
Two-Thirds Honest-Majority MPC for Malicious
Adversaries at Almost the Cost of Semi-Honest

Jun Furukawa1 and Yehuda Lindell2

1 NEC Israel Research Center
Jun.Furukawa@necam.com

2 Bar-Ilan University and Unbound Tech Ltd., Israel

lindell@biu.ac.il

Abstract. Secure multiparty computation (MPC) enables a set of par-
ties to securely carry out a joint computation of their private inputs
without revealing anything but the output. Protocols for semi-honest
adversaries guarantee security as long as the corrupted parties run the
specified protocol and ensure that nothing is leaked in the transcript.
In contrast, protocols for malicious adversaries guarantee security in the
presence of arbitrary adversaries who can run any attack strategy. Secu-
rity for malicious adversaries is typically what is needed in practice (and
is always preferred), but comes at a significant cost.
In this paper, we present the first protocol for a two-thirds honest major-
ity that achieves security in the presence of malicious adversaries at es-
sentially the exact same cost as the best known protocols for semi-honest
adversaries. Our construction is not a general transformation and thus
it is possible that better semi-honest protocols will be constructed which
do not support our transformation. Nevertheless, for the current state-of-
the-art for many parties (based on Shamir sharing), our protocol invokes
the best semi-honest multiplication protocol exactly once per multipli-
cation gate (plus some additional local computation that is negligible to
the overall cost). Concretely, the best version of our protocol requires
each party to send on average of just 2 2

3
elements per multiplication

gate (when the number of multiplication gates is at least the number
of parties). This is four times faster than the previous-best protocol of
Barak et al. (ACM CCS 2018) for small fields, and twice as fast as the
previous-best protocol of Chida et al. (CRYPTO 2018) for large fields.

1 Introduction

1.1 Background

Protocols for secure computation enable a set of parties with private inputs to
compute a joint function of their inputs while revealing nothing but the output.

 This paper appeared at ACM CCS 2019.
 Supported by the European Research Council under the ERC consolidators grant

agreement n. 615172 (HIPS), by the BIU Center for Research in Applied Cryptog-
raphy and Cyber Security in conjunction with the Israel National Cyber Bureau in
the Prime Minister’s Office, and by the Alter Family Foundation.

1

The security properties typically required from secure computation protocols
include privacy (meaning that nothing but the output is revealed), correctness
(meaning that the output is correctly computed), independence of inputs (mean-
ing that a party cannot choose its input as a function of the other parties’ inputs),
fairness (meaning that if one party gets output then so do all), and guaranteed
output delivery (meaning that all parties always receive output). Formally, the
security of a protocol is proven by showing that it behaves like an ideal exe-
cution with an incorruptible trusted party who computes the function for the
parties [5,16]. In some cases, fairness and guaranteed output delivery are not re-
quired. This is standard in the case of no honest majority (since not all functions
can be computed fairly without an honest majority), but can also be the case
otherwise in order to aid the construction of highly efficient protocols (e.g., as
in [1,19]).

Protocols for secure computation must remain secure in the face of adversarial
behavior. There are many parameters determining the adversary. Three that are
of relevance to this paper are:

– Adversarial behavior: If the adversary is semi-honest, then it follows the
protocol specification but may try to learn more than is allowed by inspecting
the protocol transcript. If the adversary is malicious, then it may follow an
arbitrary attack strategy in its attempt to break the protocol.

– Adversarial power: If the protocol is guaranteed to remain secure even if
the adversary is computationally unlimited, then the protocol is said to be
information-theoretically secure. If the adversary is bounded to probabilistic
polynomial-time, then the protocol is computationally secure.

– Number of corruptions: Denote by t the number of corrupted parties and
by n the overall number of parties. There are typically three main thresholds
that are considered in the literature: t < n (meaning any number of parties
may be corrupted), t < n/2 (meaning that there is an honest majority), and
t < n/3 (meaning that less than a third of the parties are corrupted).

Feasibility. In the late 1980s, it was shown that any function can be securely com-
puted. This was demonstrated in the computational setting for any t < n [25,14],
in the information-theoretic setting with t < n/3 [4,7], and in the information-
theoretic setting with t < n/2 assuming a broadcast channel [23]. These feasibil-
ity results demonstrate that secure computation is possible. However, significant
improvements are necessary to make it efficient enough to use in practice.

Efficiency. In the past decade, there has been a large amount of work that
has focused on making MPC efficient and practical. This has included work
on both the dishonest majority (and two-party) setting, and the setting of an
honest majority. The current state-of-the-art is that MPC is now practical for
many practical problems of interest, and progress is fast, making it possible to
continually expand the domain of practical applications. We discuss more about
these works in Section 1.3.

2

1.2 Our Results

In this paper, we consider the setting of a two-thirds honest majority. We present
the first protocol for the malicious setting which is concretely as efficient as the
best known protocol for semi-honest. Specifically, our protocol works by run-
ning a semi-honest MPC, and then verifying that no cheating took place before
revealing any output. Our verification method is novel, and has very low com-
munication cost (in particular, it is independent of the circuit size). Our method
is not generic, in the sense that it does not work for any semi-honest protocol.
Rather, we use a semi-honest secret-sharing based multiplication protocol that
maintains privacy in the presence of malicious adversaries, but not necessarily
correctness. Formally, we prove our method in general for multiplication proto-
cols that are secure in the presence of additive attacks, as formalized and used
in [12,13,19,8]. This essentially means that the only thing that an attacker can
do in the multiplication protocol is to make the output of the multiplication of
x and y be a (valid) sharing of x · y + d, instead of x · y. However, unlike the
previous best work that required two invocations of the multiplication protocol
per multiplication gate [8], we require only one. It is important to note that the
standard multiplication protocols for the honest-majority information-theoretic
setting are secure up to additive attacks, including [4,15,10]. We highlight [10] in
particular, since this is the fastest semi-honest multiplication known. We there-
fore prove our primary protocol using the base protocol of [10] to obtain a pro-
tocol that is secure for malicious adversaries at essentially the same cost as the
best semi-honest protocol of [10].

The idea behind our novel verification method is as follows. In general, there
are two attacks that an adversary may carry out. First, it may deal shares that
are supposed to be of degree-t but are actually not. Second, it may send incorrect
values that make the result of the multiplication gate be incorrect. For both cases,
we show that a simple linear check can be used, that requires communication that
is independent of the circuit size, and is concretely very efficient. In particular,
for the degree-t check, it suffices to verify that a random linear combination of
all dealed shares is a degree-t polynomial. Furthermore, for the correctness of
multiplication, it suffices to verify that in each multiplication gate with inputs
x, y and output z the equation z − x · y equals 0. This can be done efficiently
by checking that a random linear combination of all of these equations equals 0.
Although such ideas have been used before, their application in this way is novel
and yields a protocol that is much more efficient than previous works.

Concretely, we present two variants of the protocol (where these version re-
late to optimized instantiations of the multiplication protocol of [10]). The first
variant is information-theoretic and has an amortized cost of each party sending
4 2
3 field elements per multiplication gate. The second variant is computational

and has an amortized cost of each party sending 2 2
3 field elements per multipli-

cation. For typical parameters of number of parties and field size (even for small
fields like GF [28]), the additive cost of the verification procedure is just each
party sending 6 2

3 field elements overall.

3

We remark that our protocol is extremely simple. This is advantageous for
efficiency, as well as for security (since verifying that a simple protocol is correctly
implemented is easier than for a complex one).

Implementation. We implemented our protocol (and will make it open source
upon publication), and ran extensive experiments to compare the different vari-
ants and to compare it do prior work. Our experiments show that the cost of
the verification is small relative to the rest of the protocol, adding only a few
percent to the running time (this percentage is higher for a small number of
parties since in this case the overall cost is so low becomes less significant with
respect to the rest of the protocol). Our protocol also significantly outperforms
the previous best protocols. See Section 7 for more details on these experiments.

Future work. The focus of this paper is practical efficiency. However, the tech-
niques used here seem to be generalizable to arbitrary linear secret-sharing
schemes, and semi-honest multiplication protocols with weaker properties than
security up to additive attacks. In particular, it seems to suffice that the protocol
provides privacy against a malicious adversary before output is revealed, and if
a simulator can detect when any cheating took place. We leave these generaliza-
tions for future work. (These make no difference today since, as mentioned, the
protocol of [10] is the fastest we have today in any case, and it achieves security
up to additive attacks.)

1.3 Comparison to Prior Work

The goal of obtaining MPC for an honest majority with constant communication
– meaning that each party sends an amortized constant number of field elements
per multiplication gate – has been well studied, culminating in the breakthrough
result of [3]. The protocol of [3] was optimized in [2], reducing the constants to
about a quarter of their original cost, but at the cost of not achieving guaranteed
output delivery. The above works both achieve perfect security, and the cost
is independent of the field size. Concretely, in [2], each party communicates
an average of 13 field elements per multiplication gate. Thus, our information-
theoretic protocol is about 1/3 of the cost of [2], and our computationally-secure
protocol is about 1/5 of the cost of [2]. In practice, this makes a significant
difference, as we show in our experiments in Section 7.2.

For the case of t < n/2, the result of [8] achieves security for malicious
adversaries at the cost of twice that of semi-honest (to be more exact, they
require a multiplication protocol that is secure up to additive attacks). This
protocol is statistical, with an error of 1/|F| and thus for small fields, it must
be repeated and the cost increases. In contrast, we only need to repeat the
verification for small fields, and this only incurs a small cost. Thus, our protocol
is twice as fast as [8] for large fields, and even faster for smaller fields. However,
unlike our protocol, [8] achieve a higher corruption threshold of t < n/2 rather
than t < n/3, which is of course an important advantage.

4

There is a large body of work that has focused on achieving efficient mul-
tiparty computation, for the setting of two parties specifically, and a dishonest
majority in general. See [11] for an excellent survey of techniques and works in
this direction.

2 Preliminaries and Definitions

2.1 Preliminaries

Notation. Let P1, ..., Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume that
t < n

3 . Throughout the paper, we use I to denote the set of corrupted parties
and J = [n] \ I to denote the set of honest parties. We denote by F a finite field

and by |F| its size. We denote statistical closeness by
s≡.

