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Abstract Multi-party computation (MPC) protocols have been extensively optimized in an effort to
bring this technology to practice, which has already started bearing fruits. The choice of which MPC
protocol to use depends on the computation we are trying to perform. Protocol mixing is an effective
black-box —with respect to the MPC protocols—approach to optimize performance. Despite, however,
considerable progress in the recent years existing works are heuristic and either give no guarantee
or require an exponential (brute-force) search to find the optimal assignment, a problem which was
conjectured to be NP hard.
We provide a theoretically founded approach to optimal (MPC) protocol assignment, i.e., optimal
mixing, and prove that under mild and natural assumptions, the problem is tractable both in theory
and in practice for computing best two-out-of-three combinations. Concretely, for the case of two
protocols, we utilize program analysis techniques—which we tailor to MPC—to define a new integer
program, which we term the Optimal Protocol Assignment (in short, OPA) problem whose solution
is the optimal (mixed) protocol assignment for these two protocols. Most importantly, we prove that
the solution to the linear program corresponding to the relaxation of OPA is integral, and hence is
also a solution to OPA. Since linear programming can be efficiently solved, this yields the first efficient
protocol mixer. We showcase the quality of our OPA solver by applying it to standard benchmarks from
the mixing literature. Our OPA solver can be applied on any two-out-of-three protocol combinations
to obtain a best two-out-of-three protocol assignment.

Keywords: protocol mixing, linear programming, multiparty computation, program analysis, cryp-
tography

1 Introduction

Multi-party computation (in short, MPC) allows M parties p1, . . . , pM to perform any given computation
on their private inputs in a secure manner. Informally, security means that the protocol should correctly
compute the specified output (correctness) and it should not leak any information about the inputs, other
than what can be deduced from this output (privacy).

From the onset of MPC [Yao82; GMW87; BGW88; CCD88], there have been two approaches to MPC
protocol design: (1) the so-called garbled-circuit-based approach, also referred to as Yao’s protocol [Yao82],
and (2) the approach following the secret-sharing-based (aka gate-by-gate evaluation) paradigm. The lat-
ter was introduced by Goldreich, Micali and Wigderson (and is therefore often referred to as the GMW
approach) [GMW87]; GMW works with boolean circuits and was extended by Ben-Or, Goldwasser, and
Wigderson in [BGW88]—the so-called BGW protocol—to compute arithmetic circuits over finite fields.

The above approaches have inherent quantitative differences. First, the round complexity of gate-by-gate
evaluation is linear to the (multiplicative) depth of the circuit, whereas Yao’s approach yields constant-round
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protocols; furthermore, unlike Yao’s protocol most of the costly computation and communication in GMW
can be outsourced to an offline (pre-computation) phase which is independent of the inputs. Thus, GMW
(assuming preprocessing) is often more efficient over a wide area network (WAN) where communication can
be the bottleneck3 and garbled-citcuit-based approaches, which inherently needs to communicate a lot of
information, is faster assuming fast networks.

Furthermore, all the above protocols have communication and/or computation proportional to the size
of the circuit they aim to compute. For example, as demonstrated in [DSZ15], it is much faster to use
garbled-circuits on the standard Boolean circuit for comparison, than using GMW on a state-of-the-art
representations of comparison as an arithmetic circuit. On the other hand, performing multiplication (of
bounded precisions floats or bounded size integers) is much faster by means of GMW for an appropriately
large field—it is effectively computing a single-gate circuit—than by means of Yao’s protocol applied on the
state-of-the-art Boolean circuit for field multiplication.

The above demonstrates that there is no ”one size fit all” solution to optimal MPC. In order to decide
what protocol to use, one would need to take into account both the target computation, and the parameters
of the network. This might be feasible for simple computations, e.g., only comparisons or only multiplications,
but it becomes challenging when we are aiming to perform a complicated computation, whose circuit is not
even a-priori known. To cope with this, the idea of mixed (or hybrid) protocols has been proposed [KSS13;
Hen+10; BLW08; SKM11; Cho+13]. These are protocols that evaluate different parts of the computation by
means of different protocols, e.g., part of the computation is performed using garbled circuits, and another
part is performed using GMW.

Deciding which part of the computation should be computed using which protocol is a challenging task.
One of the reasons is that one needs to come up with an appropriate cost model, that estimates the costs
for computing each part of the specification with each of the candidates. Such costs were recently calculated
in [DSZ15] for hybrid protocols combining a garbled-circuits-based protocol, with two versions of GMW,
one for computing arithmetic circuits over arithmetic fields of characteristic 2 and size k, i.e., Zk2 , and one
for computing Boolean circuits (i.e., arithmetic circuits over Z2). Concretely, they devised benchmarks that
estimate for different useful computations, which protocol is fastest in different scenarios.

One would hope that such a cost allocation would already reduce the problem to a simple optimization
problem: try to split the computation in modules from a predefined set, and then compute the optimal
allocation of protocols depending on the cost of each module. Unfortunately this intuition is overly simplistic
as discussed below.

First, one needs to take into account the need to stitch different modules together in a way that does
not reveal information. In order to do so the protocol needs to allow each sub-protocol to pass its (output)
state to the next sub-protocol. This can be done by computing and outputting a secret sharing of the state
that is then given as input to the next module. Albeit, different protocols handle different types of sharing,
e.g., in GMW the shares are field elements, whereas in Yao’s protocol one needs the inputs to be Boolean.
This means that in order for a GMW computed module to pass state to a Yao module it needs to convert
its sharing to a Boolean sharing. Such a conversion would typically involve (secure) bit-decomposition of
Zk2 elements which is an expensive operation. Hence, in order to decide whether it is worth switching from
GMW to garbled-circuits, one needs to take into account the cost of converting the associated shares.

Second, such conversion costs need to be incorporated in addition to the cost of module computation.
A model incorporating such costs into an optimization problem was introduced in [SK11; KSS14], where
the authors also specified an Integer Program (IP) computing the optimal solution. Due to the difficulty
of solving Integer Programming in general, this lead to a conjecture that the problem of optimal protocol
assignment is NP-hard. The conjecture was adopted by follow-up works [Pat+16; Cha+17; Büs+18] and
gave rise to heuristic approaches.

3 This is demonstrated in existing benchmarks [DSZ15; Büs+18] (including ours) which are run for the semi-honest
setting and do not account for the cost of synchrony, e.g., timeouts, hence the effect of the increased round
complexity in GMW is minimized.
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1.1 Our Results

In this work we show that the problem of optimal (MPC) protocol mixing is tractable (efficiently solvable) for
for the case of combinations of two multi-party protocols. In a nutshell, starting from non-annotated source-
code, we employ a combination of program analysis and combinatorial optimization techniques to devise
an integer program, which we term the optimal protocol-assignment problem (OPA). OPA yields a provably
optimal mixing—up to parallelisation/scheduling and compiler optimizations (see §4 for details)—and, as
we prove, accepts a polynomial-time solver.

We remark that our current approach does not directly extend to the case of three protocols (see Remark 3
for details). Thus the question of whether or not OPA can be efficiently solved in the three-protocol case
remains open. However, since the optimal two-protocol combination can be found in polynomial time, we
can use our solver to compute best two-out-of-c protocols combinations for a constant c, by applying it to
all possibles pairs of the c protocols, and picking the pair (and the corresponding solution) that minimizes
the objective function across all

(
c
2

)
applications.

To demonstrate the quality of our OPA solver, we apply it to compute protocol assignments for known
benchmarks from ABY [DSZ15] and HyCC [Büs+18], for which code has been released namely Modular
Exponentiation, Biometric Matching and Private Set Intersection, Convolutional Neural Networks (CNNs)
of MiniONN [Liu+17] and Crytonets [Gil+16], k-means clustering algorithm, DB Merge and DBJoin as
well as new ones we introduce, namely Greatest Common Divisor (GCD) and Histogram. We remark that
works [DSZ15; Büs+18] directly compute optimal assignment for three protocols (this is done by manual
assignment in [DSZ15], and exhaustive search in [Büs+18]). However, with the exception of Modular Expo-
nentiation in the LAN setting, all resulting optimal assignments use one protocol or a mixing of only two
protocols. This state of practice indicates that our solver can be used to compute optimal assignments for
three protocols.

More concretely, our contributions can be summarized as follows:

As our main result, we prove that the Optimal Protocol Assignment (OPA) problem for two protocols
is, in fact, tractable. To this direction, we put forth a framework combining methods from program analysis
and MPC, and establishing a common language between the two disciplines. This framework allows us to
formally specify the OPA and describe all the relevant parameters of an integer program (IP), such that given
MPC code, it computes the optimal assignment of the two given protocols (and their share conversions).
We use our model to show that the linear-programming (LP) relaxation of our IP has an integral solution,
and therefore OPA is polynomial-time solvable.4 In addition to offering the language for stating and proving
our results, we set forth problems for the programming languages/compilers community, that can lead to
improvement in MPC compilers.

The running time of our OPA solver is polynomial on the size of its input (i.e., the MPC code). To provide
a more practical implementation, we propose MPC-source as an abstraction of MPC code. MPC-source is a
representation of the original MPC code which enables static analysis, while it is substantially more compact
than standard linearized MPC code—i.e., the straight-line version of MPC code. In particular, MPC source
has significantly fewer variables and statements than linearized MPC, thereby reducing the search space
for the optimal protocol combination. We show how to apply OPA on MPC-source, and prove that under
natural assumptions on the optimal assignment computed by IPLinear(S), an OPA solutions for MPC-source
is optimal for the linearized MPC. We note in passing that although making the treatment more involved,
devising such a faster and more scalable solver is useful for deriving a practical solution to the problem.
Notwithstanding, our entire treatment can be applied on linearized MPC code as well.

Finally, to demonstrate the practicality of our solver, we provide a toolchain that takes high-level unan-
notated source—Java source code in our case—, translates it to MPC-source, and outputs optimal protocol
assignments. We compare our solver with publicly available benchmarks from [DSZ15; Büs+18]. We remark
that the concrete assignment from [DSZ15; Büs+18] is known for only a subset of the related benchmarks;
for all those we confirm (for 2-out-of-3 protocols) the same assignment. For the remainder, we provide the

4 Unlike integer programming which is known to be NP-hard, linear programming is solvable in polynomial
time [Kar84; Kha80].
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first publicly released assignments, and compare our resulting protocol combinations with the ones reported
in [DSZ15; Büs+18]. Our solver is available on GitHub (https://github.com/ishaq/OPA).

We believe that our work opens possibilities for future work. Program synthesis, program analysis of MPC-
source, e.g., program equivalence and parallelization, as well as integration of OPA into MPC compilers, are
some of the possibilities. Throughout this paper, we pose conjectures and outline future directions.

1.2 Comparison to Related Work

A number of works have demonstrated the advantages of mixed protocols [KSS13; Hen+10; BLW08; SKM11;
Cho+13]. The ABY framework [DSZ15] by Demmler et.al. provided easy to use framework for writing
mixed-protocol 2-party computations. Mohassel and Rindal [MR18] improved it into ABY3 and extended it
to 3 parties. However, all these works require the programmer to manually choose protocol assignment. In
contrast, our tool yields automatic solution to optimal protocol assignment in polynomial time. We note,
however, that previous works compute an optimal assignment among all three protocols whereas our tool
can, so far, handle only two protocols. In fact, our analysis does not directly extend to three protocols. Thus,
the question of whether or not OPA for three or more protocol is NP-hard remains open.

Yet, by using our tool three times, once with each pair of the three protocols from [DSZ15], and keeping
the overall optimal solution we obtain a tool for finding, in polynomial time, the best two-out-of-three
protocol combination. Interestingly, for the overwhelming majority of existing benchmarks this extension
yields assignments consistent to the original exhaustive search method—the reason is that the existing
assignment among three protocols for these benchmarks ends up using at most two of them. This allows us
to handle arbitrary long code for which exhaustive search might be infeasible.

The work by Kerschbaum et.al. [KSS14] was the first to discuss the problem of automatic protocol
selection. They require the source program to be expressed in straight-line three-address representation
and formulate a 0-1 integer program for the two-protocol case. The integer program computes the optimal
assignment. Since 0-1 integer programming is NP-hard, this lead to the conjecture that the optimal protocol
assignment problem is NP hard. In fact, Kerschbaum et.al. [KSS14] proposes the first heuristics for solving the
above problem. We note that despite some similarities, e.g., some common inequalities, of the IP from [KSS14]
to the one underlying our OPA problem, we were unable to find a way to prove that the LP relaxation of
their IP has an integral solution. Instead, here we provide our new IP which leverages our model to allow us
to prove existence of an efficient solver.

EzPC [Cha+17] is a recent work that takes a high-level imperative language as input and compiles it
to mixed-protocols ABY source code. It is also based on heuristics. Moreover its heuristics do not take into
account dependencies between different parts of the code (i.e., they only rely on local information) and
are, therefore, too weak. For example, they state that their compiler never compiles a multiplication into a
Boolean/Yao representation. On a high bandwidth network with low latency (typical case of 10Gbps LAN),
it is actually inefficient to do so if the number of multiplications is small and un-amortized.

Most recently, a mixed protocol compiler, called HyCC [Büs+18], was introduced that uses a combination
of exhaustive search and heuristics to optimize and automate mixing. The unit of optimization in HyCC is
a module, which can be as little as one instruction but the sheer number of choices for exhaustive search or
heuristics make it prohibitive to have such fine granularity. In contrast, we provide provably optimal mixing
conditioned on a fixed schedule and access to the SSA-representation of the input program.

2 Preliminaries

We review the basic notions from the related MPC literature and establish some necessary terminology and
notation. Our work combines and extends techniques from cryptography, in particular MPC, with program
analysis, and combinatorial optimization. Since this might require a combination of expertise, in Appendix B
we review basic program analysis concepts that are useful for evaluating our results.

We will consider the optimal protocol assignment (OPA) problem for deriving hybrid (i.e., mixed) pro-
tocols against semi-honest, aka passive, adversaries—who follow their protocol instructions but attempt to
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acquire more information than the specified output by analyzing their (joint) view of the computation. We
note in passing that although, consistent with existing literature, our experiments are for semi-honest two-
party protocols only, our theory, and in particular our feasibility result for solving OPA, directly applies to
malicious and or multi-party protocols.

In our experiments we focus on protocols that combine the same three types of semi-honest MPC protocols
as in [DSZ15] as it will allow us to use the primitive-MPC cost estimators introduced there. In the following
we give the high level description of these protocols and the associated sharing, and refer to [DSZ15] for
a detailed description of the optimization thereof. We stress that our program analysis technique can be
applied to any version of these protocols (with or without such optimizations.)

Secret Sharing A t-out-of-n secret sharing scheme allows a dealer (or a protocol) to share a value s among
n parties, such that the shares of any t− 1 parties leak no information on s, but the shares of any t parties
uniquely define s. In this work we focus on two-party computation—although our theory applies to the
three-party case along the lines of [MR18]. More concretely, a value is shared among the two parties {p1, p2}
if every party pi holds a share 〈s〉i such that there exist a reconstruction algorithm which given both 〈s〉1
and 〈s〉2 outputs s, but each 〈s〉i by itself contains no information on s. We will denote the vector of shares
by 〈s〉 = (〈s〉1, 〈s〉2) and refer to it as a sharing of s.

