . Reduce finding π`x→z to finding π
`/2
x′→y′

10: π
`/2
x′→y′ := f(N, x′, `/2) . Third recursive call

11: Parse π
`/2
x′→y′ as (`/2, x′, y′, µ′1, . . . , µ

′
log(`/2))

12: return π`x→z := (`, x, z, µ, µ′1, . . . , µ
′
log(`/2)) . Reconstruct π`x→z

13: end if

Algorithm 2: Recursive description of the rSVL instance.

The rSVL instance. As already pointed out, we obtain the successor and verifier circuits
for the rSVL instance by simulating f using iterations and stack traces. To this end, we view
the execution of f(N, x, T ) as a complete ternary tree τ of depth t = log T , where each node
represents a call to f. In particular, a node i ∈ {0, 1, 2}≤t in τ is labelled by the proof πi that
is computed using that particular call to f. The children of a particular node are, therefore,
labelled by the three proofs that result from recursive calls made within.

To be precise, the root of τ is labelled πTx→xT (where, if you recall, xi := x2
i
), its three

children
πT/2x→xT/2 , π

T/2
xT/2→xT and π

T/2

x′→x′2T/2
,

where x′ is computed as in eq.7, and so on until the leaves which are labelled using base proofs.
For example, the tree corresponding to f(N, x, 4) is depicted in Figure 2.(b).

The rSVL instance we propose consists of a main line of length 3log T starting at ∅ and
ending at πTx→xT . The intermediate vertices can be described using τ thanks to a one-to-one
correspondence: for i ∈ {0, 1, 2}t, the i-th vertex on the main line consists of set the of proofs
in the stack of f(N, x, T ) when its execution begins the recursion at i — the stack trace at i, for
short.

5As noted in Section 5.1 this is reminiscent of the approach used by Valiant [40] to construct incrementally
verifiable computation from computationally-sound proofs of knowledge (especially the idea of merging proofs,
using stack traces for incremental computation etc.). However, Valiant works in a setting where the prover is
efficient and as a consequence, merging proofs also turns out to be efficient, and thus his approach is closer to
the solution using efficient merge described in §5.1. Our main observation is that even in some cases where the
merging is not efficient, his ideas might still apply.

18



π8
x→x28

π4
x→x24

π4
x2

4→x28

π2
x→x22

π2
x22→x24

π2
x24→x26

π2
x26→x28

π2
x→x21

π2
x21→x22

π2
x22→x23

π2
x23→x24

π2
x24→x25

π2
x25→x26

π2
x26→x27

π2
x27→x28

(a)

π4
x→x24

π2
x→x22

π2
x22→x24

π2
x2→x2

2
2

π1
x→x21

π1
x21→x22

π1
x02→x2

1
02

π1
x22→x23

π1
x23→x24

π1
x12→x2

1
12

π1
x2→x2

1
2

π1
x2

1
2 →x2

2
2

π1
x22→x2

1
22

(b)

Figure 2: (a) The complete binary tree that corresponds to f(N, x, 8) from Algorithm 1. (b)
The complete ternary tree that corresponds to f(N, x, 4) from Algorithm 2. The value of the
x2, x02, x12 and x22 can be computed using eq.7.

These proofs can be described in terms of τ , but we have to first recall certain definitions
pertaining to trees. The sibling of a node i in a tree is defined as the set of nodes that have the
same parent as i. By “left” siblings of a node i ∈ τ , we refer to the siblings that lie topologically
to the left of that node. The ancestor of a node i in a tree is the set of node that lie on the
path from i to the root. By “inclusive” ancestors of i, we refer to set containing the ancestors
of i and i itself.

A quick inspection of Algorithm 2 (and Figure 2.(b)) reveals that the stack trace at i
comprises of a sequence of proofs, one for each left sibling of the inclusive ancestors of i. On
denoting these set of nodes of τ by trace(i), the main line in our rSVL instance is defined as

∅ = {πj}j∈trace(0t) → {πj}j∈trace(0t−11) → {πj}j∈trace(0t−12) → {πj}j∈trace(10t−1) →
. . .→ {πj}j∈trace(2t−11) → {πj}j∈trace(2t) → πTx→xT .

Consequently, the label for a vertex consists of at most 2 log T proofs of the underlying proof
system (i.e., eq.6), and we assume that labels with fewer proofs are padded accordingly.

