
Attribute Based Encryption for Deterministic Finite
Automata from DLIN

Shweta Agrawal ?, Monosij Maitra??, and Shota Yamada? ? ?

Abstract. Waters [Crypto, 2012] provided the first attribute based encryption
scheme ABE for Deterministic Finite Automata (DFA) from a parametrized or
“q-type” assumption over bilinear maps. Obtaining a construction from static
assumptions has been elusive, despite much progress in the area of ABE.

In this work, we construct the first attribute based encryption scheme for DFA
from static assumptions on pairings, namely, the DLIN assumption. Our scheme
supports unbounded length inputs, unbounded length machines and unbounded
key requests. In more detail, secret keys in our construction are associated with a
DFA M of unbounded length, ciphertexts are associated with a tuple (x, µ) where
x is a public attribute of unbounded length and µ is a secret message bit, and
decryption recovers µ if and only if M(x) = 1.

Our techniques are at least as interesting as our final result. We present a simple
compiler that combines constructions of unbounded ABE schemes for monotone
span programs (MSP) in a black box way to construct ABE for DFA. In more
detail, we find a way to embed DFA computation into monotone span programs,
which lets us compose existing constructions (modified suitably) of unbounded
key-policy ABE (kpABE) and unbounded ciphertext-policy ABE (cpABE) for
MSP in a simple and modular way to obtain key-policy ABE for DFA. Our
construction uses its building blocks in a symmetric way – by swapping the use of
the underlying kpABE and cpABE, we also obtain a construction of ciphertext-
policy ABE for DFA.

Our work extends techniques developed recently by Agrawal, Maitra and Yamada
[Crypto 2019], which show how to construct ABE that support unbounded
machines and unbounded inputs by combining ABE schemes that are bounded
in one co-ordinate. At the heart of our work is the observation that unbounded,
multi-use ABE for MSP already achieve most of what we need to build ABE for
DFA.

1 Introduction

Attribute based encryption (ABE) [56] is a new paradigm of encryption that enables
fine grained access control on encrypted data. In attribute based encryption, a ciphertext
of a message m is labelled with a public attribute x and secret keys are labelled with
a function f . Decryption succeeds to yield the hidden message m if and only if the
attribute satisfies the function, namely f(x) = 1. ABE schemes have a rich and beautiful

? IIT Madras, India. shweta.a@cse.iitm.ac.in
?? IIT Madras, India. monosij@cse.iitm.ac.in

? ? ? AIST, Japan. yamada-shota@aist.go.jp

2 Shweta Agrawal, Monosij Maitra, and Shota Yamada

history [56, 41, 18, 15, 43, 50, 3, 57, 37, 16, 38, 39, 20, 7], with constructions for various
classes of functions proven secure under diverse assumptions.

Typically, the function f encoded in the secret key is represented as a Boolean
circuit, which necessitates issuing different keys to support different input lengths, even
to compute the same functionality. In a breakthrough work, Waters [57] provided the
first construction of ABE for regular languages: here, the secret key is associated with
a deterministic finite automaton (DFA) and ciphertext is associated with attribute x of
arbitrary length. The same secret key can directly decrypt ciphertexts that encode inputs
of varying lengths, yielding the first ABE that supports a uniform model of computation.
Since then, other constructions supporting the uniform model of computation were
proposed, supporting even Turing machines [34, 8, 4], but all these relied on the powerful
machinery of multilinear maps [31], indistinguishability obfuscation [14, 32] or witness
encryption [33], none of which are considered standard assumptions.

While the Waters construction relied on the hardness of assumptions over bilinear
maps, which are well understood, the assumption is parametrized (also known as “q-
type”), which means that the size of the assumption depends on the queries made by the
adversary. Achieving a construction of ABE for DFA from standard static assumptions
over bilinear maps has remained elusive. Very recently, Agrawal, Maitra and Yamada
[5] provided an ABE for nondeterministic finite automata from the learning with errors
assumption. However, their construction makes use of highly lattice specific machinery
(such as reusable garbled circuits [35]) and it is unclear how to use these ideas to improve
the state of affairs in the world of pairings.

1.1 Our Results.

In this work, we construct the first attribute based encryption scheme for DFA from
static assumptions on pairings, namely, the DLIN assumption. Our scheme supports
unbounded length inputs as well as unbounded length machines. In more detail, secret
keys in our construction are associated with a DFA M of unbounded length, ciphertexts
are associated with a tuple (x,m) where x is a public attribute of unbounded length
and m is a secret message bit, and decryption recovers m if and only if M(x) = 1. Our
construction also supports unbounded key requests by the adversary. Additionally, via
a simple tweak to our construction, we also obtain the first ciphertext-policy ABE for
DFA from the DLIN assumption.

We contrast our results with prior work in Table 1. For brevity, we only compare
with constructions of ABE that support uniform models of computation (in particular,
handle unbounded input lengths) and rely on standard assumptions. Other relevant work
is discussed in Section 1.3.

1.2 Our Techniques.

A natural starting point for constructing (key policy) ABE for DFA is (key policy) ABE
for monotone span programs (MSP), which has been studied extensively in the literature.
Recall that an MSP is specified by a pair (L, ρ) of a matrix and a labelling function
where L ∈ Z`×mp , ρ : [`]→ {0, 1}∗ for some integer `,m. Intuitively, the map ρ labels

Attribute Based Encryption for Deterministic Finite Automata from DLIN 3

Construction Model KP or CP Number of Keys Assumption
Waters [57] DFA KP unbounded q-type assumption

on bilinear maps
Attrapadung [11] DFA KP and CP unbounded q-type assumption

on bilinear maps
Agrawal-Singh [6] DFA KP single LWE

Agrawal-Maitra-Yamada [5] NFA KP unbounded LWE

Gong-Waters-Wee [36] DFA KP unbounded kLIN

This DFA KP and CP unbounded DLIN

Table 1. Comparison with prior work supporting unbounded input length. KP and CP indicate
key-policy and ciphertext-policy respectively.

row i with attribute ρ(i). Given a set of attributes I as input, the MSP accepts the input
iff the sub-matrix of L restricted to attributes selected by I contains a special target
vector in its row span (please see Section 2.1 for the precise definition).

Step 1: Leveraging ABE for MSP. Our first observation is that DFA computation is
simple enough to be encoded into an MSP. In more detail, given a DFA machine M
and an input string x, it is possible to map the DFA M into an MSP (LM , ρM) and the
input x into a set of attributes Sx such that the MSP (LM , ρM) accepts attributes Sx iff
M(x) = 1. We exhibit such a map in Section 4.1 and prove the following theorem:

Theorem 1. (Informal) Let (LM , ρM) be the MSP and Sx be the set of attributes
obtained by applying the map specified in Section 4.1 to M and x respectively. Then,
the MSP (LM , ρM) accepts attributes Sx iff M(x) = 1.

This provides a starting point for using ABE for MSP, which can be constructed
from static assumptions, as a building block towards constructing ABE for DFA.

Step 2: Handling Unbounded Length. While this seems promising as a first step, the
careful reader may have noticed that the above idea fails to address the primary challenge
of supporting DFA, namely, that of handling inputs of unbounded length. DFA is a
uniform model of computation, which means that the same machine must process inputs
of arbitrary length. On the other hand, an MSP can only process inputs of bounded length
– in particular, the length of inputs that an MSP can read is clearly bounded above by the
number of rows in L.

This appears to make ABE for MSP almost useless for our purposes, since there is no
way to guarantee that |x| is less than the number of rows in L (denoted by |x| ≤ |M | in
the sequel1). However, notice that since both the inputs and the machines have unbounded
length, it still holds in some cases that |x| ≤ |M |, and if we can handle this, it still
constitutes progress. More hurdles present themselves – for instance, the syntax of
ABE for DFA does not allow the setup algorithm to know the lengths |x|, |M |, the key

1 While imprecise, we use this notation here for intuition. Formally, it will turn out to be sufficient
to compare |x| with |Q|, where |Q| is the number of states in M .

4 Shweta Agrawal, Monosij Maitra, and Shota Yamada

generation algorithm cannot know |x| and the encrypt algorithm cannot know |M |. But
this challenge can be overcome by making use of the so called unbounded ABE schemes,
as described next.

Unbounded ABE schemes (for MSP) [54, 22] are those in which the setup algorithm
places no restriction on the length of the attributes or the size of the policies that
are embedded in the ciphertexts and keys. Moreover, the key generation and encrypt
algorithms do not require knowledge of input length or policy size respectively. While
significantly more challenging to build than their bounded counterparts, a small number
of existing constructions [54, 22] achieve this property while relying on standard
assumptions.

We show in Section 3.2 that unbounded key policy ABE schemes for MSP can
indeed be used to construct ABE for DFA so long as |x| ≤ |M |. More formally, we
define relation RKP(S, (L, ρ)) = 1 iff the span program (L, ρ) accepts the attribute set

S and RDFA≤(x,M) =M(x) ∧
(
|x|

?
≤ |M |

)
. Then, we have that:

Theorem 2. (Informal) Let kpABE be a secure unbounded ABE for the relation RKP.
Then, the construction dfaABE≤ provided in Section 3.2 is a secure ABE for the relation
RDFA≤.

Step 3: The trick of Agrawal, Maitra and Yamada. To construct a full fledged ABE
for DFA, our next tool is a recent trick by Agrawal, Maitra and Yamada [5]. In [5],
the authors show how to construct an ABE for nondeterministic finite automata (NFA)
that supports unbounded inputs and unbounded machines, by running in parallel two
restricted ABE for NFA schemes: one that supports unbounded inputs but bounded
machines and one that supports bounded inputs but unbounded machines.

Our goal is to construct an ABE scheme dfaABE for the relation RDFA(x,M) =
M(x). By using the trick of [5], we can construct our dfaABE from two special ABE
schemes as follows:

1. An ABE dfaABE≤ for the relation RDFA≤(x,M) =M(x) ∧
(
|x|

?
≤ |M |

)
.

2. An ABE dfaABE> for the relation RDFA>(x,M) =M(x) ∧
(
|x|

?
> |M |

)
.

It is easy to see that given constructions for the special ABE schemes dfaABE≤ and
dfaABE>, we may construct dfaABE simply by running them in parallel. In more detail,
the setup algorithm of dfaABE simply runs the setup algorithms of the underlying special
ABEs and outputs the public and master secret keys by combining their outputs, the
encrypt algorithm encrypts its input (x, µ) under both special ABEs, the key generation
algorithm produces a key under both special ABEs and the decryption algorithm invokes

the decryption of one or the other depending on whether |x|
?
≤ |M |. This intuition is

formalized in Section 3.1, where we prove the following theorem:

Theorem 3. (Informal) Assume that dfaABE≤ and dfaABE> are secure ABE schemes
for relations RDFA≤ and RDFA> respectively. Then, the scheme dfaABE constructed in
Section 3.1 is a secure ABE for relation RDFA.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 5

Step 4: Plugging the gap with ciphertext policy ABE. We already constructed an ABE
for the case of |x| ≤ |M |. The case of |x| > |M | is more challenging, since to use
ABE for MSP, it is necessary that the MSP be large enough to read the input as we
have discussed above. To handle this, we simply switch the role of key generator and
encryptor! In more detail, if the encryptor could instead embed x into an MSP and the
key generator could embed M into a set of attributes, then the dilemma of compatible
sizes could be resolved and we would be back in business. We show that this can be
done; we provide a maps in Section 4.2 that achieves this embedding. More formally,
we prove that:

Theorem 4. Let (Lx, ρx) be the MSP and SM be the set of attributes obtained by
applying the map specified in Section 4.2 to x and M respectively. Then, the MSP
(Lx, ρx) accepts attributes SM iff M(x) = 1.

In order to support encryption of an MSP (Lx, ρx), we now need an unbounded
ciphertext policy ABE for MSP. In more detail, we defineRCP((L, ρ), S) = 1 iff the span

program (L, ρ) accepts the attribute set S. Recall that RDFA>(x,M) =M(x) ∧
(
|x|

?
>

|M |
)
. Then, we show in Section 3.3 that:

Theorem 5. (Informal.) Let cpABE be a secure unbounded ABE scheme for the relation
RCP. Then the construction dfaABE> provided in Section 3.3 is a secure ABE for the
relation RDFA>.

