
An extended abstract of this paper appears at Eurocrypt’19.

Incremental Proofs of Sequential Work
(Full Version)

Nico Döttling1, Russell W. F. Lai2, and Giulio Malavolta3?

1 CISPA Helmholtz Center for Information Security
2 Friedrich-Alexander-Universität Erlangen-Nürnberg

3 Carnegie Mellon University

Abstract. A proof of sequential work allows a prover to convince a verifier that a certain amount of sequential
steps have been computed. In this work we introduce the notion of incremental proofs of sequential work where a
prover can carry on the computation done by the previous prover incrementally, without affecting the resources of
the individual provers or the size of the proofs.
To date, the most efficient instance of proofs of sequential work [Cohen and Pietrzak, Eurocrypt 2018] for N steps
require the prover to have

√
N memory and to run for N +

√
N steps. Using incremental proofs of sequential work

we can bring down the prover’s storage complexity to log N and its running time to N .
We propose two different constructions of incremental proofs of sequential work: Our first scheme requires a single
processor and introduces a poly-logarithmic factor in the proof size when compared with the proposals of Cohen and
Pietrzak. Our second scheme assumes log N parallel processors but brings down the overhead of the proof size to a
factor of 9. Both schemes are simple to implement and only rely on hash functions (modelled as random oracles).

1 Introduction

Imagine that you discover a candidate solution to a famous open problem (e.g., the Riemann Hypothesis), and are fairly
convinced that your solution is correct but not entirely. Before publishing your solution you want to scrutinize it further.
However, fearing that someone else might make the same discovery, you need a way to timestamp yours. While there
are many online timestamping services available4, authenticity of such a timestamp depends on how much one trusts
the service provider. Clearly, a solution independent of trust and resting only on a cryptographic assumption is more
desirable.

Proofs of Sequential Work (PoSW) [10] is an emerging paradigm which offers a conceptually simple solution to the
timestamping problem. Roughly speaking, proofs of sequential work allow a prover P to convince a verifier V that
almost time T elapsed since a certain event happened. A little more concretely, a PoSW system consists of a prover P
and a verifier V . The prover takes as input a statement χ and a time parameterN . The statement χ can be something like
a hash of the file which one wants to timestamp. After terminating, the prover interacts with the verifier V to convince
him that at least time N has elapsed since χ was sampled.

We require a PoSW to be complete, sound and efficient. Here completeness means that an honest prover will succeed
in convincing the verifier that time N has elapsed since the sampling of χ. Soundness means that a cheating prover
will not succeed in convincing the verifier that time N has elapsed if, in fact significantly less time has passed. Finally,
efficiency means that time N is also sufficient for the prover to generate such a prove. Another practically important
aspect is memory complexity of the prover, i.e., how much memory is required to compute a proof for time parameter
N . Regardless of the requirements on prover efficiency, the verifier’s runtime should be essentially independent of N .
Finally, for practical reasons such a proof should be non-interactive. That is, after a proof π is computed by the prover
P and published, no further interaction with P is necessary to verify the proof.

? Work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg
4 e.g., https://www.freetsa.org

https://www.freetsa.org

1.1 Incremental Proofs of Sequential Work

An aspect not considered in the original formulation of proofs of sequential work is whether a still running proof of
sequential work can be migrated from one prover to another, or forked to two provers. This aspect becomes relevant
when considering that real computers are not immune to hardware failure, so one may want to spawn clones of important
proofs that have been running for a long time.

In this work, we introduce the notion of incremental proofs of sequential work (iPoSW). Essentially, an iPoSW
is a non-interactive PoSW with the additional feature that anyone who obtains a proof π for a statement χ and time
parameter N can resume the computation of π, thereby generating a proof π′ for χ with time parameter N +N ′. More
formally, we require that there exists an algorith Inc which takes as input a proof π for time N and a parameter N ′ and
outputs a proof π′. We require that π′ has the same distribution as a proof for χ for time N +N ′.

One could imagine a direct construction of iPoSW from PoSW as follows. To increment a proof π for a statement χ
and time N , first derive a new statement χ′ from χ and π, e.g., by computing a hash χ′ ← H(χ, π). Now compute a
proof π′ for statement χ′ and time N ′ and then append π′ to π, i.e., output (π, π′). To verify (π, π′) that (π, π′) is a
proof for χ and time N + N ′, compute χ′ ← H(χ, π) and check whether π is a proof for χ and time N and π′ is a
proof for χ′ and time N ′.

This simple solution has, however, an obvious drawback: The size of the proof grows linearly in the number of
increments, which very is undesirable if the proof is frequently passed on to new provers.

Moreover, if we look at existing constructions of PoSW [5, 10], a prover P computing a proof π for a statement χ
and time N needs to commit memory proportional to N . Cohen and Pietrzak [5] propose a tradeoff which reduces the
memory requirement of pi to a sublinear but still polynomial amount, however this comes at the expense of additional
sequential computation time, i.e., prover efficiency is affected by this tradeoff.

1.2 Our Results

In this work we provide constructions of incremental proofs of sequential work where the sequential runtime of an
honest prover is N , while its memory complexity is poly(logN). We provide two instantiations, both based on the
construction of Cohen and Pietrzak [5], which differ in terms of prover resources and the proof size.

– The first construction is single-threaded, i.e., the prover needs a single processor. Compared to the construction
of [5], the proof size grows by a factor of (logN)2.

– The second construction is multi-threaded, where the prover needs logN parallel processors. Compared to [5], the
proof size grows by a factor of 9.

In particular, our results close the soundness gap between a prover with a large memory and a prover with a poly-
logarithmic memory present in previous constructions.

We remark that from a technological point of view the assumption of prover parallelism is justified. For actual
applications, the expression logN can be upper-bounded by 100, which corresponds to a processor capable of computing
100 hashes in parallel, a number well in the reach of modern GPUs.

1.3 Technical Overview

The starting point of our construction is the recent elegant PoSW construction of Cohen and Pietrzak [5]. We will
henceforth refer to this scheme as the CP scheme, which is briefly reviewed below. The CP construction relies on
properties of a special directed acyclic graph, which we will refer to as CPn. This graph is constructed as follows: Let
Bn be a complete binary tree of depth n, i.e., the longest leaf-to-root path consists of n edges, with edges pointing
from the leaves towards the root. Each node in Bn is indexed by a bit string of length at most n, while the root node is
indexed by the empty string ε. The graph CPn is constructed by adding edges from all nodes v to all leaves u such that
v is a left-sibling of the path from u to the root.

2

The CP Approach. For a time parameter N , choose n such that CPn contains (at least) N nodes. The prover is given
a statement χ which is used to seed random oracles Hχ(·) := H(χ, ·) and H′χ(·) := H′(χ, ·) given the random oracles
H and H′ respectively. Using Hχ, the prover computes a label for each node v in CPn by hashing the labels of all
nodes with incoming edges to v. Starting from the leftmost leaf 0n, which is assigned a label 0λ, the prover iteratively
computes the labels of all nodes in CPn, completing each subtree before starting a new leaf. Eventually the prover
obtains a label `ε for the root node.

Next, the prover computes H′χ(`ε) which outputs a randomness for sampling t challenge leaves, where t is a
statistical security parameter. The proof then consists of the labels of all t challenge leaves, as well as the labels of all
siblings of the paths from the challenge leaves to the root. To verify a proof, the verifier recomputes H′χ(`ε) to verify if
the prover provided the correct paths, and if so checks that the t paths provided by the prover are consistent.

Note that in order to compute a proof, the prover has to either remember the N labels for the entire CPn graph,
or recompute the labels required in the proof once the challenge leaves are chosen, which requires N sequential hash
computations. This introduces a soundness slack of 1

2 between these two strategies, i.e., the memory efficient prover has
to compute for time 2N to prove a statement for time N . This factor becomes particularly significant when large values
of N are considered, e.g., a PoSW that 10 years of sequential operations have been performed may take between 10 and
20 years to be computed. To attenuate this problem, Cohen and Pietrzak propose a hybrid approach where the prover
stores

√
N nodes and can then recompute the challenge root-to-leaf paths in time

√
N .

At the Heart of the Problem. This soundness slack is clearly undesirable as the value of N grows: A prover with
access to a large amount of memory can achieve a non-trivial speed up in the computation of the proof over a prover
with polylogarithmic memory. As it turns out, this issue is tightly connected with the fact that the CP proofs cannot
be extended incrementally: On a very high level, the crux of the problem is that the challenge leaves are determined
solely by the root of the CPn tree. Extending the tree causes the root to change and renders the previous challenge set
obsolete.

The main idea in our first construction is to choose challenge leaves “on-the-fly” at each node of the tree and then
gradually discard some of them as the tree grows. This will allow us to compute a proof π in a single pass.

More precisely, our selection mechanism works as follows: For any node v in CPn which has at most t leaves, we
assign all these leaves to be the challenge leaves for the node v. Let l and r be the children of a node v which has more
than t leaves, and let Sl and Sr be the challenge leaves for l and r respectively. To determine the set Sv of challenge
leaves for v, we first compute the label `v of v as in the CP scheme, and then hash the label `v with H′χ to obtain random
coins5. Using these random coins, we can sample Sv as a random subset of size t from the set Sl ∪ Sr. This operation is
visualized in Figure 1 and Figure 2.