Definitions of security. We use the standard definition of security based on the
ideal/real model paradigm [5,16], with security formalized for non-unanimous
abort. This means that the adversary first receives the output, and then de-
termines for each honest party whether they will receive abort or receive their
correct output. We distinguish between perfect, statistical and computational se-
curity, where relevant. When considering statistical security, we refer to a param-
eter s and require that the statistical distance be at most 2−s. When considering
computational security, we refer to a security parameter κ.

Secret sharing. Although our work can be generalized to essentially any linear
secret sharing, we present it specifically for Shamir secret sharing, for clarity. As
such, we consider Shamir secret sharing [24] with F > n. Let α1, . . . ,αn ∈ F. We
have the following procedures:

– share(v): In this procedure, a dealer with a value v ∈ F, chooses random
a1, . . . , at ∈ F and defines p(x) = v +

t
i=1 ai · xi. The dealer then sends

p(αj) to party Pj , for j = 1, . . . , n. We denote by [v] the case whereby all
parties hold a sharing of v. We will sometimes consider sharings via degree-t
polynomials, and sometimes via degree-2t polynomials. When this distinction
is needed, we will denote such sharings by [v]t and [v]2t, respectively.

We stress that if the dealer is corrupted, then the shares received by the
parties may not be correct in that the dealer may define a polynomial of
degree greater than t. In such a case, we call the sharing invalid; else we call
it valid. We remark that we will abuse notation and say that the parties hold
shares [v] even if these are invalid.

– complete(vi1 , . . . , vit+1
): Given t + 1 shares vi1 , . . . , vit+1

, this procedure in-
terpolates to find the unique polynomial p passing through all these points,
and v = p(0). Then, complete outputs the remaining n− t− 1 shares defined
by p.

5

– reconstruct([v]t, i): Given a sharing [v]t and an index i held by the parties,
all parties send their shares of [v]t to Pi. Party Pi verifies that all points
lie on the same degree-t polynomial, and if yes outputs it. As long as more
than t parties are honest, this interactive protocol guarantees that if [v]t is
not correct (see formal definition below), then Pi will output ⊥ and abort.
Otherwise, if [v]t is correct, then Pi will either output v or will abort.

– open([v]t) or open([v]2t): This procedure is the same as reconstruct, except
that all parties receive the shares. Thus, naively, once can define open([v]t)
as the execution of reconstruct([v]t, i) for every i = 1, . . . , n. This is expensive
since each party sends n elements overall. As shown in [3], in the ReconsPub
procedure, it is possible to run open in parallel on n− t sharings of degree-t
at the same cost. Thus, for t < n/3 each party sends n elements in order to
open 2n/3 degree-t sharings, at an average cost of 1.5 elements per opening.
Likewise, each party sends n elements in order to open n/3 degree-2t shar-
ings, at an average cost of 3 elements per opening. It is possible to run open
on sharings of degree-2t since there are 2t+1 honest parties in our case, and
thus it is possible to detect (but not correct) any cheating.

– Local operations: We denote by [x]+ [y] and c · [x] the local operation of each
party adding its share in x with its share in y, and multiplying its share in x
with a scalar c, respectively. These operations always result in valid sharings
of the result, since they are local operations only, and these can be carried
out on degree-t and degree-2t sharings.
We also denote by [x] · [y] the local operation of a party multiplying its share
in x with its share in y. Note that in this case, the result is not a valid
sharing of the same degree. However, it does hold that [x]t · [y]t = [x · y]2t.

2.2 Definition of Security

The security parameter is denoted κ; negligible functions and computational
indistinguishability are defined in the standard way, with respect to non-uniform
polynomial-time distinguishers.

Ideal versus real model definition. We use the ideal/real simulation paradigm
in order to define security, where an execution in the real world is compared to
an execution in an ideal world where an incorruptible trusted party computes
the functionality for the parties [5,16]. We define security with abort (and with-
out fairness), meaning that the corrupted parties may receive output while the
honest parties do not. Our basic definition does not guarantee unanimous abort,
meaning that some honest party may receive output while the other does not. It
is easy to modify our protocols so that the honest parties unanimously abort by
running a single (weak) Byzantine agreement at the end of the execution [17];
we therefore omit this step for simplicity.

As we describe at the end of Section 6, our protocol is easily extended to
guarantee fairness. The basic definition can be modified to include fairness, as
will be described below.

6

The real model. In the real model, a n-party protocol π is executed by the parties.
For simplicity, we consider a synchronous network that proceeds in rounds and a
rushing adversary, meaning that the adversary receives its incoming messages in a
round before it sends its outgoing message.3 The adversary A can be malicious; it
sends all messages in place of the corrupted parties, and can follow any arbitrary
strategy. The honest parties follow the instructions of the protocol.

Let A be a non-uniform probabilistic polynomial-time adversary controlling
t < n

3 parties. Let realπ,A(z),I(x1, . . . , xn,κ) denote the output of the honest
parties and A in an real execution of π, with inputs x1, . . . , xn, auxiliary-input
z for A, and security parameter κ.

The ideal model. We define the ideal model, for any (possibly reactive) func-
tionality F , receiving inputs from P1, . . . , Pn and providing them outputs. Let
I ⊂ {1, . . . , n} be the set of indices of the corrupted parties controlled by the
adversary. The ideal execution proceeds as follows:

– Send inputs to the trusted party: Each honest party Pj sends its spec-
ified input xj to the trusted party. A corrupted party Pi controlled by the
adversary may either send its specified input xi, some other x′

i or an abort
message.

– Early abort option: If the trusted party received abort from the adversary
A, it sends ⊥ to all parties and terminates. Otherwise, it proceeds to the
next step.

– Trusted party sends output to the adversary: The trusted party com-
putes each party’s output as specified by the functionality F based on the
inputs received; denote the output of Pj by yj . The trusted party then sends
{yi}i∈I to the corrupted parties.

– Adversary instructs trusted party to continue or halt: For each j ∈
{1, . . . , n} with j /∈ I, the adversary sends the trusted party either abortj or
continuej . For each j /∈ I:

• If the trusted party received abortj then it sends Pj the abort value ⊥
for output.

• If the trusted party received continuej then it sends Pj its output value yj .

– Outputs: The honest parties always output the output value they obtained
from the trusted party, and the corrupted parties outputs nothing.

Let S be a non-uniform probabilistic polynomial-time adversary controlling
parties Pi for i ∈ I. Let idealF,S(z),I(x1, . . . , xn,κ) denote the output of the
honest parties and S in an ideal execution with the functionality F , inputs
x1, . . . , xn to the parties, auxiliary-input z to S, and security parameter κ.

3 This modeling is only for simplicity, since in our protocol, all parties receive and send
messages in each round. Thus, by instructing each party to only send their round
i + 1 messages after receiving all round-i messages, we have that an execution of
the protocol in an asynchronous network is the same as for a rushing adversary in a
synchronous network. Note that we do not guarantee output delivery, so “hanging”
of the protocol is also allowed.

7

Security. Informally speaking, the definition says that protocol π securely com-
putes f if adversaries in the ideal world can simulate executions of the real world
protocol. In some of our protocols there is a statistical error that is not depen-
dent on the computational security parameter. As in [20], we formalize security
in this model by saying that the distinguisher can distinguish with probability at
most this error plus some factor that is negligible in the security parameter. This
is formally different from the standard definition of security since the statistical
error does not decrease as the security parameter increases.

Definition 2.1. Let F be a n-party functionality, and let π be a n-party protocol.
We say that π securely computes f with abort in the presence of an adversary
controlling t < n

3 parties, if for every non-uniform probabilistic polynomial-
time adversary A in the real world, there exists a non-uniform probabilistic
polynomial-time simulator/adversary S in the ideal model with F , such that
for every I ⊂ {1, . . . , n} with |I| < n

3 ,

idealF,S(z),I(x1, . . . , xn,κ)

 c≡

realπ,A(z),I(x1, . . . , xn,κ)

where x1, . . . , xn ∈ F∗ under the constraint that |x1| = · · · = |xn|, z ∈ F∗ and
κ ∈ N. We say that π securely computes f with abort in the presence of an
adversary controlling t < n

3 parties with statistical error 2−σ if there exists a
negligible function µ(·) such that the distinguishing probability of the adversary
is less than 2−σ + µ(κ). □

Fairness. The above definition can be modified so that fairness is guaranteed
by merely modifying the ideal model so that after the “early abort option” the
trusted party simply sends each party its output. That is, if there is no early
abort, then all parties receive output. This is the only modification required to
the definition.

The hybrid model. We prove the security of our protocols in a hybrid model,
where parties run a protocol with real messages and also have access to a trusted
party computing a subfunctionality for them. The modular sequential compo-
sition theorem of [5] states that one can replace the trusted party computing
the subfunctionality with a real secure protocol computing the subfunction-
ality. When the subfunctionality is g, we say that the protocol works in the
g-hybrid model.

Universal Composability [6]. Protocols that are proven secure in the universal
composability framework have the property that they maintain their security
when run in parallel and concurrently with other secure and insecure protocols.
In [18, Theorem 1.5], it was shown that any protocol that is proven secure with a
black-box non-rewinding simulator and also has the property that the inputs of
all parties are fixed before the execution begins (called input availability or start
synchronization in [18]), is also secure under universal composability. Since the
input availability property holds for all of our protocols and subprotocols, it is

8

sufficient to prove security in the classic stand-alone setting and automatically
derive universal composability from [18]. We remark that this also enables us to
call the protocol and subprotocols that we use in parallel and concurrently (and
not just sequentially), enabling us to achieve more efficient computation (e.g., by
running many executions in parallel or running each layer of a circuit in parallel).

3 Building Blocks and Sub-Protocols

In this section, we define a series of building blocks that we need for our protocol.
Most of these are used in previous works, like [3,19,2,8]. Our presentation is
similar, with some modifications where possible due to us working in the scenario
of t < n/3 (rather than t < n/2 like in [19,8]).