The MPC modules: The three (types of) MPC protocols, also referred to as MPC modules, that will be
considered here (and their associated secret sharing schemes) are as follows (cf. [DSZ15] for more details on
the specific optimizations):

A: πA is a protocol for computing arithmetic circuits over the finite field Z2k . Such a protocol uses the
BGW gate-by-gate evaluation paradigm, where so-called Beaver multiplication triples [Bea92]—which
can be pre-computed—are used to make the online phase linear.5 Concretely, the protocol stores each
value s in its state as an arithmetic secret sharing, denoted by 〈s〉A: Each pi holds a share 〈s〉i ∈ Z2k

such that 〈s〉A1 + 〈s〉A2 ≡ s (mod 2`). (Consistently with [DSZ15], for clarity we will denote the type of the
sharing by a letter A the exponent.) As demonstrated in [DSZ15], with the appropriate optimizations πA

is the best known protocol for arithmetic operations, primarily in WAN setting but also in LAN setting
if sufficiently amortized.

B: πB is a protocol for computing Boolean circuits based on GMW. It uses the XOR sharing which is the
same as the arithmetic sharing but for Z2, i.e., a bit s is shared by bits 〈s〉B1 and 〈s〉B2, s.t., 〈s〉B1⊕〈s〉B2 = s.
As demonstrated in [DSZ15], with the appropriate optimizations πB is the best known protocol for
comparisons and logical operations in LAN setting, provided the operations are amortized.

Y: Finally, we will denote by πY the (optimized) version of Yao’s protocol used in [DSZ15]. For brevity, we
refer to πY as the Yao-based protocol. Note that although the original Yao protocol does not operate on
secret shared value, one can interpret the state, i.e., for each wire of the Boolean circuit, the corresponding
value sw of the wire w, as being shared among the to parties as follows: P1, the circuit creator, holds
the two keys Kw

0 and Kw
1 corresponding to wire inputs 0 and 1 respectively, and P2 holding Kw

sw , i.e.,
〈sw〉Y1 = (Kw

0 ,K
w
1 ) and 〈sw〉Y2 = Kw

sw . Clearly, in 〈sw〉Y = (〈sw〉Y1, 〈sw〉Y2), p1 does not know sw and p2
does not known which value Kw

sw corresponds to. Hence, none of the parties knows sw but by pooling
their shares together they can easily reconstruct by checking if Kw

sw equals Kw
1 . We refer to this secret

sharing scheme as Yao sharing. As demonstrated in [DSZ15], with the appropriate optimizations πY is
the best known protocol for comparisons and logical operations, especially in LAN setting.

Share conversion As discussed above, in order to stitch different modules in a single protocol we need to
transform the (output) sharing of one module to the (input) sharing of the following module. There are
several such share conversion protocols. In our benchmarks we use the ones from [DSZ15] but our OPA
solver can be instantiated with any such protocol. We refer to the share conversion protocol that converts
sharing of type X to sharing of type Y as X2Y, where X and Y take the value A for arithmetic, B for Boolean,
and Y for Yao sharing. E.g., a share conversion protocol from arithmetic to Yao sharing is denoted by A2Y.

5 Looking ahead, the costs used in our empirical study will be be sum of the setup and online costs.
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1 int gcd(int a, int b) {
2 int x = a;
3 int y = b;
4 for (int i = 0; i < 2*LEN; i++)
5 {
6 if (y != 0)
7 {
8 int r = rem(x,y);
9 x = y;

10 y = r;
11 }
12 }
13 return x;
14 }
15

16 // returns val%mod
17 int rem(int val, int mod) {
18 int rem = 0;
19 for (int j = LEN-1; j ≥ 0; j--)
20 {
21 rem = rem << 1;
22 // rem[0] = val[j]
23 rem = rem + ((val>>j)&1);
24 if (rem ≥ mod)
25 {
26 rem = rem - mod;
27 }
28 }
29 return rem;
30 }

1 int gcd(int a, int b) {
2 int x0 = a;
3 int y0 = b;
4 for (int i = 0; i < 2*LEN; i++)
5 {
6 x1 = (i == 0) ? x0 : x3;
7 y1 = (i == 0) ? y0 : y3;
8

9 if (y1 != 0)
10 {
11 // begin inlined rem
12 int rem0 = 0;
13 for (int j = LEN-1; j ≥ 0; j--)
14 {
15 rem1 = (j==LEN-1) ? rem0 : rem5;
16 rem2 = rem1 << 1;
17 rem3 = rem2 + (x1>>j)&1;
18 if (rem3 ≥ y1)
19 {
20 rem4 = rem3 - y1;
21 }
22 rem5 = φ(rem4,rem3);
23 }
24 // end inline rem
25 int r = rem5;
26 x2 = y1;
27 y2 = r;
28 }
29 x3 = φ(x2,x1);
30 y3 = φ(y2,y1);
31 }
32 return x3;
33 }

1 int gcd(int a, int b) {
2 int x0 = a;
3 int y0 = b;
4 for(int i = 0; i < 2*LEN; i++) {
5 x1 = (i == 0) ? x0 : x3;
6 y1 = (i == 0) ? y0 : y3;
7

8 // begin inlined rem
9 int rem0 = 0;

10 for (int j = LEN-1; j >= 0; j--)
11 {
12 rem1 = (j==LEN-1) ? rem0 : rem5;
13 rem2 = rem1 << 1;
14 rem3 = rem2 + (x1>>j)&1;
15 rem4 = rem3 - y1;
16 cnd1 = CMP(rem3 >= y1);
17 rem5 = MUX(rem3,rem4,cnd1);
18 }
19 // end inline rem
20

21 int r = rem5;
22 x2 = y1;
23 y2 = r;
24 cnd2 = CMP(y1 != 0);
25 x3 = MUX(x1,x2,cnd2);
26 y3 = MUX(y1,y2,cnd2);
27 }
28 return x3;
29 }

(a) IMP Source (b) IMP-SSA (c) MPC-source

Figure 1. (a) shows the IMP source for the GCD algorithm, (b) shows GCD translated into IMP-SSA after inlining
rem. (c) shows the IMP-SSA program translated into MPC-source. Our integer program works on MPC-source.

3 Program Analysis of MPC Source

In this section, we describe our program analysis process, that will yield the basis for our optimization
problem defined in the next section. §3.1 presents a running example. §3.2 outlines the syntax of the source
language, as well as the translation process into our representation, MPC-source. §3.3, and §3.4 describe the
control-flow structure of MPC-source and reaching definition analysis on top of it. §3.5 and §3.6 define other
analyses on MPC-source necessary to build the optimization problem.

3.1 Running Example

Our running example in Fig. 1(a) is an implementation of the Greatest Common Divisor (GCD) algorithm
using integer division. The gcd program makes calls to function rem, due to [DSZ15], which computes the
remainder of an integer division. Note that the structure is significantly different and more involved than
the standard—non-MPC targeted—integer divisiongiven in Fig. 7(a) in appendix C. Such difference between
non-MPC and MPC programs is typical due to inherent restrictions in the latter (to preserve privacy). For
example, in Fig. 1(a) the value of both val and mod will need to be secret shared, so they remain unknown
until the corresponding output-gates of the induced MPC circuit are computed (and reconstructed). Thus,
in order to generate a circuit that can be processed by MPC, the while-loop cannot use the values of these
variables. The rewrite by Demler et al. [DSZ15] rectifies this by carrying long division in binary, with a loop
bounded by statically known LEN, which is either 32 or 64 bits. Fig. 1(a) presents our rewrite of the standard
GCD loop (cf. Fig. 7(b) in appendix C), where we are using the observation that the number of iterations
in GCD is bounded by 2LEN = 2 log(max(a, b)).
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s ::= s1; s2 ⇒ s.MPC = s1.MPC + s2.MPC
s ::= if (x bop y) { s1 } else { s2 } z = φ(z1, z2) ⇒ s.MPC = s1.MPC + s2.MPC + “cnd = CMP(x bop y); z = MUX(z1, z2, cnd)”

Figure 2. Translation of IMP-SSA into MPC-source. Attribute MPC contains the MPC-source code. Translation of
a sequence entails appending s2’s MPC-source code onto s1’s. The MPC-source for an if-statement is constructed
by adding the code for branch s2 onto the code for branch s1 thus linearizing the if-statement; at the end, the
translation adds the conditional operation and the multiplexer, which selects values. We do not include for other
kinds of statements as it is trivial.

3.2 Translation into MPC-source

We assume an IMP-like syntax [NK14] for our source language. The IMP syntax models an imperative
language, such as FORTRAN, C, or Java, and our results apply to any of these languages. We impose the
following standard restrictions necessary to accommodate MPC: there is no recursion, and all loop bounds
are statically known. The IMP source is translated into Static Single Assignment (SSA) using standard
techniques [Cyt+91]. This is standard SSA, however, to make it explicit that it corresponds to IMP-source,
in the following we will refer to it as IMP-SSA. This is the syntax of our intermediate representation. Due
to space constraints, we defer detailed discussion of the syntax to the Appendix C.

The next step is to translate IMP-SSA into MPC-source, the representation that we use for defining our
compact integer program. Fig. ?? defines an attribute grammar (also known as syntax-directed translation)
over IMP-SSA. The most interesting case arises at if-statements which are dealt with using standard MPC
techniques: the MPC-source code for an if-statement is produced by appending the straight-line (MPC) code
for the else-arm onto the straight-line (MPC) code for the then-arm, then adding the conditional, and the
multiplexer to select the correct values. Due to single assignment, variables used at the if-statement test are
unmodified, and are referenced in the comparison expression (CMP) that precedes MUX, where the φ nodes
capture exactly the arguments of MUX. 6 For example, consider the if-statement in lines 9-28 in Fig. 1(b).
The φ nodes capture the values of x and y; if control took the then-arm, then x and y would be x2 and y2
respectively, otherwise x and y would be x1 and y1.

In our example, the resulting MPC-source program is shown in Fig. 1(c). We point out that MPC-source
can be mapped one-to-one to standard straight-line MPC; the only difference is that when a block is repeated
multiple times in straight-line MPC, it is replaced by a for-loop in MPC-source. Following standard MPC
compilers methodology, e.g., [BNP08; Fra+14], the actual MPC program unrolls all loops, and loop induction
variables become constants.

To make the above mapping explicit, we use pseudo φ-nodes. To better understand the use of these
nodes, let’s focus on lines 5, 6 and 12 in Fig. 1(c) at the beginning of each one of the loops; these lines do
not encapsulate an if-then-else construct. Instead, they select variable values—at the first iteration, the value
comes from outside the loop, and at every subsequent iteration the value comes from the previous iteration
of the loop. When translated into straight-line code, these lines disappear because corresponding values are
directly used as inputs to the gates. To highlight that these lines are only here to enable loops, and, that
these do not get translated into a MUX, we refer to them as pseudo φ-nodes in text and denote them with
? : instead of φ.

Looking ahead (cf. §4) the benefit of doing the analysis over MPC-source rather than straight-line code
will be that there are significantly fewer variables in the resulting integer/linear program.

3.3 Control-flow Structure of MPC-source

The main reason why most, if not all, MPC compilers use straight-line code as their (intermediate) source
representation is that it exhibits a very simple control flow structure. Despite having loops for more compact

6 MUX is the multiplexer gate that is common in MPC compilers: on input of values (v0, v1) and a selection bit
b ∈ {0, 1}, it returns vb. In our case b is result of the CMP and (v0, v1) are arguments of φ node.
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representation, MPC-source also exhibits simple control-flow structure, which, as we show, facilitates program
analysis. Specifically, the program consists of straight-line blocks nested within each other. Fig. 3(a) illustrates
the block structure of MPC-source.

Each block B, except for the outermost one, is a for-loop block:

n0 → n2 → . . . nk −→ n0

Here n0, n1, . . . denote statements in B, short arrows (i.e., →) denote forward control-flow edges in B, and
long arrows (i.e., −→) denote the back edge from the last node nk ∈ B to the entry node n0 ∈ B. The node
n0 is special in MPC-source, because it is a control merge node. There are two incoming edges into n0: a
forward edge n′ → n0 where n′ is the node in B’s enclosing block B′ that immediately precedes B, and the
back edge nk −→ n0.

For example, consider the statement “rem1 = (j == LEN-1) ? rem0 : rem5;” in Fig. 1(c). In the first
iteration of the loop, it chooses the value of rem1—this is the value of rem0 in our case, and at every
subsequent iteration it chooses the values resulting from the previous iteration—which is the value of rem5
in our case. Node nk is special as well because it is a control split node —there are two outgoing control-flow
edges from nk, a forward edge nk → n′′, where n′′ is the node in B′ that immediately succeeds B, and the
back edge nk −→ n0. The graph below shows the nested structure (it omits the back edge for clarity):

. . . n′ →
B︷ ︸︸ ︷

n0 → n2 → . . . nk → n′′ . . .︸ ︷︷ ︸
B′

3.4 Reaching Definitions over MPC-source

We are interested in Reaching Definitions over MPC-source, because the simple control-flow structure of
MPC-source discussed above, as opposed to general IMP-style code, makes Reaching Definitions a very
powerful tool. In particular, unlike general IMP programs, in MPC-source programs a def-use chain (d, u)
entails that d always reaches u due to the simpler control-flow structure of MPC-source programs. Examples
of def-use chains in the MPC-source program in Fig. 1(c) are (5,14) (the definition of x1 at line 5 reaches
the use at line 14), and similarly (13,14). As another example, the MUX statement at line 25 is a definition
of x3 and the statement at line 5 is a use of x3. We will be using def-use chains to calculate the total cost of
running an MPC-source program and reason about conversions (see also discussion about optimal conversion
placement below).

3.5 Statement Weights

Since MPC-source has loops, in order to accurately capture execution cost, we must assign weights to
statement in the MPC-source control-flow graph. (As discussed in the following section, certain edges that
are necessary for the definition of our IP are also assigned weights.) The weights correspond to the number
of times a statement/edge executes. Once again, the simple structure of our MPC-source representation
gives the solution: unlike general IMP-style source-code, in MPC-source it is straight-forward to assign
those weights because there are no if-then-else statements, and therefore no need to estimate the number of
times control may go through one branch relative to the other (the standard approach is to assume equal
probability of execution of each branch). The weight wn of statement n is the product of the bounds of all
loops “around” n: b1 · b2 · ... · bk where b1 stands for the bound of the outermost loop, and bk for the bound
of the innermost loop enclosing n. For example, w13 in Fig. 1(c) is 2LEN · LEN = 2LEN2.

3.6 Optimal Conversion Placement

Different protocols use different sharings. To stitch such protocols together, we need share conversion. In
linearized MPC (where all loops are unrolled) placing such conversions is straight-forward: always convert

8



to what the next protocol needs (if the protocol is the same do not convert). However a challenge in using
MPC-source, where loops are present, is when a node is part of a loop whose output needs to be converted.
For example, consider a definition that is computed before a loop and is used inside the loop. It is most
beneficial to place the conversion before the loop. In this section we describe how to identify the optimal such
conversion point to minimize the total cost. This allows us to use the benefits of working with the condensed
MPC-source without sacrificing cost efficiency due to suboptimal conversion placement.

Consider a def-use chain (d, u). If d computes a value in one share (e.g., Arithmetic) but u uses a different
share (e.g., πY), then the value computed at d must be converted to the share required at u. We must place
conversions in such a way that: (1) each execution path from d to u executes the required conversion, and (2)
the total cost of executing the required conversion(s) is minimal; we note that the cost of a single conversion
operation is fixed, however, the total cost depends on where, i.e., on what CFG edge, we place the conversion
operation. We define min cut(d, u)7 where it is least costly to place a conversion of the value computed at
d on the way to u. Next, we describe how to find min cut(d, u).