In a bit more detail, due to the way the graphs are traversed, we only need to store challenge-paths at what we call
unfinished nodes. A node is unfinished if it has already been traversed/processed, but its right sibling has not yet been
traversed. Consequently, only left siblings can be unfinished. Moreover, due to the structure of the graph CPn and the
way it is traversed, at each step the unfinished nodes are exactly the left siblings on the path from the root to the node
which is currently processed. Consequently, at each step there are at most logN unfinished nodes. Essentially, when a
node l becomes unfinished, it waits until its right sibling r is processed. By the way we traverse CPn, the next node to
be traversed is the parent v of l and r. Once the label of v has been computed, we can compute a set of challenge paths
for v as described above and remove l from the list of unfinished nodes.

Observe that if a leaf previously chosen as a challenge leaf is dropped due to the above subset sampling, this leaf
will not be chosen as a challenge leaf again in the rest of the computation. Therefore the prover can safely erase the
labels of some of the nodes lying on the paths from these dropped challenge nodes to the root, which surely will not
appear in the eventual proof. On the other hand the final challenge set is still unpredictable to the eyes of the prover
since the decision which paths are discarded is uniquely determined by the complete labelling of the tree.

It is not immediately clear that the strategy we just described lead to a sound protocol. Infact, a malicious prover
can already see a large fraction of the challenge path before the label of the root node is even computed and adaptively
recompute parts of the proof. The main observation on which our analysis is based is that, once a node v becomes

5 As we are working in the random oracle model, these coins can be taken directly from `v if we make the hashes sufficiently longer.
However, for presentation purposes we use a separate hash function which hashes `v .

3

unfinished, its label commits to all the leafs under v, thus the challenge paths at v provide a good statistical sample of
the overall fraction of invalid leafs in the subtree of v.

v

l r

Fig. 1: Before choosing challenge subset.

v

l r

Fig. 2: After choosing challenge subset.

Recomputation to the Rescue. The above strategy seems to solve all problems at once:

1. The prover algorithm can traverse the tree and remember the local challenge paths using poly-logarithmic memory
in N and in sequential time N . Once the root is reached, the set of challenge paths is already in the memory of the
prover! Therefore no recomputation is needed and the source of the slack is obliterated.

2. The proof is naturally incremental: Further iterations of the tree only shave off root-to-leaf paths in the challenge
set, as opposed to determining a completely new set of challenges.

However there is still a challenge to be addressed: Due to the adaptivity of the adversary, our strategy introduces a factor
of logN in the soundness loss. That is, if the CP scheme with a set of parameters achieves soundness α, i.e., the prover
cannot cheat by computing less than (1−α)N steps, our scheme only achieves soundness logN ·α. This in turn means
that in order to achieve the same soundness parameter as the CP scheme, we need to increase the number of challenge
paths by a factor of (logN)2, which also results in an increase of the proof size by a factor of (logN)2. Although this
does not affect the asymptotic performance of our scheme, it has an impact on the concrete proof sizes. For N = 240,
our proofs are bigger than those obtained with the CP scheme by a factor of ∼ 1600. To bring down the proof sizes to a
practical regime, we reconcile CP scheme with our “on-the-fly” selection strategy. Our second construction assumes
that the prover is a parallel machine, but we can show that the number of parallel processors required will never exceed
logN .

Our second scheme is based on the following observation. Let v be a node in CPn, and assume that l is its left
child and r is its right child. Further assume that the prover just finished traversing the tree under l, that is l becomes
processed but unfinished. By the structure of CPn, the prover next traverses the tree underneath r. In our first scheme
the node l would just be on a waiting list of unfinished nodes and has to wait and remember its challenge paths until r is
processed. However, due to symmetry it will take the prover the same amount of sequential steps to traverse the tree
underneath r as it took to traverse the tree under l. This suggests a strategy (depicted in Figure 3): While l is unfinished
and waiting for the r to be processed, we can recompute the subtree underneath l in order to fetch fresh challenge paths
using an additional parallel processor. By the time r is finished, this process will have terminated and we do not need to
bear the above soundness loss for l.

Notice further that, to recompute the tree underneath l, all the prover needs is the labels of the currently unfinished
nodes on the path from the root to v, which the prover needs to keep in memory regardless. This modification of the
prover strategy must also be reflected by the verifier. When we verify a root-to-leaf path, the verification strategy will
change once the path takes a left turn.

Note that the memory complexity of the main thread is unchanged and that at any point in time there are at most
logN parallel processes. The parallel threads are identical to the recomputation step. Therefore, the complexity of

4

Fig. 3: Recomputation of Sub-Trees.

each parallel thread is essentially the same as that of the CP scheme. This hybrid construction brings down the loss in
soundness to a factor of 3, which corresponds to an increase of the proof size by a factor of 9. We consider this to be
a modest price to pay in exchange for getting the additional feature of incremental proofs and an essentially optimal
prover complexity.

1.4 Perspectives

Merkle trees are ubiquitous in cryptographic protocol design, allowing to compress large amounts of data into a succinct
digest. Membership proofs are particularly efficient as they usually consist of root-to-leaf paths and can be encoded
with logarithmic-size strings. The de-facto methodology to non-interactively probe Merkle trees at random locations
is to apply the Fiat-Shamir [7] transform, on input the root of the tree. This means that the challenge locations are
determined only when the full tree is computed. Thus, the prover must either recompute the paths or store the full tree
in its memory.

Using our techniques one can compress data and generate challenges in a single pass, without any memory blowup.
This becomes particularly advantageous when computing over very large databases or data streams. Here we exemplify
the applications of our methods to scenarios of interest.

Verifiable Probing. Consider a stream of data where some statistical measure is computed by an untrusted party. Using
our approach we can increase the confidence in the validity of the statistics by probing the stream on random locations.
The prover iteratively computes a Merkle commitment of the stream and selects random probes using our “on-the-fly”
selection strategy. The verifier can then non-interactively check whether the distribution of the probes resembles the
reported statistics.

Streaming Arguments. In Micali’s CS proofs paradigm [8, 11], witnesses for NP relations are encoded into probabilisti-
cally checkable proofs (PCP) [1] and then committed using a Merkle tree. The testing locations for the PCP are selected
using Fiat-Shamir [7] and the corresponding root-to-leaf paths form the CS proof. Our techniques can be useful for
memory-constrained provers that cannot store the complete PCP encoding in their memory. Our challenge-selection
algorithm allows the provers to compute the CS proof using only one stream of the encoding.

5

1.5 Related Work

Proofs of work, a concept introduced by Dwork and Naor [6] and having become wildly popular in the context of
cryptocurrencies, allow a prover to convince a verifier that a certain amount of computational effort has been invested in
a certain task. However, the computation can be parallelized, thus it generates a mismatch among players which have
different resource constraints. Mahmoody, Moran, and Vadhan [10] introduced the concept of PoSW and provided a
construction based on depth-robust graphs. Very recently, Cohen and Pietrzak [5] provided an elegant construction based
on a binary tree with some useful combinatorial properties. Their scheme improves over [10] in terms of conceptual
simplicity, concrete efficiency, and can reduce the memory complexity of the prover up to logN . A shortcoming of their
approach is that, in order to achieve such a memory bound, one has to perform the same amount of computation twice.

Incrementally verifiable computation (IVC) was introduced by Valiant [14] and allows a machine to output short
proofs that arbitrary parts of the computation have been done correctly without significantly affecting the resources of
such a machine. As observed by Boneh et al. [4], IVC is a more general primitive than PoSW. The main construction
paradigm for IVC consists of a recursive composition of succinct arguments of knowledge [11], which means that
existing constructions of IVC either

– make non-black-box use of random oracles [14], or
– require a trusted setup [2].

In general, incremental PoSW appears to be an easier problem than IVC which justifies the existence of more efficient
solutions based on weaker assumptions.

Verifiable delay functions (VDF) have been introduced by Boneh et al. [4] and can be seen as PoSW with unique
proofs: The prover can only convince the verifier with a single value, which is uniquely determined by the time
parameter N and by the statement. Thus VDF constitutes a stronger primitive than PoSW and as to our current
understanding requires stronger cryptographic material: Known constructions [12, 15] rely either on IVC or on specific
number-theoretic assumptions related to factoring large integers.

Time-lock puzzles [13] encapsulate a secret information for a pre-determined amount of time. This primitive
is tightly related to sequential computation as it needs to withstand attacks from highly parallel processors. Time
lock-puzzles can be constructed assuming the hardness of a variant of the RSA assumption [13] or succinct randomized
encodings and the existence of a worst case non-parallelizable language [3]. Unlike PoSW, no construction based on
symmetric-key primitives is known and [9] gave a black-box separation for these two objects.

2 Preliminaries

2.1 Notations

Let G = (V,E) be a graph where V is the set of nodes and E is the set of edges. If v ∈ V , we write also v ∈ G for
convenience. Let T be a tree and i ∈ T be a node. Ti denotes the set of nodes in the subtree rooted at node i. leaf(i)
denotes the set of all leaf nodes that are descendants of i. parent(i) and child(i) denote the parent of and the set of
children of i, repectively. path(i) returns the set of nodes located at the (unique) path from the root (inclusive) to node i
(inclusive). The notations are extended naturally to sets of nodes. Let S ⊆ T be a set of nodes, then TS :=

⋃
i∈S Ti,

leaf(S) := {leaf(i) : i ∈ S} and path(S) := {path(i) : i ∈ S}.
For a complete binary tree Bn = (V,E′) of N = 2n+1 − 1 nodes, we say that Bn is of depth n (counting the

number of edges in the longest leaf-to-root path). The nodes V = {0, 1}≤n are identified by binary strings of length
at most n and the empty string ε represents the root. The edges E′ = {(x||b, x) : b ∈ {0, 1}, x ∈ {0, 1}i, i < n} are
directed from the leaves towards the root. Let v ∈ {0, 1}nv ⊆ Bn be a node nv edges away from the root. We say that
v is of depth nv or height hv := n− nv .