3.1 Generating Random Shares and Coins

We define the ideal functionality Frand to generate a sharing of a random value
unknown to the parties. A formal description appears in Functionality 3.1. The
functionality lets the adversary choose the corrupted parties’ shares, which to-
gether with the random secret chosen by the functionality, are used to compute
the shares of the honest parties.

FUNCTIONALITY 3.1 (Frand – Generating Random Shares)

Upon receiving ri for each corrupted party Pi with i ∈ I from the ideal adversary S,
the ideal functionality Frand chooses a random r ∈ F and generates a sharing [r]t
under the constraint that the share of Pi is ri for every Pi ∈ I. Then, Frand sends
each honest party Pj its share in [r]t.

The functionality Fdouble
rand is defined similarly to Frand, but generates double

sharings that are defined to be two sharings of the same random value r, but
where one is of degree-t and the other of degree-2t.

FUNCTIONALITY 3.2 (Fdouble
rand – Random Double Sharings)

Upon receiving ri, r
′
i for each corrupted party Pi with i ∈ I from the ideal adversary

S, the ideal functionality Fdouble
rand chooses a random r ∈ F, and generates sharings

[r]t and [r]2t under the constraint that the shares of Pi in [r]t and [r]2t are ri and
r′i, respectively, for every i ∈ I. Then, Fdouble

rand sends each honest party Pj its shares
in [r]t and [r]2t.

9

Method and complexity: We use the method called DoubleShareRandom from [2]
which is based on [3] in order to generate double random sharings with perfect
security in the presence of malicious adversaries where t < n/3. This protocol
generates n− 2t double-random sharings at the cost of 2n+ 2(n− 2t) elements
sent by each party. For t < n/3, this generates n/3 sharings at the average

cost of 2n+2n/3
n/3 = 8 elements per party per double-sharing generated. Although

single random shares, as in Frand, can be generated more efficiently than double
random sharings, we only need a few of these. Thus, we will only use Fdouble

rand ,
and will discard the 2t-degree share where not needed. This is the most efficient
since Fdouble

rand generates many random double sharings at once, and for typical
parameters one call to Fdouble

rand is enough for the entire protocol.

Generating random coins. Fcoin is an ideal functionality that chooses a random
element from F and hands it to all parties. The simplest way to compute Fcoin

securely (in the sense of using existing building blocks) is to use Frand to generate
a random sharing and then open it. The security of this protocol is immediate,
and the cost of the protocol is one call to Frand and one execution of open (the
latter which costs sending n elements per party).

3.2 Checking Equality to 0

In our protocol, we will need to check whether a given sharing is a sharing of the
value 0, without revealing any further information on the shared value. For this
purpose, we use a variant of the protocol presented in [8]. The idea behind the
protocol is simple. Holding a sharing [v], the parties generate a random sharing
[r] and multiply it with [v] (using local multiplication of their shares). Then, the
parties open the obtained sharing and check equality to 0. This works since if
v = 0, then multiplying it with a random r will still yield 0. In contrast, if v ∕= 0,
then the multiplication will result with 0 only when r = 0, which happens with
probability 1

|F| . By repeating sufficiently many times, this probability of error can

be made negligible. However, in order to ensure that nothing is revealed by the
opening, we need to rerandomize the sharing of r ·v by adding a random degree-
2t sharing of 0. This is easy to achieve by constructing a double random sharing
[ρ]t and [ρ]2t, opening the degree-t sharing to obtain ρ and then computing
[0]2t = [ρ]2t − ρ. In order to reduce the number of rounds required, we open [ρ]t
together with [r · v+ ρ]2t and just verify that the values are equal to each other;
this is equivalent to r · v being equal to 0.

The zero-checking protocol that we present here is a bit more efficient than
that of [8], since here we have a single opening of a share. In contrast, the
protocol for checking equality to 0 in [8] first runs a multiplication protocol
involving opening and then has another opening.

The ideal functionality FcheckZero for checking equality to 0 is formally defined
in Functionality 3.3.

10

FUNCTIONALITY 3.3 (FcheckZero – Checking Equality to 0)

The ideal functionality FcheckZero receives (valid) shares of [v]t from the honest
parties Pj for every j ∈ J , and uses them to compute v and the shares of the
corrupted parties in [v]t using the complete procedure.
FcheckZero sends the ideal adversary S the corrupted parties’ shares in [v]t. In
addition:

1. If v = 0, then FcheckZero sends accept to the ideal adversary S. If S sends
reject (resp., accept), then FcheckZero sends reject (resp., accept) to the honest
parties.

2. If v ∕= 0, then FcheckZero sends reject to S and the honest parties.

Observe that FcheckZero sends the corrupted parties their shares as output.
This is needed to enable the simulation (since the simulator needs to know these
shares), and has no effect on security since these shares are anyway already
known to the adversary. The exact protocol for securely computing FcheckZero is
specified in Protocol 3.4.

PROTOCOL 3.4 (Securely computing FcheckZero for t < n/3)

– Input: The parties hold a sharing [v]t.
– Parameters: Let s be the security parameter, and let δ be the smallest value

such that |F|δ > 2s.
– The protocol: Repeat the following δ times (in parallel):

1. The parties call Frand to obtain a sharing [r]t, and call Fdouble
rand to obtain

a double sharing [ρ]t, [ρ]2t.
2. The parties locally compute [r · v + ρ]2t = [r]t · [v]t + [ρ]2t.
3. The parties run open([r · v + ρ]2t) and open([ρ]t) in parallel. If a party

receives ⊥, then it outputs ⊥. Else, it continues.
– Output: If in every repetition, the values opened are equal to each other (i.e.,

the same ρ in the repetition), then output accept; else output reject.

Complexity: The cost is δ calls to Frand and 2δ openings. Using the amortized
opening operation on degree-2t and degree-t sharings described in Section 2.1,
n/3 elements can be opened at the cost of sending n elements. Likewise, n/3
(double) random sharings can be generated at the cost of less than 3n elements.
Thus, as long as 2δ ≈ 2 · s

log |F| <
n
3 , the overall cost of FcheckZero is 4n elements

sent overall (4 by each party). This holds for most reasonable choices of param-
eters. In fact, for most reasonable parameters, the number of random sharings
needed is very small, and so adds very little in practice.

Theorem 3.1. Protocol 3.4 securely computes FcheckZero in the (Frand,Fdouble
rand)-

hybrid model with statistical security, for t < n/3.

11

Proof: Let A be an adversary; we construct a simulator S as follows. S receives
the output accept/reject as well as the shares of the corrupted parties in [v]t from
the ideal functionality FcheckZero. Denote the share of the ith party by vi. S works
as follows:

1. Simulate δ calls to Frand: For each call S plays the ideal functionalities
Frand and Fdouble

rand in the protocol, and receives from A values αi and α′
i,β

′
i

as Pi’s input to Frand and Fdouble
rand , respectively, for each i ∈ I. For Fdouble

rand ,
S chooses a random ρ ∈ F and defines sharings [ρ]t, [ρ]2t passing through
α′
i,β

′
i, respectively, as specified in Fdouble

rand .
2. Simulate δ openings: For each of the δ times,

(a) If the output was accept, then S chooses a random degree-2t polynomial
p with p(0) = ρ that passes through the points defined by the shares
{vi ·αi+β′

i}i∈I , where vi is Pi’s share in [v]t as received from FcheckZero,
and αi,β

′
i are as received from A above. Then, S simulates the honest

parties sending their shares in p and in [ρ]t to the corrupted parties in
the executions of open.
If A sends any incorrect shares in the openings, then S sends reject to
FcheckZero; else it sends accept to FcheckZero.

(b) If the output was reject, then S chooses a random r′ ∈ F and a random
degree-2t polynomial p with p(0) = r′ that passes through the points
defined by the shares {vi · αi + β′

i}i∈I , where vi and αi,β
′
i are as above.

Then, S simulates the honest parties sending their shares in p and in [ρ]t
to the corrupted parties in the executions of open.

We argue that the distribution over the output is statistically close to a real
execution. Let bad be the event that v ∕= 0 and all r′ values chosen by S equal 0.
We consider a hybrid experiment with an ideal functionality that is the same
as FcheckZero except that even if v ∕= 0, the ideal simulator can send accept
to the functionality, and all honest parties will accept. We denote this hybrid
experiment by H and the simulator for this experiment by SH . Simulator SH

works identically to S, except that if the event bad occurs, then it sends accept to
the ideal functionality. Since bad happens with probability |F|−δ, and otherwise
everything is the same, we have that for every distinguisher D,

|Pr [D (idealFcheckZero,S([v]t)) = 1]− Pr [D (HSH
([v]t)) = 1]| ≤ 1

|F|δ . (1)

It remains to show that

Pr [D (HSH
([v]t)) = 1] = Pr

D

hybrid

Frand,Fdouble
rand

Π,A ([v]t)

= 1

, (2)

where Π denotes Protocol 3.4. Observe that in a real execution, all outputs from
Frand are uniformly distributed. Thus, when v ∕= 0, the probability that all r
values chosen by Frand equal 0 and thus the honest parties accept is exactly
the probability that bad occurs in H. Furthermore, setting r′ = v · r for every
iteration, we have that the distribution over the value r′ chosen by SH and the

12

value v ·r generated in the protocol are identical. Thus, the output of the honest
parties is identical in both executions. Finally, observe that the view of A of the
opened values in a real execution and in the execution with SH is identical (for
all outputs). This follows since in both cases, the shares of the honest parties
(that are revealed to the adversary during open) are random shares of ρ if v = 0,
and are random shares of a uniformly distributed element (r′ or r ·v+ρ) if v ∕= 0.
This is due to the fact that SH chooses these at random in H, and due to the
fact that the shares from Fdouble

rand in the real protocol are random. The theorem
is derived by combining Equations (1) and (2).

4 Secure Multiplication Verification

In this section, we present two subprotocols for verifying that all values used in
the protocol were correct. There are two properties that need to be checked:

1. Property 1 – that a set of sharings are valid degree-t sharings: Denoting the
shares to be checked by [x1]t, . . . , [xM]t, we need to verify that each [xi]t is
such that all of the honest parties’ shares lie on the same degree-t polynomial.