For example, consider the toy rSVL instance from Figure 3. For the node 122 (red square),
the path to the root is dashed in red, and thus its inclusive ancestors are {122, 12, 1, ε}. The
trace(122) = {0, 10, 11, 120, 121} is hatched north east in red, and the correct label for the 122-th
vertex is thus {π0, π10, π11, π120, π121} where, for example, π0 = π4x0→x4 and π10 = π2x4→x6 .

With the rSVL line defined as above, the successor and verifier functions follow quite logi-
cally. The verifier, given as input a vertex v and an index i, ensures that v is indeed the valid
stack trace at i. The successor, on the other hand, generates the stack trace at i+ 1 given the
stack trace at i. The formal description of the circuits V and S is given in Algorithms 3 and 4,
respectively; an intuitive exposition follows.

The verifier circuit. On input an index i and a vertex v, parsed as a sequence of proofs
{π̃j}j∈trace(i), the verifier V ensures that v is a valid stack trace at i by performing a series of

19



0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2

ε

Figure 3: A schematic diagram of τ for f(N, x, 8). The resulting rSVL instance is of length
27. The red square node denotes the vertex i = 122, whereas the blue hexagon node denotes
i+ 1 = 200. The path from i = 122 to the root is dashed in red and the vertices in trace(i) are
hatched north east in red. Similarly, the path from i + 1 = 200 to the root is dotted in blue
and the vertices in trace(i+ 1) are hatched north west in blue. (The vertex 0, as it appears in
both the traces, is double-hatched.)

checks on the sequence. Recall from eq.6 that each proof π̃j in the sequence is of the form
(N, `j , xj , yj ,µj), where `j denotes the time parameter of the proof, xj and yj are its start and
end points respectively, and µj denotes the midpoints.

The verifier V first ensures that each π̃j is valid by invoking the verify algorithm of the
underlying proof system (from §4.2).

Second, V checks whether the time parameter of each proof matches its level: the correct
time parameter of a proof π̃j is T/2|j|, where |j| is the level of the node j in the tree τ (with
the root at level 0 and the leaves at level t). As a concrete example, consider the node 122 from
Figure 3 and the corresponding vertex {π0, π10, π11, π120, π121}. For this vertex to be valid, π0
must have length 4 (i.e., `0 = 4) whereas π121 must be a base proof (i.e., `121 = 1).

Finally, provided that each proof satisfies the first two conditions, V checks if the end points
of the proofs in the sequence chain appropriately. For every proof π̃j in the sequence, there
are two possibilities depending on whether or not π̃j corresponds to a merged statement – we
denote them cases (i) and (ii), respectively. In case (i), the start of π̃j is computed from the two
proofs that precede π̃j in the sequence by merging them using eq.7. The start of π̃j in case (ii),
however, just coincides with the endpoint of the proof that precedes it in the sequence (and in
case π̃j is the first proof in the sequence, it must start at x).

Going back to the earlier example, the sequence of proofs {π0, π10, π11, π120, π121} is valid if

π0 ↔ π10 ↔, π11 ! π120 ↔ π121, (9)

where the ‘!’ denotes case (i) and the ‘↔’ denotes case (ii). That is, for example, x10 = y0
and x121 = y120 but since π120 is a merged proof, x120 is computed from π10 and π11 using eq.7.

The successor circuit. Given as input a vertex v, the successor circuit S first uses a function6

index(·) to extract the index i that is implicitly embedded in the sequence of proofs in v. Next,
it confirms whether or not v is the valid i-th vertex on the line, i.e. the stack trace at i, by
invoking the verifier V. In case v is invalid, S forms a self-loop at v; otherwise, v is the valid
stack trace at i and S utilises it to compute the stack trace at i+ 1.

6To be precise, the function index(·) on input a sequence of proof v computes the index i as follows: it counts
the number of proofs of length k in v and then encodes this count in the log `-th trit position of i. If there are
more than two proofs of a particular length, then we assume that the function just returns ⊥.

20



VN,x,T (v, i) . i is a t-trit string
1: if i > 3log T then return 0
2: Parse v =: {π̃j}j∈trace(i)
3: Set xnext = x . Set starting point of the chain
4: for j ∈ trace(i) do . Verify the sequence topologically from left to right
5: Parse π̃j =: (N, xj , yj , `j ,µj)
6: if verify(π̃j) = 0 or `j 6= T/2|j| then return 0 . Checks 1 and 2
7: else if xj 6= xnext then return 0 . Check 3
8: else . Compute the next point on the chain
9: if j[|j|] = 1 then . case (i): second recursion

10: Set µ := xj and compute r = H(µ, xj−1, yj , `j)
11: Set xnext = xrj−1 ◦ µ . Compute the merged statement
12: else Set xnext := yj . case (ii): first or third recursion
13: end if
14: end if
15: end for
16: return 1 . Valid stack trace at i

Algorithm 3: The verifier circuit for our rSVL instance.