2.2 Statistical Distance

In the following we recall the definition of statistical distance.

6

Definition 1 (Statistical Distance). Let X and Y be two random variables over a finite set U . The statistical distance
between X and Y is defined as

SD [X,Y] = 1
2
∑
u∈U
|Pr[X = u]− Pr[Y = u]|

2.3 Tail Bound for the Hypergeometric Distributions

Here we introduce a useful inequality by Hoeffding.

Theorem 1 (Hoeffding Inequality). Let X be distributed hypergeometrically with t draws. Then it holds that

Pr [X < E[X]− ζ] < e−2ζ2t.

3 Incremental Proofs of Sequential Work

Below we define incremental proof of sequential work in the same spirit as Cohen and Pietrzak [5], except that we state
directly the non-interactive variant.

Definition 2. A (non-interactive) incremental proof of sequential work (iPoSW) scheme consists of a tuple of PPT
oracle-aided algorithms (Prove, Inc,Vf), executed by a prover P and a verifier V in the following fashion:

Common Inputs. P and V get as common input a computation security parameter λ ∈ N, a statistical security
parameter t ∈ N, and a time parameter N ∈ N. All parties have access to a random oracle H : {0, 1}∗ → {0, 1}λ.

Statement. V samples a random statement χ←$ {0, 1}λ and sends it to P .

Prove. P computes π ← ProveH(χ,N) and sends π to V .

Increment. P computes π′ ← IncH(χ,N,N ′, π) and sends π′ to V .

Verify. V computes and outputs VfH(χ,N, π).

We require a PoSW scheme to be complete in the following sense.

Definition 3 (Completeness). For all λ ∈ N, all N ∈ N, all random oracles H, and all statements χ ∈ {0, 1}λ we say
that a tuple (χ,N, π) is honest if

π ∈ ProveH(χ,N) or π ∈ IncH(χ,N ′, N ′′, π′),

where N ′ +N ′′ = N and the tuple (χ,N ′, π′) is also honest. A (non-interactive) incremental proof of sequential work
is complete if for all honest tuples (χ,N, π) it holds that

VfH(χ,N, π) = 1.

In the following we define soundness for incremental proofs of sequential work.

Definition 4 (Soundness). A (non-interactive) incremental proof of sequential work PoSW is sound if for all λ,N ∈ N,
for all α > 0, for all adversaries A that make at most (1− α)N sequential queries to H, it holds that

µ := Pr
[
χ← {0, 1}λ;π ← AH(χ,N) : VfH(χ,N, π) = 1

]
∈ negl(λ)

where µ is called the soundness error.

7

Fig. 4: CP3 with traversal order highlighted in red.

For our construction we recall the following directed acyclic graph constructed by Cohen and Pietrzak [5] which has
some nice combinatorial properties.

Definition 5 (CP Graphs). For n ∈ N, let N = 2n+1 − 1 and Bn = (V,E′) be a complete binary tree of depth n
with edges pointing from the leaves to the root. The graph CPn = (V,E) is a directed acyclic graph constructed from
Bn = (V,E′) as follows. For any leaf u ∈ {0, 1}n, for any node v which is a left-sibling of a node on the path from u
to the root ε, an edge (v, u) is appended to E′. Formally, E := E′ ∪ E′′ where

E′′ := {(v, u) : u ∈ {0, 1}n, u = a||1||a′, v = a||0, for some a, a′ ∈ {0, 1}≤n}.

An illustration of CP3 is in Figure 4, with its traversal order (c.f. Lemma 2) highlighted in red. Here we recall some
technical lemmas from [5].

Lemma 1 ([5]). The labels of a CPn graph can be computed in topological order using λ(n+ 1) bits of memory.

Let T be a tree and S ⊆ T be a subset of nodes. We denote by S∗ the minimal set of nodes with exactly the same set of
leaves as S, in other words, S∗ is the smallest set such that leaf(S∗) = leaf(S).

Lemma 2 ([5]). For all S ⊆ V , the subgraph of CPn = (V,E) on vertex set V \ TS∗ has a directed path going
through all the |V | − |TS∗ | nodes.

Lemma 3 ([5]). For all S ⊆ V , TS∗ contains |TS∗ |+|S|2 many leaves.

4 Main Construction

For any n ∈ N, we construct an incremental PoSW scheme based on the graph CPn = (V,E) as follows. We assume
without loss of generality that, given a random oracle H, one can sample a fresh random oracle indexed by a string x,
which we denote by Hx. This can e.g., be done by prepending x and a special separator symbol to any query to H, i.e.,
Hx(y) := H(x#y) for a separator symbol #.

4.1 Parameters

Our incremental Proof-of-Sequential-Work system depends on the following parameters and objects.

– A time parameter N of the form N = 2n+1 − 1, for some integer n ∈ N.
– A computational security parameter λ

8

– A statistical security parameter t
– A full-domain hash function H : {0, 1}∗ → {0, 1}λ modelled as a random oracle.
– A full-domain hash function H′ : {0, 1}∗ → {0, 1}3t modelled as a random oracle.
– A sampler RandomSubset(M,m; r) which takes a universe size M , a sample size m and uniform random coins

r and outputs a uniformly random subset X ⊆ [M] such that |X| = m. In our application, we will always set
M = 2t and m = t. Since

(2t
t

)
<
(2t·e

t

)t = (2e)t, where log 2e ≈ 2.44, random coins of size 3t are sufficient to
sample statistically close to a uniform subset.

Notation. Let ε be the root-node of CPn and 0n the left-most leaf in the tree or starting-node. We will call a left node
v ∈ V unfinished, if v has been traversed by the prover algorithm but parent(v) has not yet been. At any time, the prover
will keep a list of the currently unfinished nodes U . At each unfinished node v, the prover will store Lv , a set of extended
labeled paths from v to leaf(v). An extended labeled path consists of a list of tuples of the form (vi, `li , `ri , indi), where
vi is the index/address of a node on the path, li is the left child of vi, ri is the right child of vi and consequently `li is
the label of li and `ri is the label of ri. Finally, indi is a local path index, the meaning of which will be explained later.

For simplicity of exposition, we assume that t is a power of 2. Our construction can be easily adapted to the more
general case where t is arbitrarily chosen. For convenience, we denote by n∗ = n∗(n, t) the depth at which every node
has exactly t leafs underneath, i.e., it holds for every node v which is n∗ edges from ε that |leaf(v)| = t.

4.2 Scheme Description

ProveH,H′(χ,N):

1. Initialize U ← ∅, the set of unfinished nodes.
2. Assign `0n ← 0λ as the label of the starting node.
3. Traverse the graph CPn starting from 0n. At every node v ∈ V which is traversed, do the following:

(a) Compute the label `v by
`v ← H(χ,v)(`v1 , . . . , `vd)

where v1, . . . , vd ∈ V are all nodes with edges pointing to v, i.e., (vi, v) ∈ E.
(b) Let l and r be the children of v.
(c) If |leafs(v)| ≤ t, set Lv ← {[(v, `l, `r,⊥)‖L] where L ∈ Ll ∪ Lr}.
(d) Otherwise (i.e., if |leafs(v)| ≥ 2t), do the following:

i. Compute
rv ← H′(χ,v)(`v).

ii. Choose a random t-subset Sv of [2t] via Sv ← RandomSubset(2t, t; rv).
iii. For j ∈ {0, . . . , t− 1}, write Sv[j] = at+ b with a ∈ {0, 1} and 0 ≤ b < t.

Lv[j]←
{

[(v, `l, `r, j)‖Ll[b]], if a = 0
[(v, `l, `r, j)‖Lr[b]], if a = 1

(e) Mark l as finished, i.e., remove l from U and, if v is a left child, mark v as unfinished, i.e., add v to U .
4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}), terminate and output π ← (`ε,Lε).

IncH,H′(χ,N,N ′, π):

1. Initialize U ← ∅.
2. Parse π as (`ε,Lε)
3. Assign `0n′−n := `ε and L0n′−n := Lε.
4. Execute the algorithm ProveH,H′(χ,N ′) starting from step 3 with a slight change: Traverse the graph CPn′ starting

from 0n′−n−1‖1‖0n (instead of from 0n′).

VfH,H′(χ,N, π):

9

1. Parse π as (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `l0 , `r0 , ind0)‖ . . . ‖(vn, `ln , `rn , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed correctly. That is, for v = 0n

check whether `v = 0λ, and for any other node v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where
v1, . . . , vd are all the nodes with edges pointing to v. The value `v can either be retrieved from the parent
node of v, or is directly available for the case of the root-node ε. For the special case of leaf-nodes, the values
`v1 , . . . , `vd are not stored locally with the node v, but are stored at some other (a-priori known) nodes along
the path path (refer to the structure of the graph CPn).