2. Property 2 – that a set of multiplication values are all correct: Denote a series
of multiplication gates by g1, . . . , gN , where each gk is a triple (ik, jk, ℓk)
representing the multiplication gate wℓk = wik ·wjk . Then, we need to verify
that there does not exist any k such that wℓk ∕= wik · wjk . (After checking
the first property, we know that [wik]t, [wjk]t, [wℓk]t are all valid.)

Next, we explain how each property is checked. The basic idea is to generate
check-sharings for each of the two cases. The protocol for property 1 is exactly
that of [19, Protocol 3.1] (batch correctness check of shares), whereas the protocol
for property 2 is novel.

4.1 Verifying that Shares are Degree-t

For the sake of completeness, we describe the verification check of [19] for this
property. In order to verify the first property described above, that a set of
sharings are of degree-t, the parties generate (pseudo)random values a1, . . . , aM
and define the sharing [u]t =

M
k=1 ak · [xk]t. Observe that if all of the [xk]t are

degree-t sharings, then [u]t is a degree-t sharing. However, if there exists a k such
that [xk]t is not a degree-t sharing, then [x]t will be a degree-t sharing except
with probability 1/|F|. This is due to the fact that each sharing is a polynomial
and so [u]t can only be of degree-t if the higher-level terms of other sharings
cancel out the higher-level terms of ak · [xk]t. Since ak ∈ F is chosen randomly
after all shares are fixed, the probability that the sum of all other higher-level
terms equals ak times the higher level terms of [xk]t is at most 1/|F| (fix all other
values; then there is at most a single value ak ∈ F that can cause the higher
level terms to become 0). See Protocol 4.1 for a specification of the protocol.

13

PROTOCOL 4.1 (Verification that a set of shares are degree-t)

Inputs: The parties hold a series of shares {[xk]t}Mk=1.

Parameter: Let δ be such that |F|δ ≥ 2s, where s is the statistical security
parameter, and let κ be a computational security parameter for a pseudorandom
function F .

The protocol:

1. Phase 1 – prepare random values:
(a) The parties call Fcoin to obtain a single key K ∈ {0, 1}κ for a pseudoran-

dom function F . Then, the parties compute δ · M pseudorandom values
(a1

1, . . . , a
1
M), . . . , (aδ

1, . . . , a
δ
M) by setting aj

k = FK(kj).
(b) The parties call Frand to obtain sharings ([ρ1]t, . . . , [ρδ]t) of unknown ran-

dom values ρ1, . . . , ρδ.
2. Phase 2 – actual verification:

(a) For j = 1, . . . , δ, the parties locally compute the check polynomial

[uj]t =
M

k=1

aj
k · [xk]t + [ρj]t.

(b) For j = 1, . . . , δ, the parties run open([uj]t).
3. Output: If a party receives ⊥ in any opening or if the opened sharing defines a

polynomial of degree greater than t (i.e., not all values lie on a single degree-t
polynomial), then it outputs reject. Else, it outputs accept.

The following lemma is proven in [19].4

Lemma 4.1 (Lemma 3.2 of [19]). Let n be the number of parties, let t < n/3
be the maximum number of corrupted parties controlled by an (unbounded) ad-
versary, and assume that F is a pseudorandom function for non-uniform dis-
tinguishers. If there exists a j ∈ [M] such that the sharing of xj is not of
degree-t, then the honest parties accept in Protocol 4.1 with probability at most
|F|−δ ≤ 2−s.

We remark that Protocol 4.1 is not proven to securely realize an appropriate
“check ideal functionality”. Nevertheless, it suffices for what we need (we use it
in the same way as [19] who take this approach). The fact that this suffices is
shown in the proofs of security of the protocols where it is used (Protocols 5.1
and 6.1). In particular, Protocol 4.1 reveals nothing when the input sharing is
of degree-t. However, it can reveal something if the sharing is not of degree-t. In
Protocol 5.1, the verification is applied to random shares before they are used;

4 The actual lemma stated in [19] bounds the cheating by (|F|−1)−δ rather than |F|−δ.
However, this is due to the fact that they choose all aj

k values in F \ {0} instead of
in F, which is not actually needed. In addition, they prove it for t < n/2; we wrote
t < n/3 simply since this is the setting we are considering here.

14

thus, there is no need for privacy of incorrect shares. Likewise, in Protocol 4.1,
the verification is only applied to the sharing of inputs by the parties. Thus,
honest parties’ inputs are guaranteed to be private, which is all that is required
in our case.

4.2 Verifying Correctness of Multiplication

In this section, we present our protocol for multiplication correctness verification.
This protocol is novel and what enables us to achieve high efficiency. The protocol
uses similar ideas to previous works, but applies them in a different way to
achieve a check with communication complexity that is independent of the size
of the circuit. In this section, we assume that all input shares are of degree-t,
since this is verified previously using the protocol of Section 4.1.

In order to verify the second property described above, that all multiplication
values are correct, the parties generate
pseudo-random values b1, . . . , bN and define the sharing

[vj]2t =

N

k=1

bk · ([wik]t · [wjk]t − [wℓk]t)

+ [ρ′]2t,

where the k’th gate has input wires wik , wjk and output wire wℓk .
5 Observe that

if the multiplication values are correct, then [vj]2t should be a degree-2t sharing
of ρ′, since all (wik ·wjk −wℓk) equal 0. However, if there exists some k for which
wik · wjk ∕= wℓk , then wik · wjk − wℓk ∕= 0 and [vj]2t is a sharing of the value ρ′

with probability at most 1/|F|. This is for the same reason as described above:
since bk ∈ F is random it follows that bk · (wik · wjk − wℓk) is random, and thus
it cancels out with the rest of the check sharing with probability at most 1/|F|.

As such, the verification is carried out by the parties generating double-
random sharings securely using Fdouble

rand to obtain [ρ′]t and [ρ′]2t. The check-
sharing uses [ρ′]2t and the parties then open the check-sharing and [ρ′]t and
verify that they are to the same value.

A crucial point in this verification step is that since all sharings have already
been validated to be of degree-t, the local operation to generate the check-sharing
(involving parties locally multiplying their sharings of wik and wjk) defines a
degree-2t polynomial. As such, this polynomial is fully masked by [ρ′]2t and so
opening it reveals nothing. In addition, since t < n/3, the honest parties’ shares
alone fully determine the polynomial. Thus, the corrupted parties cannot change
the opened value by sending incorrect shares. This is the crucial property that
enables us to carry out this verification step with such efficiency.

We remark that it is not possible to simply open [vj]2t and [ρj]t and compare
that they are the same, without calling FcheckZero. This is because in the case of

5 Note that even though [wik]t ·[wjk]t is a sharing of degree-2t (since each party locally
multiplies its shares) and [wℓk]t is a sharing of degree-t, it is possible for the parties
to compute [wik]t · [wjk]t − [wℓk]t locally. This is due to the fact that we are only
interested in the constant term of the resulting (degree-2t) polynomial, and it will
be zero if wℓk = wik · wjk .

15

PROTOCOL 4.2 (Verification of Multiplication Correctness)

Inputs: The parties hold shares {[wk]t}Mk=1 of wire values and gate definitions
(g1, . . . , gN), where each gk is a triple (i, j, ℓ) representing the multiplication gate
wℓ = wi · wj .

Parameter: Let δ be such that |F|δ ≥ 2s, where s is the statistical security
parameter, and let κ be a computational security parameter for a pseudorandom
function F .

The protocol:

1. Phase 1 – prepare random values:
(a) The parties call Fcoin to obtain a single key K ∈ {0, 1}κ for a pseudoran-

dom function F . Then, the parties compute δ · N pseudorandom values
(b11, . . . , b

1
N), . . . , (bδ1, . . . , b

δ
N) by setting bjk = FK(kj).

(b) The parties call Fdouble
rand to obtain double sharings ([ρ1]t, [ρ1]2t), . . . ,

([ρδ]t, [ρδ]2t) of unknown random values ρ1, . . . , ρδ.
2. Phase 2 – actual verification: Denote gk = (ik, jk, ℓk) for every k = 1, . . . , N .

(a) For j = 1, . . . , δ, each party Pi locally computes its 2t-share of

[vj]2t =

N

k=1

bjk · (wik · wjk − wℓk)

+ [ρ′j]2t.

(b) For j = 1, . . . , δ, the parties run open([vj]2t), and obtain vj . If a party
receives ⊥ in any opening, then it sends ⊥ to all other parties, outputs ⊥
and halts. Else, it continues.

(c) For j = 1, . . . , δ, each Pi locally computes [v′j]t = [ρ′j]t − vj .
(d) For j = 1, . . . , δ, the parties call FcheckZero with [v′j]t.

3. Output: If a party receives accept from all calls to FcheckZero then it outputs
accept; else, it outputs reject.

cheating, this will reveal the value vj − ρj which in the case of cheating in the
kth gate only, is the difference between wℓk and wik ·wjk . If πmult is secure under
an additive attack, then this value is already known and so it is fine to reveal
it. However, we wish to prove the protocol secure, even for πmult that is weaker
(e.g., only being private, and enable detection of cheating). Thus, we need to
call FcheckZero here. This makes very little difference in practice anyway, since it
is run once for the entire circuit.

As in Lemma 4.1, we prove here only that the verification in Protocol 4.2
works. The fact that it reveals nothing is explained above, and proven formally
when we simulate the full protocol itself.

Lemma 4.2. Let n be the number of parties, let t < n/3 be the maximum num-
ber of corrupted parties controlled by an (unbounded) adversary, assume that F
is a pseudorandom function for non-uniform distinguishers, and assume that all
input shares {[wk]t}Mk=1 are of degree-t. If there exists a k such that wℓk ∕= wik ·wjk

where gk = (ik, jk, ℓk), then there exists a negligible function µ such that the hon-
est parties output accept in Protocol 4.2 with probability at most 2−s + µ(κ).