To summarize, our approach is based on the observation that we must only construct
an MSP of length max(|x|, |M |), where |x| is known to the encryptor and |M | is
known to the key generator (and neither know the other). When the input vector has
size |x| ≤ |M |, we embed the DFA into a monotone span program which has number
of rows proportional to |M |, and the input into a set of attributes – this ensures that
the MSP is large enough to support an input of length |x|. We may then leverage an
unbounded kpABE scheme to handle this case. On the other hand, when |x| > |M |, we
instead embed the input vector into a monotone span program which has number of
rows proportional to |x|, and the machine into a set of attributes – this again ensures
that the MSP is large enough to support an input of size |M |. We may then leverage an
unbounded cpABE scheme to handle this case. Of course, neither party knows which
case it must support, so it simply provides information for both and leaves it to the
decryptor to make the choice!

Step 5: Instantiating the kpABE and cpABE. Finally, we must ensure that we can
instantiate unbounded ABE schemes kpABE and cpABE for the relations RKP and
RCP that we require. While prior work provides constructions of unbounded key policy
and ciphertext policy ABE schemes for MSP, these unfortunately cannot be plugged
into our compiler out of the box. This is because our construction requires the ABE
schemes to support “multi-use” of attributes, i.e. when the map ρ in the MSP is not
restricted to be injective. Moreover, the ABE schemes are required to be unbounded, as
already discussed above. Finally, we want the schemes to be proven secure from static
assumptions such as DLIN, not from q-type assumptions. Schemes achieving all these

6 Shweta Agrawal, Monosij Maitra, and Shota Yamada

properties do not exist in the literature to the best of our knowledge.2 Hence, we must
refashion existing schemes to satisfy this. In Section 5, we provide constructions for
multi-use unbounded key policy and ciphertext policy ABE schemes by modifying the
constructions in [22]. Let RMUKP and RMUCP be the same relations as RKP and RCP

defined above, but with the requirement that the underlying MSPs in both relations
support multi-use of attributes. Then, we obtain the following theorem:

Theorem 6. (Informal.) The constructions kpABE provided in Section 5.2 and cpABE
provided in Section 5.4 are unbounded ABE schemes for the relations RMUKP and
RMUCP respectively. Security of kpABE relies on the MDDH assumption and security of
cpABE relies on the DLIN assumption.

For both KP and CP-ABE schemes, we simply modify the schemes in [22] so that we
allow multi-use of the same attribute in an MSP. However, this simple modification
ruins the original security proof given by [22] in both cases. The reason is that the core
statistical argument in the security proof does not work any more in the multi-use setting.
Intuitively, the problem is that the terms used as “one-time pads” in the single-use setting
are used multiple times in the multi-use setting. In both KP and CP cases, we switch
to weaker security notions than adaptive security and give security proofs by taking
advantage of weaker setting.

For KP-ABE scheme, we prove semi-adaptive security. To prove the security, we first
use the handy bilinear entropy expansion lemma [22] to create an instance of a multi-use
variant of the KP-ABE scheme by [50] (hereafter denoted by LOSTW) in the semi-
functional space. To give a proof, we decompose the LOSTW secret key into smaller
pieces and gradually add semi-functional randomness to them through a hybrid argument
in a way that their distribution depends on the challenge attribute, in a similar manner to
[1]. Since this step requires the knowledge of the challenge attribute, we can only prove
semi-adaptive security of the scheme. Intuitively, because of this decomposition, we use
the “one-time pad” only single time in one hybrid game and can avoid getting into the
aforementioned problem of using one-time pads multiple times. Finally, we can use the
core statistical step similarly to the case of single-use setting.

For CP-ABE scheme, we prove the security notion that we call selective* security,
where the adversary is forced to choose its key queries and the challenge attribute after
seeing the master public key. The first step of the proof is similar to the KP-ABE case.
Namely, we first use the bilinear entropy expansion lemma [22] to create an instance of
the LOSTW CP-ABE scheme in the semi-functional space. However, in the next step, we
cannot use the above decomposition idea due to technical reasons, which in turn prohibits
us from using the statistical argument in the core step. We overcome this by using
computational argument instead, which uses the DLIN assumption instead. The idea of
using computational argument here was taken from some of prior works [51, 11, 12].

Putting together these pieces yields our final result – a key-policy ABE for DFA that
supports unbounded inputs, unbounded machines and unbounded key requests.

2 Only exception is the very recent construction by Kowalczyk and Wee [46]. However, their
scheme can only deal with NC1 circuit instead of general MSP and thus our embedding of DFA
into MSP cannot be used.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 7

Ciphertext Policy ABE for DFA. In the above description, note that our construction
dfaABE uses the underlying kpABE and cpABE in a symmetric way. Thus, by swapping
the use of kpABE and cpABE in our construction, we can equivalently construct
ciphertext policy ABE for DFA.

In more detail, we exchange the maps used by KeyGen and Enc in the constructions
of dfaABE≤ and dfaABE> in Sections 3.2 and 3.3. Please see Section 6 for more details.
Thus, we obtain

Theorem 7. There exists a secure key-policy and ciphertext-policy ABE for RDFA from
the DLIN assumption.

1.3 Related Work.

In this section, we discuss the related work in the area, categorized by hardness
assumptions. We begin with constructions based on bilinear maps. The first construction
of ABE for DFA was given by Waters [57] as discussed above. This scheme achieved
selective security, which was improved to adaptive by Attrapadung [11]. For span
programs, there have been many constructions [48, 53, 50, 49, 47, 54, 55, 23, 24, 58, 11,
21, 13, 45, 12, 2, 22] that achieve various tradeoffs between security (selective versus
adaptive), assumptions (static versus parametrized), underlying mathematical structure
(prime versus composite order groups), policy embedding (key versus ciphertext policy)
and efficiency. In this work, we are particularly concerned with unbounded ABE schemes,
in particular those by [54, 22].

From the Learning With Errors assumption (LWE), Boyen and Li [19] provided a
construction of ABE for DFA, but this was restricted to DFAs with bounded length inputs,
rendering moot the primary advantage of a DFA over circuits. Recently, Ananth and
Fan [7] provided an ABE for random access machines from LWE, but this construction
is also restricted to inputs of bounded length. Agrawal and Singh [6] constructed a
primitive closely related to ABE for DFA, namely reusable garbled DFA from LWE, but
their construction is only secure in the single key setting, namely, where the adversary
is limited to requesting a single function key. In contrast, we support unbounded key
requests in this work.

From strong assumptions such as the the existence of multilinear maps [31], witness
encryption [34] or indistinguishability obfuscation [14, 32], attribute based encryption
(or its more powerful generalization – functional encryption) has been constructed even
for Turing machines [9, 4, 44], but these are not considered standard assumptions; indeed
many candidate constructions have been broken [25, 28, 42, 27, 26, 52, 29, 10].

Also relevant to our work are the constructions of [20, 40], which provide attribute
based encryption for the so called “bundling functionalities”. Here, the size of the public
parameters does not depend on the length of the input (say `) chosen by the encryptor.
However, the key generator must generate a key for a circuit with a fixed input length
(say `′), and decryption only succeeds if ` = `′. Thus, bundling functionalities do not
capture the essential challenge of supporting dynamic data sizes as discussed in [40].

8 Shweta Agrawal, Monosij Maitra, and Shota Yamada

1.4 Concurrent Work.

We note that a concurrent work by Gong et. al. [36] constructs KP-ABE scheme for
DFA relying on the k-LIN assumption. Although there is a qualitative overlap in our
final results as shown in Table 1, the approaches and techniques in their work are
quite different from ours. They construct KP-ABE from scratch imitating the transition
function of a DFA using bilinear maps directly. This, in turn, yields a scheme with better
concrete efficiency and security than ours. In particular, in the KP-ABE setting, our
ciphertexts and keys scale as O(|x|3) and O(|Q|2) respectively while the ciphertexts
and keys in [36] scale linearly as O(|x|) and O(|Q|) respectively. Also, our construction
achieves selective* security based on DLIN assumption, while their construction achieves
selective security and relies on the slightly weaker k-LIN assumption. On the other hand,
our scheme is a generic compiler, and has conceptual advantages: our construction is
modular and simpler and yields CP-ABE essentially for free. Further, it reduces the
question of adaptive security for DFA for both KP-ABE and CP-ABE to that of adaptive
security for unbounded KP-ABE and CP-ABE for MSP from static assumptions.

Organization of the paper. In Section 2, we provide the definitions and preliminaries we
require. In Section 3, we provide our ABE for DFA supporting unbounded input and
unbounded machines from kpABE and cpABE for monotone span programs. In Section
4, we describe how to encode DFA computation into a monotone span program (MSP):
Section 4.1 shows the encoding procedure for any DFA machine to a MSP (and DFA
input to attribute set) while Section 4.2 shows the encoding procedure for any input
string to a MSP (and DFA machine to attribute set). In Section 5, we instantiate our
ingredient kpABE and cpABE using techniques from [22]. In Section 6 we put together
all ingredients to instantiate our ABE for DFA.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We use bold letters to denote vectors and the notation [a, b] to denote the set
of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. Concatenation is
denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n)
to denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some
constant c > 0, and we use poly(n) to denote a polynomial function of n. We use
the abbreviation PPT for probabilistic polynomial-time. We say an event occurs with
overwhelming probability if its probability is 1− negl(n).

2.1 Definitions: Restricted Monotone Span Programs (MSP)

A monotone span program over Zp is specified by a pair (L, ρ) of a matrix and a labelling
function where

L ∈ Z`×mp ρ : [`]→ Z

Attribute Based Encryption for Deterministic Finite Automata from DLIN 9

for some integer `,m. Intuitively, the map ρ labels row i with attribute ρ(i).
A span program takes as input a set of integers and accepts or rejects an input by

the following criterion. Let S = {u1, . . . , ut} ⊆ Z be a set of integers. Intuitively,
each ui represents some attribute. For the set S, we define another set I ⊆ [`] as
I = {i ∈ [`] : ρ(i) ∈ S} and LI as the submatrix of L restricted to set of rows I , i.e.
obtained by removing row j of L for any j 6∈ I . We say that

(L, ρ) accepts S iff (1, 0, . . . , 0) is in the row span of LI .

We can write this also as e1 ∈ span(L>I).

2.2 Deterministic Finite Automata

A Deterministic Finite Automaton (DFA) M is represented by the tuple (Q,Σ, T, qst, F)
where Q is a finite set of states, Σ is a finite alphabet, T : Σ ×Q→ Q is the transition
function (stored as a table), qst is the start state, F ⊆ Q is the set of accepting states.
We say that M accepts x = (x1, . . . , xk) ∈ Σk if there exists a sequence of states
q1, . . . , qk+1 such that q1 = q, qi+1 ∈ T (xi, qi) for i ∈ [k] and qk+1 ∈ F . We assume
w.l.o.g. that the states are numbered as 1 to |Q|, i.e., Q = {1, 2, . . . , |Q|} with qst = 1
along with Σ = {0, 1} and F = {|Q|}. Note that any DFA with many accepting states
can be converted to a DFA with a single accepting state 3, and states may be renumbered
so that the last state is the accepting one.

2.3 Definitions for Attribute-Based Encryption

Syntax. Let R : A × B → {0, 1} be a relation where A and B denote “ciphertext
attribute” and “key attribute” spaces. An attribute based encryption scheme for R is
defined by the following PPT algorithms:

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input the unary representation
of the security parameter λ and outputs a master public key mpk and a master secret
key msk.

Encrypt(mpk, µ,X)→ ct: The encryption algorithm takes as input a master public key
mpk, the message bit µ, and a ciphertext attribute X ∈ A. It outputs a ciphertext ct.