We begin with the definition of necessary terms. Let the closest enclosing block of ni and nj be the
innermost block B such that ni ∈ Bi and nj ∈ Bj and both Bi and Bj are nested, immediately or transitively,
in B. Trivially, a block is nested in itself. An edge e = n1 → n2 is said to be in block B, denoted as e ∈ B,
if: either 1) n1 ∈ B, or 2) n2 ∈ B, or n1 ∈ B1, n2 ∈ B2 and B1 and B2 are immediately enclosed in B.

To compute the min cut(d, u), there are two cases. Case 1 is when d precedes u, i.e., there is a sequence
of forward edges from d to u. We call these forward def-use chains. In this case, min cut(d, u) is the first
edge e in the sequence of forward edges from d to u such that e is in the closest enclosing block B of d and
u. Clearly, the cost of such edge e, we, is the number of times B executes. For example, consider def-use
chain (14,17) in the MPC-source program in Fig. 1(c). The closest enclosing block of lines 14 and 17 is
the inner for-loop; the min-cut edge is edge 14 → 15, the first in the forward sequence from 14 to 15. As
another example, consider def-use chain (17,21). The closest enclosing block of both lines 17 and 21 is the
outer for-loop. The min-cut edge is the edge from 17 to 21, which executes LEN number of times, and as we
mentioned earlier, this entails that it is least costly to place a conversion at 21 rather than at 17.

Case 2 arises when u precedes d, i.e., there is a sequence of forward edges from u to d and the path
from d to u goes through a back edge (see also Remark 1.) We call these chains backward def-use chains. In
this case, it follows directly from the Reaching Definitions analysis and the structure of MPC-source that
min cut(d, u) is precisely the back edge of the closest enclosing block B of d and u. The cost of such edge e,
we is N − 1 where N is the number of times B executes. In our running example, min cut(25, 5) is precisely
the back edge of the outer for-loop. This edge executes 2LEN−1 times, which is exactly the minimal number
of conversions one would need if the MUX at Line 25 of Figure 1.(c) computed x using πY but it used πA for
processing Line 5.

One intuition to the min cut(d , u) is as follows: its weight captures the number of distinct statements st
in the linearized MPC that map to d, such that st is used by a use that maps to u.

Remark 1. Note that in any execution uses always succeed def (It doesn’t make sense to use something that
isn’t defined yet). Our notion of u preceding d and backward def-use chains to refer to backward edge in
MPC-source CFG is a feature of the MPC-source representation. This backward edge always occurs because
of a pseudo-φ node and disappears in translation to linearized code.

Remark 2. We conclude this section with an observation on backward chains, which will play a role in defining
and solving the optimal protocol assignment problem. Backward chains exhibit the following property: each
(d, u) is such that d’s block is nested in u’s block, and u is precisely the pseudo φ-node at the beginning
of the block. (Let x be the variable defined at d. Suppose u was a use of x other than the pseudo φ-node.
Since the use of x at u precedes the definition at d, at the first iteration of u’s loop, x would come from outer
scope. Therefore, SSA would have to merge the two definitions of x into the pseudo φ-node, thus creating
an earlier definition of x. A subsequent use would refer to the definition at the φ-node.)

7 Note that here min cut is slightly different from classical max-flow/min-cut. We want to find min cut on the graph
of a single def-use chain.
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4 The Optimal Protocol Assignment Problem

In this section we provide formal definitions of the optimal protocol assignment problem (OPA) and in §5
we present our efficient solver. Before defining the problem, we first establish some useful notation and
terminology that we will use throughout the section.
Notation and terminology:

(IMP-)source code: This is the starting point of our compiler. It is standard programming language code for
an imperative language such as IMP. We denote it by S. All loops have a known upper bound on their
iterations.

MPC-source code: The output of our compiler on some source code S. We denote the compiler by CMPC(·).
The compiler removes if-statements and φ-nodes, and adds MUX-statements in their place. MPC-source
contains for-loops with known bounds.

Block B of MPC-source: Sequence of assignment statements or blocks (in case of for-loop nesting) enclosed
in a for-loop.

(IMP-)SSA-code: this is the output of SSA on some source-code S. We will denote it as CSSA(S). This is an
intermediate representation between (IMP-)source and MPC-source.

Linearized-code : Linear(S): This is the linearization of some MPC-source CMPC(·). It contains no loops,
only straight-line code of assignment statments. The corresponding CFG of this would be simply a
straight line. We refer to statement in Linear(S) as simple statements and denote them as st. Since the
corresponding CFG is a line we often refer to simple statements as nodes in (the CFG of) Linear(S).

Informally, OPA seeks, given source code for the task the parties wish to securely perform, the best possible
combination of MPC modules, i.e., the combination that minimizes a well defined cost function. We stress
that existing works attack OPA in a heuristic fashion; to our knowledge, ours is the first work that devises a
systematic model and uses it to provide provably optimal solutions—under mild and natural assumptions—to
OPA via an automated efficient solver.

There are several parameters that affect the quality of a protocol assignment, and therefore the perfor-
mance of the resulting hybrid MPC protocol. One of the most important is the cost model, which, informally,
specifies the cost of each MPC protocol for computing each statement of the IMP-MPC program. A second
important parameter is scheduling. In particular, some protocols are more friendly to amortization/paral-
lelization than other protocols which means that even though protocol X might be preferable to protocol Y
for a single statement st—e.g., a multiplication gate—when multiple copies of st are computed in parallel—
Y might be overall preferable to X. For example, on a high-bandwidth/low-latency network (e.g., a LAN),
Yao’s protocol is faster when computing an (individual) equality-check gates, but when multiple equality
gates are computed in parallel, the optimized GMW protocol πB overtakes πY (this was demonstrated in
[DSZ15] and is confirmed in our experiments in §7.3.) We defer the treatment of scheduling to §6.

4.1 The cost model

Coming up with a good measure of the cost is an interesting problem in itself. There is no universally
applicable optimal metric and such choice is usually influenced by a program’s execution environment. For
example, in a data center with high speed connectivity between the servers, minimizing run time would take
priority and, therefore, run time is a good cost metric. However, in a data constrained setting e.g. mobile
phones, minimizing the size of network traffic may be more desirable. In this case, communication size would
be a good cost metric.

In this section we devise a generic user-parameterizable cost model for programs that will be used in the
definition of OPA. Informally, the cost model consists of assigning weights, i.e., costs, to different protocols
and to conversions of sharings. This is similar to the cost model devised in [KSS14; Cha+17; Büs+18];
however, as we discuss in Section 5, our utilization and application of the cost model is qualitatively different
than that of [KSS14] and this will allow us to compute optimal assignments in polynomial time

Let St = {st1, . . . , st`} be the ordered sequence of statements in Linear(S), and let Π = {π1, . . . , πm}
be (a set of) multi-party protocols and let Σ = {σ1, . . . , σq} be (a set) of secret sharing schemes (in typical
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scenarios such as [DSZ15; MR18; Cha+17; Büs+18] q = m.) Note that sharings and protocols are very
different objects: A protocol is a collection of interactive algorithms to be executed among multiple parties,
whereas a sharing scheme is a way to encode/distribute messages (typically protocol inputs and outputs)
among those parties. Additionally, although in the literature, protocols are assigned a unique sharing scheme,
this does not need to be the case. Therefore, for most generality, in the following we give the definition of
the cost model for arbitrary sets of protocols and sharings.

The cost model C takes into account running each node/simple-statement, plus the cost of conversions
between sharings. Formally a cost model C for a given (St , Π,Σ) is a set containing the following ` ·m+ q2

elements:

For each (i, j) ∈ [`]× [m]: the triple (sti, πj , c
πj
sti) ∈ B ×Π × Z≥0, where intuitively, c

πj
sti corresponds to

the cost of emulating in a flow statement sti with protocol πj .

For each (i, j) ∈ Σ2: the triple (σi, σj , c
σi2σj ) ∈ Σ × Σ × Z≥0, where intuitively, cσi2σj is the cost of

securely converting a sharing according to scheme σi into a sharing according to σj .

For brevity, and without loss of generality, whenever the sequence St , and set Π are clear from the context
we might use c

πj
sti and cσi2σj instead of the setup of triples. Note that those costs are generic, in the sense

that they may be instantiated towards minimization of run time, or towards minimization of data transfer.
Furthermore, in all existing works on protocol mixing—including ours—each protocol πi is associated with
a single sharing scheme σi; in such cases, in slight abuse of notation, we will denote the conversion cost from
σi to σj as cπi2πj (instead of cσi2σj ). In fact, to further simplify our notation and consistently with the ABY
notation, for the three ABY protocol πA, πB, and πY, and for X,Z ∈ {A, B, Y} we will use cX2Z to denote the

conversion cost cπ
X2πZ from the sharing corresponding to πX (which we will refer to as Sharing X) to the

sharing corresponding πZ (which we will refer to as Sharing Z).

Generalized Cost Model: Amortization and Parallelization The above cost model does not account for the
benefits of amortization and parallelization, and it therefore applies only to linearized code. Therefore, in
the following we refer to as the simple (or linearized) cost model. The OPA definition and solver from
Sections 4.2 and 5, respectively, are actually for linearized MPC. However, in Section 6 we extend our
treatment to natural schedulers and show how to (provably) optimally take advantage of amortization for
such schedulers. In fact, our implementation and benchmarks do use this scheduler. For completeness, we
discuss below how to generalize the cost model to account also for amortization.

To derive a generalized cost model we modify the simple cost model as follows: every triple of the type
(sti, πj , c

πj
sti) is generalized to a triple (sti, πj , fcπjsti

(·)), where f
c
πj
sti

: N → Z≥0 is the amortized execution

cost function, which on input ` ∈ N outputs the amortized cost f
c
πj
sti

(`) of computing ` parallel copies of

sti with protocol πj . Similarly, every triple of the type (σi, σj , c
σi2σj ) is replaced by a triple of the type

(σi, σj , fcσi2σj (·)), where fcσi2σj : N→ Z≥0 is the amortized conversion cost function, which on input ` ∈ N
outputs the amortized cost fcσi2σj (`) of converting ` sharings according to σi into sharings according to σj .
Using the same simplified notation as above, for X,Z ∈ {A, B, Y} we will use fcX2Z to denote the function
fcπX2πZ from the sharing corresponding to πX to the sharing corresponding πZ . Naturally the costs of the
simple model corresponds to the output of the above functions on input ` = 1.

4.2 OPA for Linearized MPC

Having specified the (simple) cost model C we can now give a formal definition of the OPA problem. Here we
discuss the OPA problem for linearized MPC, which we term linearized OPA8 for which we give an efficient
solver in the following section. The more general (non-linearized) case is then treated in §6.

To define linearized OPA we first need to introduce the notion of a protocol assignment. Informally, a
protocol assignment is defined on the sequence St = {st1, . . . , st`} which is the CFG of Linear(S); it specifies
what protocol should be assigned to each statement (node) sti. More concretely, a protocol assignment PA

8 Wherever clear from the context we might drop the adjective linearized and refer to the problem as OPA.
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is a sequence of pairs of the type (st1, π1), . . . , (st|St|, π|St|), where (sti, πj) ∈ PA means that statement sti
is assigned protocol πj .

Clearly, the execution cost includes the sum of the costs of individual statements sti ∈ Linear(S). However,
we must take into account conversion cost—if PA assigns protocol πX to sti, which defines variable x, and
it assigns protocol πZ to stj which uses x, then PA entails conversion of x from Sharing X to Sharing Z.
Formalizing the above is somewhat tricky as we need to know usage dependencies between the statements
to place conversion points. Recall that def-use chains are pairs of the form (d, u) where d and u are nodes in
the control-flow graph and u uses d. We need to place share conversion of definition d if there is at least one
use u that requires it. Importantly, since we consider Linear(S), each d executes exactly once and therefore,
a conversion can be placed immediately after d is executed. Informally, the execution cost is∑

st c
π
st +

∑
d c

πi2πj

where the first summation term accounts for the execution cost of all program statements, per the protocol π
assigned by PA to st, and the second term accounts for necessary conversions: as stated earlier, a conversion
at d is necessary if at least one use of d is assigned a different protocol. Below, we formally define the cost
function that captures execution and conversion costs.

Let integer variables a(sti,πj) ∈ {0, 1} denote whether sti ∈ Linear(S) is assigned protocol πj : a
(sti,πj) = 1

if (sti, πj) ∈ PA; a(sti,πj) = 0 otherwise.

Let integer variables x(sti,πj ,πk) ∈ {0, 1} denote whether protocol assignment PA entails conversion of
the definition at node sti from (the sharing associated with) protocol πj into protocol πk. x(sti,πj ,πk) = 1
if it entails conversion, that is, there is at least one use of the variable defined at sti that requires πk.
x(sti,πj ,πk) = 0 otherwise.

More precisely, let statement sti define variable x. Protocol assignment PA entails conversion of the
definition at node sti from πj into πk if and only if there exist node stl that uses x and

(a(stl,πk) − a(sti,πk)) · a(sti,πj) = 1

The above equation (which is linear if and only if m = 2) states that the use statement stl is assigned πk
by PA (we have a(stl,πk) = 1), while the definition at statement sti is assigned πj (we have a(sti,πk) = 0
and a(sti,πj) = 1) .

Therefore, the OPA problem becomes: find protocol assignment PA and values of variables a(sti,πj) ∈
{0, 1} and x(sti,πj ,πk) ∈ {0, 1} that minimize the objective function:∑

sti,πj
a(sti,πj) · cπjsti +

∑
sti,πj ,πk

x(sti,πj ,πk) · cπj2πk(1)

subject to constraints ∑
πj∈Π

a(sti,πj) = 1 for each node i (2)

and
x(sti,πj ,πk) ≥ (a(stl,πk) − a(sti,πk)) · a(sti,πj) (3)

for each def-use chain (sti, stl).

The first term in the summation captures statement execution cost, and the second term captures con-
version cost. Note also, that we simplify the problem by assuming that each statement is assigned exactly
one protocol. 9 The assumption renders the problem cleaner. Specifically, a(stl,πk) − a(sti,πk) = 1 implies
conversion from πi at the definition to a πk at the use. If we allowed that a statement is assigned more than
one protocols, i.e.,

∑
πj∈Π a

(sti,πj) ≥ 1, then it would not be straightforward to capture conversion at the
definition: as more than one protocol at the definition can be used to convert to the protocol required at the

9 In some cases, it may be beneficial to assign more than one protocol, e.g., πY and πA to the same statement, and
perform the computation with each protocol.
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use, we would need to take the convert from the available protocol with minimal conversion cost to πk. In
the case of 2 protocols, which is our goal in this paper, we can relax this assumption.

We say that protocol assignment PA induces variable assignments a and x when those assignments satisfy
constraints (2) and (3).

The above integer program is non-linear if we allow for arbitrary protocols, but becomes linear if we
restrict it to two protocols, i.e., m = 2. For notational simplicity, we give the definition of the problem for
πi = πY and πi = πA, i.e., the (optimized) Yao and Arithmetic protocol from the ABY framework. This is
without loss of generality, and our treatment can be trivially applied to any combination of two protocols.
We further simplify notation by using asti to denote (the indicator variable) that PA assigns πA to sti,
and ysti to denote that it assigns πY to sti. We use xsti to denote that the definition at sti requires Y2A
conversion, and zsti to denote that sti requires A2Y conversion.