S first simulates the next recursion in the pipeline by adding the base proof πi to v :=
{π̃j}j∈trace(i) (cf. lines 5 to 11 in Algorithm 4 for the exact computation involved) and then keeps
merging the last three proofs in this sequence as long as they have the same time parameter.
In particular, in the case that πi corresponds to a merged statement (i.e., if i[t] = 2) — since
some recursive call to f (up the tree τ) has been completed — S has to reconstruct the resulting
proof. We denote the node in τ where this recursive call originates by source(i), and it can be
obtained by truncating the trailing 2s of i. We refer to Algorithm 4 (lines 14 and 15) for the
exact procedure used for reconstructing the proof for source(i), but once it possesses this proof,
S has all the components of the next vertex on the line, the stack trace at i+ 1.

For example, let’s consider the successor circuit applied to {π0, π10, π11, π120, π121}, the i =
122-th vertex in the rSVL instance given in Figure 3. S first computes π122, and since this
concludes the recursive call f(N, x4, 4) at the (source) vertex 1, S reconstructs the corresponding
proof π1 by merging twice: first it merges π120, π121 and π122 (using eq.8) to reconstruct π12, and
then it merges π10, π11 and π12 to obtain π1. Finally it assembles the next vertex (i+ 1 = 200)
as {π0, π1}, and since trace(200) = {0, 1} the newly assembled proof indeed is the stack trace
at i+ 1.

However applying the successor again, as no merging is involved, requires simply adding
the base proof π200 to the input label {π0, π1}. That is, the label for the 201-th vertex is
{π0, π1, π200}.

5.3 Hardness

In this section we state and prove Theorem 1, the formal counterpart of Theorem 1 from §1.2.

Theorem 1. For a security parameter n, let (N, x, T ) be sampled as in Assumption 2 and

S := SN,x,T : {0, 1}m → {0, 1}m and V := VN,x,T : {0, 1}m × [2m]

be defined as in Algorithms 3 and 4, where m := m(T, n) = 2 log T · ((log T + 4) · n. The family
of distributions {(S,V, ∅, T )}n∈N constitutes a family of hard rSVL instances relative to the
random oracle H.

Proof. First, in Claim 1.1 we show that the rSVL instance is efficient: i.e., S and V are both
polynomial-sized circuits. Then, to establish hardness, we show that any adversary that runs

21



SN,x,T (v)
1: i := index(v) . Extract the index
2: if V(v, i) = 0 or i ≥ 3log T then return v . Invalid stack trace at i or i ≥ L: form self-loop
3: Parse v =: {π̃j}j∈trace(i)
4: for each j ∈ trace(i) do Parse π̃j =: (N, xj , yj , `j ,µj)
5: if i[t] = 2 then . Compute start of next base proof
6: Set µ = yi−1 and compute r = H(µ, xi−1, yi, 1)
7: Compute xnext = xri−1 ◦ µ . case (i): compute the merged statement
8: else
9: Let l denote the last index in trace(i)

10: Set xnext = yl . case (ii)
11: end if
12: Set π̃i := πi := prove(N, xnext, 1, x

2
next) . Next base proof

13: if i[t] = 2 then . Merge
14: Let s := source(i)
15: Set π̃s := (N, 2`s0, xs0, ys1, ys0, ys20, ys220, . . . , yi−2) . Reconstruct proof π̃s for source
16: end if
17: return {π̃j}j∈trace(i+1) . Return stack trace at i+ 1

Algorithm 4: The successor circuit for our rSVL instance.

in time poly(n), making up to Q = Q(n) ≤ poly(n) queries to the random oracle H, has a
negligible probability of success.