KeyGen(msk,mpk, Y)→ skY : The key generation algorithm takes as input the master
secret key msk, the master public key mpk, and a key attribute Y ∈ B. It outputs a
private key skY .

Decrypt(mpk, ct, X, skY , Y)→ µ or ⊥: We assume that the decryption algorithm is
deterministic. The decryption algorithm takes as input the master public key mpk, a
ciphertext ct, ciphertext attribute X ∈ A, a private key skY , and private key attribute
Y . It outputs the message µ or ⊥ which represents that the ciphertext is not in a
valid form.

3 In more detail, we may map any input x ∈ {0, 1}∗ to x‖?, where ? is a special symbol, and
modify M so that we change the accepting state to be {|Q| + 1} and add edges from the
previous accepting state to |Q|+ 1, where edges are labelled with ?.

10 Shweta Agrawal, Monosij Maitra, and Shota Yamada

We require the standard correctness of decryption: for all λ, (mpk,msk) ←
Setup(1λ),X ∈ A, Y ∈ B such thatR(X,Y) = 1, and skY ← KeyGen(msk,mpk, Y),
we have Decrypt(mpk,Encrypt(mpk, µ,X), X, skY , Y) = µ.

Security. We now define the security for an ABE scheme Π by the following game
between a challenger and an attacker A.

– At first, the challenger runs the setup algorithm and gives mpk to A.
– Then A may adaptively make key-extraction queries. We denote this phase PHASE1.

In this phase, if A submits Y ∈ B to the challenger, the challenger returns skY ←
KeyGen(msk,mpk, Y).

– At some point, A outputs two equal length messages µ0 and µ1 and challenge
ciphertext attribute X? ∈ A. X? cannot satisfy R(X?, Y) = 1 for any attribute Y
such that A already queried private key for Y .

– Then the challenger flips a random coin β ∈ {0, 1}, runs Encrypt(mpk, µβ , X
?)→

ct? and gives challenge ciphertext ct? to A.
– In PHASE2, A may adaptively make queries as in PHASE1 with following added

restriction: A cannot make a key-extraction query for Y such that R(X?, Y) = 1.
– At last, A outputs a guess β′ for β.

We say that A succeeds if β′ = β and denote the probability of this event by PrABEA,Π .
The advantage of an attacker A is defined as AdvABEA,Π = |PrABEA,Π − 1

2 |. We say that Π
is adaptively secure if AdvABEA,Π is negligible for all probabilistic polynomial time (PPT)
adversary A.

Weaker Security Notions. A weaker notion called selective security can be defined as
in the above game with the exception that the adversary A has to choose the challenge
ciphertext attribute X? before the setup phase but private key queries Y1, . . . , Yk and
choice of (µ0, µ1) can still be adaptive. The stronger notion of semi-adaptive security
lets the adversary output the challenge ciphertext attribute X? after seeing the public key
but before making any key requests. The still weaker notion of very selective security
requires the adversary to output the challenge ciphertext attribute and private key queries
at the very start of the game. An intermediate notion to semi-adaptive and very selective,
which we term selective*, allows the adversary to receive the public parameters in the
first step, but it must specify the challenge ciphertext attribute and private key queries
after this step.

ABE for DFA. We then define ABE for DFA by specifying the relation. We define
ADFA = {0, 1}∗ and BDFA as the set of all DFA, also represented as strings over
{0, 1}∗. Furthermore, we define the relation RDFA = {ADFA × BDFA → {0, 1}} as
RDFA(x,M) =M(x).

An ABE scheme for the relation RDFA is said to be ABE for DFA. We further define
RDFA≤ = {ADFA ×BDFA → {0, 1}} as

RDFA≤(x,M) =M(x) ∧
(
|x|

?
≤ |Q|

)
,

where |Q| is the number of states in M . We also define RDFA> analogously.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 11

Unbounded ABE for MSP. Here, we define unbounded ABE for MSP. There
are distinctions between “single-use” and “multi-use” as well as “key-policy” and
“ciphertext-policy”. We first define multi-use key-policy unbounded ABE by specifying
the relation RMUKP. To do so, we set AMUKP := 2Z (i.e., the set of all subsets of
Z) and BMUKP as the set of monotone span programs on Zp for some prime p, and
RMUKP(S, (L, ρ)) = 1 iff the span program (L, ρ) accepts the set S ∈ AMUKP. An ABE
for RMUKP is said to be “multi-use key-policy unbounded ABE”.

We also define single-use key-policy unbounded ABE by specifying the relation
RSUKP. We set ASUKP := 2Z and BSUKP as the set of monotone span programs (L, ρ)
such that ρ is injective. We define RSUKP(S, (L, ρ)) = 1 iff the span program (L, ρ)
accepts the set S. Finally, we can define the ciphertext variant of the above ABE by
specifying RSUCP and RMUCP, where we set AxxCP = BxxKP and BxxCP = AxxKP for
xx ∈ {SU,MU} and define the relation analogously.

Unbounded ABE for MSP with polynomial-valued attributes. We can consider a
restricted variant of unbounded ABE for MSP where the value of attributes being used
is polynomially bounded. Here, we focus on the case of multi-use and key-policy case.
Other cases will be defined similarly. Here, we define AMUKP′ and BMUKP′ as

AMUKP′ =

{
(S, 1smax) : S ⊆ Z, smax = max

s∈S
|s|
}

and

BMUKP′ =

{
((L, ρ), 1ρmax) : (L, ρ) is a span program over Zp, ρmax = max

i∈[`]
|ρ(i)|

}
We define RMUKP′(S, (L, ρ)) := RMUKP(S, (L, ρ)). Here, the reason why we

append 1smax to S is somewhat technical. This is to enforce the adversary in the security
definition who declares S ∈ AMUKP′ as its target to choose attributes with polynomially
bounded values. Because of the similar reason, we append 1ρmax to (L, ρ).

For ease of readability in the remainder of the paper, we will overload notation
and denote AMUKP′ and BMUKP′ as AMUKP and BMUKP respectively. However, all our
constructions will satisfy the constraint of attribute values being polynomially bounded.

2.4 Embedding Lemma for ABE

Here, we introduce a useful lemma that describes a sufficient criterion for implication
from an ABE for a given predicate to an ABE for another predicate. The lemma is
introduced in [17] and later formally proven in [13]. The presentation here follows that
of [13] with some simplifications. The lemma is applicable to any relation family. We
consider two relation families:

RF : A×B → {0, 1}, RF′ : A′ ×B′ → {0, 1}.

Suppose that there exists two efficient mappings fe : A′ → A and fk : B′ → B which
map parameters, ciphertext attributes, and key attributes, respectively, such that for all
X ′ ∈ A′, Y ′ ∈ B′,

RF′(X ′, Y ′) = 1⇔ RF(fe(X
′), fk(Y

′)) = 1. (2.1)

12 Shweta Agrawal, Monosij Maitra, and Shota Yamada

We can then construct an ABE scheme Π ′ = {Setup′,Encrypt′,KeyGen′,Decrypt′}
for predicate RF′ from an ABE scheme Π = {Setup,Encrypt,KeyGen,Decrypt} for
predicate RF as follows. Let Setup′ = Setup and

Encrypt′(mpk, µ,X ′) = Encrypt(mpk, µ, fe(X
′)),

KeyGen′(msk,mpk, Y ′) = KeyGen(msk,mpk, fk(Y
′)),

and Decrypt′(mpk, ct, X ′, skY ′ , Y
′) = Decrypt(mpk, ct, fe(X

′), skY ′ , fk(Y
′)).

Lemma 1 (Embedding lemma [17, 13]). If Π is correct and secure, then so is Π ′.
This holds for very selective, selective, selective* and adaptive security.

Intuitively, the forward and backward direction of Relation (2.1) ensure that the
correctness and the security are preserving, respectively.

3 Attribute-based Encryption for DFA

We construct an ABE scheme for DFA denoted by dfaABE = (dfaABE.Setup,
dfaABE.KeyGen, dfaABE.Enc, dfaABE.Dec). Following the notation of Section 2, we
achieve this by constructing an ABE scheme for the relation RDFA = {ADFA ×BDFA →
{0, 1}} which is defined as RDFA(x,M) = M(x). Recall that ADFA is the set of all
input strings and BDFA is the set of all DFA. Let |Q| be the number of states in M . As
described in Section 1, our construction relies on two special ABE for DFA as follows:

1. An ABE denoted by dfaABE≤ for the relation RDFA≤ = {ADFA×BDFA → {0, 1}}
defined as:

RDFA≤(x,M) =M(x) ∧
(
|x|

?
≤ |Q|

)
2. An ABE denoted by dfaABE> for the relation RDFA> = {ADFA×BDFA → {0, 1}}

defined as:
RDFA>(x,M) =M(x) ∧

(
|x|

?
> |Q|

)
It is easy to see that given constructions for dfaABE≤ and dfaABE>, we may

construct dfaABE simply by running them in parallel. This intuition is formalized in
Section 3.1.

Then, it suffices to construct the ingredients dfaABE≤ and dfaABE> – we do so
by leveraging existing constructions of unbounded kpABE and cpABE for monotone
span programs. Since the intuition was discussed in Section 1, we directly provide the
constructions in Section 3.2 and Section 3.3 respectively.

3.1 Construction of dfaABE

Below, we describe the construction of our ABE for DFA formally. We denote our
construction as dfaABE.

dfaABE.Setup(1λ): On input the security parameter 1λ, do the following:

Attribute Based Encryption for Deterministic Finite Automata from DLIN 13

1. Invoke dfaABE≤.Setup(1λ) and dfaABE>.Setup(1λ) to obtain
(dfaABE≤.mpk, dfaABE≤.msk) and (dfaABE>.mpk, dfaABE>.msk) respec-
tively.

2. Output dfaABE.mpk = (dfaABE≤.mpk, dfaABE>.mpk) and dfaABE.msk =
(dfaABE≤.msk, dfaABE>.msk).

dfaABE.Enc(dfaABE.mpk, µ,x): On input the master public key dfaABE.mpk, a
message bit µ, and an attribute x ∈ ADFA of unbounded polynomial length (i.e.,
bounded by 2λ), do the following:
1. Compute ct1 = dfaABE≤.Enc(dfaABE≤.mpk, µ,x).
2. Compute ct2 = dfaABE>.Enc(dfaABE>.mpk, µ,x).
3. Output (ct1, ct2).

dfaABE.KeyGen(dfaABE.msk, dfaABE.mpk,M): On input the master secret key
dfaABE.msk, the description of a DFA M ∈ BDFA do the following:
1. Compute sk1 = dfaABE≤.KeyGen(dfaABE≤.msk, dfaABE≤.mpk,M).
2. Compute sk2 = dfaABE>.KeyGen(dfaABE>.msk, dfaABE>.mpk,M).
3. Output (sk1, sk2).

dfaABE.Dec(dfaABE.mpk, dfaABE.ct,x, dfaABE.skM ,M): On input a ciphertext
encoded under attribute x and a secret key for DFA M , proceed as follows. Let |Q|
be the number of states in the machine M .
1. If |x| ≤ |Q|, compute µ1 ← dfaABE≤.Dec(dfaABE≤.mpk, ct1,x, sk1,M)

and output it.
2. If |x| > |Q|, compute µ2 ← dfaABE>.Dec(dfaABE>.mpk, ct2,x, sk2,M)

and output it.

Correctness. Correctness follows directly from the correctness of the ingredient schemes
dfaABE≤ and dfaABE>, where the former is invoked for the case that |x| ≤ |Q| and
the latter otherwise.

Security. Security of the scheme dfaABE follows directly from the security of dfaABE≤

and dfaABE>. In more detail, we have:

Theorem 8. Assume that dfaABE≤ and dfaABE> are ABE schemes for relations
RDFA≤ and RDFA> respectively, that satisfy selective/selective*/adaptive security. Then,
dfaABE is an ABE scheme for relation RDFA that satisfies selective/selective*/adaptive
security.

The proof is straightforward: for the case that |x|≤|Q|, the theorem follows from security
of dfaABE≤, otherwise from the security of dfaABE>.