(c) For all j ∈ {0, . . . , n∗}, compute rvj ← H′(χ,vj)(`vj) and Svj ← RandomSubset(2t, t; rvj). If vj+1 is the left
child of vj , check if

Sv[indj] = indj+1.

Otherwise, if vj+1 is the right child of vj , check if

Sv[indj] = t+ indj+1.

3. If all checks pass output 1, otherwise 0.

Incomplete Trees. We briefly outline how to handle incomplete binary trees. If N does not define a complete tree, then
at the end of the prover’s iteration the list of unfinished nodes consists of several elements: U = {v1, . . . , vn}. The
new proof π consists of the tuples (`v1 ,Lv1), . . . , (`vn ,Lvn). The proof can be easily verified by running the standard
verification algorithm on each pair (`vi ,Lvi) separately and outputting 1 if all the verifications succeeds. In a similar
way, one can increment the proof by recovering the trees computed so far, setting the labels of the unfinished nodes to
(`v1 , . . . , `vn) and the corresponding sets to (Lv1 , . . . ,Lvn). Given such a snapshot of the execution, one can continue
the standard iteration and complete the proof for the new (larger) tree.

4.3 Efficiency Analysis

We now discuss the efficiency of our scheme in terms of proof size, computation and communication.

Proof Size. The proof consists of the root-label `ε and t challenge paths path0, . . . , patht−1. Each path ∈
{path0, . . . , patht−1} consists of n tuples of the form (v, `l, `r, ind), where v is the index of a node, `l and `r are the
labels of the left and right children of v, and ind ∈ [t] is the index of path in the challenge set Sv at v. The node index v
can be stored using a single bit per node, indicating whether it is the left or right child of its parent. Each of `l and `r
can be stored using λ bits, and ind can be represented using log t bits. Consequently, the entire proof has size at most
t · n · (1 + 2λ+ log t) = O(t · λ · n) (assuming t ∈ poly(λ)). Later, in the soundness analysis, we will show that our
construction is sound if t ∈ O(λ · n2). With such choice of t, the proof size is bounded by O(λ2 · n3).

Prover Efficiency. The prover traverses the N nodes of the graph CPn in the same manner as the prover algorithm of
the CP scheme. Additionally, at each node the prover computes a challenge using the random oracle H′(χ,v).

The challenges H′(χ,v) can be computed in a way that does not increase the parallel time complexity of the prover.
Specifically, instead of computing the randomness for the challenges via rv ← H′(χ,v)(`v), we can equivalently compute
the rv similar to `v via rv ← H′(χ,v)(`v1 , . . . , `vd). This is possible as both H and H′ are random oracles. The proof
changes only slightly, but we kept the naive version for presentation purposes. In the modified scheme H and H′ can be
evaluated in parallel. thus the parallel complexity is not increased by the evaluation of H′. To conclude, the parallel
complexity of the prover is bounded by the time needed for O(N) sequential calls to the random oracles.

For the memory complexity of the prover, Cohen and Pietrzak [5] show using a standard pebbling argument
(c.f. Lemma 1) that the labels of CPn can be computed in topological order storing at most n+ 1 labels at any time,
i.e., having at most n+ 1 pebbles in the graphs at any time. This corresponds to the number of unfinished nodes, i.e. at
every time-step there are at most n+ 1 unfinished nodes. At each unfinished node v ∈ U , the prover keeps a list Lv
consisting of t labeled paths. By the analysis above these t paths can be stored using O(λ2 · n3) bits. Consequently, the
space complexity of the prover is bounded by O(λ2 · n4).

10

Verifier Efficiency. The verifier needs to check the consistency of t paths, each consisting n nodes. Checking a node
incurs the computation of a hash using H(χ,v) and one using H′(χ,v). All nodes can be checked in parallel with by
computing a constant number of hashes. After that, the verifier has to check whether all t · n checks are passed, which
can be performed in parallel time O(log(t · n)) = O(log(λ · n3)).

4.4 Soundness

We now establish soundness of our construction. Before proving the main theorem, we prove some useful lemmas.
Throughout the following analysis, we always assume that N and t are powers of two, but the arguments naturally
extend to the more generic case. We denote by L := (Tv, {`u}u∈Tv) the labelling for a sub-tree Tv . We slightly abuse
the notation and we say that u ∈ L if u ∈ Tv .

Lemma 4. Let A be an algorithm with access to a random oracle H : {0, 1}∗ → {0, 1}λ which outputs a root-hash of
a Merkle tree of depth n and a (valid) root-to-leaf path path with siblings. Then there exists an efficient online extractor
Extract, which on input a node v ∈ T, a label `∗ and a list Q (of size q) of all H-queries of A so far, outputs a labelling
L of the sub-tree Tv rooted at v such that the following holds. Let path∗ be the leaf-to-root path p truncated at v and let
pathL be the same path in L, then path∗ = pathL, except with probability 1+q(q−1)

2λ , over the choice of H.

Proof. We assume without loss of generality that the list Q is of the form {(in, out)}, and that the depth nv of a node is
efficiently computable from its identifier. We define the algorithm Extract in the following.
Extract(v, `∗, Q) : The root of the tree L set to be `∗ and the rest of the tree is recursively constructed applying (n−nv)
times the following function f(node): Parse Q for an entry of the form (in, node), if such an entry does not exist then
return ⊥. Else parse in as `0‖`1, set `0 as the left child of node and `0 as the right child of node in L. Then run f(`0),
f(`1) and return L.
The algorithm runs with a logarithmic factor in the size of Tv (assuming an ordered list Q) and therefore it is efficient.
Let BAD be the event such that there exists a node v ∈ path∗ labelled `′v such that `v 6= `′v and `parent(v) = `′parent(v),
where `′v and `v are the labelling output by A and by the extractor, respectively. By the law of total probability we have
that

Pr [BAD] = Pr [BAD | `v = ⊥] Pr [`v = ⊥] + Pr [BAD | `v 6= ⊥] Pr [`v 6= ⊥]
≤ Pr [BAD | `v = ⊥] + Pr [BAD | `v 6= ⊥] .

To bound the first summand observe that H(`′v‖`′v′) = `′parent(v), where v′ is the sibling of v, since the path path
needs to be valid. Further note that there exists no entry of the form (·, `′parent(v)) ∈ Q, since `v is set to ⊥ and
`′parent(v) = `parent(v). This implies that the adversary has correctly guessed a pre-image of `′parent(v) without querying
H, which happens with probability 2−λ. Thus we can bound from above

Pr [BAD | `v = ⊥] ≤ 2−λ.

For the second summand consider again that H(`′v‖`′v′) = `′parent(v) and that H(`v‖`v′) = `parent(v). Since `′parent(v) =
`parent(v) we have that H(`′v‖`′v′) = H(`v‖`v′), which is a valid collision for H since, by assumption, `′v 6= `v.
Therefore we have that

Pr [BAD | `v 6= ⊥] ≤ 1−
q−1∏
k=0

(
1− k

2λ

)
= 1− 2λ

2λ ·
2λ − 1

2λ · · · 2
λ − (q − 1)

2λ

≤ 1−
(

2λ − (q − 1)
2λ

)q
= 1−

(
1− q − 1

2λ

)q
≤ q(q − 1)

2λ

where the last inequality is due to Bernoulli. Thus by triangle inequality we have that

Pr [BAD] ≤ 1
2λ + q(q − 1)

2λ = 1 + q(q − 1)
2λ ,

which implies that the complementary event happens with all but negligible probability. That is, for all nodes in
v ∈ path∗ labelled `v such that and `parent(v) = `parent(v) it holds that `′v = `v . Since L is rooted at `∗ and path∗ and L
have the same depth, it follows by induction that path∗ must be identical to pathL, with the same probability. ut

11

Given a labeled tree L, we say that a node v ∈ L is inconsistent if it holds that `v 6= H(`v1 , . . . , `vd), where (v1, . . . , vd)
are the nodes with an incoming edge to v. Let n(L) be the depth of L, then L has 2n(L)-many paths (or, equivalently,
leaves) and we define C as the set of paths which contain at least one inconsistent node. Note that L uniquely defines a
set of t challenge paths (as specified in the description of the prover algorithm) which we denote by Z. For convenience
we define the functions γ(L) := |C|

2n(L) and δ(L) := |Z∩C|
|Z| .

Lemma 5. Let v be a node and let l and r be the left and right child of v, respectively. If

δ(Ll) ≥ γ(Ll)− ηl and δ(Lr) ≥ γ(Lr)− ηr

then it holds that

Pr [γ(Lv) ≤ δ(Lv) + ηv] ≥
(

1− e−2
(
ηv−

(ηl+ηr)
2

)2
t

)
.