Recall that by Definition 4 the adversary can solve an rSVL instance in two ways: find
either (i) the real sink, which in our case contains the value x2

T
; or (ii) a false positive i.e., a

pair (v, i) s.t. V(v, i) = 1 while Si(∅) 6= v.
Let p(n) denote the probability that a poly(n)-time adversary on input (N, x, T ) as above

finds a type (i) solution: under Assumption 2, p(n) is negligible in n (even if we put no bound
on Q). In Claim 1.2 below we will show that the probability of a type (ii) solution is at most
4 · Q/2n/2−1. Therefore, the total probability of the adversary breaking the hardness of our
rSVL instance is

Pr[type (i) ∨ type (ii)] = Pr[type (i)] + Pr[type (ii)] ≤ 4 ·Q
2n/2−1

+ p(n) ∈ negl(n), (10)

completing the proof.

Claim 1.1. S and V are both efficient, i.e. have size poly(log T, n) which is poly(n) for T ∈ nω(1).

Proof. As a first step, we show that the size of the input vertices m(T, n) is poly(log T, n).
As noted in §5.2, a vertex consists of at most 2 log T proofs of the underlying proof system.
Since the proofs in consideration have time parameter at most T , from eq.6 we infer that
m(T, n) ≤ 2 log T · ((log T + 4) · n), i.e. m(T, n) ∈ poly(log T, n) as claimed.7

Next, let’s consider the verifier circuit V given in Algorithm 3. Note that the size of V is
dominated by the call to verify (line 5) and the group operation ◦ for QR+

N (line 10) inside the
loop (line 3). Since the output of trace(·) consists of at most 2 log T elements, and verify and ◦
are both efficient, the size of V is roughly 2 log T · poly(log T, n) which is still poly(log T, n).

A similar argument holds for the successor circuit S.

7This can also be established by analysing Algorithm 2. Let m(·) denote the upper bound on the size of the
vertices (in bits). This parameter is governed by the recursion m(T ) ≤ 2 log T +m(T/2), with m(1) ≤ 4n. The
2 log T factor here is the cost of storing completed proofs from the first two recursions, whereas m(T/2) is the
cost of computing the proof for the merged statement (which is half the length). Therefore m(T ) < 8 log2 T ·n ∈
poly(log T, n).

22



Claim 1.2. For (N, x, T ) as in the theorem, the probability that any adversary, which makes at
most Q queries to the random oracle H, finds a solution of type (ii), i.e. a false positive (v, i)
s.t. V(v, i) = 1 but Si(∅) 6= v, is upper bounded by 4 ·Q/2n/2−1.

Proof. For the event “bad query” as defined in Definition 5, the probability that an adversary
produces a solution of type (ii) is

Pr[type (ii)] = Pr[type (ii) ∧ (bad query ∨ ¬bad query)]

= Pr[type (ii)|bad query] · Pr[bad query] + Pr[type (ii) ∧ ¬bad query]

≤ Pr[type (ii)|bad query] · Pr[bad query] + 1/2n+1 (11)

≤ 3 ·Q/2n/2−1 + 1/2n/2−2 (12)

≤ 4 ·Q/2n/2−1.

The upper bound in eq.12 above directly follows Lemma 2, and we argue below that eq.11 is
a consequence of Lemma 3. The properties of QR?N (i.e. the generators of QR+

N ) that were
discussed in §3.2 will be crucial as it allows repeated application of Lemma 3.

Let’s suppose that the adversary outputs a solution (v, i) of type (ii), i.e., V(v, i) = 1 but
Si(∅) 6= v, without having made a bad query. Since V accepts, v is of the form {π̃j}j∈trace(i),
and this sequence is guaranteed to be a valid chain starting at x as described in §5.2. We argue
that, provided x ∈ QR?N , the adversary could not have output the type (ii) solution (v, i) since
such a vertex v would equal Si(∅) and hence lie on the rSVL line leading to a contradiction.
Since a random x ∈ QR+

N also belongs to QR?N with a overwhelming probability of 1−1/2n/2−2

(cf. eq.4), the upper bound in eq.11 follows.
Provided x ∈ QR?N and that the adversary never makes a bad query, let’s see why the type

(ii) solution it outputs lies on the rSVL line. Assume that v =: {π̃j}j∈trace(i) = {π̃j1 , π̃j2 , . . . , π̃j`}.
Note that π̃j1 is of the form π̃`1x1→y1 , where

x1 = x and y1 = x2
`1
.

Since the verifier guarantees that the start x, the end point y1 and the time parameter `1 all
match the honestly generated proof, as a consequence of the soundness of the proof system
(Lemma 3), we get π̃`1x→y1 = π`1x→y1 .