3.2 Construction of dfaABE≤

In this section, we construct the ABE scheme dfaABE≤ for the relation RDFA≤ =

{ADFA × BDFA → {0, 1}} where RDFA≤(x,M) = M(x) ∧
(
|x|

?
≤ |Q|

)
. Our

construction is built from the following ingredients:

14 Shweta Agrawal, Monosij Maitra, and Shota Yamada

1. An ABE scheme for the relation RMUKP : AMUKP ×BMUKP → {0, 1}. Recall from
Section 2, that AMUKP := 2Z is the set of attributes, BMUKP is the set of monotone
span programs and RMUKP(S, (L, ρ)) = 1 iff the span program (L, ρ) accepts the
set S ∈ AMUKP. We denote such a scheme as kpABE, and construct it in Section
5.2.

2. A map fKPe : ADFA → AMUKP and a map fKPk : BDFA → BMUKP so that
RMUKP(Sx, (LM , ρM)) = 1 iff RDFA≤(x,M) = 1, where Sx = fKPe (x) and
(LM , ρM) = fKPk (M). These maps are constructed in Section 4.1.

The scheme dfaABE≤ is then defined as follows.

dfaABE≤.Setup(1λ): On input the security parameter 1λ, do the following:
1. Invoke kpABE.Setup(1λ) to obtain (kpABE.mpk, kpABE.msk).
2. Output dfaABE≤.mpk = kpABE.mpk and dfaABE≤.msk = kpABE.msk.

dfaABE≤.Enc(dfaABE≤.mpk, µ,x): On input the master public key dfaABE≤.mpk,
a message bit µ, and an attribute x ∈ ADFA of unbounded polynomial length (i.e.
length at most 2λ), do the following:
1. Convert x to attribute Sx by computing Sx = fKPe (x) as described in Section

4.1.
2. Compute ct = kpABE.Enc(kpABE.mpk, µ, Sx) and output it.

dfaABE≤.KeyGen(dfaABE≤.msk, dfaABE≤.mpk,M): On input the master secret key
dfaABE≤.msk, the description of a DFA M ∈ BDFA do the following:
1. Convert M into an MSP (LM , ρM) by computing (LM , ρM) = fKPk (M) as

described in Section 4.1.
2. Compute skM = kpABE.KeyGen

(
kpABE.msk, kpABE.mpk, (LM , ρM)

)
and

output it.

dfaABE≤.Dec(dfaABE≤.mpk, dfaABE≤.ct,x, dfaABE≤.skM ,M): On input a ci-
phertext encoded under attribute x and a secret key for DFA M :
1. Compute Sx = fKPe (x) and (LM , ρM) = fKPk (M) as described in Section 4.1.
2. Compute µ← kpABE.Dec

(
kpABE.mpk, kpABE.ct, Sx, skM , (LM , ρM)

)
and

output it.

Correctness and Security. Correctness and security follow directly from the “embedding
lemma” (Lemma 1) provided in Section 2 by setting

A′ = ADFA, B′ = BDFA, RF
′
= RDFA≤,

A = AMUKP, B = BMUKP, RF = RMUKP

In more detail, we have the following theorem.

Theorem 9. Assume that kpABE is an ABE scheme for relation RMUKP satisfying
selective/selective*/adaptive security. Then, dfaABE≤ is an ABE scheme for relation
RDFA≤ satisfying selective/selective*/adaptive security.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 15

3.3 Construction of dfaABE>

In this section, we construct the ABE scheme dfaABE> for the relation RDFA> =

{ADFA × BDFA → {0, 1}} where RDFA>(x,M) = M(x) ∧
(
|x|

?
> |Q|

)
. Our

construction is built from the following ingredients:

1. An ABE scheme for the relation RMUCP : AMUCP ×BMUCP → {0, 1}. Recall from
Section 2, that AMUCP is the set of all monotone span programs, BMUCP is the set of
attributes and RMUCP((L, ρ), S) = 1 iff the span program (L, ρ) ∈ AMUCP accepts
the set S ∈ BMUCP. We denote such a scheme as cpABE, and construct it in Section
5.4.

2. A map fCPe : ADFA → AMUCP and a map fCPk : BDFA → BMUCP so that
RMUCP((Lx, ρx), SM) = 1 iff RDFA>(x,M) = 1, where (Lx, ρx) = fCPe (x)
and SM = fCPk (M). These maps are constructed in Section 4.2.

The scheme dfaABE> is then defined as follows.

dfaABE>.Setup(1λ): On input the security parameter 1λ, do the following:
1. Invoke cpABE.Setup(1λ) to obtain (cpABE.mpk, cpABE.msk).
2. Output dfaABE>.mpk = cpABE.mpk and dfaABE>.msk = cpABE.msk.

dfaABE>.Enc(dfaABE>.mpk, µ,x): On input the master public key dfaABE>.mpk,
a message µ, and an attribute x ∈ ADFA of unbounded polynomial length (i.e. length
at most 2λ), do the following:
1. Convert x to MSP (Lx, ρx) by computing (Lx, ρx) = fCPe (x) as described in

Section 4.2.
2. Compute ct = cpABE.Enc(cpABE.mpk, µ, (Lx, ρx)) and output it.

dfaABE>.KeyGen(dfaABE>.msk, dfaABE>.mpk,M): On input the master secret key
dfaABE>.msk, the description of a DFA M do the following:
1. Convert M into an attribute SM by computing SM = fCPk (M) as described in

Section 4.2.
2. Compute sk = cpABE.KeyGen(cpABE.msk, cpABE.mpk, SM) and output it.

dfaABE>.Dec(dfaABE>.mpk, dfaABE>.ct,x, dfaABE>.skM ,M): On input a ci-
phertext encoded under attribute x and a secret key skM for DFA M :
1. Compute (Lx, ρx) = fCPe (x) and SM = fCPk (M) as described in Section 4.2.
2. Compute µ ← cpABE.Dec(cpABE.mpk, cpABE.ct, (Lx, ρx), skM , SM) and

output it.

Correctness and Security. Correctness and security follow exactly as in Section 3.2,
by considering the maps defined in Section 4.2 instead of Section 4.1. In more detail,
we have the following theorem:

Theorem 10. Assume that cpABE is an ABE scheme for relation RMUCP satisfying
selective/selective*/adaptive security. Then, dfaABE> is an ABE scheme for relation
RDFA> satisfying selective/selective*/adaptive security.

16 Shweta Agrawal, Monosij Maitra, and Shota Yamada

4 Mapping DFA Computation to Monotone Span Programs

In this section we will describe how to encode DFA computation over a binary alphabet
Σ = {0, 1} into a monotone span program (MSP). Section 4.1 shows the encoding
procedure for any DFA machine to a MSP and further how to encode its input to a set
of attributes associated with the MSP. In a dual view, Section 4.2 shows the encoding
procedure for any input string to a MSP while encoding the DFA machine itself as a set
of attributes associated with the MSP. For both sections, we denote any DFA machine as
M = (Q,Σ, T, qst, F) and x ∈ Σ∗ as its input of arbitrary (polynomial) length.

4.1 Encoding Deterministic Finite Automata to Monotone Span Programs

In this section, we construct two efficiently computable functions (please see Section 2
for the notation):

1. fKPe : ADFA → AMUKP to encode w ∈ ADFA as a set of attributes Sw ∈ AMUKP,
and

2. fKPk : BDFA → BMUKP to encode M ∈ BDFA into a MSP (LM , ρM) ∈ BMUKP.

We argue thatRMUKP(Sw, (LM , ρM)) = 1 iffRDFA≤(w,M)=1, where Sw = fKPe (w)
and (LM , ρM) = fKPk (M).

For ease of exposition, we represent the universe of attributes in the following form:

AMUKP := {“xi = b” | i ∈ [2λ], b ∈ {0, 1}} ∪ {“String length = i” | i ∈ [2λ]} ∪ {“Dummy”}.

We assume that these attributes are embedded into Z via an injective mapping such as

“Dummy” 7→ 0, “xi = b” 7→ 3i+ b “String length = i” 7→ 3i+ 2.

However, for maintaining intuitive notation, we make the mapping implicit. An input
string w = (w1, . . . , w`) ∈ ADFA of length ` is encoded to a set of attributes given by
fKPe (w) = Sw ∈ AMUKP as:

Sw := {“Dummy”} ∪ {“xi = wi” | i ∈ [`]} ∪ {“String length = `”}.

When we represent Sw as a set of integers, we have Sw ⊆ [0, 4`] and thus in particular,
all the values in Sw are bounded by poly(`).

A DFA machine M = (Q,Σ, T, qst, F) ∈ BDFA is encoded into a MSP given by
fKPk (M) = (LM , ρM) ∈ BMUKP. Here LM ∈ {0,±1}R×C with R = 1 + (2 · |Q| +
1) · |Q| and C = 1 + |Q|+ |Q|2. The label map ρM will be implicit in the description
of the matrix LM . Before providing the construction of LM , we define the following
sub-matrices useful in the construction:

– matrix IQ denoting the |Q| × |Q| identity matrix, and

Attribute Based Encryption for Deterministic Finite Automata from DLIN 17

– matrices Y(b) ∈ {0,−1}|Q|×|Q|,∀b ∈ {0, 1} defined as Y(b) :=
[
y
(b)
i,j

]
such that:

y
(b)
i,j = −1, if T (i, b) = j (i.e. there is a transition from state i to state j upon input b)

= 0, otherwise

We also denote 0Q×Q to be the all-zero matrix of size |Q| × |Q| and 0Q as the column-
vector of size |Q| containing all 0s.

We define LM and the map ρM in Table 2.
We observe that maxi ρM (i) ≤ 4|Q|, where we regard the attributes as integers

through the aforementioned injective mapping. In particular, LM is associated with
attributes bounded by poly(|Q|).

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x1 = 0” 7→ 0Q IQ Y(0) 0Q×Q . . . 0Q×Q 0Q×Q

“x1 = 1” 7→ 0Q IQ Y(1) 0Q×Q . . . 0Q×Q 0Q×Q

“x2 = 0” 7→ 0Q 0Q×Q IQ Y(0) . . . 0Q×Q 0Q×Q

“x2 = 1” 7→ 0Q 0Q×Q IQ Y(1) . . . 0Q×Q 0Q×Q

...
...

...
...

...
. . .

...
...

“x|Q| = 0” 7→ 0Q 0Q×Q 0Q×Q 0Q×Q . . . IQ Y(0)

“x|Q| = 1” 7→ 0Q 0Q×Q 0Q×Q 0Q×Q . . . IQ Y(1)

“String length = 1” 7→ 0 0 . . . 0 0 . . . 01

“String length = 2” 7→ 0 0 . . . 00 0 . . . 01
...

...
. . .

“String length = |Q|” 7→ 0 0 . . . 00 0 . . . 01

Table 2. Encoding a DFA M to matrix LM

The last |Q| rows pertaining to attributes “String length = i”, i ∈ [|Q|] is a |Q| × C
submatrix containing all zeros except specific locations filled with 1s in a diagonal form
as shown. We prove the following theorem.

Theorem 11. Let LM,w be the submatrix of LM restricted to the rows selected by
attribute set Sw (please see Definition 2.1). Then, for any DFA M = (Q,Σ, T, qst, F) ∈
BDFA and any input w ∈ ADFA we have e1 ∈ span(L>M,w) iff (M(w) = 1∧|w| ≤ |Q|).

18 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Proof. We first prove “if” direction. For any w ∈ ADFA with |w| = ` ≤ |Q|, the
submatrix LM,w of LM restricted by Sw is shown in Table 3.

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x1 = w1” 7→ 0Q IQ Y(w1)

“x2 = w2” 7→ 0Q IQ Y(w2)

...
...

. . .