Proof. Recall that γ(Lv) counts the fraction of inconsistent paths of v. Since l and r are the children of v it holds that

γ(Lv) = (γ(Ll) + γ(Lr))
2 . (1)

Rearranging the terms we have that

γ(Ll) ≤ δ(Ll) + ηl (2)
γ(Lr) ≤ δ(Lr) + ηr, (3)

thus combining (1), (2), and (3) we obtain

γ(Lv) ≤
(δ(Ll) + ηl + δ(Lr) + ηr)

2 = (δ(Ll) + δ(Lr))
2 + (ηl + ηr)

2 . (4)

Let Z ′v be the set of all paths in Zl ∪ Zr extended to v, i.e. Z ′v = {(v, p) | p ∈ Zl ∪ Zr}. By construction, the set Zv is
a random t-subset of Z ′v (where the randomness for this choice is taken from H′(χ,v)(`v)). Assume now that there are sl
rejecting paths in Zl and sr rejecting paths in Zr, i.e. it holds that δ(Ll) = sl

t and δ(Lr) = sr
t . That is, there are sl + sr

rejecting paths in Z ′v. Consequently, the expected number of rejecting paths in Zv is sl+sr
2t · t = 1

2 (δ(Ll) + δ(Lr)) · t,
that is

E[δ(Lv)] = (δ(Ll) + δ(Lr))
2 , (5)

where the expectation is taken over the random choice H′(χ,v)(`v). Thus we can rewrite

Pr [γ(Lv) > δ(Lv) + ηv] = Pr [δ(Lv) < γ(Lv)− ηv]

< Pr
[
δ(Lv) <

(δ(Ll) + δ(Lr))
2 + (ηl + ηr)

2 − ηv
]

= Pr
[
δ(Lv) < E[δ(Lv)] + (ηl + ηr)

2 − ηv
]

< e
−2
(
ηv−

(ηl+ηr)
2

)2
t

where the first inequality holds by (4), the second equality holds by (5), and the last inequality is a direct application of
the Hoeffding inequality for hypergeometric distributions (Theorem 1). ut

We are now ready to state and prove the main theorem.

Theorem 2. The construction given in Section 4.2 is sound for any t ∈ O(λ · n2), and the soundness error is given by
1+q(q−1)

2λ + q · e−2(αn)2t.

12

Proof. Let χ be the challenge statement and let qv be the number of calls of A to the random oracle H′(χ,v), i.e., the
adversary makes at most q =

∑
v∈T qv calls to H′ in total. By Lemma 4, there exists an (efficient) algorithm Extract

which on input a node v ∈ T, a label `v and a list Q of all query to H by A with their responses, outputs a a labelling Lv
of the sub-tree Tv rooted at v. For i = {0, . . . , n} and for j = {1, . . . , 2i}, let vi,j be the j-th node at layer i of the tree
(counting from the root towards the leaves).

Consider the following sequence of hybrids.

– HybridH0: This is identical to the real experiment.
– HybridH1: The same asH0, except for the following modifications.

• The experiment records a list Q of all H queries made by A with their responses.
• Every time A queries H′(χ,v) for a v ∈ V with a label `v, a labelling Lv for the sub-tree under v is computed

via Lv ← Extract(v, `v, Q).
• If it holds for any path opened by A that the labels on the path are different from the labels in Lε (where ε is the

root), thenH1 aborts and outputs 0.

Let BADv be the following event: A queries H′(χ,v) with a query ˆ̀
v corresponding to a labeled sub-tree

Lv ← Extract(v, ˆ̀
v, Q) for which it holds that δ(Lv) < γ(Lv)− n∗−nv

n∗ ·α, where nv is the depth of v (i.e. the distance
between the root-node ε and v) and n∗ is the depth at which every node has exactly t leafs underneath.

For i = n∗, . . . , 0 and j = 1, . . . , 2i define the following hybrids.

– HybridHi,j : The same as the previous hybrid, except that the experiment outputs 0 if the event BADvi,j happens
(Recall that vi,j is the j-th node at layer i of the tree, counting from the root towards the leaves).

We will now show indistinguishability between the hybrids. By Lemma 4 it holds thatH0 andH1 are indistinguishable.
We now turn to the indistinguishability of hybridsHi,j . For notational convenience, letH↓i,j be the hybrid beforeHi,j .

First consider i = n∗. It holds for each node v at level i that the set Zv of challenge paths consists of all paths from
v to the leaves under v. Consequently, it holds for all v at level i that δ(Lv) = γ(Lv) and therefore BADv happens with
probability 0.

Now consider the case of i < n∗ and let v = vi,j . Moreover, let l and r be the the left and right children of v.
First notice that, conditioned on that the event BADv does not happen, hybridHi,j is distributed identically to the

previous hybrid, i.e. Pr [Hi,j(A) = 1|¬BADv] = Pr
[
H↓i,j(A) = 1|¬BADv

]
. Therefore

SD[Hi,j ,H↓i,j] = Pr [BADv] ·
∣∣∣Pr [Hi,j(A) = 1|BADv]− Pr

[
H↓i,j(A) = 1|BADv

]∣∣∣︸ ︷︷ ︸
≤1

≤ Pr [BADv]

It is thus sufficient to bound the probability for the event BADv. A queries the random oracle H′(χ,v) with at most qv
distinct queries. Fix a query ˆ̀

v , and let ˆ̀
l and ˆ̀

r be the corresponding labels of the children l and r of v. It holds that

δ(Ll) ≥ γ(Ll)−
n∗ − (i+ 1)

n∗
· α

δ(Lr) ≥ γ(Lr)−
n∗ − (i+ 1)

n∗
· α,

13

as otherwise one of the events BADl or BADr would have happened and the experiment would have aborted. We can
now rewrite

Pr [BADv] = Pr
[
δ(Lv) < γ(Lv)−

n∗ − i
n∗

· α
]

= 1− Pr
[
γ(Lv) ≤ δ(Lv) + n∗ − i

n∗
· α
]

< e
−2
(
n∗−i
n∗ ·α−

n∗−(i+1)
n∗ ·α

)2
t

= e−2(α
n∗)2

t

by Lemma 5. A union-bound over all queries to H(χ,v) yields

Pr [BADv] < qv · e−2(α
n∗)2t.

Thus we conclude that the statistical distance between Hi,j and H↓i,j is at most qv · e−(α
n∗)2t. Consequently, we can

bound the statistical distance between the first hybridH0 and the last hybridH0,1 by

SD[H0,H0,1] = 1 + q(q − 1)
2λ +

∑
v∈T

qv · e−2(α
n∗)2t = 1 + q(q − 1)

2λ + q · e−2(α
n∗)2t.

We will finally bound the success probability of A in the last hybridH0,1. This is in fact identical to the analysis of [5].
Let S denote the set of all inconsistent nodes in the tree output by A in H0,1. Then by Lemma 2 there exists a path
going though all the nodes in V \ TS∗ . We distinguish two cases

1. |TS∗ | ≤ αN
2. |TS∗ | > αN

For the first caseA must have done at least (1−α)N sequential queries, so we are left with a bound on the second case.
By Lemma 3 TS∗ (and therefore S∗) contains at least |S

∗|+|TS∗ |
2 > α2n leaves. However, note that in the experiment

H0,1 the challenger aborts whenever the adversary satisfies the winning conditions, since

γ(Lε) >
α2n

2n = α

and therefore
δ(Lε) ≥ γ(Lε)− α > 0.

Consequently, as δ(Lε) = |Z∩C|
|Z| , this implies that |Z ∩ C| > 0 and therefore at least one of the paths in Z is also in C

and therefore we detect an inconsistent node. This however implies that the proof is always rejected by the verifier. So
in the final experimentH0,1 the success-probability of the adversary is exactly 0. This concludes our proof. ut

5 Multi-Thread Construction

In this section we show how to improve the concrete efficiency of incremental proofs of sequential work by assuming
some parallel capability of the prover. More specifically, we assume that the prover can spawn n parallel threads, where
n denotes the depth of the graph CPn. Note that we can upper bound n by λ = 100, since we require the prover to be
polynomial time.

5.1 Parameters

Throughout the following section we use the same parameters and notation of Section 4.1 and we define the following
additional subroutines.

14

– A full-domain hash function H′′ : {0, 1}∗ → {0, 1}t(n+2) modelled as a random oracle.
– A sampler RandomPath(v; r) which takes as input a node v and uniform random coins r, and outputs a set of t

uniformly random paths with common prefix v. Since log
(2hv
t

)
< log

(
2hv ·e
t

)t
< t(hv + 2) ≤ t(n+ 2), random

tapes of size t(n+ 2) always suffice to sample a uniform set.
– A function FetchPath(Sv, U, {`v : v ∈ U}) which takes as input a set Sv of t paths with common prefix v, a set of
U = {u : ∃v′ ∈ Tv s.t. (u, v′) ∈ E} where with edges pointing to Tv, and the set {`v : v ∈ U} of labels of all
nodes in U . The function recomputes the labelling of Tv using the labels of nodes in U . The output of the function
is the labelling of all paths in Sv. Note that such a function can be computed in time O(2hv) and with memory
O(t · hv).