Next, there are two possibilities: either π̃j1 ↔ π̃j2 or π̃j1 ! π̃j2 (with ↔ and ! as defined
in eq.9). In the first case, xj2 = y1 and by the property of the generators given in eq.5, we have
y1 ∈ QR?N . Since y1 ∈ QR?N , we can again apply Lemma 3 and therefore π̃j2 = πj2 . As for the
second case, let π̃j2 =: π̃`2x2→y2 . Since we assume that the adversary did not make bad queries,
it is guaranteed that x2 ∈ QR?N and, by Lemma 3, we get π̃j2 = πj2 .

On iterating the above argument over all the proofs in v, we get v = {πj}j∈trace(i) = Si(∅)
contradicting the premise of the claim.

References

[1] Abbot, T., Kane, D., and Valiant, P. On algorithms for Nash equilibria. Unpublished
manuscript, 2004. http://web.mit.edu/tabbott/Public/final.pdf. (Cited on pages 1
and 8.)

[2] Angel, O., Bubeck, S., Peres, Y., and Wei, F. Local max-cut in smoothed poly-
nomial time. In 49th Annual ACM Symposium on Theory of Computing (Montreal, QC,
Canada, June 19–23, 2017), H. Hatami, P. McKenzie, and V. King, Eds., ACM Press,
pp. 429–437. (Cited on page 6.)

23

http://web.mit.edu/tabbott/Public/final.pdf


[3] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S. P., and Yang, K. On the (im)possibility of obfuscating programs. J. ACM 59, 2
(2012), 6:1–6:48. (Cited on page 1.)

[4] Bitansky, N., Paneth, O., and Rosen, A. On the cryptographic hardness of finding
a Nash equilibrium. In 56th Annual Symposium on Foundations of Computer Science
(Berkeley, CA, USA, Oct. 17–20, 2015), V. Guruswami, Ed., IEEE Computer Society
Press, pp. 1480–1498. (Cited on pages 1, 2, 6 and 8.)

[5] Blum, M. Coin flipping by telephone. In Advances in Cryptology – CRYPTO’81 (Santa
Barbara, CA, USA, 1981), A. Gersho, Ed., vol. ECE Report 82-04, U.C. Santa Barbara,
Dept. of Elec. and Computer Eng., pp. 11–15. (Cited on page 11.)

[6] Boneh, D., Bünz, B., and Fisch, B. A survey of two verifiable delay functions. Cryptol-
ogy ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712. (Cited
on pages 10 and 12.)

[7] Boodaghians, S., Kulkarni, R., and Mehta, R. Nash equilibrium in smoothed
polynomial time for network coordination games. CoRR abs/1809.02280 (2018). (Cited
on page 6.)

[8] Buhrman, H., Fortnow, L., Koucký, M., Rogers, J. D., and Vereshchagin,
N. Does the polynomial hierarchy collapse if onto functions are invertible? Theory of
Computing Systems 46, 1 (Dec 2008), 143. (Cited on page 6.)

[9] Buresh-Oppenheim, J. On the TFNP complexity of factoring. Unpublished, http:

//www.cs.toronto.edu/~bureshop/factor.pdf, 2006. (Cited on page 6.)

[10] Canetti, R., Chen, Y., Reyzin, L., and Rothblum, R. D. Fiat-Shamir and cor-
relation intractability from strong KDM-secure encryption. In Advances in Cryptology –
EUROCRYPT 2018, Part I (Tel Aviv, Israel, Apr. 29 – May 3, 2018), J. B. Nielsen and
V. Rijmen, Eds., vol. 10820 of Lecture Notes in Computer Science, Springer, Heidelberg,
Germany, pp. 91–122. (Cited on page 12.)

[11] Chen, X., Deng, X., and Teng, S. Settling the complexity of computing two-player
Nash equilibria. J. ACM 56, 3 (2009). (Cited on pages 1 and 6.)

[12] Choudhuri, A. R., Hubacek, P., Kamath, C., Pietrzak, K., Rosen, A., and
Rothblum, G. N. Finding a nash equilibrium is no easier than breaking fiat-shamir.
Cryptology ePrint Archive, Report 2019/549, 2019. https://eprint.iacr.org/2019/

549. (Cited on pages 1, 2, 4, 5 and 8.)

[13] Cover, T. M., and Thomas, J. A. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA,
2006. (Cited on page 27.)

[14] Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. The complexity of
computing a Nash equilibrium. SIAM J. Comput. 39, 1 (2009), 195–259. (Cited on pages 1
and 6.)