“x` = w`” 7→ 0Q IQ Y(w`)

“String length = `” 7→ 0 0 . . . 0 0 . . . 01

Table 3. Submatrix LM,w defined by Sw and LM

Since M is a DFA, the matrix Y(b) will always have exactly one “−1” in each of
its rows. Let w = (w1, . . . , w`). To prove the theorem, we give an algorithm which
constructs a subset of rows L̂M,w of LM,w inductively that sums up to e1 iff M(w) = 1.
The algorithm proceeds as follows:

On input (M,w,LM,w), it does the following:

1. Initialize L̂M,w with the first row of LM,w labelled with attribute “Dummy”.
2. For i ∈ [`], do the following:

(a) If i = 1, populate L̂M,w with second row of LM,w labelled with “x1 = w1”.
Discard the remaining |Q| − 1 rows in the block labelled with “x1 = w1”.
For the chosen row, let k1 ∈ Q be such that T (1, w1) = k1. By construction
this implies y(w1)

1,k1
= −1 in Y(w1).

(b) If i ∈ [2, `], choose the ki−1-th row in the block labelled with “xi = wi” and
add it to L̂M,w. Discard the remaining |Q| − 1 rows in the block labelled with
“xi = wi”.
For the chosen row, let ki ∈ Q be such that T (ki−1, wi) = ki. By construction
this implies y(wi)

ki−1,ki
= −1 in Y(wi).

3. Add the row labelled “String length = `” to L̂M,w. Output L̂M,w and terminate.

It is easy to see that the above algorithm always terminates. The first two rows of LM,w

labelled with attributes “Dummy” and “x1 = w1” are chosen in Step 1 and Step 2(a)
of the above algorithm respectively. The last row is chosen in a natural way in Step 3
based on the length of the input string.

Aside from these, note that the way the remaining rows are added to L̂M,w is
governed by the transition function T of the DFA M . Essentially, the computation of

Attribute Based Encryption for Deterministic Finite Automata from DLIN 19

L̂M,w mirrors the computation of M on input w. In particular, the order in which the
rows are selected iteratively in Step 2 always follow a loop invariant: at the end of the
i-th iteration the chosen rows sum to a vector vi = (1, 0, . . . , 0,−1, 0, . . . , 0), where
−1 appears exactly at the ki-th position associated with the |Q| × |Q|-sized block matrix
Y(wi). Hence, when M(w) = 1 with |w| = `, the vectors in L̂M,w at the end of the
Step 2 sum to v` = (1, 0, . . . , 0,−1). Here −1 is at position |Q| associated with Y(w`)

and is also the final state of M . By construction of LM,w, it follows that the last row
selected in Step 3 labelled with “String length = `” when added to v` results to e1, as
intended.

We then prove “only if” direction. For any w = (w1, . . . , w`) ∈ Σ` such that
M(w) 6= 1 and ` ≤ |Q|, note that the description of LM,w forces the first two
rows corresponding to attributes “Dummy” and “x1 = w1” to be chosen to build
e1 progressively. For i ∈ [2, ` − 1], let ki−1, ki ∈ Q be such that y(wi)

ki−1,ki
= −1 in

Y(wi). Consequently, the only choice left for selecting the next row further to nullify
the −1 in y(wi)

ki−1,ki
is restricted to the ki-th row in the block labelled with “xi+1 = wi+1”

which again forces the emulation of M ’s computation on input w. Since M(w) 6= 1,
the sum of all the rows at the end of the `-th iteration cannot have a “− 1” in its |Q|th
position. When added to the row labelled “String length = `”, this does not yield e1 as
desired.

We then consider w = (w1, . . . , w`) ∈ Σ` such that ` > |Q|. In this case, the matrix
LM,w does not have the last row in Table 3. Therefore, we cannot nullify “−1” that
appears in the rightmost block as a result of enforced emulation of M ’s computation.
Therefore, we cannot obtain e1 as desired.

4.2 Encoding DFA Input Strings to Monotone Span Programs

In this case the DFA machine M is encoded into a set of attributes SM from an
appropriately defined attribute universe while the input string x ∈ Σ∗ will be encoded
to a MSP (Lx, ρx).

We construct two efficiently computable functions:

1. fCPe : ADFA → AMUCP to encode x ∈ ADFA into a MSP (Lx, ρx) ∈ AMUCP.
2. fCPk : BDFA → BMUCP to encode M ∈ BDFA as a set of attributes SM ∈ BMUCP.

We argue that RMUCP(SM , (Lx, ρx)) = 1 iff RDFA>(x,M)=1, where SM = fCPk (M)
and (Lx, ρx) = fCPe (x).

For ease of exposition, we represent the universe of attributes as follows:

BMUCP := {(b, i, j) | b ∈ {0, 1}, i, j ∈ [2λ]}∪{“Size = s” | s ∈ [2λ]}∪{“Dummy”}.

We assume that these attributes are embedded into Z via an injective mapping such as

“Dummy” 7→ 0, “(b, i, j)” 7→ 4((i+ j)2 + j) + 2b “Size = s” 7→ 2s+ 1,

But for maintaining intuitive notation, we make the mapping implicit.

20 Shweta Agrawal, Monosij Maitra, and Shota Yamada

A DFA M = (Q,Σ, T, qst, F) ∈ BDFA is encoded as a set of attributes given by
fCPk (M) = SM ∈ BMUCP as:

SM := {“Dummy”} ∪ {(b, i, j) ∈ Σ ×Q2 | T (i, b) = j} ∪ {“Size = |Q|”}.

When we represent SM as a set of integers, we have SM ⊆ [0, 20|Q|2] and thus in
particular, all the values in SM are bounded by poly(|Q|).

An input string x = (x1, . . . , x`) ∈ ADFA of length ` is encoded into a MSP given
by fCPe (x) = (Lx, ρx) ∈ AMUCP. Here Lx ∈ {0,±1}R×C with R = 1 + `3 + ` and
C = 1 + `+ `2. The label map ρx will be implicit in the description of the matrix Lx.
Before providing the construction of Lx, we define the following sub-matrices useful in
the construction:

– matrix I` denoting the `× ` identity matrix and a column-vector g` = (1, . . . , 1)︸ ︷︷ ︸
`

>

– matrices S` and T` such that

S` := I` ⊗ g` =


g` 0` . . . 0`

0` g` . . . 0`
...

...
. . .

...

0` 0` . . . g`


`2×`

,where 0` is the all-zero column-vector of size `

and T` = −g` ⊗ I` = [−I`‖ . . . ‖ − I`]
> of size `2 × `.

For a fixed b ∈ {0, 1}, we say “associate [S`‖T`] with b”4 when we label the rows of
[S`‖T`] as shown in Table 4.

(b, 1, 1) 7→
g` 0` . . . 0` −I`...

(b, 1, `) 7→
(b, 2, `) 7→

0` g` . . . 0` −I`...
(b, 2, `) 7→

...
...

...
. . .

...
...

(b, `, 1) 7→
0` 0` . . . g` −I`...

(b, `, `) 7→

Table 4. Submatrix [S`‖T`] with its row label map

4 For brevity, we express this as b⇔ [S`‖T`] in the final description of Lx.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 21

We also denote 0`2 , 0`2×` and 0`×` to be all-zero column-vector of size `2 and
all-zero matrices of size `2 × ` and `× ` respectively. We now define Lx with its rows
labelled with attributes as specified in Table 5.

We observe that we have maxi ρx(i) ≤ 20`2, where we regard the attributes as
integers through the aforementioned injective mapping. In particular, Lx is associated
with attributes bounded by poly(`).

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

x1 ⇔ 0`2 S` T` 0`2×` . . . 0`2×` 0`2×`

x2 ⇔ 0`2 0`2×` S` T` . . . 0`2×` 0`2×`

...
...

...
...

...
. . .

...
...

x` ⇔ 0`2 0`2×` 0`2×` 0`2×` . . . S` T`

“Size = 1” 7→ 0

0`×` 0`×` 0`×` . . . 0`×` I`...
...

“Size = `” 7→ 0

Table 5. Encoding a string x to matrix Lx

The last ` rows pertaining to attributes “Size = i”, i ∈ [`] is a ` × C submatrix
containing all zeros except an identity matrix block I` located under the rightmost T`

with its i-th row labelled with attribute “Size = i”,∀i ∈ [`]. We show the following.

Theorem 12. Let LM,x be the submatrix of Lx restricted to the rows selected by the set
SM (please see Definition 2.1). Then, for any DFA M = (Q,Σ, T, qst, F) ∈ BDFA and
any input x ∈ ADFA we have e1 ∈ span(L>M,x) iff

(
M(x) = 1 ∧ |x| ≥ |Q|

)
.

Proof. We first remove all the all-zero columns from LM,x and call the remaining matrix
as LM,x w.l.o.g. since these columns do not influence on whether e1 ∈ span(L>M,x) or
not. This simplification ensures that LM,x is given as shown in Table 6. Note that the
rows present in LM,x is governed by the transition function, T of M (via the row labels
in Lx). We also note that the last row in Table 6 will be missing if we have |x| < |Q|.
Therefore, the matrix Y(b) here is the same as that was defined in Section 4.1. Hence,
the proof follows identically to that of Theorem 11.

5 Instantiating the Ingredients

Here, we instantiate the necessary ingredients for our construction, namely ABE schemes
for the relations RMUKP (i.e., multi-use key-policy unbounded ABE with polynomial

22 Shweta Agrawal, Monosij Maitra, and Shota Yamada

“Dummy” 7→ 1 -10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

x1 ⇔ 0Q IQ Y(x1)

x2 ⇔ 0Q IQ Y(x2)

...
...

. . .

x` ⇔ 0Q IQ Y(x`)

“Size = |Q|” 7→ 0 0 . . . 0 0 . . . 01

Table 6. Submatrix LM,x defined by SM and Lx

valued attributes) and RMUCP (i.e., multi-use ciphertext-policy unbounded ABE with
polynomial valued attributes). For both key-policy and ciphertext-policy cases, we
essentially use schemes from [22], but with the modification that we allow unbounded
multi-use of the same attribute in an MSP, which is essential for our purpose. Due to
this modification, we can no longer prove the adaptive security of the scheme from the
MDDHk assumption as was done by [22]. However, we can still prove semi-adaptive
security from the same assumption for the key-policy case and selective* security from
the DLIN assumption for the ciphertext-policy case (please see Section 2.3 for the
definitions).

5.1 Preliminaries

Here, we recap necessary notations and definitions for this section following [22].

Notation on Bilinear Maps. A bilinear group generator takes as input 1λ and outputs a
group description G = (p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2, and
GT are cyclic groups of order p, and e : G1 ×G2 → GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2, and GT as well as the bilinear map
e can be efficiently computed. We employ the implicit representation of group elements:
for a matrix A over Zp, we define [A]1 := gA1 , [A]2 := gA2 , [A]T := gAT , where
exponentiation is carried out component-wise. We also let e([A]1, [B]2) = [AB]T for
[A]1 and [B]2.

Here, we define the decisional linear assumption (DLIN) and the MDDHk
assumption.

Definition 1 (Decisional linear assumption.). We say that the DLIN assumption holds
on G if we have

(G, [x1]1, [x2]1, [x1y1]1, [x2y2]1, [y1+y2]2) ≈c (G, [x1]1, [x2]1, [x1y1]1, [x2y2]1, [Φ]2)

for x1, x2, y1, y2 ← Zp and Φ← Zp.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 23

Definition 2. Let k ≥ 1 be an integer. We say that the MDDHk assumption holds on
G1 if we have

(G, [B]1, [Bs]1) ≈c (G, [B]1, [t]1)

for B← Z(k+1)×k
p , s← Zkp , and t← Zk+1

p .

The MDDHk assumption on G2 can be defined in an analogous way. As Escala et. al
[30] showed, the MDDHk assumption on a group is implied by the k-Lin assumption
on the same group.

We also recall the following statistical lemma.

Lemma 2 (Adapted from Lemma 1 in [22]). Let L := Z`×mp be a matrix and {δj ∈
{0, 1}}j∈[`] be a set of binary integers such that the vector (1, 0, . . . , 0)> is not in
span({L>j }j:δj=1). Then, the following distributions are the same:

{(0‖k′)L>j + rjδj}j∈[`] ≈ {(1‖k′)L>j + rjδj}j∈[`],

where k′ ← Zm−1p is a row vector and rj ← Zp.