The (2-protocol, linearized) OPA problem becomes: find a protocol assignment PA that minimizes∑
sti∈St (asti · cAsti + ysti · cYsti)

+∑
sti∈St (xsti · cA2Y + zsti · cY 2A)

where
asti + ysti ≥ 1 for each node sti

and
xsti ≥ astl − asti for each def-use (sti, stl)
zsti ≥ ystl − ysti for each def-use (sti, stl)

From now on, we will denote this problem as IPLinear(S).
For our purposes constraint xsti ≥ astl − asti is equivalent to xsti ≥ (astl − asti) · ysti .
In §5 we show how to efficiently solve the above linear integer program, as well as a related more efficient

one defined directly on MPC-source programs. Then in §6 we extend our treatement to a natural class of
non-linearized (i.e., parallelized) MPC-source programs. The extension to m > 2 is an interesting direction
for future research.

5 Solving the Linearized OPA

We now describe our efficient linearized-OPA solver for two protocols (m = 2). Recall a solution to linearized
OPA is a solution to IPLinear(S) defined in the previous section, which in turn describes an optimal protocol
(and share conversion) assignment for the linearized (straight-line) code. Formally, in this section we prove
the following theorem:

Theorem 1. Let IPLinear(S) be the integer program corresponding to the linearized OPA problem defined
above, and let LPLinear(S) be its LP relaxation. The optimal solution to LPLinear(S) is integral, and therefore
also the optimal solution to IPLinear(S).

In a nutshell, the above theorem is proved by showing that the constraint matrix of LPLinear(S) satisfies a
property known as total unimodularity (cf. Definition 2); a theorem from combinatorial optimization implies
then that its solution is in fact integral [Sch03].

We remark that although theoretically interesting, and against what was previously conjectured, having
an efficient (polynomial) solver for IPLinear(S) does not necessarily yield a practical MPC protocol mixer.
Indeed, since in linearized MPC loops are entirely unrolled, the corresponding representation might end up
having millions of statements and therefore millions of constraints, hindering scalability of the LPLinear(S)

solver.
Therefore, we devise a solver that solves a smaller integer program over MPC-source, denoted by

IPCMPC(S). We stress that existing frameworks compute protocol assignments, at most as optimal as a
solution to IPCMPC(S); indeed, in ABY, the manual protocol assignment is made on the source code, which is
essentially MPC-source. In fact, in Theorem 3 we prove that this is always the case under natural conditions
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on the optimal assignment computed by IPLinear(S). Since st nodes in Linear(S) that map to the same n
in CMPC(S) appear in identical contexts of execution in different iterations of the loop, we conjecture that
the above statement holds even unconditionally, i.e., if a protocol assignment is optimal in one context, the
same assignment will be optimal in the other. We note in passing that although making the treatment more
involved, devising such a scalable solver is essential for deriving a practical solution to the problem. Addi-
tionally, following the same structure of the proof of unimodularity of the constraint matrix of IPCMPC(S),
we can directly devise a proof of unimodularity of the constraint matrix of IPLinear(S), thereby proving the
result above.

The remainder of this section is organized as follows: In §5.1 we describe IPCMPC(S), where §5.1 describes
the parameters of the IPCMPC(S) integer program, and §5.1 and §5.1 describe the constraints and objective
function. As in the previous section, to keep notation simple we focus on the two protocols, namely arithmetic
(πA) and Yao-based (πY). In §5.2 we prove our main result that due to the structure of IPCMPC(S) its LP
relaxation yields an integral solution; this means that we can use standard efficient LP solvers to solve
IPCMPC(S); finally, in §5.3 we prove that the solution to IPCMPC(S), under natural conditions, is also a
solution to IPLinear(S). Due to limited space, the proofs have been moved to Appendix D.

5.1 Defining IPCMPC(S)

IPCMPC(S) is an integer program over MPC-source. It entails a significantly smaller number of variables and
constraints, and therefore accepts a more scalable solver. (There are O(N) nodes in MPC-source compared
to O(bDN) nodes in Linear(S), where b is the maximum loop bound and D is the loop nesting depth.) When
no amortization is considered, the costs of executing and converting all st ∈ Linear(S) that map to the same
n ∈ CMPC(S) is the same. As we show in §5.3, if we constrain IPLinear(S) to the same ast and yst for all st
that map to the same n ∈ CMPC(S), the optimal solution of IPCMPC(S) is the optimal solution of IPLinear(S)

as well.

The Cost Model for IPCMPC(S)

Since we do not have parallelization/amortization, IPCMPC(S) has a simple cost model as defined in the
previous section. Concretely,

(1) cAn denotes the cost to run node n ∈ CMPC(S) using πA.

(2) cYn denotes the cost to run node n using πY.

(3) cA2Y denotes the cost to run A2Y conversion.

(4) cY 2A denotes the cost to run Y2A conversion.

Variables and Constraints We follow [Cho+07] to define variables and constraints. Let variables an and
yn be integers in the interval {0, 1}, as in IPLinear(S) we defined in §4.2. They denote whether node n executes
with πA (using Arithmetic sharing) or with πY (using Yao sharing). an = 1 if n runs using Arithmetic sharing,
and an = 0 if n runs using πY sharing. To enforce that each node must execute at least once, we introduce
constraint

an + yn ≥ 1 (1)

Let integer program variable x(d,u) ∈ {0, 1} denote whether (d, u) requires Y2A conversion of x, that is, d
computes x using πY sharing only, but u, which uses x, computes using Arithmetic sharing, and thus requires
conversion of x to Arithmetic. Analogously, let z(d,u) ∈ {0, 1} denote whether (d, u) requires A2Y conversion.
z(d,u) = 1 if it does, and z(d,u) = 0 if it does not. Intuitively, the following constraints would account for this:

x(d,u) ≥ au − ad z(d,u) ≥ yu − yd

That is, if au is 1 but ad is 0, or in other words d computes using πY, variable x(d,u) is forced to 1. Later,
when we minimize the total cost, we multiply x(d,u) by the weight of (d, u), which is the number of times
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the min-cut edge of (d, u) executes. Note that if au − ad (or yu − yd) is −1, then x(d,u) (or z(d,u)) would be
0 because of the interval restriction: x(d,u), z(d,u) ∈ {0, 1}.

However, a wrinkle arises here. Since there are multiple def-use chains that start at d, the min-cut edge
of (d, u) may already cover a different def-use (d, u′) yielding constraints

x(d,u) ≥ au − ad x(d,u′) ≥ au
′
− ad

too strong: since x(d,u) already covers (d, u′), if both (d, u) and (d, u′) require conversion, it is sufficient to
perform conversion along the min-cut edge of (d, u); conversion along the min-cut edge of (d, u′) would be
redundant. (Clearly, there may be more than one uses for each def, but there is only a single def per use,
due to the SSA property.) We therefore introduce the notion of subsumption.

Definition 1. Def-use chain (d, u) subsumes def-use chain (d, u′), denoted (d, u) ⊇ (d, u′), if and only if
min cut(d, u) dominates u′, or in other words, all paths from d to u′ go through min cut(d, u).

Intuitively, subsumption means that conversion of d at the min-cut edge of (d, u) covers (d, u′) as well,
and there is no need to introduce conversion at the min-cut edge of (d, u′). There is no natural case for
subsumption in our running example. For the sake of argument, assume there is a use of rem3 defined at
line 14, in the outer loop at line 20. Then there are def-use chains (14,15) and (14,20). min cut(14, 15) is
edge 14→ 15, and min cut(14, 20) is edge 17→ 20. However, (14,15) subsumes (14,20). Assuming that both
uses, 15 and 20, require conversion, then placing a conversion at 14 → 15 covers (14,15) and (14,20). If 15
does not require conversion but 20 does, then placing a conversion at the less costly edge 17→ 20 suffices.

The above definition gives rise to a directed graph with nodes for all def-use chains (d, u) for d, and
edges due to subsumption: there is an edge from (d, u) to (d, u′) if and only if (d, u) ⊇ (d, u′). Strongly
connected components (SCCs) in this graph imply several (d, u)’s with the same min-cut edge. We therefore
collapse SCCs into equivalence classes with a representative e—each equivalence class is covered by a min-
cut edge e—and extend the ordering to the representative edges e. For example, suppose we have a chain
d → u1 → u2 → n in one block, where u1 and u2 are uses of d. Suppose we have n → u3 where u3 is a use
in the immediately enclosing block. (d, u1) and (d, u2) are in the same equivalence class with representative
edge d→ u1, and (d, u3) is in another class, with representative edge n→ u3. We have d→ u1 ⊇ n→ u3.

We now introduce a new set of constraint variables, xde and zde , similar to variables x(d,u) and z(d,u) we

introduced earlier. In the integer program we use only variables xde and zde . xde ∈ {0, 1} denotes whether there
is an Y2A conversion of the variable defined at d on edge e.

Therefore, our constraints become:

xde1 + · · ·+ xdek ≥ a
u − ad

where ek is the representative of (d, u)’s equivalence class, and ei ⊇ ei+1 for 1 ≤ i ≤ k− 1. These constraints
state that if (d, u) requires conversion from Arithmetic to Yao’s protocol, it is sufficient to execute that
conversion along a min-cut edge for some (d, u′) that subsumes (d, u), even when that edge is not the
min-cut edge for (d, u) itself.

In the above constraint, edge ek is the representative edge for the equivalence class of (d, u). If (d, u) is
a backward chain, then ek is the back edge in u’s block, and e1, . . . ek−1 are forward edges totally ordered
by subsumption. If (d, u) is a forward chain, then all edges are forward edges and totally ordered by sub-
sumption: e1 ⊇ e2 · · · ⊇ ek−1. This structure of constraints that account for conversion helps establish total
unimodularity of the constraint matrix, as we detail in the following section.

To summarize, we have constraints that account for conversion from πY to πA:

xde1 + · · ·+ xdek ≥ a
u − ad (2)

and parallel constraints that account for conversion A2Y:

zde1 + · · ·+ zdek ≥ y
u − yd (3)
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Objective Function The integer programming problem must find an assignment for variables an, yn, xde
and zde that satisfies the above constraints, and minimizes the cost of running the program. The total cost
is the sum of execution cost and conversion cost:∑

n (an · cAn · wn + yn · cYn · wn)
+∑

d,e (xde · cY 2A · we + zde · cA2Y · we)

The first summation term models the cost of execution of program statements and is straight-forward. E.g.,
if n runs using πA then its cost would be cAn . The cost of a single run of n is multiplied by wn, the number
of times n executes. In MPC-source wn is always statically known. The second term models conversion cost
and is less straight-forward. It iterates over all d, e pairs where d is a definition and e is a min-cut edge
representing some (d, u) (more precisely, an equivalence class of (d, u)’s). we is the number of times the
min-cut edge e executes. Again, in MPC-source we is always statically known. To see the intuition behind
the second term, suppose we have two forward def-use chains (d, u) and (d, u′) where (d, u) subsumes (d, u′)
but not the other way around. (d, u)’s representative is min-cut edge e and (d, u′)’s representative is e′. The
term that accounts for conversions of d (just Y2A), is xde · cY 2A · we + xde′ · cY 2A · we′ . If the assignments to

ad and au entail conversion, then xe is 1, and therefore, xe
′

is 0, thus nullifying term xde′ · cY 2A · we′ , just
as expected, since (d, u) subsumes (d, u′). Conversely, if ad and au do not entail conversion, then xe is 0.
If (d, u′) does require conversion, we will have xe

′
= 1, thus converting definition d we′ times only, where

we′ < we since e′ lies in an outer loop, and e lies in an inner loop.
Therefore, IPCMPC(S) is as follows:
Minimize ∑

n (an · cAn · wn + yn · cYn · wn)
+∑

d,e (xde · cY 2A · we + zde · cA2Y · we)
subject to

Ax ≥ b
where vector x = an1 , yn1 , an2 , yn2 , . . . , xde , z

d
e , . . . , and constraint matrix A consists of rows corresponding

to constraints (1), (2) and (3). All entries of A are 0 or ±1.

5.2 Solving IPCMPC(S) (and IPLinear(S)) via LP

We next prove that the LP relaxation LPCMPC(S) of IPCMPC(S) has a totally unimodular constraint matrix
and therefore an integral solution (as classical combinatorial optimization results imply, cf. [Sch03]). First,
let us recall the definition of total unimodularity.

Definition 2. A matrix M is totally unimodular if every square submatrix of M has determinant 0, +1, or
−1. This implies that all entries of M are 0, or ±1 [Sch03].

Fortunately, the constraint matrix A in the integer program from §5.1 and §5.1 is totally unimodular.
We show this by way of a characterization given by Camion [Cam65] (cf. Appendix D.1.)

Theorem 2. (Total unimodularity of constraint matrix A.) Let A be the constraint matrix of IPCMPC(S).

For every square Eulerian submatrix of A, AIJ :
∑
i∈I,j∈J A

j
i ≡ 0 (mod 4).

Remark 3. [On applying our method to three protocols simultaneously] Our approach does not generically
extend to 3 or more protocols. The reason is that the direct extension of our IP to m > 2 protocols changes
the structure of the underlying constraint matrix, in a way that total unimodularity no longer holds. A way
to see this is the following: we used constraints of the type au − ad to capture conversions to arithmetic
from a different protocol. In the binary (m = 2) case, ad = 0 implies that node d was computed in πY, and
therefore, au − ad = 1 induces a Y2A conversion. When m = 3, au − ad = 1 would induce a Y2A or a
B2A conversion. As in general, πi2πj and πi′2πj conversions have different costs, devising the corresponding
constraints to capture conversions becomes non-trivial, and the matrix is no longer totally unimodular.
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(a) MPC-source with def-use chains (b) Linearization of B1 and B2 (c) Linearization of B3: Parallel(S)

Figure 3. Natural Schedule. There are no backward def-use chains in B1, and therefore B1 is parallelized, executing
n1(B11) and n1(B12) in parallel, as shown at the top of Fig. (b). (We assume each loop has bound 2. n1(B11) denotes
the execution of n1 in the first iteration of B1, and n1(B12) in the second.) There is a backward def-use chain in B2,
(n2, n3) and therefore B2 cannot be parallelized. The two iterations of B2 happen sequentially. There is no backward
def-use chain in B3, therefore B3 can be parallelized too, resulting in the final schedule shown in (c). Fig. 3(c) shows
concrete def-use chains. There are 8 concrete def-use chains, shown with dashed arrows, that correspond to (n1, n2),
and there are 2 def-use chains that correspond to (n1, n6). Conversion due to (n1, n2) is amortized over 4 parallel
executions, however conversion due to (n1, n6) is amortized over 2.

5.3 From IPCMPC(S) to IPLinear(S)

In this section we show that under the assumption that all st ∈ Linear(S) that map to the same n ∈ CMPC(S)
are assigned the same share, the protocol assignment that minimizes the objective function of IPCMPC(S)

minimizes the objective function of IPLinear(S) as well.
We define “abstraction” function α : Linear(S)→ CMPC(S) and “concretization” function γ : (CMPC(S)×

CMPC(S)) → 2Linear(S) that will help us formalize and establish equivalence (cf. Appendix D.2). Function
α(st) returns the node n in CMPC(S) that st maps to. Function γ((d, u)) takes a def-use chain in CMPC(S),
and returns the set of definitions std such that (std, stu) is a def-use chain in Linear(S), and α(std) = d,
and α(stu) = u. Intuitively, γ((d, u)) returns all distinct std, such that there are distinct constraints in
IPLinear(S)

xstd ≥ astu − astd s.t. α(std) = d, α(stu) = u

and thus
xstd ≥ aα(stu) − aα(std) equiv. xstd ≥ au − ad

We note that we abuse notation slightly, by using a and y interchangeably in IPLinear(S) and in IPCMPC(S).