16

Proof: We begin by proving the lemma when a truly random function is used
instead of F , chosen after all [w1]t, . . . , [wM]t are fixed. By the assumption in the
lemma statement, we have that all [w1]t, . . . , [wM]t are valid degree-t sharings
but there exists a k such that wℓk ∕= wik · wjk where gk = (ik, jk, ℓk). Let d be

such that wℓd ∕= wid ·wjd ; this implies that bjd · (wid ·wjd −wℓd) ∕= 0. Thus, [vj]2t
is a sharing of ρ′j if and only if

bjd · (wid · wjd − wℓd) = −

N

k=1(k ∕=d)

bjk · (wik · wjk − wℓk)

 .

As above, since bjd is uniformly distributed in F, this equality holds with prob-
ability at most 1/|F|, and so it holds for all j = 1, . . . , δ with probability at
most |F|−δ < 2−s. Now, since in this case, all w-shares are guaranteed to be of
degree-t, it follows that all polynomials [vj]2t are guaranteed to be of degree-2t
(since [vj]2t is computed via local operations only). Since t < n/3, there are
at least 2t + 1 honest parties, and so the honest parties’ shares fully determine
the polynomials that define the shares of v1, . . . , vδ. Thus, the corrupted parties
cannot do anything to cause the honest parties to accept if vj ∕= ρ′j (any values
sent by them that are not correct will be identified as being on a different poly-
nomial, resulting in ⊥ from the open procedure). We conclude that the honest
parties output accept with probability at most 2−s in this case.

We now complete the proof of the lemma, for the case that the pseudorandom
function F is used, and not a truly random function. By the assumption, F is
pseudorandom for non-uniform distinguishers. Assume, by contradiction, that
there exists a series of shares {[wk]t}Mk=1 and a k ∈ {1, . . . ,M} such that [wk]t
is not a valid degree-t sharing and yet the honest parties output accept with
probability that is non-negligibly greater than 2−s. Then, these shares constitute
non-uniform advice to the adversary D for distinguishing the pseudorandom
function. This adversary D calls its oracle to obtain α,β values as in the protocol
and checks that the honest parties’ shares in [uj]t define a degree-t polynomial or
that [vj]2t is a sharing of ρ′j , for some j ∈ {1, . . . , δ}. If one of these events occur,
then D outputs 1; otherwise it outputs 0. By the analysis above, D outputs 0
when given oracle access to a truly random function with probability at most
2−s. In contrast, D outputs 1 with probability non-negligibly greater than 2−s

when given oracle access to the pseudorandom function.

Remarks on proof of security: We stress that we have actually proven a stronger
claim, that the probability that the honest parties output reject in each of the δ
iterations is negligibly close to 1− 1

|F| , in each of the cases. We will use this fact

in the simulation of the full protocol.

4.3 Properties and Extensions

Security level achieved. We reiterate that although we assume the existence of
pseudorandom functions (for non-uniform distinguishers), we obtain statistical
security that holds even for all-powerful adversaries.

17

Unconditional security. It is possible to replace the use of the pseudorandom
function with an -biased pseudorandom generation [21], and to repeat the test
δ times where δ ≤ 2−s. This suffices since the values generated are at most
from uniform, meaning that the equations tested can only have different results
from when truly random values are used with probability at most . Since -
bias pseudorandom generators can be constructed unconditionally, we have the
following two lemmas:

Lemma 4.3. Let n be the number of parties, let t < n/3 be the maximum num-
ber of corrupted parties controlled by an (unbounded) adversary, and modify
Protocol 4.1 to use an -biased pseudorandom generation with δ ≤ 2−s. If there
exists a j ∈ [M] such that the sharing of xj is not of degree-t, then the honest
parties accept in this variant of Protocol 4.1 with probability at most |F|−δ ≤ 2−s.

Lemma 4.4. Let n be the number of parties, let t < n/3 be the maximum num-
ber of corrupted parties, and modify Protocol 4.2 to use an -biased pseudorandom
generation with δ ≤ 2−s. If there exists a k such that [wk]t is not a valid degree-t
sharing, or wℓk ∕= wik ·wjk where gk = (ik, jk, ℓk), then the honest parties output
accept in this variant of Protocol 4.2 with probability at most 2−s+1.

Complexity of both checks: In most cases δ is very small (this is due to the fact
that the size of the field must anyway be larger than the number of parties, and
so the only exception is when the number of parties may be very small). For the
calculation below, we assume that n−2t > 2δ2+2. The DoubleShareRandom(t, t′)
procedure of [2,3] generates n − 2t double sharings with each party sending n
elements. This means that we can generate δ double sharings and another δ+ 2
regular sharing at the cost of each party sending n field elements overall (for the
regular sharings, the parties just throw out the degree-2t shares). We also note
that Fcoin requires a single random sharing, and FcheckZero requires δ calls to
generate double-random sharings. Thus, by assuming n− 2t > 2δ2 + 2, a single
call to DoubleShareRandom suffices. In addition, recall that n − t values can be
opened with open at the cost of each party sending n elements. Thus, three calls
to open suffice throughout (one call to open suffices for the δ2 values opened in
all of the δ calls to FcheckZero because n− t > δ2).

Under the above assumption (that n−2t > 2δ2+2), the cost of both verifica-
tions is a single call to DoubleShareRandom to generate all the sharings needed at
the cost of 2n+2n/3 elements per party (to generate n− 2t = n/3 double shar-
ings), a single opening for Fcoin at the cost of n elements per party, δ elements
opened for Step 2b (at the cost of n elements per party) and another δ elements
opened in Step 2b (at the cost of n elements per party) using the ReconsPub
procedure of [2,3], and δ calls to FcheckZero at the cost of another execution of
ReconsPub and n elements per party with δ calls to open for each call). The over-
all communication cost per party is therefore (2n+2n/3)+4n = 6 2

3 ·n elements.
In the extreme case that the number of parties is small and the field is small,

we need to call DoubleShareRandom at most 2δ2 + 2 times and open at most
2δ2 times. Thus, the cost in this case is O(δ2n) elements per party (with a
small constant).

18

5 Damg̊ard-Nielsen (DN) Multiplication Protocol – πmult

5.1 Information-Theoretic DN Multiplication

Our underlying multiplication protocol is the one by Damg̊ard and Nielsen [10],
denoted DN from here on. A full description of the DN multiplication protocol
appears in Protocol 5.1. As in [19], we include an additional check that the
degree-t random sharings generated are of degree-t. This is needed in order to
ensure that the masking by a degree-2t sharing later on suffices to hide all secrets.
As shown in [19], this also suffices to make the protocol secure up to an additive
attack, as described above.

PROTOCOL 5.1 (The DN Multiplication Protocol – πmult)

Setup phase for multiplications: The parties generate a series of n− t double
random shares {[rk]t, [rk]2t}n−t

k=1 where [rk]t is a sharing of rk using a t-degree poly-
nomial and [rk]2t is a sharing of rk using a 2t-degree polynomial. This generation
works as follows:

1. Each party Pi chooses a random element ui ∈ F and runs share(ui) twice
as the dealer, once using a degree-t polynomial and then using a degree-2t
polynomial.

2. Holding shares ([u1]t, . . . , [un]t) and ([u1]2t, . . . , [un]2t), each party Pi locally
computes

([r1]t, . . . , [rn−t]t) = ([u1]t, . . . , [un]t) · Vn,n−t

([r1]2t, . . . , [rn−t]2t) = ([u1]2t, . . . , [un]2t) · Vn,n−t

where Vn,n−t is the Vandermonde matrix.

The above is run in parallel

N
n−t

times, where N is the number of multiplications

in the circuit to be computed. At the end, the parties have N random double
sharings; denote them ([r1]t, [r1]2t), . . . , ([rN]t, [rN]2t).

Single verification: The parties run Protocol 4.1 on input shares [r1]t, . . . , [rN]t.
Each party proceeds if and only if it outputs accept from the protocol.

Multiplications: Let [x]t and [y]t be the next shares to be multiplied; denote by
xi and yi the shares of x and y held by Pi.

1. Let [r]t, [r]2t be the next unused double-random shares generated in the setup.
Parties P2, . . . , P2t+1 compute [x]t · [y]t − [r]2t and send the result to party P1

([x]t · [y]t is locally computed by each party Pi computing xi · yi and is a valid
degree-2t sharing of x · y).

2. Party P1 uses the 2t+1 shares it holds (its own plus 2t received) to reconstruct
∆ = x · y − r, and then sends it to all the other parties.

3. Each party sends ∆ to all other parties. (When many multiplications are run
in parallel—as in the full layer of the circuit being computed—the parties send
a single value H(∆1, . . . ,∆m) where H is a collision-resistant hash function.)

4. If a party received the same ∆ (or hash) from all, then it locally computes its
output share [z]t = [x · y]t = [r]t +∆ = [r]t + (xy − r). Else, it aborts.

19

Observe that Protocol 5.1 begins with generating double-random sharings; as
such, we could use Fdouble

rand instead. However, Fdouble
rand generates double-random

sharings that are provably correct; in contrast to the setup phase of Protocol 5.1
which has no such guarantees. This makes the generation of these sharings much
more efficient in Protocol 5.1 (an average of 3 elements per party for each double
sharing in Protocol 5.1, versus an average of 8 elements per party for each double
sharing using Fdouble

rand).

Security of πmult: It has already been proven in [19] (building on [12,13]) that
the version in Protocol 5.1 of the Damg̊ard-Nielsen multiplication is secure up
to additive attacks (see Section 6.1.1 and πmult). Intuitively, this is due to the
fact that all [ri]t values are verified to be of degree-t and therefore valid, and
the output is defined by adding some value to [ri]t. As such, the output of each
multiplication is a valid value. Regarding the fact that the adversary can add
some d to x · y, if P1 is corrupted then this is clear. In addition, since there is
no check that the same ri is shared in the degree-t and degree-2t sharing, a gap
between them would also result in some d ∕= 0 being added to x · y. However,
since the simulator knows all actual values (since it holds all the honest parties’
shares in the simulation), it knows exactly what that gap would be. We stress
that in order to have this d be well defined, we must ensure that the same value
∆ is sent by P1 to all other parties. This is the reason for the echo of the ∆
values in Step 3 of Protocol 5.1.6 Formally, πmult securely computes Fadd

mult, as
formalized in Functionality 5.2.