5.2 Scheme Description

ProveH,H′,H′′(χ,N):

1. Initialize U ← ∅ to be the set of unfinished nodes.
2. Assign `0n ← 0λ.
3. Traverse the graph CPn starting from 0n. At every node v ∈ V which is traversed, do the following:

(a) Compute the label `v by
`v ← H(χ,v)(`v1 , . . . , `vd)

where v1, . . . , vd ∈ V are all nodes v is adjacent with, i.e., (vi, v) ∈ E.
(b) Let l and r be the children of v.
(c) If |leafs(v)| ≤ t, set Lv ← {[(v, `l, `r,⊥)‖L] where L ∈ Ll ∪ Lr}.
(d) Otherwise (i.e., if |leafs(v)| ≥ 2t), do the following:

i. Compute
ru ← H′(χ,u)(`u).

ii. Choose a random t-subset Sv of [2t] via Sv ← RandomSubset(2t, t; rv).
iii. For j ∈ {0, . . . , t− 1}, write Sv[j] = at+ b where a ∈ {0, 1} and 0 ≤ b < t. Set

Lu[j] :=
{

[(u, `l, `r, j)‖Ll[b]], if a = 0
[(u, `l, `r, j)‖Lr[b]], if a = 1

(e) If v is a left node (i.e., it is the left child of its parent):
i. Compute

ru ← H′′(χ,u)(`u).

ii. Choose a random t-set of paths with prefix v via Sv ← RandomPath(v; rv).
iii. Execute in a parallel threadL ← FetchPath(Sv, U, {`v : v ∈ U}) and setLv := {[(v, `l, `r,⊥)‖L] whereL ∈
L}.

iv. Mark l as finished, i.e., remove l from U and mark v as unfinished, i.e., add v to U .
4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}), terminate and output π ← (`ε,Lε).

IncH,H′,H′′(χ,N,N ′, π): Defined as in Section 4.2.

VfH,H′,H′′(χ,N, π):

1. Parse π as (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `l0 , `r0 , ind0)‖ . . . ‖(vn, `ln , `rn , indn)].

15

(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed correctly. That is, for v = 0n
check whether `v = 0λ, and for any other node v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where
v1, . . . , vd are the nodes with edges pointing to v. The value `v can either be retrieved from the parent node of v,
or is directly available for the case of the root-node ε. For the special case of leaf-nodes, the values `v1 , . . . , `vd
are not stored locally with the node v, but are stored at some other (a-priori known) nodes along path (refer to
the structure of the graph CPn).

(c) For all j ∈ {0, . . . , n∗}:
i. If vj is a right node or j = 0: Compute rvj ← H′(χ,vj)(`vj) and Svj ← RandomSubset(2t, t; rvj). If vj+1

is the left child of vj , check if
Su[indj] = indj+1.

Otherwise, if vj+1 is the right child of vj , check if

Su[indj] = t+ indj+1.

ii. If vj is a left node: Compute rvj ← H′′(χ,vj)(`vj) and Svj ← RandomPath(vj ; rvj). Check if all paths in
Svj are present in Lε.

3. If all checks pass output 1, otherwise 0.

5.3 Efficiency Analysis

The verifier efficiency is essentially unchanged from the construction in Section 4.2.

Prover Efficiency. For the main thread the prover complexity is identical to our construction in Section 4.2. For the
parallel threads the prover has to recompute a CPn graph of size at most n, so we can again upper bound their memory
complexity to λ(n+ 1) by Lemma 1.

In the following we argue that the number of parallel threads of our protocol is upper-bounded by n. Recall that a
new thread is spawned each time the main thread traverses a left node v (i.e., a node which is the left child of its parent).
The complexity of each parallel thread is dominated by the factor O(2hv) of the function FetchPath, where hv is the
height at which the thread was spawned. However, note that the main thread must perform at least O(2hv) steps before
spawning a new sub-thread at height hv. This implies that for each hv = 1, . . . , n there can be at most one parallel
thread running. It follows that n parallel processors are sufficient to run the prover algorithm.

Proof Size. As for our construction in Section 4.2, the proof size is O(t · λ · n). Theorem 3 shows that our construction
is sound if t = O(λ), which gives proofs of size O(λ2 · n). Concretely, our proofs are larger than those of the CP
scheme by a factor of roughly 9.

5.4 Soundness

Theorem 3. The construction given in Section 5.2 is sound for any t ∈ O(λ), and the soundness error is given by
1+q(q−1)

2λ + q · e− 2α2t
9 .

Proof. Let χ be the challenge statement and let qv be the number of calls of A to the random oracle H′(χ,v), i.e., the
adversary makes at most q =

∑
v∈T qv calls to H′ in total. Let η be a free (positive) variable to be fixed later. Consider

the following sequence of hybrids.

– HybridH0: This is identical to the real experiment.
– HybridH1: The same asH0, except for the following modifications.
• The experiment records a list Q of all H queries made by A with their responses.
• Every time A queries H′(χ,v) for a v ∈ V with a label `v, a labelling Lv for the sub-tree under v is computed

via Lv ← Extract(v, `v, Q).
• If it holds for any path opened by A that the labels on the path are different from the labels in Lε (where ε is the

root), thenH1 aborts and outputs 0.

16

Let BADv be the following event: A queries H′(χ,v) with a query ˆ̀
v corresponding to a labeled sub-tree

Lv ← Extract(v, ˆ̀
v, Q) for which it holds that δ(Lv) < γ(Lv)− η.

For v ∈ {1n∗−1‖0, . . . , 10, 0} define the following hybrids.

– HybridHv1 : The same as the previous hybrid, except that the experiment outputs 0 if the event BADv happens.

Let ˆBADv be the following event: A queries H′(χ,v) with a query ˆ̀
v corresponding to a labeled sub-tree

Lv ← Extract(v, ˆ̀
v, Q) for which it holds that δ(Lv) < γ(Lv)−

(
3η − 2n∗−nvη

)
, where nv is the depth of v (i.e., the

distance between the root-node ε and v).

For v ∈ {1n∗ , . . . , 1, ε} define the following hybrids.

– HybridHv2 : The same as the previous hybrid, except that the experiment outputs 0 if the event ˆBADv happens.

We will now show indistinguishability between the hybrids. By Lemma 4 it holds thatH0 andH1 are indistinguishable.
We now turn to the indistinguishability of hybridsHv1 . For notational convenience, letHv↓1 be the hybrid beforeHv1 .

First consider v = 1n∗−1‖0. For each node v at level n it holds that the set Zv of challenge paths consists of all paths
from v to the leaves under v. Consequently, it holds that δ(Lv) = γ(Lv) and therefore BADv happens with probability
0.

First notice that, conditioned on that the event BADv does not happen, hybridHv1 is distributed identically to the
previous hybrid, i.e., Pr [Hv1(A) = 1|¬BADv] = Pr

[
Hv↓1 (A) = 1|¬BADv

]
. Therefore

SD[Hv1 ,H
v↓
1] = Pr [BADv] ·

∣∣∣Pr [Hv1(A) = 1|BADv]− Pr
[
Hv↓1 (A) = 1|BADv

]∣∣∣︸ ︷︷ ︸
≤1

≤ Pr [BADv]

It is thus sufficient to bound the probability for the event BADv. A queries the random oracle H′(χ,v) with at most qv
distinct queries. Note that v is always a left node and therefore the challenge set Z is chosen uniformly at random for
each label. Hence we have that E[δ(Lv)] = γ(Lv), i.e., the fraction of inconsistent paths is preserved in expectation,
over the random coins of H′(χ,v). We can then rewrite

Pr [BADv] = Pr [δ(Lv) < γ(Lv)− η]
= Pr [δ(Lv) < E[δ(Lv)]− η]

< e−2η2t

by Theorem 1. A union-bound over all queries to H(χ,v) yields

Pr [BADv] < qv · e−2η2t.

Thus we conclude that the statistical distance betweenHv1 andHv↓1 is at most qv · e−η
2t. We now turn to the indistin-

guishability of hybridsHv2 . Again we use the convention thatHv↓2 denotes the hybrid beforeHv2 .
First consider v = 1n∗ . As argued above, for each node at depth n it holds that δ(Lv) = γ(Lv) and therefore ˆBADv

happens with probability 0. For the rest of the cases, bounding the probability that ˆBADv happens suffice, since, if
ˆBADv does not happen, the hybrids are identical. We bound the probability that ˆBADv happens with an inductive

argument over v ∈ {1n∗ , . . . , 1, ε}. The base case v = 1n∗ is settled above.
For any node v ∈ {1n∗−1, . . . , 1, ε}, fix a query ˆ̀

v and let l and r be the left and right child of v. Since l is a left
node, we have that

δ(Ll) ≥ γ(Ll)− η (6)

17

as otherwise BADl would be triggered. For the right node r we have that

δ(Lr) ≥ γ(Lr)−
(

3η − 2n
∗−(nv+1)η

)
(7)

by induction hypothesis, as otherwise ˆBADr would be triggered. We can now rewrite

Pr
[

ˆBADv
]

= Pr
[
δ(Lv) < γ(Lv)−

(
3η − 2n

∗−nvη
)]

= 1− Pr
[
γ(Lv) ≤ δ(Lv) +

(
3η − 2n

∗−nvη
)]

< e
−2

((
3η−2n

∗−nvη
)
−
η+(3η−2n

∗−(nv+1)η)
2

)2

t

= e
−2
(

3η− (η+3η)
2

)2
t

= e−2η2t

by (6), (7), and Lemma 5. A union-bound over all queries to H(χ,v) yields

Pr
[

ˆBADv
]
≤ qv · e−2η2t.

This bounds the statistical distance betweenHv2 andHv↓2 by qv · e−2η2t.
We are now in the position to bound the statistical distance between the first hybridH0 and the last hybridHε2. Let

Tl be the set {1n∗−1‖0, . . . , 10, 0} and let Tr be the set {1n∗ , . . . , 1, ε}

SD[H0,Hε2] = 1 + q(q − 1)
2λ +

∑
v∈{Tl∪Tr}

qv · e−2η2t

≤ 1 + q(q − 1)
2λ + q · e−2η2t.