5.2 The Construction of Ingredient KP-ABE

Here, we provide an ABE scheme for RMUKP, denoted by kpABE. The construction is
essentially the same as the unbounded KP-ABE given in [22] with the modification that
we allow unbounded multi-use of the same attribute in an MSP.

Setup(1λ): On input 1λ, sample

A1 ← Z(2k+1)×k
p ,B← Z(k+1)×k

p ,W,W0,W1 ← Z(2k+1)×(k+1)
p ,k← Z2k+1

p

and output

mpk :=
(
[A>1 ,A

>
1 W,A>1 W0,A

>
1 W1]1, e([A

>
1]1, [k]2)

)
∈ Gk×(2k+1)

1 ×(Gk×(k+1)
1)3×GkT

and
msk := (k,B,W,W0,W1).

Enc(mpk, (S, 1smax), µ): On input an attribute set S = {s1, . . . , s`} ⊂ Z, and µ ∈ GT ,
pick c, cs ← span(A1) for s ∈ S and output

ctS :=

(
C0 = [c>]1, C := e([c]>, [k]2) · µ,{

C1,s := [c>W + c>s (W0 + sW1)]1, C2,s := [c>s]1
}
s∈S

)
.

KeyGen(msk,mpk, ((L, ρ), 1ρmax)): On input a monotone span program (L ∈ Z`×mp , ρ),

pick K′ ← Z(2k+1)×(m−1)
p , dj ← span(B) for all j ∈ [`] and output

sk(L,ρ) :=

{ K0,j := [(k‖K′)L>j +Wdj]2,

K1,j := [dj]2, K2,j := [(W0 + ρ(j)W1)dj]2

}
j∈[`]

 ,

where Lj is the j-th row of L.

24 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Dec(mpk, ct, (S, 1smax), sk(L,ρ), ((L, ρ), 1
ρmax)): Since S satisfies (L, ρ), one can

compute {ωj} such that ∑
j:ρ(j)∈S

ωjLj = (1, 0, . . . , 0).

Then, compute

K =
∏

j:ρ(j)∈S

(
e(C0,K0,j)e(C1,ρ(j),K1,j)

−1e(C2,ρ(j),K2,j)
)ωj

and retrieve the message by C/K.

Correctness. For j such that ρ(j) ∈ S, we have

e(C0,K0,j)e(C1,ρ(j),K1,j)
−1e(C2,ρ(j),K2,j)

= e([c>]1, [(k‖K′)L>j +Wdj]2) · e([c>W + c>j (W0 + ρ(j)W)]1, [dj]2)
−1

·e([c>j], [(W0 + ρ(j)W1)dj]2)

= [c>(k‖K′)L>j]T .

The correctness readily follows from the following equation.

K =
∏

j:ρ(j)∈S

[ωjc
>(k‖K′)L>j]T = [c>(k‖K′)

∑
j:ρ(j)∈S

ωjL
>
j]T = [c>k]T .

5.3 Security Proof

Here, we prove the semi-adaptive security of the construction in Section 5.2. To do so,
we first recall a special case of the prime-order entropy expansion lemma from [22].

Lemma 3 (Lemma 12 from [22]). Pick basis (A1,a2,A3)← Z(2k+1)×k
p × Z2k+1

p ×
Z(2k+1)×k
p and define its dual (A‖1,a

‖
2,A

‖
3) such that A>i Aj = I if i = j and A>i Aj =

0 otherwise, where we set A2 := a2. With B ← Z(k+1)×k
p and for any polynomially

bounded n ∈ N, we have
aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c>]1, [c
>W + c>s (W0 + sW1)]1, [c

>
s]1

sk : [WDs]2, [Ds]2, [(W0 + sW1)Ds]2


s∈[n]

c
≈


aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c
>
]1, [c

>
(W + V

(2)
s) + cs

>
(W0 + sW1 + U

(2)
s)]1, [cs

>
]1

sk : [(W + V
(2)
s)Ds]2, [Ds]2, [(W0 + sW1 + U

(2)
s)Ds]2


s∈[n]

,

under the MDDHk assumption on G1 and G2, where W,W0,W1 ← Z(2k+1)×(k+1)
p ,

U
(2)
s ,V

(2)
s ← spank+1(a

‖
2), Ds ← spank+1(B), and c, cs ← span(A1) in the left

distribution while c, cs ← span(A1,a2) in the right distribution.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 25

We then state the following theorem. The proof is similar to that of [22], but since
certain information theoretic step in [22] does not work in the multi-use setting, we
modify the proof so that we decompose the secret key into smaller pieces and gradually
change the distribution of them by a carefully chosen sequence of hybrid games. Since it
is essential for the simulator to know the challenge attribute S in these hybrid games, we
can only prove semi-adaptive security instead of adaptive security.

Theorem 13. The ABE scheme for relationRMUKP (i.e., multi-use key-policy unbounded
ABE with polynomial valued attributes) in Section 5.2 is semi-adaptively secure under
the MDDHk assumption.

Proof. To prove the theorem, we define various forms of ciphertext (of message µ under
attribute S).

Normal: A normal ciphertext is generated by Enc. In particular, c, cs ← span(A1).
E-normal: This is the same as normal ciphertext except that c, cs ← span(A1,a2)

and we use the following substitution:

W 7→ V̂s := W+V(2)
s in the s-th component and W0+sW1 7→ Ûs := W0+sW1+U(2)

s

where U
(2)
s ,V

(2)
s ← spank+1(a

‖
2). Concretely, an E-normal ciphertext is of the

form

ctS :=

(
[c>]1,

{
[c> V̂s + c>s Ûs]1, [c

>
s]1

}
s∈S

, e([c]>, [k]2) · µ
)
,

where c, cs ← span(A1,a2) .

We then define various forms of keys (for span program L).

Normal. A normal key is generated by KeyGen.
E-normal: An E-normal key skL,ρ = {K0,j ,K1,j ,K2,j}j∈[`] is sampled as

skL,ρ :=

({
[(k‖K′)L>j + V̂ρ(j) dj]2, [dj]2, [Ûρ(j) dj]2

}
j∈[`]

)
.

Here, di ← span(B) and K′ ← Z(2k+1)×(m−1)
p are sampled freshly for every key

generation. On the other hand, we use the same Ûs and V̂s that are used when
generating the E-normal challenge ciphertext.

SF: An SF key skL,ρ = {K0,j ,K1,j ,K2,j}j∈[`] is sampled as

(K0,j ,K1,j ,K2,j) :=
(
[(k+ αa

‖
2 ‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) ∈ S(

[(k+ αa
‖
2 ‖K′)L>j + V̂ρ(j)dj + rja

‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) 6∈ S

26 Shweta Agrawal, Monosij Maitra, and Shota Yamada

where rj ← Zp , dj ← span(B), K′ ← Z(2k+1)×(m−1)
p and S is the attribute

associated with the challenge ciphertext. We note that S is well-defined when
generating a secret key because we are in the semi-adaptive security game. We
sample fresh dj and rj for every key generation, while we use the same α ← Zp
throughout the game. We also note that we use the same Ûs and V̂s that are used
for generating the E-normal challenge ciphertext.

We define the following sequence of games to prove the security. Let the number of key
generation queries made by an adversary be q.

Game0: This is the real security game for semi-adaptive security where all ciphertexts
and keys are normal.

Game0′ : In this game, we change the challenge ciphertext and all keys to be E-normal
ones.

Gamei? : In this game, the challenge ciphertext and the first i? − 1 secret keys given to
the adversary are SF, while rest of the secret keys are E-normal.

GameFinal: This is the same as Gameq+1 except that the challenge ciphertext is a
E-normal one for a random message in GT .

Let us fix a PPT adversary A and denote the advantage of A in Gamexx by Advxx. We
can easily see that Game0′ = Game1 and AdvFinal = 0. Therefore, to complete the
proof of Theorem 13, it suffices to prove Lemma 4, 5, and 6 in the following.

Lemma 4. Under the MDDHk assumption on G1 and G2, we have |Adv0 − Adv0′ | =
negl(λ).

Proof. For the sake of contradiction, we assume that A distinguishes Game0 and
Game0′ with non-negligible advantage and show that we can construct another
adversary B that distinguishes the two distributions in Lemma 3 with the same advantage.
By the same lemma, this implies an adversary against MDDHk with non-negligible
advantage. Let n be the upper bound on the running time of A. On input

aux : [A>1]1, [A
>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [C0]1, [C1,s]1, [C2,s]1

sk : [K0,s]2, [K1,s]2, [K2,s]2


s∈[n]

,

B proceeds as follows.

Setup. It samples k ← Z2k+1
p and give mpk := (aux, e([A>1]1, [k]2)) to A. Then, A

declares its target (S, 1smax) to B.

Ciphertext. WhenA asks for the challenge ciphertext with respect to messages (µ0, µ1),
B samples β ← {0, 1} and sets the challenge ciphertext as

ctS := {[C0]1, {[C1,s]1, [C2,s]1}s∈S , e([C0]1, [k]2) · µβ} .

Note that since n ≥ smax = maxs∈S |s|, A can simulate the challenge ciphertext using
the given terms.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 27

Secret Keys. When A asks for the secret key for ((L ∈ Z`×mp , ρ), 1ρmax), B samples

K′ ← Z(2k+1)×(m−1)
p and d̃j ← Zk+1

p for j ∈ [`] and sets

sk(L,ρ) :=
{
[(k‖K′)L>j +K0,ρ(j)d̃j]2, [K1,ρ(j)d̃j]2, [K2,ρ(j)d̃j]2

}
j∈[`]

,

where we implicitly set dj := Dρ(j)d̃j , which is uniformly distributed over span(B).
Note that since n ≥ ρmax = maxj∈[`] |ρ(j)|, A can simulate the challenge ciphertext
using the given terms.

Guess. When A halts with output β′, B outputs 1 if β′ = β and 0 otherwise.

Observe that when B’s input is from the left distribution in Lemma 3, it simulates
Game0 and when it is the right distribution, it simulates Game0′ . This completes the
proof of Lemma 4.

Lemma 5. We have |Advq+1 − AdvFinal| = negl(λ) unconditionally.

Proof. Let us fix all the randomness used in the games except for k ← Z2k+1
p and

α← Zp. We set k̃ := k+ αa
‖
2 and show that the view of the adversary except for the

challenge ciphertext can be simulated by k̃. Namely, we show that the information of α
(or equivalently, k) is not used during the simulation, except for the challenge phase.

Setup. The only place where k is used in the generation of master public key is in
the computation of the term e([A>1]1, [k]2). However, this term can be simulated by k̃
instead, since we have

e([A>1]1, [k̃]2) = e([A>1]1, [k+ αa
‖
2]2) = e([A>1]1, [k]2).

Secret Keys. Then, we observe that any secret key skL,ρ = {K0,j ,K1,j ,K2,j}j∈[`]
generated during the game can be represented as

(K0,j ,K1,j ,K2,j) :=
(
[(k̃‖K′)L>j + V̂ρ(j)dj + rja

‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) 6∈ S(

[(k̃‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) ∈ S

.

Namely, they can be simulated only from k̃.

Next, we investigate the distribution of the challenge ciphertext.

Ciphertext. Recall that the challenge ciphertext consists of the components [c>]1,
[c>V̂s + c>s Ûs]1, and e([c]>, [k]2) · µβ , where β is the challenge bit chosen by the
challenger. Let us assume that c 6∈ span(A1), since it occurs with probability 1− 1/p.
Then we show that the last component of the challenge ciphertext is uniformly at random
over GT . To see this, we observe

e([c]>, [k]2) = e([c>], [k̃]2) · e([c>], [a‖2])α ,

28 Shweta Agrawal, Monosij Maitra, and Shota Yamada

where the boxed term above is distributed uniformly at random over GT since c>a‖2 6= 0
and the information of α is not used anywhere else in the game. Therefore, the view of
Gameq+1 is exactly the same as that of GameFinal, where random message on GT is
encrypted. This completes the proof of Lemma 5.