[15] Daskalakis, C., and Papadimitriou, C. H. Continuous local search. In 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, USA, Jan. 23–25,
2011), D. Randall, Ed., ACM-SIAM, pp. 790–804. (Cited on pages 6 and 7.)

24

https://eprint.iacr.org/2018/712
http://www.cs.toronto.edu/~bureshop/factor.pdf
http://www.cs.toronto.edu/~bureshop/factor.pdf
https://eprint.iacr.org/2019/549
https://eprint.iacr.org/2019/549


[16] Deng, X., Edmonds, J. R., Feng, Z., Liu, Z., Qi, Q., and Xu, Z. Understand-
ing PPA-completeness. In 31st Conference on Computational Complexity (CCC 2016)
(Dagstuhl, Germany, 2016), R. Raz, Ed., vol. 50 of Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 23:1–23:25.
(Cited on page 6.)

[17] Ephraim, N., Freitag, C., Komargodski, I., and Pass, R. Continuous verifiable
delay functions. Cryptology ePrint Archive, Report 2019/619, 2019. https://eprint.

iacr.org/2019/619. (Cited on page 6.)

[18] Fiat, A., and Shamir, A. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology – CRYPTO’86 (Santa Barbara, CA,
USA, Aug. 1987), A. M. Odlyzko, Ed., vol. 263 of Lecture Notes in Computer Science,
Springer, Heidelberg, Germany, pp. 186–194. (Cited on pages 2 and 12.)

[19] Fischlin, R., and Schnorr, C.-P. Stronger security proofs for RSA and Rabin bits.
Journal of Cryptology 13, 2 (2000), 221–244. (Cited on page 9.)

[20] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., and Waters, B.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
FOCS (2013). (Cited on page 1.)

[21] Garg, S., Pandey, O., and Srinivasan, A. Revisiting the cryptographic hardness
of finding a Nash equilibrium. In Advances in Cryptology - CRYPTO 2016 - 36th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II (2016), pp. 579–604. (Cited on pages 1 and 6.)

[22] Hofheinz, D., and Kiltz, E. The group of signed quadratic residues and applications. In
Advances in Cryptology – CRYPTO 2009 (Santa Barbara, CA, USA, Aug. 16–20, 2009),
S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science, Springer, Heidelberg,
Germany, pp. 637–653. (Cited on page 9.)

[23] Hubáček, P., Naor, M., and Yogev, E. The journey from NP to TFNP hardness. In
8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11,
2017, Berkeley, CA, USA (2017), pp. 60:1–60:21. (Cited on page 6.)

[24] Hubáček, P., and Yogev, E. Hardness of continuous local search: Query complexity
and cryptographic lower bounds. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, Jan-
uary 16-19 (2017), pp. 1352–1371. (Cited on pages 1, 2, 6 and 7.)

[25] Jeřábek, E. Integer factoring and modular square roots. J. Comput. Syst. Sci. 82, 2
(2016), 380–394. (Cited on pages 1 and 6.)

[26] Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. How easy is local
search? Journal of Computer and System Sciences 37, 1 (1988), 79 – 100. (Cited on
page 6.)

[27] Kalai, Y. T., Khurana, D., and Sahai, A. Statistical witness indistinguishability
(and more) in two messages. In Advances in Cryptology – EUROCRYPT 2018, Part III
(Tel Aviv, Israel, Apr. 29 – May 3, 2018), J. B. Nielsen and V. Rijmen, Eds., vol. 10822 of
Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 34–65. (Cited on
page 12.)

25

https://eprint.iacr.org/2019/619
https://eprint.iacr.org/2019/619


[28] Kalai, Y. T., Rothblum, G. N., and Rothblum, R. D. From obfuscation to the
security of Fiat-Shamir for proofs. In Advances in Cryptology – CRYPTO 2017, Part II
(Santa Barbara, CA, USA, Aug. 20–24, 2017), J. Katz and H. Shacham, Eds., vol. 10402 of
Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 224–251. (Cited
on page 12.)

[29] Kintali, S., Poplawski, L., Rajaraman, R., Sundaram, R., and Teng, S. Re-
ducibility among fractional stability problems. SIAM Journal on Computing 42, 6 (2013),
2063–2113. (Cited on page 6.)

[30] Komargodski, I., Naor, M., and Yogev, E. White-box vs. black-box complexity
of search problems: Ramsey and graph property testing. In 58th Annual Symposium on
Foundations of Computer Science (2017), IEEE Computer Society Press, pp. 622–632.
(Cited on page 6.)