Setting η := α
3 we obtain

SD[H0,Hε2] ≤ 1 + q(q − 1)
2λ + q · e−2α2t

9 .

What is left to be shown is that A cannot win inHε2. Note that in the latter experiment we have that for all Lε computed
via Extract we have that

δ(Lε) ≥ γ(Lε)−
(

3η − 2n
∗
η
)
≥ γ(Lε)− 3η = γ(Lε)− α.

The same argument as in the proof of Theorem 2 can be used to show that the success probability of A is exactly 0. ut

General Arity Trees. Both schemes presented in this work can be generalized to work over p-ary trees, for any p ≥ 2.
By adjusting the value p, we can achieve slightly better concrete proof sizes and prover efficiency. We refer the reader
to Section A for an extensive treatment on the matter.

References

1. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of np. Journal of the ACM (JACM),
45(1):70–122, 1998.

2. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for SNARKS and
proof-carrying data. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120, Palo
Alto, CA, USA, June 1–4, 2013. ACM Press.

18

3. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and Brent Waters. Time-lock puzzles
from randomized encodings. In Madhu Sudan, editor, ITCS 2016, pages 345–356, Cambridge, MA, USA, January 14–16, 2016.
ACM.

4. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788, Santa Barbara, CA, USA, August 19–23,
2018. Springer, Heidelberg, Germany.

5. Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 451–467, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

6. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 139–147, Santa Barbara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.

7. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

8. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM STOC, pages 723–732,
Victoria, British Columbia, Canada, May 4–6, 1992. ACM Press.

9. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random oracle model. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 39–50, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg,
Germany.

10. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of sequential work. In Robert D. Kleinberg,
editor, ITCS 2013, pages 373–388, Berkeley, CA, USA, January 9–12, 2013. ACM.

11. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453, Santa Fe, New Mexico, November 20–22, 1994.
IEEE Computer Society Press.

12. Krzysztof Pietrzak. Simple verifiable delay functions. Cryptology ePrint Archive, Report 2018/627, 2018. https://eprint.
iacr.org/2018/627.

13. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto. 1996.
14. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In Ran Canetti, editor,

TCC 2008, volume 4948 of LNCS, pages 1–18, San Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany.
15. Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive, Report 2018/623, 2018. https:

//eprint.iacr.org/2018/623.

A General Arity Constructions

The schemes described in Section 4.2 and Section 5.2 can be generalized rather easily to work with p-ary trees for any
p ≥ 2.

A.1 Generalized CP Graphs

We begin by describing the generalized CP graph CP pn , and generalizing Lemma 1, Lemma 2, and Lemma 3.

Definition 6 (Generalized CP Graphs). For n ∈ N, let N = pn+1 − 1 and Tp,n = (V,E′) be a complete p-ary tree
of depth n. Let Σ := {0, . . . , p− 1} be an alphabet set of size p. The nodes V = Σ≤n are identified by p-ary strings of
length at most n and the empty string ε represents the root. The edges E′ = {(x||s, x) : s ∈ Σ, x ∈ Σi, i < n} are
directed from the leaves towards the root.

The graph CP pn = (V,E) is a DAG constructed from Tp,n = (V,E′) as follows. For any leaf u ∈ Σn, for any
node v which is a left-sibling of a node on the path from u to the root ε, an edge (v, u) is appended to E′. Formally,
E := E′ ∪ E′′ where

E′′ := {(v, u) : u ∈ Σn, u = a||r||a′, v = a||s, r > s for some a, a′ ∈ Σ≤n}.

We state and prove the generalizations of Lemma 1, Lemma 2, and Lemma 3.

Lemma 6. The labels of a CP pn graph can be computed in topological order using λ((p− 1)n+ 1) bits of memory.

19

https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2018/623
https://eprint.iacr.org/2018/623

Proof. We prove by induction on n. Let 0, . . . , p− 1 be the children of ε. For i ∈ Σ = {0, . . . , p− 1}, let Ti be the
subtree rooted at the i. Note that Ti is isomorphic to CP pn−1. To compute the labels of CP pn , we first compute the
labels of T0. Upon completion, we store only the label of 0, denoted `0. Next, we compute the labels of T1 using `0.
This is possible since all edges start from the node 0. Upon completion, we store the label `1. Now suppose that for
some i ∈ {1, . . . , p} the labels of T0, . . . ,Ti−1 are computed, and we have stored `0, . . . , `i−1. The labels of Ti can be
computed since all edges start from the nodes 0, . . . , i− 1. Eventually, we obtain the last label `p−1. Using this with
`0, . . . , `p−2 stored in the memory, we can compute the label of ε.

Since for each i ∈ Σ, storing `i requires λ bits of memory, the memory required for computing the label of CP pn
equals to that of CP pn−1 plus λ(p− 1) extra bits. Furthermore, CP p0 has exactly 1 node and its label can be computed
using λ bits of memory. Solving the recursion gives the claimed bound.

Lemma 7. For all S ⊆ V , the subgraph of CP pn = (V,E) on vertex set V \ TS∗ , has a directed path going through
all the |V | − |TS∗ | nodes.

Proof. We prove by induction on n. The lemma is trivial for CP p0 as it contains only 1 node. Now, suppose the lemma
is true for CP pn−1. Consider CP pn , and let 0, . . . , p− 1 be the children of ε. For i ∈ Σ = {0, . . . , p− 1}, let Ti be the
subtree rooted at the i. Note that Ti is isomorphic to CP pn−1. CP pn consists of the root ε, the subtrees T0, . . . ,Tp−1,
and edges going from i to the leaves of Tj for all i < j and i, j ∈ Σ.

The lemma is true if ε ∈ S∗, as |V | − |TS∗ | = 0. Otherwise, let I := S∗ ∩Σ be the subset of children of ε which
are in S∗. For concreteness, we write I = {i1, . . . , ik} for some k ∈ {1, . . . , p}. We apply the lemma to Ti for all
i ∈ Σ \ I , so that for each Ti there exists a directed path going from the left-most leaf of Ti, i.e., i0 . . . 0, to i. Since
for all i, j ∈ Σ where i < j, there exists an edge from i to j0 . . . 0, it means that for each i′ ∈ I , there exists a edge
(i′ − 1, (i′ + 1)0 . . . 0) which “skips” Ti′ . Formally, the following edges exist:

(0, 10 . . . 0), . . . , (i1 − 2, (i1 − 1)0 . . . 0),
(i1 − 1, (i1 + 1)0 . . . 0), . . . , (ik − 1, (ik + 1)0 . . . 0),

(ik + 1, (ik + 2)0 . . . 0), . . . , (p− 1, p0 . . . 0).

Finally, we note that there also exists an edge (i∗, ε) where i∗ := maxi/∈I(i ∈ Σ), which completes the path from
0 . . . 0 to ε, passing through all |V | − |TS∗ | nodes.

Lemma 8. For all S ⊂ V , TS∗ contains |TS∗ |+|S|p many leaves.

Proof. Let S∗ = {v1, . . . , vk}. Since S∗ is minimal, it holds that Tvi ∩ Tvj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j.
Therefore we can write

|Σn ∩ TS∗ | =
k∑
i=1
|Σn ∩ Tvi |.

As for all i ∈ {1, . . . , k}, Tvi is a complete p-ary tree, it has (|Tvi |+ 1)/p many leaves. Thus,

k∑
i=1
|Σn ∩ Tvi | =

k∑
i=1

|Tvi |+ 1
p

= |TS
∗ |+ |S|
p

.

A.2 Generalized Single-Thread Construction

The generalized construction is almost identical to the basic one presented in Section 4.2, except the graph CPn is
replaced with CP pn , and the computation of the labels is changed accordingly.
ProveH,H′(χ,N):

1. Initialize U ← ∅.
2. Assign `0n ← 0λ.

20

3. Traverse the graph CP pn = (V,E) starting from 0n. At every node v ∈ V which is traversed, do the following:
(a) Compute the label `v by `v ← H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd ∈ V are all nodes with edges pointing

to v, i.e., (vi, v) ∈ E.
(b) Let c0, . . . , cp−1 be the children of v.
(c) If |leafs(v)| ≤ t, set

Lv ← {[(v, `c0 , . . . , `cp−1 ,⊥)‖L] where L ∈ Lc0 ∪ . . . ∪ Lcp−1}.
(d) Otherwise (i.e., if |leafs(v)| ≥ pt), do the following:

i. Compute rv ← H′(χ,v)(`v).
ii. Choose a random t-subset Sv of [pt] via Sv ← RandomSubset(pt, t; rv).

iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where 0 ≤ a < p and 0 ≤ b < t and set Lv[j] ←
(v, `c0 , . . . , `cp−1 , j)‖Lca [b].

(e) Mark c0, . . . , cp−2 as finished, i.e., remove c0, . . . , cp−2 from U and, if v is not the right-most child of its
parent, mark v as unfinished, i.e., add v to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}), terminate and output π ← (`ε,Lε).

IncH,H′(χ,N,N ′, π):

1. Initialize U := ∅.
2. Parse π as (`ε,Lε)
3. Assign `0n′−n := `ε and L0n′−n := Lε.
4. Execute the algorithm ProveH,H′(χ,N ′) starting from step 3 with a slight change: Traverse the graph CP pn′ starting

from 0n′−n−1‖1‖0n (instead of from 0n′).