Lemma 6. Under the MDDHk assumption on G2, we have |Advi? − Advi?+1| =
negl(λ) for i? ∈ [q].

Proof. In order to prove Lemma 6, we further consider the following hybrid games. Let
the i?-th key extraction query made by A be ((L ∈ Z`×mp , ρ), 1ρmax).

Gamei?,j?,1: This is the same as Gamei? , except that the secret key skL,ρ =
{K0,j ,K1,j ,K2,j}j∈[`] for the i?-th key extraction query is sampled as

(K0,j ,K1,j ,K2,j) :=
(
[(k‖K′)L>j + V̂ρ(j)dj + rja

‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If j ≤ j? − 1 ∧ ρ(j) 6∈ S(

[(k‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If j ≥ j? ∨ ρ(j) ∈ S

where dj ← span(B) is freshly sampled. It can be seen that the distribution of the
key in this game is a hybrid between that of an SF key and an E-normal key.

Gamei?,j?,2: This game is the same as Gamei?,j?,1 except that to sample the j?-th

component (K0,j? ,K1,j? ,K2,j?) of the i?-th secret key, we sample dj? ← Zk+1
p

instead of dj? ← span(B).
Gamei?,j?,3: This game is the same as Gamei?,j?,2, except that j?-th component

(K0,j? ,K1,j? ,K2,j?) of the i?-th secret key is sampled as

(K0,j? ,K1,j? ,K2,j?) :=
(
[(k‖K′)L>j? + V̂ρ(j?)dj? + rj?a

‖
2]2, [dj?]2 [Ûρ(j?)dj?]2

)
If ρ(j?) 6∈ S(

[(k‖K′)L>j? + V̂ρ(j?)dj?]2, [dj?]2, [Ûρ(j?)dj?]2

)
If ρ(j?) ∈ S

,

where rj? ← Zp, dj? ← Zk+1
p .

Gamei?,j?,4: This game is the same as Gamei?,j?,3, except that to sample the j?-th
component (K0,j? ,K1,j? ,K2,j?) of the i?-th secret key, we sample dj? ← span(B)

instead of dj? ← Zk+1
p .

Gamei?,`+2: This game is identical to Gamei?,`+1,1, except that the secret key
skL,ρ = {K0,j ,K1,j ,K2,j}j∈[`] for the i?-th key extraction query is sampled as

(K0,j ,K1,j ,K2,j) :=
(
[(k+ αa

‖
2 ‖K′)L>j + V̂ρ(j)dj + rja

‖
2]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) 6∈ S(

[(k+ αa
‖
2 ‖K′)L>j + V̂ρ(j)dj]2, [dj]2, [Ûρ(j)dj]2

)
If ρ(j) ∈ S

where dj ← span(B).

Attribute Based Encryption for Deterministic Finite Automata from DLIN 29

We note that Gamei?,1,1 and Gamei? are identical, Gamei?,j?,4 and Gamei?,j?+1,1

are identical, and Gamei?,`+2 and Gamei?+1 are identical. Therefore, to complete the
proof of Lemma 6, it suffices to show Lemma 7, 8, 9, and 10 in the following.

Here, we recall that we denote the advantage of a PPT adversary A in Gamexx by
Advxx.

Lemma 7. Under the MDDHk assumption on G2, we have |Advi?,j?,1−Advi?,j?,2| =
negl(λ) for i? ∈ [q] and j? ∈ [`].

Proof. For the sake of contradiction, we assume that A distinguishes Gamei?,j?,1 and
Gamei?,j?,2 with non-negligible and show that we can construct another adversary B
against MDDHk with the same advantage. At the beginning of the game, B is given an
instance (G, [B]2, [t]2) of MDDHk, and proceeds as follows.

Setup.B first samples (A1,a2,A3)← Z(2k+1)×k
p ×Z2k+1

p ×Z(2k+1)×k
p , W,W0,W1 ←

Z(2k+1)×(k+1)
p , k← Z2k+1

p , andα← Zp. It then set mpk = ([A>1 ,A
>
1 W,A>1 W0,A

>
1 W1]1,

e([A>1]1, [k]2)) and gives it to A. A then provides its target (S, 1smax) to B. B
also samples U

(2)
s ,V

(2)
s ← spank+1(a

‖
2) and computes V̂s := W + V

(2)
s and

Ûs := W0 + sW1 +U
(2)
s for s ∈ [n], where n is the upper bound on the running time

of A.

Simulating Ciphertext. When A asks for the challenge ciphertext with respect to
messages (µ0, µ1), it generates E-normal ciphertext using A1, a2, {Ûs, V̂s}s∈[n], and
k. We note that we have n ≥ smax = maxs∈S |s| and thus the terms {Ûs, V̂s}s∈[n]
will suffice to simulate the ciphertext.

Simulating Keys. For the i-th key query ((L, ρ), 1ρmax) made by A, B proceeds as
follows.

– If i ≤ i? − 1, it computes SF key using k, a‖2, [B]2, and {Ûs, V̂s}s∈[n]. Here,
[B]2 is used to sample [dj]2 where dj ← span(B). We also note that we have
n ≥ ρmax = maxj∈[`] |ρ(j)| and thus the terms {Ûs, V̂s}s∈[n] will suffice to
simulate the key.

– If i > i?, it computes E-normal key using k, α, a‖2, [B]2, and {Ûs, V̂s}s∈[n]. Again,
[B]2 is used to sample [dj]2 and the terms {Ûs, V̂s}s∈[n] will suffice to simulate
the key.

– If i = i?, it computes the secret key {K0,j ,K1,j ,K2,j}j∈[`] as follows. The j-th
component of the key (K0,j ,K1,j ,K2,j) for j ≤ j? − 1 can be computed similarly
to an SF key, while the j-th component for j ≥ j? + 1 can be computed similarly to
an E-normal key. It also computes

K0,j? = [(k‖K′)L>j? + V̂ρ(j?)t]2, K1,j? = [t]2, K2,j? = [Ûρ(j?)t]2

from the challenge instance ([B]2, [t]2) of MDDHk, V̂ρ(j?), Ûρ(j?), k, and K′.

It is easy to see that B simulates Gamei?,j?,1 if t ← span(B) and Gamei?,j?,2 if
t← Zk+1

p . From this observation, Lemma 7 readily follows.

30 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Lemma 8. For i? ∈ [q] and j? ∈ [`], we have |Advi?,j?,2 − Advi?,j?,3| = negl(λ)
unconditionally.

Proof. We assume ρ(j?) 6∈ S, since otherwise Gamei?,j?,2 and Gamei?,j?,3 are
exactly the same. We fix all randomness during the game other than V

(2)
ρ(j?) ←

spank+1(a
‖
2). Let b‖ be a fixed non-zero vector in Zk+1

p satisfying B>b‖ = 0. It

is direct to see that V(2)
ρ(j?) ← spank+1(a

‖
2) and V

(2)
ρ(j?) + va

‖
2b
‖> for v ← Zp follow

the same distribution. We then further fix V
(2)
ρ(j?) and prove that if we substitute V

(2)
ρ(j?)

in Gamei?,j?,2 with V
(2)
ρ(j?) + va

‖
2b
‖>, the view of the adversary is the same as that in

Gamei?,j?,3 with the randomness other than rj? being fixed. This can be seen by the
following observation:

– V
(2)
ρ(j?) is not used to generate the challenge ciphertext in both games since ρ(j?) 6∈

S. Therefore, even if we substitute the value with V
(2)
ρ(j?) + va

‖
2b
‖>, this does not

change the challenge ciphertext at all.
– We have

(V
(2)
ρ(j?) + va

‖
2b
‖>)B = V

(2)
ρ(j?)B.

Therefore, the answer for the i-th key extraction query for i 6= i? will not be changed
even if we substitute V(2)

ρ(j?) with V
(2)
ρ(j?)+va

‖
2b
‖>. Because of the same reason, the

j-th component in the i?-th secret key with j 6= j? is unchanged by the substitution.
– For the j?-th components for the i-th secret key, we have

(k‖K′)L>j? + (V̂ρ(j?) + va
‖
2b
‖>)dj? = (k‖K′)L>j? + V̂ρ(j?)dj? + rj?a

‖
2

where rj? = vb‖
>
dj? . We have b‖

>
dj? 6= 0 with probability 1 − 1/p since

dj? ← Zk+1
p . Therefore, we have rj? is distributed uniformly at random over Zp

since so is v. Here, we use the fact that v is not used elsewhere in the game. It is
readily seen that (K0,j? ,K1,j? ,K2,j?) is distributed as in Gamei?,j?,3.

This completes the proof of Lemma 8.

Lemma 9. Under the MDDHk assumption on G2, we have |Advi?,j?,3−Advi?,j?,4| =
negl(λ) for i? ∈ [q] and j? ∈ [`].

Proof. The proof is completely analogous to that of Lemma 7 except that we compute
the j?-th component of the i?-th key is computed as

K0,j? = [(k‖K′)L>j? + V̂ρ(j?)t+ rj?a
‖
2]2, K1,j? = [t]2, K2,j? = [Ûρ(j?)t]2.

Lemma 10. For i? ∈ [q] and j? ∈ [`], we have |Advi?,`+1,1 − Advi?,`+2| = negl(λ)
unconditionally.

Proof. Let us fix all the randomness used in the games except for that used for generating
the i?-th secret key. Let (L ∈ Z`×mp , ρ) be the span program associated to the i?-th

Attribute Based Encryption for Deterministic Finite Automata from DLIN 31

secret key. By the definition of Gamei?,`+1 and Gamei?,`+2, it suffices show that the
following distributions are the same:

{(0‖K′)L>j + rjδja
‖
2}j∈[`] ≈ {(αa

‖
2‖K′)L>j + rjδja

‖
2}j∈[`] (5.1)

where K′ ← Z(2k+1)×(m−1)
p , rj ← Zp, δj is defined to be δj = 0 if ρ(j) ∈ S and

δj = 1 if ρ(j) 6∈ S for the attribute S associated to the challenge ciphertext. To see this,
we first observe that by Lemma 2 and from the fact that S does not satisfy (L, ρ), the
following distributions are the same:

{(0‖k′)L>j + rjδj}j∈[`] ≈ {(1‖k′)L>j + rjδj}j∈[`]

where k′ is a row vector sampled as k′ ← Zm−1p . By multiplying a
‖
2 from the left and

adding (0‖K′′)Lj for both distributions with K′′ ← Z(2k+1)×(m−1)
p , we have that the

following distributions are the same:

{(0‖a‖2k′ +K′′)L>j + rjδja
‖
2}j∈[`] ≈ {(αa

‖
2‖a
‖
2k
′ +K′′)L>j + rjδja

‖
2}j∈[`].

By setting K′ = a
‖
2k
′ +K′′, we can see that the left and the right distributions in the

above equation correspond to those of Eq. (5.1). This completes the proof of Lemma 10.

5.4 The Construction of Ingredient CP-ABE

Here, we provide an ABE scheme for RMUCP, denoted by cpABE. The construction is
essentially the same as the unbounded CP-ABE given in [22] with the modification that
we allow unbounded multi-use of the same attribute in an MSP.

Our construction cpABE for relation RMUCP is defined below.

Setup(1λ): On input 1λ, sample

A1 ← Z3k×k
p ,B← Z(k+1)×k

p ,W,W0,W1,U0 ← Z3k×(k+1)
p ,k← Z3k

p

and output

mpk :=
(
[A>1 ,A

>
1 W,A>1 W0,A

>
1 W1,A

>
1 U0]1, e([A

>
1]1, [k]2)

)
∈ Gk×3k1 ×(Gk×(k+1)

1)4×GkT

and
msk := (k,B,W,W0,W1,U0).

Enc(mpk, ((L, ρ), 1ρmax), µ): On input a monotone span program (L, ρ) such that
L ∈ Z`×mp , and µ ∈ GT , pick c, cj ← span(A1) for all j ∈ [`], sample

U← Z(m−1)×(k+1)
p and output

ct(L,ρ) :=

 C0 := [c>]1, C := e([c>]1, [k]2) · µ,{
C1,j := [Lj

(
c>U0

U

)
+ c>j W]1, C2,j := [c>j]1, C3,j := [c>j (W0 + ρ(j)W1)]1

}
j∈[`]

 ,

where Lj is the j-th row of L.