Theorem 3. Consider a protocol assignment PA = (an, yn) that minimizes IPCMPC(S). If for every pair

st, st′ ∈ Linear(S), α(st) = α(st′) ⇒ ast = ast
′ ∧ yst = yst

′
, then aα(st) = an, yα(st) = yn minimizes

IPLinear(S).

6 Scheduling and Parallelization

Scheduling specifies the order in which different instructions should be executed and, in particular, which
instructions should be executed in parallel. Scheduling and parallelization have been extensively studied in the
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compilers and parallel programming literature. However, the applicability to MPC of known algorithms and
results on loop parallelization, is not well-understood. We conjecture (and leave for future work) that MPC-
structure can be exploited to build provably optimal schedules. In this section, we describe a natural schedule
that targets common patterns occurring in MPC applications. We believe that existing work [Büs+18; BK15],
uses essentially the same approach to scheduling, however, we are the first to formally and explicitly describe
the schedules.

The original ABY framework takes a greedy parallelization approach: whenever something is paralleliz-
able, assign to the parallel operation the protocol which, when amortized is optimal. Clearly this does not
always yield the optimal assignment. More recent versions of the framework [Büs+18] employ heuristics from
parallel programming to detect parallelization [Wil+94; IJT91]. Although this might, at times yield a faster
execution, there are no guarantees, in general, that the heuristically discovered scheduling is better than no
parallelization or full parallelization. In fact, one can construct examples in which the cost of conversion after
the parallelized node supersedes the benefits of amortization. For example, a single EQ (equality check) is
processed faster with πY but allows for better amortization when processed with πB.

To avoid the ambiguity introduced by scheduling and parallelization, OPA can be parameterized by an
explicit scheduler. In the following we describe how we define such a scheduler (§6.1). We describe a natural
parallelization schedule (§6.2), and what restriction we impose on a given schedule (§6.3). The restriction
guarantees that the solution of IPCMPC(S) is a solution to the IPLinear(S), and natural parallelization schedules
meet the restriction.

6.1 Scheduler

We define schedulers over Linear(S)—recall, these are the linear CFGs corresponding to the linearized MPC.
Linear(S) can be extended to capture parallel execution of the program, by grouping multiple statements
into one hyper-node (aka parallel node). All st’s grouped into a parallel node can execute in parallel.
Parallel(S) is the sequence of parallel nodes P1 → P2 → · · · → Pn, where P1 executes before P2, P2 executes
before P3, etc. We say that Parallel(S) is a parallelization of Linear(S) if and only if for every def-use chain
(std, stu) ∈ Linear(S), std is in hyper-node Pi, stu is in hyper-node Pj , and Pi executes before Pj . The
restriction is necessary to preserve program correctness—a definition must execute before all its uses.

Definition 3 (OPA-scheduler). An OPA scheduler S for Linear(S) is a mapping from Linear(S) to a
parallelization (schedule) Parallel(S).

6.2 A Natural Schedule

A natural schedule arises as follows. Assume MPC-source, as shown in Fig. 3(a). If a loop B is such that
there is no backward def-use chain that ends in B—and thus, there are no data dependencies from iteration
k to iteration (k + 1) of B—then we schedule B’s iterations in parallel by grouping corresponding nodes
into a hyper-node; otherwise, we schedule the iterations sequentially, as in Linear(S). We call the former case
a parallel loop, and the latter case a sequential loop. For example, the innermost loop B1 in Fig. 3(a) is a
parallel loop. The schedule of B1 is shown at the top of Fig. 3(b). n1(B11) and n1(B12) are scheduled in the
same hyper-node, say P1, and n2(B11) and n2(B12) are scheduled in P2, and P1 executes before P2. Loop
B2 is a sequential loop. The schedule of B2 is shown in Fig. 3(b) as well. Since there is a backward def-use
chain B2’s iterations are scheduled sequentially.

We construct a natural schedule inductively, from the innermost (level 0) towards the outermost (level
D) loop. Assume a schedule Sk : P1 → P2 . . . Pl at level k, enclosed in a loop block B with bound b at
level (k + 1). If B is a parallel loop, then the new schedule Sk+1 is constructed by grouping together all
Pi(B1), Pi(B2), . . . , Pi(Bl). S(k+1) is

P1(B1) . . . P1(Bb)→ P2(B1) . . . P2(Bb)→ · · · → Pl(B1) . . . Pl(Bb)

Conversely, if B is a sequential loop, S(k+1) is constructed by sequencing Sk b times:

P1(B1)→ · · · → Pl(B1)→ P1(B2)→ · · · → Pl(B2)→ · · · → Pl(Bb)
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The final schedule constructed from the MPC-source abstraction in Fig. 3(a) is shown in Fig. 3(c).
We stress that the natural schedule, which we construct in the implementation, is only a step towards a

solution. We believe that one can exploit the well-behaved MPC-source representation, and data dependences
on MPC-source, to construct provably optimal schedules. We will explore this direction in future work.

6.3 Uniformly Parallel Schedule

In this section, we describe a restriction on parallelization—namely, we consider schedules that have a
property we call uniformly parallelization. This restriction captures natural schedules, and it also enables
computing an optimal protocol assignment that takes advantage of amortized costs. Similarly to §5.3, if
we constrain IPParallel(S) to the same ast and yst for all st that map to the same n ∈ CMPC(S), then
the optimal solution of IPCMPC(S) is the optimal solution of IPParallel(S). Below we formalize the uniform
parallelization restriction. In Appendix E we argue that a natural schedule as described in §6.2, meets
the uniform parallelization restriction, and therefore, the protocol assignment that minimizes IPLinear(S)

minimizes IPParallel(S) for a natural schedule.
First, we extend the concretization function γ, to work on n ∈ CMPC(S): γ(n) = { st ∈ Linear(S) | α(st) =

n }. We note that we abuse notation by allowing an ill-formed domain of γ. The restriction has two compo-
nents:

1. All γ(n) are uniformly allocated across N hyper-nodes (parallel nodes) in Parallel(S). That is, each one of

the N hyper-nodes contains |γ(n)|N st nodes. As a result, we can amortize execution costs of the st nodes

based on |γ(n)|
N , and associate the same (potentially amortized) costs cAn and cYn with each st ∈ γ(n).

These costs can be extracted from a generalized cost model.

2. All γ((d, u)) are uniformly allocated acrossM hyper-nodes. Again, each one of theM hyper-nodes contains
|γ((d,u))|

M std nodes. As a result, we can amortize conversion costs of the std ∈ γ((d, u)) nodes based on
|γ((d,u))|

M , and associate the same (potentially amortized) conversion costs cY 2A
d(e) and cA2Y

d(e) —also extracted

from the generalized cost model—with each std ∈ γ((d, u)), where e = min cut(d, u). Notably, the cost
of converting d depends on what the min-cut edge e happens to be.

By Lemma 4 (see Appendix D.2), if (d, u) subsumes (d, u′), then γ((d, u′)) ⊆ γ((d, u)), i.e., only a
subset of the definitions std are part of def-use chains that end at u′’s. Thus, γ((d, u′)) is amortized over a
smaller number of parallel executions, and therefore, individual conversion cost cY 2A

d(e′) may be higher than

individual conversion cost cY 2A
d(e) . If conversions are not required at (d, u), but they are required at (d, u′),

those conversions contribute higher cost, namely cY 2A
d(e′), than (d, u).

Linear(S) is an extreme case of a uniformly parallel schedule: all parallel nodes are of size 1, and all costs
are the sequential costs.

Theorem 4. The protocol assignment that minimizes∑
n (an · cAn · wn + yn · cYn · wn)

+∑
d,e (xde · we · cY 2A

d(e) + zde · we · cA2Y
d(e) )

also minimizes ∑
st (ast · cAst + yst · cYst) +

∑
st(x

st · cY 2A
st + zst · cA2Y

st )

This is argued exactly as in §5.3.

7 Implementation and Benchmarks

In this section we discuss our implementation and experimental results. The section is organized as follows:
§7.1 presents an overview of our implementation—the analysis and OPA solver, and §7.2 describes our
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Figure 4. Implementation Overview: The analysis takes a Java program as input and outputs a def-use graph (along
with related information). The linear program takes as input analysis information and costs, and outputs the optimal
assignment.

Table 1. Running Times of Analysis and Integer Program (rounded to nearest integer, median of 10 executions).

Lines of Code Time (secs)

Benchmark Java MPC- MPC Analysis Integer
Source Nodes† Program

GCD 36 55 10 18 1
Biometric Matching 55 112 7 19 1
Modular Exponentiation 43 112 19 18 1
Private Set Intersection (PSI) 40 75 2 18 1
Histogram 102 160 24 18 1
MiniONN (MNIST) 196 696 114 23 4
k-means 121 331 36 19 2
DB-Merge (500 + 500) 77 192 26 19 1
DB-Join (50 x 50) 83 189 33 19 1
DB-Join (25 x 200) 103 225 43 19 1
Cryptonets (Square) 103 331 39 19 1

† MPC-Source nodes may translate to several gates, e.g. in the running GCD example, the MUX on line 25 is translates
to 2 * LEN gates.

experiments. §7.3 details how we calculated costs for the cost model and discusses the implications of our
method. §7.4 concludes with a detailed examination of our results, and a comparison with existing works.
For brevity, we may refer, collectively, to our implementation of the analysis and OPA solver as the toolchain
or the tool.

7.1 The Toolchain

Our techniques are generically applicable to MPC-source, which can be defined on any high-level language,
i.e., any language that can be transformed into IMP-SSA form is a candidate for our analysis. In our
experiments we chose Java as the high level language for our system. Following the methodology introduced
in the previous sections, we restrict our benchmarks to an IMP-style subset of Java that can be translated
to MPC-source. This yields the following restrictions which are standard in MPC compilers [BNP08; SR18;
Fra+14]: 1) function calls are statically resolvable, i.e. no polymorphism, 2) there is no recursion, 3) loops
have statically known bounds, and 4) arrays have statically known sizes.

Additionally, we restrict data types to unsigned integers (for both scalars and arrays). We note that this
restriction does not entail loss of generality. If the underlying compiler supports additional data types, the
analysis can easily be extended to handle those data types. The OPA solver itself will remain unchanged.
However, costs for operations on the additional data types will have to be collected (the OPA solver needs
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costs for all operations). In fact, one future research direction is to integrate our toolchain into a feature-rich
hybrid protocol compiler such as CGMC-GC [Fra+14].

We used Soot [Val+99] for performing our program analysis. Soot is a popular program analysis framework
for Java and Android. It provides an SSA form called Shimple. It also provides out-of-the-box support for
function inlining, loop detection and basic def-use analysis, which facilitate translation of Java to IMP-SSA,
and subsequently to MPC-source.

We used MATLAB’s Optimization Toolbox to write a linear program that takes analysis information as
input (along with costs) and outputs an optimal mixed protocol assignment for the specified two protocols.

Figure 4 presents an overview of our system. The analysis takes a Java program as input. Using Soot,
it transforms the input program into SSA form (Shimple), then inlines the function calls. The program is
now transformed into MPC-source. (A mapping from Shimple operations to MPC gates is defined inside
the analysis, and there is no need to explicitly perform this transformation.) We analyze MPC-source and
generate the linear program. We then pass the linear program to MATLAB and solve it using its built-in
LP solver.

7.2 Our Experiments

OPA is parameterized by the cost model and its optimality is with respect to the underlying costs. We detail
how we obtained cost for our experiments in Section §7.3. Using our toolchain with these costs we run the
following experiments on a Core i6-6500 3.2 GHz computer with 16GB of RAM: For each benchmark, and
each pair of protocols from {πA, πB, πY} (i.e. for each of {πA, πB }, {πA, πY } and {πB, πY }), we plugged
in our corresponding costs to derive the linear program. We used the solutions of the corresponding linear
programs to obtain the optimal 2-out-of-3 protocol assignment by keeping the one with the overall minimum
value for the objective function. The results of the experiment are summarized in Table 1.

7.3 Calculating Costs

Calculating accurate costs is of high importance for the usability of any protocol assignment tool. As discussed
in §3.5, one can instantiate the cost model with different cost values depending on the setting. Following the
trend in the hybrid MPC literature [DSZ15; MR18; Büs+18] we focused on running time in our experiments.
Ideally, we would reuse cost tables from existing works for the most accurate comparison. Unfortunately, not
all costs are reported, and the actual code that runs the experiment is not released at the time of writing.
Therefore, we use the following methodology to calculate runtime costs of different instructions and share
conversions.

To compute costs for an operation OP in the unamortized setting, we use a circuit with two inputs a, b

from Alice and Bob, a gate OP that operates on a, b and a reconstruction gate that reconstructs to both
parties. To facilitate comparison with ABY [DSZ15], we obtain the circuits by use of the public interface
of ABY [DSZ15] without modifying the internal code, i.e., we use ABY’s circuit creation mechanism in a
black-box manner. We run this circuit 1000 times and average the total time reported by ABY [DSZ15].
For n parallel/amortized operations, we have a circuit with n copies of each gate (as described above, in the
unamortized setting), making n OP gates execute in parallel. Observe that the unamortized setting is exactly
n = 1. We create and run experiments for n = {1, 2, 5, 10, 25, 50, 100, 200, 300, 500, 800}.

An important factor that affects the run time of MPC is the communication network. Therefore, one
usually investigates two common scenarios: execution over a Local Area Network (LAN) vs. over Wide Area
Network (WAN). There are two types of experiments one can do to estimate the effect of the network, namely
execute the protocol over a real LAN or WAN [DSZ15], or use a network simulator [MR18; Büs+18]. As
our goal is mainly to demonstrate our toolbox and compare to existing results, we used the latter method.
We note that in either case, existing benchmarks demonstrate that although the network type affects the
absolute running time of the protocols, in almost all cases it does not affect the actual optimal assignment.
This trend is confirmed in our simulation experiments.

Following the methodology used in [MR18; Büs+18] we used Linux’s Traffic Control tc to simulate
the network. We used the same parameters as in [MR18]: LAN (i.e., bandwidth=10gbps, burst=250mbps,
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Table 2. Instruction cost, in micro-seconds. Averaged over 100 executions except when n = 1 where it is averaged
over 1000 executions. (32bit)

Inst n (Simulated LAN) n (Simulated WAN)

1 100 500 1 100 500

ADD B 2083 151 134 2088 1706 1484
Y 1476 77 66 1473 468 801
A 908 9 3 897 10 3

AND B 1372 34 30 1369 43 276
Y 1462 50 50 1461 504 937

EQ B 1838 37 33 1863 50 249
Y 1457 52 49 1454 394 772

GE B 2134 92 87 2145 907 999
Y 1487 74 71 1485 642 1111

GT B 2026 69 67 2020 577 855
Y 1463 54 51 1466 649 990

LE B 2018 72 67 2016 512 709
Y 1468 54 52 1467 405 739

LT B 2136 93 88 2141 1094 1020
Y 1479 74 72 1470 1094 1083

MUL B 5831 1992 1963 5811 12212 12117
Y 2812 1139 1114 2118 13553 11867
A 3057 20 17 3136 40 197

MUX B 1405 26 24 1409 37 24
Y 1474 61 59 1459 433 763

NE B 1855 38 32 1851 51 271
Y 1452 52 49 1465 482 718

OR B 1381 44 41 1393 53 259
Y 1463 61 58 1459 526 776

SHL B 2511 370 369 2493 3235 3336
Y 1797 260 249 1776 4413 3807

SHR B 2521 379 375 2492 3762 3517
Y 1775 258 253 1785 3811 3680

SUB B 4449 72 63 4513 101 330
Y 1490 70 67 1477 635 766
A 910 4 3 915 10 3

XOR B 925 17 17 923 23 16
Y 1398 40 39 1394 214 537

A2B 1772 138 130 1758 1815 1520

A2Y 1690 134 129 1705 1250 1753

B2A 1439 39 37 1444 85 440

B2Y 1536 65 60 1519 527 893

Y2A 1967 56 52 1977 342 710

Y2B 1463 44 42 1460 221 583
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latency=500us) vs. WAN (i.e., bandwidth=40mbps, burst=1mbps, latency=40ms). The target machine for
cost calculation is a virtual machine with a single 3.2GHz core with 4GB of RAM. The collected results are
shown in Table 2.