[31] Komargodski, I., and Segev, G. From minicrypt to obfustopia via private-key func-
tional encryption. In Advances in Cryptology – EUROCRYPT 2017, Part I (Paris, France,
Apr. 30 – May 4, 2017), J. Coron and J. B. Nielsen, Eds., vol. 10210 of Lecture Notes in
Computer Science, Springer, Heidelberg, Germany, pp. 122–151. (Cited on pages 1 and 6.)

[32] Lund, C., Fortnow, L., Karloff, H., and Nisan, N. Algebraic methods for interac-
tive proof systems. J. ACM 39, 4 (Oct. 1992), 859–868. (Cited on pages 1 and 4.)

[33] Mahmoody, M., and Xiao, D. On the power of randomized reductions and the checka-
bility of SAT. In 2010 IEEE 25th Annual Conference on Computational Complexity (June
2010), pp. 64–75. (Cited on page 6.)

[34] Megiddo, N., and Papadimitriou, C. H. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci. 81, 2 (1991), 317–324. (Cited on pages 5
and 6.)

[35] Papadimitriou, C. H. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci. 48, 3 (1994), 498–532. (Cited on pages 1, 5, 6
and 7.)

[36] Pietrzak, K. Simple Verifiable Delay Functions. In 10th Innovations in Theoretical
Computer Science Conference (ITCS 2019) (Dagstuhl, Germany, 2018), A. Blum, Ed.,
vol. 124 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 60:1–60:15. (Cited on pages 3, 4, 12, 13 and 14.)

[37] Rivest, R. L., Shamir, A., and Wagner, D. A. Time-lock puzzles and timed-release
crypto. Tech. rep., Cambridge, MA, USA, 1996. (Cited on pages 2 and 9.)

[38] Rosen, A., Segev, G., and Shahaf, I. Can PPAD hardness be based on standard
cryptographic assumptions? In TCC 2017: 15th Theory of Cryptography Conference,
Part II (Baltimore, MD, USA, Nov. 12–15, 2017), Y. Kalai and L. Reyzin, Eds., vol. 10678
of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 747–776. (Cited
on page 6.)

[39] Sotiraki, K., Zampetakis, M., and Zirdelis, G. PPP-completeness with connections
to cryptography. Cryptology ePrint Archive, Report 2018/778, 2018. https://eprint.

iacr.org/2018/778. (Cited on page 6.)

[40] Valiant, P. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In TCC 2008: 5th Theory of Cryptography Conference (San Francisco, CA,
USA, Mar. 19–21, 2008), R. Canetti, Ed., vol. 4948 of Lecture Notes in Computer Science,
Springer, Heidelberg, Germany, pp. 1–18. (Cited on pages 16 and 18.)

26

https://eprint.iacr.org/2018/778
https://eprint.iacr.org/2018/778


[41] von zur Gathen, J., and Shparlinski, I. E. Generating safe primes. J. Mathematical
Cryptology 7, 4 (2013), 333–365. (Cited on page 10.)

A Proof of Lemma 2

Lemma 2 (Bad queries are hard to find). For any N = p · q where p = 2p′ + 1, q = 2q′ + 1 are
(n+ 1)-bit safe primes, the following holds: any adversary that makes at most Q queries to the
random oracle H will make a bad query with probability at most

3 ·Q
2n

Proof. Recall that a query is a tuple (µ, x, y, T ) where µ, x, y ∈ QR+
N and T ∈ Z, and the query

(µ, x, y, T ) is bad if x ∈ QR?N and moreover either

(i) x′ 6∈ QR?N ; or

(ii)
(
x2

T 6= y or µ 6= x2
T/2
)

and x′2
T/2

= y′,

where r := H(µ, x, y, T ), x′ := xr ◦ µ and y′ := µr ◦ y.
Since the range of the range of the random oracle H is {0, 1}3n (cf. §4.1), its output is

distributed 2−n-close to uniform over Zp′q′ . In the analysis below we assume that it is actually
uniform over Zp′q′ and then apply the data processing lemma [13] () to get the desired bound.
That is, we show that

Pr
r

[(y′ = x′
2T/2

) ∨ (x′ /∈ QR?N )] ≤ 3/2n.

where r is chosen uniformly at random from Zp′q′ . Using Pr[a ∨ b] = Pr[a ∧ b] + Pr[b], this can
be rewritten as

Pr
r

[(y′ = x′
2T/2

) ∧ (x′ ∈ QR?N )] + Pr
r

[x′ /∈ QR?N ] ≤ 3/2n. (13)

We bound the two probabilities separately in Claims 1.3 and 1.4, and the lemma follows by a
union bound over all the queries.