VfH,H′(χ,N, π):

1. Parse π = (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `c0,0 , . . . , `c0,p−1 , ind0), . . . , (vn, `cn,0 , . . . , `cn,p−1 , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed correctly. That is, for v = 0n

check whether `v = 0λ, and for any other node v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where
`v1 , . . . , `vd are the nodes with edges pointing to v. The value `v can either be retrieved from the parent node
of v, or is directly available for the case of the root-node ε. For the special case of leaf-nodes, the values
`v1 , . . . , `vd are not stored locally with the node v, but are stored at some other (a-priori known) nodes along
the path path (refer to the structure of the graph CP pn).

(c) For all j ∈ {0, . . . , n∗}, compute rvj ← H′(χ,vj)(`vj) and Svj ← RandomSubset(pt, t; rvj). Let i ∈
{0, . . . , p− 1} so that vj+1 is the i-th child of vj . Check if Sv[indj] = i · t+ indj+1.

3. If all checks pass then output 1. Otherwise output 0.

We state the soundness error and the efficiency of the generalized construction. The analysis is essentially identical to
that in Section 4.3 and is therefore omitted.

Soundness. Here we state a generalized version of Lemma 5 for p-ary trees.

Lemma 9. Let v be a node and let (v1, . . . , vp) the set of children of v. If for all i ∈ {1, . . . , p} we have

δ(Lvi) ≥ γ(Lvi)− ηvi
then it holds that

Pr [γ(Lv) ≤ δ(Lv) + ηv] ≥ 1− e
−2

(
ηv−

∑
i∈p

ηvi

p

)2

t

.

The bound for the soundness error has the same form as that in the basic construction, except that n = logp(N + 1)− 1.
Previously, n = log(N + 1)− 1. The proof is identical to that of Theorem 2, except that we apply Lemma 9 instead
of Lemma 5.

Theorem 4. The construction given in Section A.2 is sound for any t ∈ O(λ · n2), and the soundness error is given by
1+q(q−1)

2λ + q · e−2(αn)2t.

21

Efficiency. In the following, we set t = O(λ · n2) and n = logpN . The parallel time complexity of the prover remains
unchanged at O(N). The parallel time complexity of the verifier is O(log(1

log3 p
· λ · log3 N)), which decreases at p

increases. The proof size and the space complexity of the prover are O(p
log3 p

· λ2 · log3 N) and O(p2

log4 p
· λ2 · log4 N)

respectively. The fractions φp := p
log3 p

and θp := p2

log4 p
are minimized at p = 20 and p = 7 respectively. Compared to

p = 2, we have φ20/φ2 ≈ 0.124 and θ7/θ2 ≈ 0.197.

A.3 Generalized Multi-Thread Construction

Similar to the above, we present a generalization of the construction in Section 5.2.
ProveH,H′,H′′(χ,N):

1. Initialize U ← ∅ to be the set of unfinished nodes.
2. Assign `0n ← 0λ.
3. Traverse the graph CP pn starting from 0n. At every node v ∈ V which is traversed, do the following:

(a) Compute the label `v by `v ← H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd ∈ V are all nodes nodes v is adjacent
with, i.e., (vi, v) ∈ E.

(b) Let c0, . . . , cp−1 be the children of v.
(c) If |leafs(v)| ≤ t, set

Lv ← {[(v, `c0 , . . . , `cp−1 ,⊥)‖L] where L ∈ Lc0 ∪ . . . ∪ Lcp−1}.

(d) Otherwise (i.e., if |leafs(v)| ≥ pt), do the following:
i. Compute rv ← H′(χ,v)(`v).

ii. Choose a random t-subset Sv of [pt] via Sv ← RandomSubset(pt, t; rv).
iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where 0 ≤ a < p and 0 ≤ b < t. Set Lv[j] :=

[(v, `l, `r, j)‖Lca [b]].
(e) If v is not a right node (i.e., it is not the right-most child of its parent):

i. Compute rv ← H′′(χ,v)(`v).
ii. Choose a random t-set of paths with prefix v via Sv ← RandomPath(v; rv).

iii. Execute in a parallel threadL ← FetchPath(Sv, U, {`v : v ∈ U}) and setLv := {[(v, `l, `r,⊥)‖L] whereL ∈
L}.

iv. Mark c0, . . . , cp−2 as finished, i.e., remove c0, . . . , cp−2 from U and mark v as unfinished, i.e., add v to U .
4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}), terminate and output π ← (`ε,Lε).

IncH,H′,H′′(χ,N,N ′, π): Defined as in Section A.2.

VfH,H′,H′′(χ,N, π):

1. Parse π as (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `c0,0 , . . . , `c0,p−1 , ind0)‖ . . . ‖(vn, `cn,0 , . . . , `cn,p−1 , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed correctly. That is, for v = 0n

check whether `v = 0λ, and for any other node v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where
v1, . . . , vd are the nodes with edges pointing to v. The value `v can either be retrieved from the parent node of v,
or is directly available for the case of the root-node ε. For the special case of leaf-nodes, the values `v1 , . . . , `vd
are not stored locally with the node v, but are stored at some other (a-priori known) nodes along path (refer to
the structure of the graph CP pn).

(c) For all j ∈ {0, . . . , n∗}:
i. If vj is the right-most child of its parent or j = 0: Compute rvj ← H′(χ,vj)(`vj) and Svj ←

RandomSubset(pt, t; rvj). Let vj+1 be the i-th child of vj , check if Sv[indj] = i · t+ indj+1.
ii. If vj is not the right-most child of its parent: Compute rvj ← H′′(χ,vj)(`vj) andSvj ← RandomPath(vj ; rvj).

Check if all paths in Svj are present in Lε.
3. If all checks pass output 1, otherwise 0.

Next we state the soundness error and the efficiency.

22

Soundness. The soundness analysis requires some tweaking of the argument.

Theorem 5. The construction given in Section A.3 is sound for any t ∈ O((1 + p
p−1)2 · λ), and the soundness error is

given by 1+q(q−1)
2λ + q · e

−
(

α

1+ p
p−1

)2
t
.

Proof. The proof follows the blueprint of the proof of Theorem 3, except for the following changes. First we add a
hybridHv1 for each sibling of the nodes {1n∗ , . . . , 1, ε}. The indistinguishability arguments are identical.

Then we define the event ˆBADv as follows: A queries H′(χ,v) with a query ˆ̀
v corresponding to a labeled sub-tree

Lv ← Extract(v, ˆ̀
v, Q) for which it holds that δ(Lv) < γ(Lv)−

(
2η + η

∑n∗−nv
i=1

1
pi

)
, where nv is the depth of v.

We bound the probability that ˆBADv happens with an inductive argument over v ∈ {1n∗ , . . . , 1, ε}. For the base case
v = 1n∗ is enough to observe that δ(Lv) = γ(Lv) and therefore ˆBADv happens with probability 0.

For any node v ∈ {1n∗−1, . . . , 1, ε}, fix a query ˆ̀
v and let (v1, . . . , vp) be the children of v. For all i ∈ {1, . . . , p−1}

we have that

δ(Lvi) ≥ γ(Lvi)− η (8)

as otherwise BADvi would be triggered. For the node vp we have that

δ(Lvp) ≥ γ(Lvp)−
(

2η + η

n∗−nv−1∑
i=1

1
pi

)
(9)

by induction hypothesis, as otherwise ˆBADvp would be triggered. We can now rewrite

Pr
[

ˆBADv
]

= Pr
[
δ(Lv) < γ(Lv)−

(
2η + η

n∗−nv∑
i=1

1
pi

)]

= 1− Pr
[
γ(Lv) ≤ δ(Lv) +

(
2η + η

n∗−nv∑
i=1

1
pi

)]

< e

−2

(2η+η
∑n∗−nv

i=1
1
pi

)
−
η(p−1)+

(
2η+η

∑n∗−nv−1
i=1

1
pi

)
p

2

t

= e−2η2t

by (8), (9), and Lemma 9. For p > 1 we can bound

2η + η

n∗∑
i=1

1
pi

= η + η

n∗∑
i=0

1
pi
≤
(

1 + p

p− 1

)
η.

since it is a geometric series. Thus we can set η := α

(1+ p
p−1) and derive

SD[H0,Hε2] ≤ 1 + q(q − 1)
2λ + q · e

− 2α2t

(1+ p
p−1)2

.

The remainder of the analysis is unchanged. ut

Efficiency. In the following, we set t = O

((
1 + p

p−1

)2
· λ
)

and n = logpN . The parallel time complexity of the

prover remains unchanged at O(N). The number of parallel threads is bounded by O(p logpN), which is minimized

23

at p = 3. The parallel time complexity of the verifier is O(log((1+ p
p−1)2

log p · λ · logN)), which decreases at p increases.

The proof size and the space complexity of the prover are O(p(1+ p
p−1)2

log p · λ2 · logN) and O(p
2(1+ p

p−1)2

log2 p
· λ2 · log2 N)

respectively. The fractions φ′p := p(1+ p
p−1)2

log p and θ′p := p2(1+ p
p−1)2

log2 p
are both minimized at p = 4. Compared to p = 2,

we have φ′4/φ
′
2 ≈ 0.605 and θ′7/θ

′
2 ≈ 0.605.

24

	Incremental Proofs of Sequential Work