The above cost table demonstrates the standard cost trends reported in the literature: Amortized oper-
ations are less costly (per operation) than unamortized one, the Yao-based protocol performs better than
Boolean (GMW) in most cases, and Arithmetic performs better when amortized. However, a closer look re-
veals a cacophony which calls for a re-examination of how cost are computed throughout the mixed protocol
selection literature: The costs for unamortized, or slightly-amortized operations are similar in (simulated)
LAN and WAN. This is not surprising if one takes into account that: (1) the simulated WAN is effectively
a less powerful LAN (i.e., issues resulting from using different routing protocols do not appear in such sim-
ulations); and (2) since there is no other traffic flowing thought the simulated network, the two networks
perform very similarly in low-load scenarios.

The first issue can be mitigated by running the experiments over actual networks, but solving the second
issue is tricky: One might be tempted to decrease the capacity (or, equivalently, increase the flow) of the
simulated network. This will indeed make saturation take effect even with low traffic and create a cost
difference in WAN vs LAN. However, this may still not capture the actual cost of operations, since this
cost depends on what protocol traffic is circulated, e.g., if an operation OP2 follows a parallel batch of a
communication-intensive operation OP1, then it might be better to compute OP2 with a protocol which is
more computation-intensive but less-communication intensive. Although it does not affect our theory, we
view cost measurement as an important open problem for this line of work.

Importantly, the trends observed in [DSZ15; Büs+18] that dominate protocol assignment, are present in
our cost measurements as well. As a result, our toolchain computes consistent protocol assignments with
previous works, as discussed in the following section.

7.4 Evaluation of the Implementation

In this section we describe the results of running our OPA solver. We run the solver on benchmarks from
HyCC[Büs+18] (https://gitlab.com/securityengineering/HyCC) 10 and ABY[DSZ15], as well as a cou-
ple of new ones that we constructed for these experiments. We compare the outcome of our solver to the
assignments proposed in HyCC[Büs+18] and ABY[DSZ15]. The results are summarized in Table 1.

In the following, we discuss the outcome of each of the benchmarks in Table 3 and, wherever feasible,
confirm that our OPA solver demonstrates the expected behavior.

1) GCD This is the running example from this paper. Alice and Bob compute the GCD of their inputs.
This protocol entails no parallelization (i.e., no amortization). Since cost of sequential operations in πY is
the least, the IP outputs that assignment.

2) Biometric Matching A server holds a database S containing m n-dimensional tuples, and the client
holds an n-dimensional query C. The parties compute the tuple in the database with the minimal euclidean
distance to the query C (here m = 512, n = 4). This is a standard MPC benchmark whose assignment
is well known. It has a two pass structure. In the first pass, arithmetic operations are highly parallelized.
Therefore, the first pass is assigned the arithmetic protocol πA. The second pass computes the minimum and
uses (unamortized) comparison (GE) and multiplexing (MUX) operations. Both of these cost less in πY than
in πB. Therefore, the second pass is assigned πY. There is a single array that contains the output of the first
pass, therefore, a single conversion happens before the second pass. Our assignment is the same as the well
known assignment.

3) Modular Exponentiation Two parties come together to compute baseexp mod m (base, exp and mod are
all 32 bit unsigned integers) where one party holds base and the other party holds exp. This protocol accepts
no parallelization either and is assigned πY for the same reason as GCD. In the (simulated) WAN setting,

10 We have translated all HyCC’s publicly available benchmarks, except, due to time constraints, Gauss.
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Table 3. Assignments Comparison with HyCC[Büs+18] and ABY[DSZ15]. For easier notation, we use A, B, and Y
instead of πA, πB, and πY.

Simulated LAN Simulated WAN

Benchmark OPA Solver HyCC ABY OPA Solver HyCC‡ ABY

GCD Y — — Y — —
Biometric Matching A+Y(4,3,1)* A+Y A+Y A+Y(4,3,1)* A+Y A+Y
Modular Exponentiation Y — A+B+Y Y — Y
Private Set Intersection (PSI) B — B† B — B+Y†
Histogram A+Y(3,21,1)* — — A+Y(3,21,1)* — –
MiniONN (MNIST) A+Y(65,49,7)* A+Y — A+Y(65,49,7)* A+Y –
k-means B+Y(2,34,2)* A+Y — B+Y(2,34,2)* A+Y –
DB-Merge (500 + 500) A+Y(5,21,4)* A+Y — A+Y(5,21,4)* A+Y –
DB-Join (50 x 50) A+Y(6,27,2)* A+Y — A+Y(6,27,2)* A+Y –
DB-Join (25 x 200) A+Y(6,37,3)* A+Y — A+Y(6,37,3)* A+Y –
Cryptonets (Square) A+Y(24,15,1)* A — A+Y(24,15,1)* A –

— Assignment not provided.
† ABY[DSZ15] does not specify which implementation of PSI it uses, therefore comparison is not meaningful.
‡ We use the assignment in HyCC[Büs+18] that yields minimum total time (setup + online).
* The first value in the triplet is # of operations in A or B depending on the assignment, A+Y or B+Y respectively.

The second value is # of operations in Y, the third value is # of conversions.

our assignment is the same as ABY’s [DSZ15]. In the (simulated) LAN seting, ABY [DSZ15] assigns a
combination of all three protocols using a faster MUX—whose implementation is not publicly available. Our
assignment, πY, which we computed using the standard implementation of MUX is their second best.

4) Private Set Intersection (PSI) A server holds set S1, a client holds set S2 (here sizes of S1 and S2 are 1024
and 32 respectively, elements are 32-bit unsigned integers). We use the straighftorward O(n2) protocol. It is
completely parallelizable and relies on NE and MUX operations. Looking at the cost tables, the amortized
NE and MUX are cheaper with πB, therefore the πB assignment.

5) Histogram This is a benchmark that we adapted from the PUMA benchmark suite of MapReduce pro-
grams. Parties jointly hold a movie ratings database of n reviewers and m movies (here n = 100,m = 100,
and all elements are unsigned integers). Together, they compute a histogram of average ratings of the re-
viewers. It has one loop with enough parallelization to justify a πA assignment, hence the optimal assignment
mixes πA and πY.

6) MiniONN [Liu+17] (MNIST) and Cryptonets [Gil+16] These are Machine Learning benchmarks. We
translated them from HyCC [Büs+18]’s public code and ran them through our toolchain. MNIST is the
largest benchmark in terms of lines of code, and the most complex one. Several loops with arithmetic
operations are parallelizable, and those loops are assigned πA; all other operations are assigned πY. This
makes the summary assignment mixing πA and πY, the same as reported by HyCC [Büs+18]. In Cryptonets
(RELU function being square), although there are only arithmetic operations, some of them are inside non-
parallel loops. Because our unamortized πY-costs are less than unamortized πA (which is standard in the WAN
setting), arithmetic operations in the non-parallel loops are assigned πY. This makes the full assignment a
mix of πA and πY. By comparison, the assignment from HyCC [Büs+18] uses πA only; although HyCC does
not report the relevant costs, we believe that the reason for this assignment is that their cost of arithmetic
operations in πA is less than in πY.

7) k-means This is a clustering algorithm and a data mining benchmark. We took it from HyCC [Büs+18]’s
public code and ran it through our toolchain. We did not detect parallelizable loops, which explains the lack
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of assignments to πA. There is an OR operation (in the implementation of integer division) whose result is
accumulated for subsequent operations. This gets an assignment of πB. Our overall assignment is then a mix
of πB and πY. HyCC’s assignment is a mix of πA and πY. The reason we do not detect any πA assignments is
that we analyze the standard version, and we do not detect parallelization. HyCC analyzes a parallelizable
version, hence the πA assignment to arithmetic operations.

8) DB-Merge (500 + 500), DB-Join (50x50) and DB-Join (25 x 200) These are data analytics benchmarks,
also taken from HyCC [Büs+18]. All of these contain some arithmetic operations inside parallelizable loops.
Therefore those operations are assigned πA. The overall assignment that optimizes total time in all three
cases is a mix of πA and πY, just as in HyCC.

8 Conclusions

We revisit the problem of optimal protocol assignment (OPA) for hybrid MPC which was conjectured to
be NP-hard. We prove that, modulo scheduling/parallelization, for the special case of two protocols, the
problem can in fact be solved in polynomial time. Our analysis is based on a framework we propose which
combines ideas and techniques from program analysis and MPC. We implemented our OPA solver and tested
it using simulated costs in a wide set of known benchmarks demonstrating its efficiency and quality. Our
treatment points to several open problems in programming language, MPC, and networks.
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A Notation

In this appendix we cover notation and terminology that is used through out the paper.

A.1 General Terminology

– (IMP-)source code: This is the starting point of our compiler. It is standard programming language code
for an imperative language such as IMP. We denote it by S. All loops have a known upper bound on
their iterations.

– MPC-source code: The output of our compiler on some source code S. We denote the compiler by CMPC(·).
The compiler removes if-statements and φ-nodes, and adds MUX-statements in their place. MPC-source
contains for-loops with known bounds.

– Block B of MPC-source: Sequence of assignment statements or blocks (in case of for-loop nesting) enclosed
in a for-loop.
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– (IMP-)SSA-code: this is the output of SSA on some source-code S. We will denote it as CSSA(S). This is
an intermediate representation between (IMP-)source and MPC-source.

– Linearized-code : Linear(S): This is the linearization of some MPC-source CMPC(·). It contains no loops,
only straight-line code of assignment statments. The corresponding CFG of this would be simply a
straight line.

– We refer to statement in Linear(S) as simple statements and denote them as st. Since the corresponding
CFG is a line we often refer to simple statements as nodes in (the CFG of) Linear(S).

A.2 Costs Model

Simple Model

– St = {st1, . . . , st`} denotes the ordered set of statements in Linear(S)
– Π = {π1, . . . , πm} denotes (a set of) multi-party protocols and Σ = {σ1, . . . , σq} denotes (a set) of secret

sharing schemes (in typical scenarios such as [DSZ15; MR18; Cha+17; Büs+18] q = m.)
– For each (i, j) ∈ [`]× [m], the triple (sti, πj , c

πj
sti) ∈ B ×Π × Z≥0, where intuitively, c

πj
sti corresponds to

the cost of emulating in a flow statement sti with protocol πj .
– For each (i, j) ∈ Σ2: the triple (σi, σj , c

σi2σj ) ∈ Σ × Σ × Z≥0, where intuitively, cσi2σj is the cost of
securely converting a sharing according to scheme σi into a sharing according to σj .

– Whenever the sequence St , and set Π are clear from the context we use c
πj
sti ’s and cσi2σj instead of the

setup of triples. Furthermore, in all existing works on protocol mixing—including ours—each protocol
πi is associated with a single sharing scheme σi; in such cases, in slight abuse of notation, we denote the
conversion cost from σi to σj as cπi2πj (instead of cσi2σj ). In fact, to further simplify our notation and
consistently with the ABY notation, for the three ABY protocols πA, πB, and πY, and for X,Z ∈ {A, B, Y}
we use cX2Z to denote the conversion cost cπ

X2πZ from the sharing corresponding to πX (which we refer
to as Sharing X) to the sharing corresponding πZ (which we refer to as Sharing Z).

Amortized Model

– The triplet (sti, πj , fcπjsti
(·)), where f

c
πj
sti

: N→ Z≥0 denotes the amortized execution cost function, which

on input ` ∈ N outputs the amortized cost f
c
πj
sti

(`) of computing ` parallel copies of sti with protocol πj .

– The triplet (σi, σj , fcσi2σj (·)), where fcσi2σj : N → Z≥0 denotes the amortized conversion cost function,
which on input ` ∈ N outputs the amortized cost fcσi2σj (`) of converting ` sharings according to σi into
sharings according to σj .

– For brevity, for X,Z ∈ {A, B, Y} we use fcX2Z to denote the function fcπX2πZ from the sharing correspond-
ing to πX to the sharing corresponding πZ . The costs of the simple model corresponds to the output of
the above functions on input ` = 1.

OPA for Linearized MPC

– PA is a sequence of pairs of the type (st1, π1), . . . , (st|St|, π|St|) where (sti, πj) ∈ PA means that state-
ment sti is assigned protocol πj .

A.3 Solving The Linearized OPA

– cAn is the cost to run node n ∈ CMPC(S)
– cYn is the cost to run node n using πY.
– cA2Y is the cost to run A2Y conversion.
– cY 2A is the cost to run Y2A conversion.
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Variables and Constraints

– (d, u) ⊇ (d, u′) denotes that (d, u) subsumes (d, u′) i.e. all paths from d to u′ go through min cut(d, u).

From IPLinear(S) to IPCMPC(S)

– α : Linear(S) → CMPC(S) denotes the “abstraction” function i.e. provides mapping from Linear(S) to
CMPC(S).

– γ : (CMPC(S) × CMPC(S)) → 2Linear(S) denotes the “concretization” function i.e. provides mapping from
CMPC(S) to Linear(S).

B Preliminaries

B.1 Program Analysis

We next discuss concepts that are standard building blocks of static analysis and are necessary background for
our results. We assume minimal familiarity with program analysis, and refer an interested reader to [Aho+06].

Basic Block (BB) A basic block (BB) is a straight-line sequence of instructions, defined by the compiler.
The set of basic blocks that may execute before a given basic block are called its predecessors. Similarly, the
set of blocks that may execute after a given block are called its successors.

Control Flow Graph (CFG) A control flow graph (CFG) is a directed graph that represents all possible
control flow paths in a program. The nodes in the CFG are basic blocks, and the edges model flow of control
between basic blocks. There is an edge from a basic block to each of its successors. It is also common to
consider each statement in a basic block as a separate node with an outgoing edge to the statement/node
immediately following within the basic block.

Reaching Definitions (RDs) Reaching definitions is a classical data-flow analysis technique [Aho+06;
NNH10]. It computes def-use chains (d, u), where d is a definition of a variable x: e.g., x = y + z, and
u is a use of x: e.g., z = x ∗ y, or x > y. In the classical sense, reaching definitions is defined over a CFG,
where d and u are statements/nodes in the graph. A def-use chain (d, u) entails that there is a path from d
to u in the CFG that is free of a definition of x, or in other words, the definition of x at d may reach the use
of x at u.

Reasoning about dependencies like def-use chains can be greatly simplified by an appropriate intermediate
representation (IR). Now, we describe an intermediate representation (IR) called Static Single Assignment
(SSA) form. This is a standard IR in compilers and benefits static analysis by immediately exposing def-use
dependencies. The standard algorithm to translate a program into SSA form is due to Cytron et al. [Cyt+91].

Static Single Assignment (SSA) form SSA form entails that each variable in the program is assigned exactly
once. If the source code has multiple definitions of the same variable, the variable is split into multiple versions
for each definition. Consider, for instance, the code fragment in Figure 5(a). Without SSA, a compiler needs
to construct def-use chains to reason that the first definition of x is not used and is, therefore, dead code.
Now consider the same code fragment in SSA form in Figure 5(b). It is immediately obvious that variable x1
has no uses. Moreover, it is also obvious—because all variables are assigned only once—that y is only a copy
of x2. Therefore, in any uses of y, y can be replaced with x2 without changing the input program behavior.
Furthermore, x2 is a constant with value 2, and consequently z is a constant too, with value 200. The final
SSA-program will just use the constant value 200 and will eliminate the variables in the original program in
Figure 5(a).