FUNCTIONALITY 5.2 (Fadd
mult - Secure Mult. Up To Additive Attack)

Let I denote the subset of corrupted parties.

1. Upon receiving the shares in [x]t and [y]t from the honest parties, the ideal
functionality Fadd

mult computes x and y, and computes the corrupted parties’
shares in [x]t and [y]t.

2. Fadd
mult hands the ideal-model adversary S the corrupted parties’ shares in [x]t

and [y]t.
3. Upon receiving d and {αi}i∈I from S, functionality Fadd

mult defines z = x · y + d
and generates a random (valid degree-t) sharing [z]t of z, under the constraint
that for every i ∈ I, Pi’s share in [z]t is αi.

4. Fadd
mult hands the honest parties their shares in [z]t.

We have the following (stated for t < n/3 since that is what we need):

Lemma 5.1 ([12,13,19]). Assuming that the input shares [x]t, [y]t held by the
honest parties are of degree-t, Protocol 5.1 securely computes Fadd

mult in the pres-
ence of an (unbounded) adversary corrupting any t < n/3 parties, with statistical
security.

6 We stress that without this step, there is an actual attack on the privacy of the
protocol when run over multiple layers of multiplications. This was pointed out to
us by Yifan Song.

20

Complexity: The share procedure involves each party sending one field element to
each other party. Thus, in the setup phase each party sends 2n elements, meaning
an overall 2n2. Then, in the multiplication phase itself, 2t parties send 1 element
each to P1, and P1 sends back 1 element to each party resulting in a total of n
elements. It is possible for a different party to “play” P1 in each multiplication,
so we can average the number of elements sent by all parties. The multiplication
phase is run n − t times, and so the total number of elements sent in both the
setup and multiplication phases is 2n2 + (2t+ n) · (n− t). Since this is the cost
of computing n− t multiplications, the average overall cost per multiplication is
2n2

n−t +2t+n. Averaging this over the n parties, the cost is 2n
n−t +

2t
n +1 elements

per party per multiplication. Thus, when taking t = n/3 we have n− t = 2n/3,
and the average cost per multiplication per party is 3 + 2/3 + 1 = 4 2

3 elements.
We remark that the cost of sending the hash of the ∆ values is not counted,

since it is insignificant except for “very narrow” circuits. In particular, this adds
a single element per part for every single layer of the circuit being computed.

5.2 Computational DN Multiplication with PRFs

It is possible to construct a computationally-secure version of the DN multipli-
cation protocol with significantly less communication. This was described in [22]
for the case of t < n/2 yielding a multiplication protocol where 3 field elements
are sent by each party per multiplication. We use the same ideas here for t < n/3
to achieve DN-type multiplication at the cost of 8

3 field elements sent per party
per multiplication.

Note, we are not referring to the non-interactive method of generating secret
sharings as described in [9], since that method has exponential computational
complexity and is thus only efficient for a very small number of parties. In
contrast, here our aim is to reduce the number of elements sent while maintaining
efficient computational complexity. even for a large number of parties.

The optimization. The idea behind the optimization is that in order to gener-
ate a sharing via a degree-d polynomial, it is possible to first choose d shares
in any way at all. Then, the (d + 1)th share is chosen at random (defining a
random secret), the polynomial is then reconstructed using interpolation and
the remaining shares are computed (or equivalently, Lagrange interpolation is
used to directly generate the shares of the parties). Of course, in order for this
to be a secure secret sharing of the secret, the first d shares must be random
to all parties other than each party receiving the share. However, this can be
achieved computationally by choosing these d shares pseudorandomly. As such,
the dealer can initially send a pseudorandom function key to d parties. Then,
in order to generate a sharing via a degree-d polynomial, each of the d parties
can compute their local point by applying the pseudorandom function to some
unique identifier for this derivation. The dealer who chose these keys can also
generate the points locally, and thus no interaction is needed for these d parties.

In the first step of the setup in Protocol 5.1, each party needs to generate
two sharings of some random ui, using a degree-t and degree-2t polynomial.

21

Furthermore, recall that only 2t + 1 parties send the opening of the degree-
2t polynomial [x · y − r]2t. Thus, only 2t + 1 parties need to ever receive the
degree-2t sharing of ui in the first place, and these can be the the 2t parties who
received pseudorandom function keys from the dealer plus one additional party.
In summary, the first step of Protocol 5.1 can be replaced with the following:

1. Initial setup: Each party Pi chooses pseudorandom function keys k1i , . . . , k
t
i

and sends them to t different parties (different dealers should be sent these to
different parties in order to load balance). In addition, Pi chooses k̃

1
i , . . . , k̃

2t
i .

If i > 2t (and so Pi is not one of the “first” 2t parties), then it sends key k̃ji
to party Pj for j = 1, . . . , 2t. If 1 ≤ i ≤ 2t (and so Pi is one of the first 2t
parties), then it sends the keys to P1, . . . , P2t+1 except for to itself.

2. Step 1 of the setup – sharing a random ui associated with unique id: Each
party Pi chooses a random ui and computes shares of t parties using k1i , . . . , k

t
i

and k̃1i , . . . , k̃
2t
i , by applying the pseudorandom function with the appropri-

ate key to id. Then, it interpolates with point (0, ui) to obtain polynomials
defining [ui]t and [ui]2t. Finally, for the degree-t sharing, it sends each of the
n− t−1 = 2t other parties their share, and for the degree-2t sharing it com-
putes the (2t+1)th share. If i > 2t then it sends the share to P2t+1, whereas
if 1 ≤ i ≤ 2t then it defines this as its own share. Likewise, each party with
a pseudorandom function key defines its own share via local computation.

3. Step 2 of the setup: All n parties compute [r1]t, . . . , [rn−t]t via the Vander-
monde multiplication, whereas only parties P1, . . . , P2t+1 compute [r1]2t, . . . ,
[rn−t]2t (because only they have degree-2t shares).

The rest of the protocol remains the same. As in basic DN multiplication, we
stress that the 2t+1 parties involved in reconstruction of [x · y− r]2t is different
for each batch of n − t shares generated. This provides load balancing of the
work. By a straightforward reduction to the pseudorandom function, we have:

Lemma 5.2. If the function used in the optimized version of Protocol 5.1 is a
pseudorandom function, then this variant of Protocol 5.1 securely computes Fadd

mult

in the presence of a (polynomial-time) adversary corrupting any t < n/3 parties,
with computational security.

Complexity. The setup procedure now involves each party sending only n −
t − 1 = 2t field elements to other parties for the degree-t sharing, and either
0 or 1 field element for the degree-2t sharing. Thus, in the setup phase the
overall communication is 2tn. Then, the cost in the multiplication phase is the
same as previously, meaning that for n− t multiplication gates the parties send
(2t + n) · (n − t) field elements overall. The total number of elements therefore
sent in both the setup and multiplication phases is 2tn+(2t+n) ·(n− t) for n− t
multiplications, yielding an average overall cost per multiplication of 2tn

n−t+2t+n.

Averaging this over the n parties, we have a cost of 2t
n−t +

2t
n + 1 elements per

party per multiplication. Thus, when taking t = n/3 we have n− t = 2n/3, and
the average cost per multiplication per party is 1 + 2/3 + 1 = 2 2

3 elements.

22

6 The Protocol

We are now ready to present the protocol for securely computing any function-
ality, via an arithmetic circuit representation of the function (over a field that
is larger than the number of parties). The idea behind the protocol is simple:
the parties first share their inputs, and then they compute shares of the output
by locally computing addition gates and using πmult to compute multiplication
gates. After all of this computation has concluded, the parties run the verifica-
tion method of Protocol 4.2 to ensure that all multiplications are valid. Recall
that this check assumes that all shares are of degree-t. For the shares generated
on the wires coming out of multiplication gates, this is guaranteed by the degree
verification of [r1]t, . . . , [rN]t incorporated into πmult (this ensures that all shares
output from multiplications are also of degree-t).

PROTOCOL 6.1 (Computing Any Arithmetic Circuit)

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ Fℓ.

Auxiliary Input: a description of a finite field F and an arithmetic circuit C over
F that computes f ; let N be the overall number of gates in C.

The protocol (throughout, if any party receives ⊥ as output from a call to a
sub-functionality, then it sends ⊥ to all other parties, outputs ⊥ and halts):

1. Secret sharing the inputs:
(a) For each input vi held by Pj , party Pj runs share as the dealer with vi.
(b) The parties run Protocol 4.1 on all shares received in the previous step.

The parties proceed if and only if they output accept from the protocol.
(c) Each party Pj records its vector of shares (vj1, . . . , v

j
M) of all inputs.

2. Circuit emulation: Let G1, ..., GN be a predetermined topological ordering of
the gates of the circuit. For k = 1, ..., N the parties work as follows:
– Gk is an addition gate: Given shares [x] and [y] on the input wires, the

parties locally compute [x+ y] = [x] + [y].
– Gk is a multiplication-by-constant gate: Given share [x] on the input wire

and the constant a ∈ F, the parties locally compute [a · x] = a · [x].
– Gk is a multiplication gate: Given shares [x] and [y] on the input wires:

(a) The parties run πmult on [x] and [y] to receive the share [z] on the
output wire.

3. Multiplication verification: The parties run Protocol 4.2 with the set of inputs
being the shares {[wℓ]t} on the input wires, and the degree-t shares {[rk]t}
generated for all multiplication gates in πmult. If a party outputs accept from
Protocol 4.2, then it proceeds to the next step. Else, it outputs ⊥ and halts.

4. Output reconstruction: For each output wire of the circuit, the parties run
(reconstruct[v]t, j), where [v]t is the sharing of the value on the output wire,
and Pj is the party who receives this output.
If a party received ⊥ as output from any call, then it sends ⊥ to the other
parties, outputs ⊥ and halts.

Output: If a party has not output ⊥, then it outputs the values it
received on its output wires.

23

For the input wires, we run an additional invocation of Protocol 4.1 to en-
sure that everything is indeed of degree-t. This enables us to use straightforward
(semi-honest secure) input-sharing and not far more expensive VSS or the like.
In practice, this verification can be carried out in the same invocation of Proto-
col 4.1 as in πmult, and so there is no additional cost. At the end of the protocol,
if the verification passes, then the parties open the shares on the output wires
and conclude. See Protocol 6.1 for a full description.