Claim 1.3. Prr[x
′ /∈ QR?N ] ≤ 2/2n.

Proof. By eµ we denote the unique value in Zp′q′ satisfying xeµ = µ (it’s unique as µ ∈ 〈x〉 =
QR+

N and |QR+
N | = p′q′). As x, µ ∈ QR+

N , also x′ = xr ◦ µ = xr+eµ is in QR+
N , and 〈x′〉 = QR+

N

holds if ord(x′) = p′q′, which is the case except if (r+ eµ) = 0 mod p′ or (r+ eµ) = 0 mod q′ or
equivalently (using that 2n < min(p′, q′)) if

r ∈ B :=
{
Z2n ∩ {(−eµ mod p′), (−eµ mod q′)}

}
. (14)

Clearly |B| ≤ 2 and the claim follows.

Claim 1.4. Prr[(y
′ = x′2

T/2

) ∧ (x′ ∈ QR?N )] ≤ 1/2n .

Proof. If y 6∈ QR+
N , then also y′ = µr ◦ y 6∈ QR+

N (as a ∈ QR+
N , b 6∈ QR

+
N implies a ◦ b 6∈ QR+

N ).

As x′ ∈ QR?N and y′ 6= x′2
T/2

cannot hold simultaneously in this case the probability in the
claim is 0. From now on we consider the case y ∈ QR+

N . We have

Pr
r

[y′ = x′
2T/2 ∧ x′ ∈ QR?N ] = Pr

r
[y′ = x′

2T/2 | x′ ∈ QR?N ] · Pr
r

[x′ ∈ QR?N ] (15)

27



For the second factor in (15) we have with B as in (14)

Pr
r

[x′ ∈ QR?N ] =
2n − |B|

2n
. (16)

Conditioned on x′ ∈ QR?N the r is uniform in Z2n \ B, so the first factor in (15) is

Pr
r

[y′ = x′
2T/2 | x′ ∈ QR?N ] = Pr

r∈Z2n\B
[y′ = x′

2T/2
] . (17)

Let ey ∈ Zp′q′ be the unique value such that xey = y. Using 〈x〉 = QR+
N in the last step below

we can rewrite

y′ = x′
2T/2 ⇐⇒

µry = (xrµ)2
T/2

⇐⇒
xr·eµ+ey = x(r+eµ)◦2

T/2 ⇐⇒
r · eµ + ey = (r + eµ) · 2T/2 mod p′q′

rearranging terms
r(eµ − 2T/2) + ey − eµ2T/2 = 0 mod p′q′ . (18)

If eµ = 2T/2 this becomes
ey − 2T = 0 mod p′q′

which does not hold as by assumption we have y 6= x2
T

. So from now on we assume eµ 6=
2T/2 mod p′q′. Then for a = eµ − 2T/2 6= 0 mod p′q′ (and b = ey − eµ2T/2) eq.(18) becomes

r · a = b mod p′q′

which holds for at most one choice of r from its domain Z2n \ B, thus

Pr
r∈Z2n\B

[y′ = x′
2T/2

] ≤ 1

2n − |B|

and the claim follows from the above equation and (15)-(17) as

Pr
r

[(y′ = x′
2T/2

) ∧ (x′ ∈ QR?N )] = Pr
r∈Z2n\B

[y′ = x′
2T/2

] · Pr
r

[x′ ∈ QR?N ]

≤ 1

2n − |B|
· 2n − |B|

2n
≤ 1

2n
.

28


	Introduction
	Cryptographic hardness in PPAD
	Our Results
	Techniques and Ideas
	Open Problems
	Related Work

	Definitions
	Complexity Classes and Total Search Problems
	The Sink-of-Verifiable-Line Problem
	The Relaxed Sink-of-Verifiable-Line Problem

	Assumptions
	The RSW Time-Lock Puzzle
	Our Number-Theoretic Assumption 

	Pietrzak's Proof System
	The Interactive Protocol
	The Non-Interactive Protocol
	Soundness
	Efficiency

	The Reduction
	Intuition
	The Reduction
	Hardness

	Proof of Lemma 2