A natural question is, if SSA form allows variable assignment only once, how does it determine which
variable to use when multiple control flow paths merge into a single node e.g. the if-else in figure 6(a). This
is taken care of in SSA by so-called phi (φ) nodes.
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1 x = 1;

2 x = 2;

3 y = x;

4 z = y * 100;

1 x1 = 1;

2 x2 = 2;

3 y = x2;

4 z = y * 100;

(a) (b)

Figure 5. A simple source program and its SSA form. x 1 = 1 is dead code and also, y is just a copy of x 2. y is a
constant, and z is a constant with value of 200.

1 if (flag) {

2 x1 = 1;

3 }

4 else {

5 x2 = 2;

6 }

7 x3 = x?; // Is x3 x1 or x2?

1 if (flag) {

2 x1 = 1;

3 }

4 else {

5 x2 = 2;

6 }

7 x3 = φ(x1, x2);

(a) (b)

Figure 6. A program and its SSA form. We assume that the first argument of a φ node (x1 in our case) carries the
value along the then-arm of the if-statement, and the second argument (x2 in our case) carries the value along the
else-arm.

Phi (φ) Nodes φ-nodes follow immediately after control-flow from two or more paths joins (merges) into a
single node. They have the form x3 = φ(x1, x2), where x3, is a new version of the variable, and φ(x1, x2),
contains the versions of the variable along the different paths. The φ-node entails that x’s value at this point
comes from either the then-arm (x1) or the else-arm (x2) depending on what path control flow took to arrive
at the merge node. Figure 6(b) shows the SSA form (including a φ-node) corresponding to code in Figure
6(a).

IMP Imperative Language Recall that one of our goals in this work is to define MPC-source, the input IR
for MPC compilers/optimizers. Towards this goal, we start from a standard representation of program syn-
tax. The standard representation in the functional programming languages literature uses lambda calculus.
However, MPC programs live in the imperative world. Therefore, we choose a standard minimal representa-
tion of an imperative language, IMP. IMP (cf. [NK14, ch. 7]) is a simple programming language in which a
statement can either be an 1) assignment to an expression where expression can be a constant, a variable or
an operation between two variables, 2) an if-then-else conditional or 3) a while loop.

C Program Analysis of MPC Source

C.1 Program Syntax

1 // Computes val%mod

2 int rem = val;

3 while (rem ≥ mod)

4 rem = rem - mod;

5 return rem;

1 int x = a;

2 int y = b;

3 while (y != 0) {

4 r = rem(x,y);

5 x = y;

6 y = r;

7 }

8 return x;

(a) Remainder (b) GCD

Figure 7. Standard algorithms for Remainder and GCD
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We assume an IMP-like source syntax [NK14]. The IMP syntax models an imperative language, such as
FORTRAN, C, or Java, and our results apply to any of these languages. We impose the following standard
restrictions necessary to accommodate MPC: there is no recursion, and all loop-bounds are statically known.
The IMP source is translated into Static Single Assignment (SSA) using standard techniques [Cyt+91]. Fig. 8
abstracts the SSA syntax corresponding to IMP-like sourecode. Note that this is standard SSA, however, to
make it explicit that it corresponds to IMP-source, in the following we will refer to it as IMP-SSA. This is the
syntax of our intermediate representation. (Note that this is also the representation that Shimple [Val+99]
produces when executed on IMP-source code.)

For readers unfamiliar with SSA we discuss the basic features of the IMP-SSA representations. The IMP-
SSA program is a sequence of statements, where each statement is either (1) a copy propagation assignment,
e.g., x = y, (2) a three-address assignment, e.g., x = y+z (3) a for-loop statement, or (4) an if-then-else
statement. An if-statement is immediately followed by one or more φ-nodes, as is standard SSA form. (One
may need more than one φ nodes when more than one variables are assigned along one or both branches of the
if-then-else.) In the running example in Fig. 1(b) lines 11-24 show the IMP-SSA translation of method rem,
where rem is inlined into gcd. As it is standard in SSA, each assignment yields a new version of the variable
on the left-hand-side, e.g., we have rem2, rem3, rem4. Control flow merge at the end of the if-statement
entails φ-nodes. In our running example, rem5 = φ(rem4,rem3) at line 22 in Fig. 1(b) entails that if control
took the then-arm of the if-statement, rem has the value of rem4, otherwise, rem has the value of rem3. We
assume that the first argument of a φ node carries the value along the then-arm of the if-statement, and the
second argument carries the value along the else-arm.

C.2 Translation to MPC-source

We next discuss how our intermediate representation of IMP-SSA is translated to the representation that
we use for defining our compact integer program, which we call MPC-source.

s ::= s; s
| x = y
| x = y aop z
| a[i] = x
| x = a[i]
| for (i = 0; i ≤ n; i++) { s }
| if (x bop y) { s } else { s } z = φ(z1, z2) statement

aop ::= + | − | ∗ | / arithmetic operator
bop ::= == | ! = | < | ≤ comparison operator

Figure 8. IMP-SSA syntax. s represents a sequence of statements. x, y, and z denote variables, including constants,
local variables, and parameters that hold shares. i and n denote variables in plain text. Note that each if-then-else
statement is immediately followed by a φ-node, as is customary in SSA.

Fig. 2 defines an attribute grammar (also known as syntax directed translation) over the syntax in Fig. 8
that translates the IMP-SSA program into an MPC-source program. (An attribute grammar is a standard
static analysis technique [Aho+06, Chapter 5], [Sco15, Chapter 4]; an attribute grammar is defined over the
syntax of the program and performs semantic analysis or transformation. ) In our case, this is a standard
attribute grammar. The only interesting case arises at if-statements which are dealt with using standard MPC
techniques: the MPC-source code for an if-statement is produced by appending the straight-line (MPC) code
for the else-arm onto the straight-line (MPC) code for the then-arm, then adding the conditional, and the
multiplexer to select the correct values. This is straight-forward given SSA: due to single assignment, variables
used at the if-statement test are unmodified, and are referenced in the comparison expression (CMP) that
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precedes MUX, where the φ nodes capture exactly the arguments of MUX. 11 For example, consider the if-
statement in lines 9-31 in Fig. 1(b). The φ nodes capture the values of x and y; if control took the then-arm,
then x and y would be x2 and y2 respectively, otherwise x and y would be x1 and y1.

In our example, the resulting MPC-source program is shown in Fig. 1(c). We point out that MPC-source
can be mapped one-to-one to standard straight-line MPC; the only difference is that when a block is repeated
multiple times in straight-line MPC, it is replaced by a for-loop in MPC-source. Following standard MPC
compilers methodology, e.g., [BNP08; Fra+14], the actual MPC program unrolls all loops, and loop induction
variables become constants.

To make the above mapping explicit, we use pseudo φ-nodes. To better understand the use of these notes,
let’s focus on lines 5, 6 and 12 in Fig. 1(c) at the beginning of each one of the loops; these lines do not
encapsulate an if-then-else construct. Instead, they select variable values—at the first iteration, the value
comes from outside the loop, and at every subsequent iteration the value comes from the previous iteration
of the loop. When translated into straight-line code, these lines disappear because corresponding values are
directly used as inputs to the gates. To highlight that these lines are only here to enable loops, and, that
these do not get translated into a MUX, we refer to them as pseudo φ-nodes in text and denote them with
? : instead of φ.

Looking ahead (cf. Section 4) the benefit of doing the analysis over MPC-source rather than straight-line
code will be that there are significantly fewer variables in the resulting integer/linear program.

D Proofs for §5

D.1 Proof for Theorem 2

Before proving the theorem, let us first recall a results by Camion [Cam65] which we are using.

Definition 4. A matrix M is said to be Eulerian, if the sum of the elements in each row of M is even, and
the sum of the elements in each column of M is even.

Theorem 5. (Camion [Cam65]) Matrix M is totally unimodular if and only if for every square Eulerian
submatrix of M M I

J :
∑
i∈I,j∈JM

j
i ≡ 0 (mod 4).

In words, the above theorem states that a matrix is totally unimodular if and only if the sum of the elements
of every square Eulerian submatrix is divisible by 4.

We return to our constraint matrix A. There are two kinds of rows in A:

1. Rows
1 1 0 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 0 1 1 . . .

. . .

that reflect constraints an + yn ≥ 1. We use the term first-kind rows in the remainder of this section to
describe these rows.

2. Rows
−1 0 . . . 1 0 . . . 1 . . .
0 −1 . . . 0 1 . . . 0 1 . . .

. . .

reflect constraints xde1 + · · · + xdek ≥ au − ad ≡ −ad + au + xde1 + · · · + xdek ≥ 0. The first two non-zero

entries in a row, a −1 and 1, reflect −au and ad; the remaining 1 entries reflect the xde ’s. For each row
of a and xde-constraints (formula (2)), there is analogous row of y and zde -constraints (formula (3)). We
use the term second-kind rows in the remainder of this section.

11 MUX is the multiplexer gate that is common in MPC compilers: on input of values (v0, v1) and a selection bit
b ∈ {0, 1}, it returns vb. In our case b is result of the CMP and (v0, v1) are arguments of φ node.
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We are now ready to prove the theorem. We first prove the following useful lemmas:

Lemma 1. The representative edges of forward def-use chains are totally ordered by subsumption: e1 ⊇ e2 ⊇
· · · ⊇ ek.

Proof. Suppose there exist two forward def-use chains (d, u) and (d, u′) with representatives e and e′, such
that neither subsumes the other. Without loss of generality, we say that u precedes u′. By definition, e lies
on the chain of forward edges from d to u and therefore, it dominates u′ as well, meaning that e subsumes
e′.

Lemma 2. Let (d, u) be a backward def-use chain. We have

1. (d, u) does not subsume any other def-use chain
2. A forward chain (d, u′) may subsume (d, u)

Proof. As stated by Remark 2 in §3.6, each definition d gives rise to at most one backward def-use chain,
where u is a pseudo-φ node in u’s enclosing block. Also, as established in §3.6 (d, u)’s representative edge e
is the backward edge of u’s enclosing block. Assume then that (d, u) subsumes some forward chain (d, u′).
There is an immediate contradiction because the chain of forward edges from u through d to u′ does not
pass through e. Therefore, (d, u) subsumes no other chain.

On the other hand, if e′ = min cut(d, u′) is in d’s enclosing loop block, then execution always passes
through e′, then e to reach u. Therefore, a forward (d, u′) may subsume (d, u).

Proof. Suppose there exists an Eulerian submatrix of A, M , such that the sum of its elements is not divisible
by 4. We prove the theorem for all Eulerian submatrices, and it follows for each square Eulerian submatrix.

Matrix M can be broken into two parts, submatrix M ′ which consists entirely of first-kind rows, and
submatrix M ′′ which consists of second-kind rows. We have M ≡ 2 mod 4 only if one of the following is true:
(1) M ′ ≡ 2 mod 4 and M ′′ ≡ 0 mod 4, or (2) M ′ ≡ 0 mod 4 and M ′′ ≡ 2 mod 4. (Here shortcut notation
M ≡ 2 mod 4 denotes that the sum of the elements of M gives remainder 2 modulo 4.)

Consider case (1). If M ′ ≡ 2 mod 4, we must have an odd number of first-kind rows in M (Since each
first-kind row has two 1 entries and an even number of rows would have given M ′ ≡ 0 mod 4). Consider the
part consisting of an-entry 1’s in M ′. There is an odd number of these 1’s. Since M is a Eulerian submatrix
this means that each one of these 1’s must be matched (i.e., evened out) in columns by entries from M ′′.
Let aM ′′ be the submatrix which consists of a-rows, i.e., rows due to constraints: −au + ad + xde + · · · ≥ 0.
The remainder of M ′′, which we denote by yM ′′ consists of rows due to constraints: −yu+ yd+xde + · · · ≥ 0.
There is an odd number of columns in aM ′′ with odd sum each. (These must match the anentries.) However,
the remaining columns of aM ′′ must have even sum each, since those columns are matched only within aM ′′.
This implies that the sum of all elements of aM ′′ is odd (odd*odd + even). However, since M ′′ is Eulerian,
meaning that each row in aM ′′ has even sum, it follows that the sum of all elements of aM ′′ is even, which
leads to a contradiction. Therefore case (1) is impossible.

Consider case (2). We show that there is even number of rows in M ′′ with non-zero entries at xde positions.
If this is the case, then since each row has an even sum, the total sum of these rows is divisible by 4. There
may be additional rows in M ′′ with entries at ad and au positions, however since the ad entry is 1 and the
au entry is −1, these rows contribute 0 to the total sum of M ′′. By the same argument the sum of y (Yao)
rows is divisible by 4, which entails that the sum of entries in M ′′ is divisible by 4, which contradicts the
statement that M ′′ ≡ 2 mod 4.

We now argue that there is even number of rows in M ′′ with non-zero entries at xde positions. Consider
all xde in M ′′. As argued earlier, the forward def-use chains are ordered by subsumption: xde1 ⊇ · · · ⊇ xdek .

There is an even number of rows with 1 at position xdek (since M ′′ must have columns with even sum). Each

of these rows has 1 at each position xdej , j < k as well, since each xdej subsumes xdek , therefore contributing

an even number to each xdej column. Therefore, there must be an additional even number of rows with 1

at position xdek−1
(but 0 at position xdek), and so on, each xdej contributing an even number of rows. Now

consider a backward chain with representative back edge en. There must be even number of rows with 1’s
at position xden , and these rows do not contain 1’s at any other backward edge position xden′ . Each backward
def-use chain contributes an even number of rows as well.
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The proof of unimodularity of the constraint matrix of LPLinear(S) follows by analogous arguments and
is therefore omitted.

D.2 Proof for Theorem 3

Without loss of generality we consider the assignment of variables x and show correspondence between the
x-assignment in IPLinear(S) and the x-assignments in IPCMPC(S).

Also without loss of generality, we focus on a single definition in d ∈ CMPC(S) and the constraints
associated with d in both IPLinear(S) and IPCMPC(S). We assume that the problem presents the following
constraints, grouped by (d, u) chains in categories (I) to (IV). Lemmas 1 and 2 in §5.1 entail that categories
(I) to (IV) abstract away the structure of the system, and one can trivially generalize to an arbitrary number
of (d, u) chains, i.e., categories.

Here (d, u) ⊇ (d, u′) ⊇ (d, u′′) (also written as e ⊇ e′ ⊇ e′′, where e, e′, and e′′ are the corresponding
representative edges), are forward def-use chains. (d, ub) is a backward def-use chain, and we have that e′

subsumes eb, but e′′ does not subsume eb.

IPLinear(S) IPCMPC(S)

(I) xstd ≥ au − ad xde ≥ au − ad
(II) xstd ≥ au′ − ad xde + xde′ ≥ au

′ − ad
(III) xstd ≥ au′′ − ad xde + xde′ + xde′′ ≥ au

′′ − ad

(IV) xstd ≥ aub − ad xde + xde′ + xdeb ≥ a
ub − ad

Note that each category contains multiple constraints in the IPLinear(S), where the xstd ’s are distinct. Each
category contains a single constraint in the IPCMPC(S), as shown.

Again, we prove the following useful lemmas before proof of the theorem. We give proofs sketches by
considering a single illustrative case. The full proof is established by case-by-case analysis.