The intuition as to why the protocol is secure follows from the privacy of the
underlying multiplication protocol (as stated in Section 5.1) and the validity of
the verification method (proven in Sections 4.1 and 4.2). Specifically, if all shares
on all wires are of degree-t, and all multiplications are correct, then the output is
certainly correct. In addition, the security of the secret sharing scheme and the
DN-multiplication protocol means that nothing beyond the output is revealed.
Since πmult as presented is secure under additive attacks, we prove the protocol
secure for any multiplication protocol that is secure up to additive attacks.

Theorem 6.1. Let n be the number of parties, t < n/3 be the maximum number
of corrupted parties, let f be an n-party functionality, and let πmult be a multi-
plication protocol that is secure up to additive attacks. Assume that F used in
Protocol 4.1 and 4.2 is a pseudorandom function for non-uniform distinguishers.
Then, Protocol 6.1 t-securely computes f with statistical security in the presence
of malicious adversaries. If the version of πmult of Section 5.2 is used, then Pro-
tocol 6.1 t-securely computes f with computational security in the presence of
malicious adversaries.

Proof: The intuition is provided above and so we proceed directly with the
proof. We prove the protocol secure in the Fadd

mult-hybrid model (recall that this
is the multiplication functionality with security up to additive attacks).

Let A be an adversary controlling the subset of parties indexed by I ⊂ [n];
we construct a simulator S as follows:

1. S invokes A on the corrupted parties’ inputs (that it has in the ideal model).
2. Simulation of secret-sharing stage: S plays the role of the honest parties in

this phase, using 0-values for all honest-party inputs. If in the verification
step, the honest parties would abort, then S simulates the honest parties
messages in Protocol 4.1 and sends abort to the trusted party computing
the functionality (we stress that S can simulate the honest parties’ messages
since it receives all of the incorrect shares sent by the adversary). Else, it
sends the values defined by the shares dealt by A for the corrupted par-
ties. It can obtain these values since it obtains all of the shares sent by the
corrupted parties. (If any of these sharings are invalid and don’t define a
single degree-t polynomial and yet the honest parties did not abort in the
simulated execution, then S outputs bad and halts.)

3. Simulation of circuit-emulation stage: S emulates the trusted party running
Fadd

mult in each multiplication execution. Observe that Fadd
mult does not provide

the adversary any output, beyond the corrupted parties’ shares on the input
wires to the multiplication. S derives these values from the honest parties’

24

shares using the complete procedure described in Section 2.1. If S receives
any d ∕= 0 from A in any of the calls to Fadd

mult, then S stores cheat.
4. Simulation of verification stage:

(a) If S did not store cheat in the previous step, then it plays the role of
the honest parties in Protocol 4.2, sending honest values. The only place
that the values sent by the honest parties depend on the input shares is
when opening [vj]2t, but since this is masked, S chooses a random vj ∈ F
and sets the honest parties’ shares in the opening by running complete
on the corrupted parties’ shares and vj (it can do this since it knows the
shares the corrupted parties’ hold). Finally, as long as no invalid values
are sent by A for the openings, it simulates the output of FcheckZero being
accept.

(b) If S did store cheat in the circuit-emulation phase, then it works in
exactly as in the previous case, except that it simulates the output of
FcheckZero being reject.

5. If there was no abort until this point, S uses complete on the output values it
received for the corrupted parties along with their shares, in order to generate
the honest parties’ shares that would be sent at this point. In addition, for
any honest party Pj for whom all shares sent by the corrupted parties in
reconstruct are correct, it sends (continue, j) to the trusted party computing
f to notify it to provide output to Pj in the ideal model; otherwise it sends
(abort, j) to notify that Pj not receive output in the ideal model.

We argue that the simulation is statistically close to the real execution when us-
ing the information-theoretic multiplication protocol described in Protocol 5.1,
and is computationally indistinguishable when using the computational multi-
plication protocol described in Section 5.2. Regarding the secret-sharing phase,
this follows immediately from the property of the secret sharing scheme (that
guarantees that sharings of 0 and other values are identically distributed), and
by the fact that Protocol 4.1 reveals nothing. In order to see this latter fact,
observe that Fcoin and Frand are guaranteed to be secure (and so we actually
prove security in the (Fcoin,Frand)-hybrid model), and the only values opened
are [u1]t, . . . , [uδ]t. Now, this masking is only of degree-t. However, all honest
parties provide input sharings of degree-t only (since that is what the protocol
specification says to do). Thus, all honest values are perfectly masked, and using
0 or the honest party’s correct input value yields the same distribution.

Next, the circuit emulation phase is perfectly simulated, by the use of the
Fadd

mult-hybrid model. Note that this assumes that all inputs are of degree-t. How-
ever, this is guaranteed by the execution of Protocol 4.1 on the input values,
and the fact that all outputs from Fadd

mult are of degree-t (by the functionality
definition). Observe that by Lemma 4.1, the probability that a sharing is not of
degree-t but the parties did not abort, is at most 2−s.

Finally, for the multiplication verification phase, recall that all values on all
wires are guaranteed to be of degree-t, and that [ρ′j]2t is generated using Fdouble

rand

which is guaranteed to therefore be of degree-2t. Thus, the polynomial sharing
defined by

N
k=1 b

j
k · (wik · wjk − wℓk) via local multiplications and additions

25

is guaranteed to be of degree-2t. This implies that [vj]2t, which is obtained by
adding [ρ′j]2t to this polynomial sharing, is a truly random sharing. Thus, S
perfectly simulates the messages received by the corrupted parties (except with
probability 2−s when inputs were not of degree-t). The output of FcheckZero is
also simulated perfectly, except with probability at most 2−s, which occurs when
cheat was stored and yet the polynomial defined is a zero-polynomial, and so the
honest parties would not abort. This is bound by probability 2−s, as shown in
Lemma 4.2.

Regarding the computational case, this follows from the exact same reason-
ing, except that the transition from the Fadd

mult-hybrid model to the real model is
computational instead of information-theoretic.

Relaxing the requirement. Informally speaking, in the proof of Theorem 6.1 we
only really utilize the fact that the adversary’s view alone in πmult can be simu-
lated (i.e., a privacy requirement), and that a simulator can detect if a party has
cheated. This is a very mild requirement on πmult and we leave the task of formal-
izing it (and generalizing the protocol to arbitrary linear secret sharing schemes)
to future work. Nevertheless, we stress that the DN multiplication protocol is
the most efficient known, even for semi-honest, and thus this makes no difference
in practice right now. However, if a more efficient protocol is found later and it
does not fulfil security up to additive attacks, then this can be beneficial.

Complexity: We count the number of elements per party sent for the computa-
tionally secure variant of the protocol. Let NI , N×, NO denote the number of
input, multiplication, and output gates in C, respectively. Then, each input gate
is a single call to share which costs 1 element on average per party, and each out-
put gate is a single call to reconstruct which is also exactly 1 element per party.
As we have described in Section 5.2, the cost of πmult for the case of t < n/3 is 2 2

3
elements per party per multiplication. Finally, as shown in Section 4.3, assuming
n − 2t > 2δ + 2 (which holds for large enough n as well as for most reasonable
parameters), the cost of verification is 6 2

3n elements per party. Without making
this assumption, the cost is O(δ2n) elements per party.

We conclude that the total number of field elements sent per party in the
protocol is NI + 2 2

3 · N× + NO + 6 2
3n (when assuming n − 2t > 2δ + 2) and

at most NI + 2 2
3 · N× + NO + O(δ2n) (even for a very small field and small

number of parties). Observing that the cost of semi-honest alone is exactly
NI + 2 2

3 ·N× +NO, we have that the only overhead occurred in order to obtain
malicious security is the additive factor of between 6 2

3n and O(δ2n) elements
sent per party.

Achieving fairness. Our protocol can be easily extended to guarantee fairness.
Since t < n/3, it suffices for all honest parties to first agree (via a Byzantine
Agreeement protocol) that they did not receive any abort in the verification. If
this is the case, then in the opening, all honest parties are guaranteed to have
at least 2t+1 honest shares and at most t corrupt shares. Thus, using standard

26

error correcting techniques, the honest parties can determine the correct values
and output them. Observe that this method adds very little cost to the protocol.

7 Experiments and Evaluation

We implemented our protocol and carried out extensive experiments. Our im-
plementation is single threaded, to facilitate accurate comparisons with other
protocols. Our implementation will be made open source upon publication.

7.1 Experiment 1 – Our Protocol Comparison

The aim of this experiment was to understand the efficiency gain achieved of the
PRF version of DN-multiplication of Section 5.2 versus the information-theoretic
version of Section 5.1. Theoretically, the saving is over 40%. However, this is
in communication, and the necessity to compute many PRF invocations (using
AES) may impact the running time. In addition, we analyzed the additional cost
incurred for achieving malicious security over semi-honest security. We counted
the amount of time spent on verification in the malicious protocol (which is
the only difference between the semi-honest and malicious variants) as well as
running independent semi-honest executions.

We ran the above experiment using a circuit of 1,000,000 multiplication gates
of depth-20, with a 61-bit field (defined by a Mersenne prime). The experiment
was run on c5.xlarge instances on AWS with all parties in the EAST-US region.
The results appear in Table 1 and Table 2, and in Figure 1.

All running times are given in milliseconds, and are the average of 20 execu-
tions. The columns titled “verify time” and “% on verify” describe the amount
of time spent on the verification procedures of Section 4 in the malicious pro-
tocol, whereas the column titled “semi-honest” is an independent execution of
the completely semi-honest protocol (without verification inside Protocol 5.1
or Protocol 6.1) with the “% difference” being between the full malicious and
independent semi-honest executions.

Observe that the percentage of time spent on verification is small, and de-
creases as the number of parties increases. Since this verification step has com-
munication that is independent of the circuit size (and only cheat local compu-
tation), this is also true as circuits get bigger. In particular, for 100 parties, the
percentage of time spent on verification is a few percent only. Observe that the
running time of the purely semi-honest protocol is typically farther away; this
is surprising since the malicious protocol without the verification is exactly the
same. The only explanation that we have is that the variance on the network at
different running times has a big impact when the running times are so low.

Regarding the comparison between the information-theoretic and PRF ver-
sions, the difference in running times is more significant for a smaller number
of parties, less than 50% for up to 60 parties and about 40% for over 60 parties
(with an anomalous point at 100 parties). This matches the theoretical expec-
tation (and in fact, even more for up to 60 parties). The fact that the PRF
computations are insignificant is due to the fact that AES-NI makes such com-
putations very low cost.

27

Parties Malicious Verify Time % on Verify Semi-Honest % Difference

10 401 36 8.9% 401 0%
20 936 53 5.6% 828 11.5%
30 1241 68 5.5% 1168 5.9%
40 1598 69 4.3% 1343 15.9%
50 1891 62 3.3% 1985 -5.0%
60 2512 126 5.0% 2219 11.7%
70 2585 75 2.9% 2870 -11.0%
80 2974 97 3.2% 2884 3.0%
90 3689 120 3.3% 3529 4.3%
100 3999 142 3.6% 4089 -2.2%

Table 1. Information-theoretic multiplication protocol version of Section 5.1

Parties Malicious Verify Time % on Verify Semi-Honest % Difference

10 187 34 18.0% 159 14.8%
20 374 45 12.1% 343 8.4%
30 760 62 8.2% 644 15.3%
40 640 57 8.9% 609 4.9%
50 840 49 5.8% 850 -1.2%
60 1112 87 7.8% 1056 5.0%
70 1366 49 3.6% 1160 15.1%
80 1606 72 4.5% 1528 4.9%
90 2417 133 5.5% 1962 18.8%
100 3036 76 2.5% 2262 25.5%

Table 2. The computational multiplication protocol version of Section 5.2

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Malicious-IT SemiHonest-IT Malicious-PRF SemiHonestPRF

Fig. 1. Graphic comparison of all protocol versions.

28

7.2 Experiment 2 – Comparison to Prior Work

In this experiment, we compared our new protocol to the protocols of [2,8]. In
this experiment, we used the more efficient PRF version of the protocol of Sec-
tion 5.2. The protocol of [2], called HyperMPC, is for t < n/3 like our protocol,
but achieves perfect security (in contrast to statistical security as here). The
communication cost of HyperMPC is 13 field elements per multiplication gate,
for any field size. Our protocol is under 3 elements per multiplication gate (plus
the additive cost) and so is expected to be about 4 times faster than Hyper-
MPC. The protocol of [8], that we call CRYPTO18 below, is for t < n/2 and
has twice the cost of the semi-honest protocol for large fields (and even more for
smaller fields).7 We stress that although our protocol is more efficient than [8],
we achieve a weaker threshold of t < n/3 instead of t < n/2. The experiments
here were run on c5.xlarge instances on AWS in the EAST-US region, with a
circuit with 1,000,000 multiplication gates and depths 20 and 100. The results
of these experiments, for different depth circuits and different fields, appear in
Figures 2 and 3, at the end of the paper.

It is interesting to note that in GF [28], the cost of HyperMPC and our
protocol is almost the same, despite the fact that our protocol has about a
quarter of the communication. We conjecture that this is due to the fact that
in small fields, the amount of communication is so low already in HyperMPC
that the rounds of communication overrides the other costs (at least on circuits
this size). However, in larger fields, the difference in running time is great. Note
also that HyperMPC and CRYPTO18 have the same cost in large fields, as is
expected by the theoretical costs.

7.3 Experiment 3 – Results for Mobile Phone Executions

One of the benefits of low bandwidth protocols is to enable many parties on weak
devices to run secure computation amongst themselves. This was articulated
in [2] who constructed an end-to-end system.

In order to demonstrate the suitability of our protocol for such a setting,
we ran the protocol on ARM machines and on a mix of ARM machines and
servers in AWS. We used the new AWS service for ARMmachines with a1.large

instances, and with c5.xlarge server instances. The specification of the ARM
a1.large machines are two Cortex A72 CPUs, with clock speed 2.5GHz and
4GB RAM. These CPUs are those used in phones like Huawei P9, Xiaomi Redmi
Pro and Samsung Galaxy C9 Pro (all released in 2016); note that these phones
have four Cortex A72 CPUs and not two. Thus, this experiment demonstrates
the viability of running MPC from simple mobile phones; in particular, high-end
phones are not needed.

7 For a statistical error of 2−40, the CRYPTO18 protocol would be 3 times the semi-
honest for a 31-bit field, and 6 times the semi-honest for GF [28]. Since [8] does not
include an implementation for the protocol version for smaller fields, we only can
compare our protocol to it for a 61-bit field.

29

We ran the experiment in two different network latency configurations: 90ms
and 300ms. There are realistic latencies between mobile phones and clouds, and
the two configurations reflect distances to the cloud. For example, 90ms is the
latency of a mobile phone to a relatively close cloud (e.g., the latency from a
mobile phone in the Middle East to all European AWS clouds is below 90ms),
and 300ms is approximately the global latency. (In order to see this from your
phone and your location, run https://www.cloudping.info from your mobile
phone.)

The experiment is for the same 1,000,000 multiplication gate and depth-20
circuit above, over the Mersenne-31 field. Each experiment was run 20 times, and
the result reported is the mean running time. The results appear in Table 3. The
running times reported are extremely realistic (albeit, not “real time”, but this is
not the expected application), and demonstrate for the first time the viability of
running end-to-end MPC with a large number of mobiles running the execution.

Parties Configuration Network Latency Running Time

10 ARM a1.large 90ms 9.9

50 ARM a1.large 90ms 46.4

50 ARM a1.large and 50 servers c5.xlarge 90ms 95.9

10 ARM a1.large 300ms 22.1

50 ARM a1.large 300ms 101.7

50 ARM a1.large and 50 servers c5.xlarge 300ms 303.2

Table 3. Running times in seconds for a circuit of 1,000,000 multiplication gates and
depth-20 with a 31-bit Mersenne prime.

Acknowledgments

We thank Meital Levy for implementing the protocol, Lior Koskas for running
the experiments, and Shai Halevi for helpful comments. We thank Yifan Song
for pointing out an error in an earlier version of the paper.

References

1. T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara,
A. Watzman and O. Weinstein. Optimized Honest-Majority MPC for Malicious
Adversaries - Breaking the 1 Billion-Gate Per Second Barrier. In the IEEE S&P,
2017.

2. A. Barak, M. Hirt, L. Koskas and Y. Lindell. An End-to-End System for Large
Scale P2P MPC-as-a-Service and Low-Bandwidth MPC for Weak Participants.
In the 25th ACM CCS, pages 695-712, 2018.

3. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear commu-
nication complexity. In TCC 2008, Springer (LNCS 4948), pages 213–230, 2008.

30

https://www.cloudping.info

4. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, 1988.

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
In 42nd FOCS, pages 136–145, 2001.

7. D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure
Protocols. In 20th STOC, pages 11–19, 1988.

8. K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell and A. Nof.
Fast Large-Scale Honest-Majority MPC for Malicious Adversaries. In CRYPTO
2018, Springer (LNCS 10993), pages 34–64, 2018.

9. R. Cramer, I. Damg̊ard and Y. Ishai, Share Conversion, Pseudorandom Secret-
Sharing and Applications to Secure Computation. In TCC, Springer (LNCS 3378)
pages 342–362, 2005.

10. I. Damg̊ard and J. Nielsen. Scalable and unconditionally secure multiparty com-
putation. In CRYPTO 2007, Springer (LNCS 4622), pages 572–590, 2007.

11. D. Evans, V. Kolesnikov and M. Rosulek. A Pragmatic Introduction to Secure
Multi-Party Computation. Foundations and Trends in Privacy and Security, 2(2-
3):70–246, 2018.

12. D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai and E. Tromer. Circuits Resilient
to Additive Attacks with Applications to Secure Computation. In STOC 2014,
2014.

13. D. Genkin, Y. Ishai and A. Polychroniadou. Efficient Multi-party Computation:
From Passive to Active Security via Secure SIMD Circuits. In CRYPTO 2015.

14. O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In
19th STOC, pages 218–229, 1987.

15. R. Gennaro, M. Rabin and T. Rabin. Simplified VSS and Fact-Track Multiparty
Computations with Applications to Threshold Cryptography. In 17th PODC,
1998.

16. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications, 2004.
17. S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In the

Journal of Cryptology, 18(3):247–287, 2005.
18. E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Pro-

tocols and Security Under Composition. In the SIAM Journal on Computing,
39(5):2090–2112, 2010.

19. Y. Lindell and A. Nof. A Framework for Constructing Fast MPC over Arithmetic
Circuits with Malicious Adversaries and an Honest-Majority. In the 24th ACM
CCS, pages 259–276, 2017. (References to exact protocol and theorem numbers are
from the exact version https://eprint.iacr.org/2017/816/20181212:105515.)

20. Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose
Oblivious Transfer. In the 8th TCC, Springer (LNCS 6597), 329–346, 2011.

21. J. Naor and M. Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM Journal on Computing, 22(4):838–856, 1993.

22. P.S. Nordholt and M. Veeningen. Minimising Communication in Honest-Majority
MPC by Batchwise Multiplication Verification. In ACNS 2018, Springer (LNCS
10892), pages 321–339, 2018.

23. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols
with Honest Majority. In 21st STOC, pages 73–85, 1989.

24. A. Shamir. How to share a secret. CACM, 22(11), pages 612–613, 1979.
25. A. Yao. How to Generate and Exchange Secrets. 27th FOCS, pages 162–167,

1986.

31

https://eprint.iacr.org/2017/816/20181212:105515

Fig. 2. Comparison of protocols for a circuit of depth 20: HyperMPC refers to [2] and
CRYPTO18 refers to [8]. Our protocol is the PRF version.

32

Fig. 3. Comparison of protocols for a circuit of depth 100: HyperMPC refers to [2] and
CRYPTO18 refers to [8]. Our protocol is the PRF version.

33