Lemma 3. For each (d, u) ∈ IPCMPC(S), there are exactly we distinct xstd ≥ au−ad constraints in IPLinear(S),
where e = min cut(d, u).

Proof. The above lemma states that for each def-use (d, u) there are exactly we constraints, where we is the
weight of the min-cut edge of (d, u). Clearly, the number of constraints is given by min(|{ std | α(std) =
d }|, |{ stu | α(stu) = u }|). and the min-cut edge measures exactly that.

Lemma 4. (d, u) ⊇ (d, u′)⇒ γ((d, u)) ⊇ γ((d, u′)).

Proof. The second lemma states that when (d, u) subsumes (d, u′) the set of std’s associated with (d, u)
includes all std’s associated with (d, u′). As an informal argument, consider block B1 immediately enclosed
in block B2, and let d, u ∈ B1, and u′ ∈ B2 appear after B1. Then only the std of the last iteration of B1 is
needed in constraints xstd ≥ astu′ − astd ; intuitively the definition in the last iteration “kills” all previous
definitions, and is outwardly exposed to u′ ∈ B2.

Lemma 5. Let (d, u) be a forward def-use chain, and (d, ub) be a backward one. (d, u) + (d, ub)⇒ γ((d, u))∩
γ((d, ub)) = ∅.

Proof. Again, consider block B1 immediately enclosed in block B2, and let d, ub ∈ B1, and u ∈ B2. Since
(d, u) does not subsume (d, ub), u must appear in B2, after B1. The std’s that are needed in backward def-
use constraints xstd ≥ astub − astd ; are all but the std’s in the last iteration of B1. (Since the last iteration
cannot be used in ub ∈ B1.) In contrast, only the std of the last iteration of B1 is needed in constraints
xstd ≥ astu − astd and we have that γ((d, u)) and γ((d, ub)) are disjoint.
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Proof. Let PA induce x such that for a fixed d,
∑
e x

d
e · we is minimal. We show that for the same fixed d,∑

xstd ≥
∑
e x

d
e · we and then find values xstd that satisfy all constraints and

∑
xstd =

∑
e x

d
e · we.

Recall categories (I)-(IV) above. We consider 3 cases.
Case (1) is when xde′ is the “highest” def-use chain that requires conversion: au

′−ad = 1 (i.e., au−ad ≥ 0).
Thus, xde′ = 1 and all xde , x

d
e′′ , and xdeb are 0, or the sum will not be minimal. Therefore,

∑
e x

d
e ·we = we′ since

all other terms in the sum are 0. Since au
′ − ad = 1 we need all xstd in constraints xstd ≥ au′ − ad (category

(II)) to be set to 1. By Lemma 3, there are exactly we′ such constraints, and therefore,
∑
xstd ≥ we′ . By

Lemma 4, γ((d, u)) ⊇ γ((d, u′) ⊇ γ((d, u′′) ⊇ γ((d, ub)), and therefore category (III) and (IV) constraints are
satisfied. We may set all γ((d, u))− γ((d, u′) to 0, achieving

∑
xstd ≥ we′ .

Case (2) arises when xde′′ , which does not subsume the backward chain, is the highest def-use chain that

requires conversion, however, the backward chain au
b − ad ≤ 0. Then we have that all xde , x

d
e′ , and xdeb are 0,

and by Lemma 3,
∑
xstd = we′′ .

Case (3) arises when xde′′ is the highest def-use chain that requires conversion, and the backward chain

requires conversion as well, i.e., au
b − ad = 1. Then one can easily see that the assignment that minimizes∑

e x
d
e · we is xde and xde′ to 0, and xde′′ and xdeb to 1. Therefore,

∑
e x

d
e · we = we′′ + web . There are exactly

we′′ constraints xstd ≥ au
′′ − ad (category (III)) and web constraints xstd ≥ au

b − ad (category (IV)), and
by Lemma 5, γ((d, u′′)) ∩ γ((d, ub) = ∅. Therefore,

∑
xstd = we′′ + web .

Although we consider only four categories, the system and proof can be trivially generalized to an arbitrary
number of categories.

D.3 Optimal Assignment for CMPC(S) is also optimal for Linear(S)

Assumptions

Uniform linearization of loops We assume that a block B in loop L—with upper bound N in CMPC(S)—maps
to a set of blocks Bi, 1 ≤ i ≤ N in Linear(S). These Bi are all identical to B (modulo pseudo-φ nodes and
variable names). Note that this assumption is natural, and not requiring it would mean proving optimality
of CMPC(S) for arbitrary Linear(S) (instead of the Linear(S) that is linearization of CMPC(S)).

Client-Server model restriction The parties performing the MPC are servers and inputs are given by the
clients (a party may have both roles). We assume that inputs are received only once from the clients, by
having them share there input(s) to the servers in a single type of sharing that the protocol specifies (each
input is shared once). Then the servers compute the circuit on these shared values but cannot ask for more
help from the clients. At the end the servers reconstruct the shared output and send to the clients. Note
that this restriction only applies to input values from the clients, it does not include, for example, public
constants.

Proof In the following we prove that, in non-amortized model, the constraints for IPCMPC(S) are the same
as those for IPLinear(S). Therefore optimal assignment for CMPC(S) is also optimal for Linear(S). This is done
on case by case analysis as under:

Case 1: Linear Code If CMPC(S) has no loops, then it is identical to Linear(S) which implies that constraints
for IPCMPC(S) are identical to constraints for IPLinear(S). Therefore, solution of IPCMPC(S) should be same as
IPLinear(S).

Case 2: Loop without pseudo-φ nodes Consider a CMPC(S) program that is a single loop L with N iterations.
There are no pseudo-φ nodes in L. Let B denote the loop body block. In Linear(S), this program will result
in a sequence of N blocks B1, B2, . . . , BN where each Bi, 1 ≤ i ≤ N is identical to B (modulo the variable
names). Optimal assignment of each Bi will be exactly the same. This is because if some Bj , j 6= i has better
assignment than Bi, then that same assignment would benefit Bi as well. The total cost of B1, B2, . . . , BN
is therefore the cost of any Bi times N . Each statement sBi in Bi is essentially executed N times.
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From case 1 above, we know that assignment for B and Bi will be the same (both are linear code).
Furthermore, in CMPC(S), cost for each statement sB in B is multiplied by B’s weight (i.e. N here), Therefore
IPCMPC(S) will produce the same assignment and cost as IPLinear(S) would.

Case 3: Loop with pseudo-φ nodes Now consider a CMPC(S) program with a block Bpred, followed by an
N -iteration loop L with loop body B, followed by a block Bsucc. Without loss of generality, say L has a
single pseudo-φ node i.e. there is a single definition d that B uses from previous iteration of the loop (i.e.
N − 1 iterations use d). The first iteration of the loop will use a definition d′ from Bpred.

This program will translate to Bpred, B1, B2, . . . , BN , Bsucc in Linear(S). The pseudo-φ node will disap-
pear, and each Bi, 1 < i ≤ N will use definition di from Bi−1. B1 will use d1 from Bpred.

We already know from case 1 & 2 above that assignment and cost for B and Bi will be the same. However,
now we may need to place conversions between iterations of B (i.e. between Bis).

In Linear(S), since all Bis will get the same assignment, the dis that are produced in these blocks i.e.
di, 1 < i ≤ N will be assigned the same sharing. Thus if any of these dis needs conversion, all of them will
need conversion. Therefore, we could simply multiply the cost of conversion for any di with N − 1 to get the
same resulting cost.

The definition d1 used in B1, however, is produced in Bpred (or any other preceding block for that
matter), it may or may not need conversion. Therefore conversion constraint for d1 will be separate from
di, 1 < i ≤ N .

In CMPC(S), conversion for d will have a weight of N − 1, and for d′, it will be 1 (since min-cut for d′ to
its use in L is the edge from Bpred to L’s head). This is exactly the same as what we discussed for Linear(S)
above.

Conclusion Using the above cases recursively, we can prove for arbitrary CMPC(S) programs that, in non-
amortized cost model (and under the assumptions above), constraints for IPCMPC(S) are the same as those
for IPLinear(S), Therefore optimal solution for CMPC(S) is also the optimal solution for Linear(S). ut

E Scheduling and Parallelization (Cont’d)

We next argue that a natural schedule meets the restrictions stated in §6.3, and therefore, the protocol
assignment that minimizes IPLinear(S) minimizes IPParallel(S) for a natural schedule.

First, we show that restriction (1) holds. Let n ∈ CMPC(S) be nested in D loops, k of which are parallel.
Let bi1 , bi2 , . . . bik be the bounds of the parallel loops, and let bj1 . . . bjD−k be the bounds of the sequential
loops. Then by construction, st nodes that map to n are grouped into bj1 × · · · × bjN−k each group of size
bi1 × bi2 ×· · ·× bik . Therefore, the cost of n can be amortized over bi1 · bi2 ×· · ·× bik executions. For example,
nodes that map to n1 in Fig. 3 are grouped in 2 groups each group of size 4.

Next, we sketch the argument that Restriction (2) also holds. The argument is by induction on the depth
level of the def-use chain. Consider a def-use (d, u) and let B with bound b be the closest enclosing block of
d and u; for simplicity, consider the case when both d, u ∈ B. If B is parallel, d’s are grouped in 1 parallel
node of size b; otherwise, d’s are grouped in b nodes of size 1. Assume that after constructing the schedule
at level k, d’s are grouped in M parallel nodes, each of size SM . If the (k + 1)’st loop block, with bound b′,
is parallel, then d’s remain grouped in M parallel nodes, each of size b′ × SM this time. Otherwise, i.e., if it
is sequential, d’s are grouped in b′ ×M nodes, each of size SM . For example, consider the def-use (n1, n6)
in Fig. 3, whose closest enclosing block is B3. Before the linearization of B3, the definition n1(B12)(B22)
is in a single parallel node (it also contains other nodes that map to n1, however, those definitions are not
exposed to n6). Since B3 is parallel, n1(B12)(B22)(B31) and n1(B12)(B22)(B32) are grouped in the same
parallel node. The two definitions are shown in red in Fig. 3.

F Implementation and Benchmarks

This appendix goes into details of the implementation.
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F.1 Analysis

As mentioned earlier, analysis phase takes a Java program as input and transforms it into MPC-source for
analysis. The output of the analysis is a def-use graph that includes necessary information about nodes i.e.
node types, their weight and their parallelizability.

Before we can build our def-use graph (and gather related information), we need to translate the input
program into MPC-source. We use Soot to translate the input to Shimple, then we inline function calls (using
wjop.si – an optimization pass built in to Soot –). Notice that inlining all calls can blow up the size of the
entry routine (in our case main function) of the program. This makes heuristics or exhaustive-search based
optimizations prohibitive because of the sheer number of choices in the analysis. This is not a problem in
our case, as our optimization is the solution of a linear program. In fact, we benefit from inlining because it
makes the analysis context sensitive.

Concretely, we perfrom the following analysis/transformations on the input program:

def-use chains We augment Soot’s def-use analysis to handle arrays correctly. Soot’s builtin def-use analysis
works for scalars only. We cannot use it for arrays (vectors) because it treats array writes as a use. This
is wrong in our context. For example, consider that the statement v[i] = x + y is later followed by the
statement z = v[j] + w. The first statement is an array write (it writes to v). The second statement is
an array read (reads from v). In our context, the former is a def and the later is a use. Similar reasoning
applies to multi-dimensional arrays (vectors), see figure 9 for an example. We treat each array write as a
new definition.

1 r2 = newmultiarray (int)[100][4];

2 //... snip ...

3 $r8 = r2[i9_1];

4 $i6 = $r8[i11_2];

5 //... snip ...

6 $r8[i9_1] = i1;

7 //... snip ...

8 $r10 = r2[i13];

9 $i18 = $r10[i5_1];

Figure 9. Example Array Def-use Chains: the def-use chains for r2 are (1, 4) and (6, 9).

Mark Copies Given a statement like x = y, we tag x as a copy of y. This means marking all uses of x as
uses of y and getting rid of x. This reduces the number of variables in the analysis, thereby simplifying it.
As mentioned in §2, we can mark copies before collecting def-use chains since our IR is an SSA form. There
is no particular reason to do it afterwards.

At this point, we have def-use chains (with no copies) and can start collecting additional information
– node types, weights and conversion points – needed by the linear program. Node types, weights and
conversion points are presented below.

Node Types As mentioned previously, the analysis maintains a mapping from Shimple operations to MPC
gate types. In this step, it uses this mapping to assign a type to each node. For example node x = y + z is
an ADD type, or x = y > z is a GT type.

Node Weights are computed exactly as described in §3.5.
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Figure 10. Conversion Point (min-cut): The conversion point (min-cut) for d (in L3) and u (in L4) is in their closest
enclosing block L1. w is one node where we can place conversion.

Conversion Points Conversions are needed if def-use (d, u) nodes are assigned different sharings. This entails
computing min-cute on def-use chain as described in §3.6. In the implementation, this needs finding a node
on the min-cute edge to use as location marker for conversion node.

We find optimal conversion point (min-cut) as follows. First, we construct a tree describing loop nesting.
Then we find common ancestor of (d, u), say, L′, which is the closest enclosing block as described in §3.
Finally, for our conversion point, we find the closest edge e with target w to d in L′. Since this is a straight
line program, we know that all paths from d to u pass through e and w. Fig. 10 illustrates this discussion
visually.

At this point we have described def use chains, node types and weights, and conversion points, which is
sufficient for protocol assignment in the sequential execution setting (we have established optimality in this
setting). To make our analysis richer, we go one step further and compute parallelizability of nodes (i.e., a
natural schedule as described in §6.2). This enables optimal protocol assignment in the parallel execution
setting.

Node Parallelizability We use the following rule to determine if a loop L is parallelizable, essentially com-
puting a schedule as described in §6.2. We compute def-use set S of all def-uses (d, u) that are immediately
enclosed in L i.e. there exists no loop L′ s.t. L′ encloses S and L′ is enclosed by L. Then we remove the def-use
(d, u) chains corresponding to loop counter variables. Finally, for each def-use (d, u) chain in S, if transitive
closure of any of d’s uses contains d itself (i.e. d is used in the definition of itself in subsequent iteration),
then L is not parallelizable. Fig. 11 illustrates an example with both a parallelizable and a non-parallelizable
loop.

We exclude loop counter variables’ def-use (d, u) chains from the above analysis. This is because such
variables always depend on previous iterations of L and, therefore, transitive closure of such a d will always
contain d. Thereby marking all loops (even the ones that are parallelizable), non-parallelizable.

If the above analysis yields that L is parallelizable, we mark all def-uses (d, u) in S as parallelizable
assigning weights as described in §6.2.

Calculate Subsumption To compute subsumption (§5.1), we start at def d and create an empty ordered list.
We now start processing d’s successors with this list. If we find a use u, it is added to this list. Whenever
control splits, we keep processing the fall-through successors as above. For branched successors we create a
new list and recursively add any uses u′ in the branch to this new list. At the end of it, we have collected
one or more lists in which ordering indicates subsumption i.e. index(u) ≤ index(u′) =⇒ (d, u) ⊇ (d, u′).
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1 for (int i=0; i<100; i++) {

2 int sum = 0;

3 for (int j=0; j<4; j++) {

4 int diff = S[i][j] - C[j];

5 int square = diff*diff;

6 sum = sum + square;

7 }

8 D[i] = sum;

9 }

Figure 11. Checking Loop Parallelizablity: The outer loop is parallelizable but the inner is not (uses of sum include
its definition).
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