32 Shweta Agrawal, Monosij Maitra, and Shota Yamada

KeyGen(msk,mpk, (S, 1smax)): On input an attribute set S = {s1, . . . , s`} ⊂ Z, pick
d,ds ← span(B) for all s ∈ S and output

skS :=

(
K0 := [k+U0d]2,K1 := [d]2,

{K2,s := [Wd+ (W0 + s ·W1)ds]2, K3,s := [ds]2}s∈S

)
.

Dec(mpk, ct, ((L, ρ), 1ρmax), sk(L,ρ), (S, 1
smax)): Since S satisfies (L, ρ), one can

compute {ωj}j∈[`] such that∑
j:ρ(j)∈S

ωjLj = (1, 0, . . . , 0).

Then, compute

K = e(C0,K0)/
∏

j:ρ(j)∈S

(
e(C1,j ,K1) · e(C2,j ,K2,ρ(j))

−1 · e(C3,j ,K3,ρ(j))
)ωj

and retrieve the message by C/K.

Correctness. For all j such that ρ(j) ∈ S, we have

e(C1,j ,K1) · e(C2,j ,K2,ρ(j))
−1 · e(C3,j ,K3,ρ(j))

= e([Lj

(
c>U0

U

)
+ c>j W]1, [d]2) · e([c>j]1, [Wd+ (W0 + ρ(j) ·W1)dρ(j)]2)

−1

·e([c>j (W0 + ρ(j) ·W1)]1, [dρ(j)]2)

= [Lj

(
c>U0d
Ud

)
]T

for all j ∈ [`]. The correctness readily follows from the following equation.

K = e(C0,K0)/
∏

j:ρ(j)∈S

[Lj

(
c>U0d
Ud

)
]
ωj

T = [c>k]T · [c>U0d]T /[
∑

j:ρ(j)∈S

ωjLj

(
c>U0d
Ud

)
]T

= [c>k]T · [c>U0d]T /[c
>U0d]T = [c>k]T .

5.5 Security Proof

Here, we prove selective* (please see Section 2.3) security of the CP-ABE scheme
in Section 5.4. To prove the security, we first recall the prime-order bilinear entropy
expansion lemma for CP-ABE from [22].

Lemma 11 (Lemma 14 from [22] with `1 = `2 = `3 = k, `W = k + 1). Pick basis
(A1,A2,A3) ← (Z3k×k

p)3 and define its dual (A‖1,A
‖
2,A

‖
3) such that A>i Aj = I

if i = j and A>i Aj = 0 otherwise. With B ← Z(k+1)×k
p and for any polynomially

Attribute Based Encryption for Deterministic Finite Automata from DLIN 33

bounded n ∈ N, we have
aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c>]1, {[c>s W]1, [cs]1, [c
>
s (W0 + s ·W1)]1}s∈[n]

sk : {[D]2, [WD+ (W0 + s ·W1)Ds]2, [Ds]2}s∈[n]


c
≈


aux : [A>1]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1

ct : [c
>
]1, {[cs

>
(W + V

(2)
s)]1, [cs]1, [cs

>
(W0 + s ·W1 + U

(2)
s)]1}s∈[n]

sk : {[D]2, [(W + V
(2)
s)D+ (W0 + s ·W1 + U

(2)
s Ds]2, [Ds]2}s∈[n]

 ,

where W,W0,W1 ← Z3k×(k+1)
p ,V

(2)
s ,U

(2)
s ← spank+1(A

‖
2),D,Ds ← span(k+1)(B),

and c, cs ← span(A1) in the left distribution while c, cs ← span(A1,A2) in the right
distribution.

Note that in [22], D and Ds are sampled from Z(k+1)×(k+1)
p while we sample

them from span(k+1)(B). The distributions in the Lemma are still computationally
indistinguishable even with this change due to the MDDHk assumption.

We also prove the following lemma, which will be used in the core part of our
security proof.

Lemma 12. For any set of integers S and span program (L ∈ Z`×mp , ρ) such that S
does not satisfy (L, ρ), we have that the following distributions are computationally
indistinguishable under the DLIN assumption.{

ct :=
(
[c]1,

{
[Lj (

cu0
u) + cjvρ(j)]1, [cj]1

}
j∈[`]

)
, sk :=

(
[u0]2, {[vs]2}s∈S

)}
≈c
{
ct :=

(
[c]1,

{
[Lj (

cu0
u) + cjvρ(j)]1, [cj]1

}
j∈[`]

)
, sk :=

(
[u0 + α]2, {[vs]2}s∈S

)}
where c, α, u0 ← Zp, u ← Zm−1p , cj ← Zp for j ∈ [`], and vs ← Zp for s ∈
S ∪ {ρ(j)|j ∈ [`]}.

Proof. We construct an attacker B against the DLIN assumption assuming the distin-
guisherA against the distributions. Given the problem instance ([x1]1, [x2]1, [x1y1]1, [x2y2]1, [Φ]2)
of the DLIN assumption, B proceeds as follows. Let us define T := S ∪ {ρ(j)|j ∈ [`]}.
B samples ṽs ← Zp for s ∈ T and implicitly sets

u0 := y1 + y2, vs :=

{
ṽs for s ∈ S
ṽs − x1/x2 for s ∈ T\S

.

It can be seen that these components are distributed uniformly at random over Zp as
desired. B sets sk as

sk =
(
[Φ]2, {[ṽs]2}s∈S

)
.

It is easy to see that it simulates the left distribution if [Φ]2 = [y1 + y2]2 and the right
otherwise. To compute ct, B first computes a vector

(
1
t̃

)
satisfying Lj

(
1
t̃

)
= 0 for all j

such that ρ(j) ∈ S. Such a vector exists and can be computed efficiently because S does

34 Shweta Agrawal, Monosij Maitra, and Shota Yamada

not satisfy (L, ρ) (See for example Proposition 1 in [41]). B then picks ũ← Zm−1p and
implicitly sets

c = x1, u = ũ+ cu0t̃, cj =

{
c̃j if ρ(j) ∈ S
Lj
(
1
t̃

)
x2y2 + c̃jx2 if ρ(j) 6∈ S

We observe that these components are distributed uniformly at random over Zp as desired.
We then check that each component in ct is efficiently computable. First, we have [c]1
and [cj]1 for j ∈ [`] are computable from [x1]1, [x2]1 and [x2y2]1. We then observe that
[Lj (

cu0
u) + cjvρ(j)]1 can be computed for j such that ρ(j) ∈ S since we have

Lj (
cu0
u) + cjvρ(j) = Lj

(
cu0

(
1
t̃

)
+ (0ũ)

)
+ c̃j ṽρ(j) = Lj (0ũ) + c̃j ṽρ(j),

where all components are known to B. We then observe that for j such that ρ(j) 6∈ S, it
holds

Lj (
cu0
u) + cjvρ(j) = Lj

(
cu0

(
1
t̃

)
+ (0ũ)

)
+
(
−x1/x2 + ṽρ(j)

)
· cj

= Lj
(
1
t̃

)
· x1(y1 + y2) + Lj (0ũ) + ṽρ(j) · cj − (x1/x2)cj

= Lj
(
1
t̃

)
· x1(y1 + y2) + Lj (0ũ) + ṽρ(j) · cj − Lj

(
1
t̃

)
x1y2 − c̃j · x1

= Lj
(
1
t̃

)
x1y1 + Lj (0ũ) + ṽρ(j) · cj − c̃j · x1.

Therefore, we can compute [Lj (
cu0
u) + cjvρ(j)]1 from [x1y1]1, [cj]1, and [x1]1. Note

that x1y2, which is problematic when simulating the term, cancels out in the above
computation. This completes the proof of the lemma.

We are now ready to state and prove the main theorem. The proof is very similar
to that of [22], but since certain information theoretic step in [22] does not work in the
multi-use setting, we replace it with computational argument using Lemma 12.

Theorem 14. The ABE scheme for relationRCPMU (i.e., multi-use key-policy unbounded
ABE with polynomial valued attributes) in Section 5.4 satisfies selective* security under
the DLIN assumption.

Proof. To prove the theorem, we define various forms of ciphertext (of message µ for
span program (L, ρ)).

– Normal: Generated by Enc; in particular, c, cs ← span(A1).
– E-normal: Same as a normal ciphertext except that c, cs ← span(A1,A2) and we

use the substitution:

W 7→ V̂ρ(j) := W+V
(2)
ρ(j) in j-th component and W0+ρ(j)·W1 7→ Ûρ(j) := W0+ρ(j)·W1+U

(2)
ρ(j)

(5.2)
where U

(2)
s ,V

(2)
s ← spank+1(A

‖
2). Concretely, an E-normal ciphertext is of the

form

ct(L,ρ) :=

(
[c>]1, {[Lj

(
c>U0

U

)
+ c>j V̂ρ(j)]1, [c

>
j]1, [c

>
j Ûρ(j)]1}j∈[n], e([c>]1, [k]2) · µ

)
where U← Z(m−1)×(k+1)

p .

Attribute Based Encryption for Deterministic Finite Automata from DLIN 35

Then we pick k(2) ← span(A
‖
2) and define various forms of key (for attribute S):

– Normal: Generated by KeyGen.
– E-normal: Same as a Normal key except that we use the same substitution as in

Eq. (5.2). Concretely, an E-normal key is of the form

skS :=

(
[k+U0d]2, [d]2, {[V̂s d+ Ûs ds]2 [ds]2}s∈S

)
where d,ds ← span(B).

– P-normal: Sample d,ds ← Zk+1
p in an E-normal key. Concretely, a P-normal key is

of the form

skS :=
(
[k+U0d]2, [d]2, {[V̂sd+ Ûsds]2 [ds]2}s∈S

)
where d,ds ← Zk+1

p .

– P-SF: Replace k with k+ k(2) in a P-normal key. Concretely, a P-SF key is of the
form

skS :=

(
[k+ k(2) +U0d]2, [d]2, {[V̂sd+ Ûsds]2 [ds]2}s∈S

)
where d,ds ← Zk+1

p .

– SF: Sample d,ds ← span(B) in a P-SF key. Concretely, a SF key is of the form

skS :=
(
[k+ k(2) +U0d]2, [d]2, {[V̂sd+ Ûsds]2 [ds]2}s∈S

)
where d,ds ← span(B) .

Let us fix a PPT adversary A and let the number of key generation queries made by
an adversary be q. We define the following sequence of games to prove the security. We
use exactly the same sequence of games as [22]. The proof is also similar to [22], except
that we need to modify one particular step in their proof.

Game0: This is the real security game for semi-adaptive security where all ciphertexts
and keys are normal.

Game0′ : In this game, we change the challenge ciphertext and all keys to be E-normal
ones. We can show Game0′ ≈c Game0 by using the bilinear expansion lemma
for CP-ABE (Lemma 11) in a similar manner to the proof of Lemma 4.

Gamei? : In this game, the first i? − 1 secret keys given to the adversary are SF, while
rest of the secret keys are E-normal. It is easy to see that Game1 is equivalent to
Game0′ . To show Gamei? ≈c Gamei?+1, we will require another sequence of
sub-games.

Gamei?,1: Identical to Gamei? except that the i?-th key is P-normal. By a straightfor-
ward reduction to the MDDHk assumption, one can show Gamei? ≈c Gamei?,1.

Gamei?,2: Identical to Gamei? except that the i?-th key is P-SF. To show Gamei?,1 ≈c
Gamei?,2, we need some more work. We note that this is the only step that the
proof in [22] does not work in our multi-use setting. We will introduce another
sequence of games in order to prove this.

Gamei?,3: Identical to Gamei? except that the i?-th key is SF. We can show
Gamei?,2 ≈c Gamei?,3 by a straightforward reduction to the MDDHk assump-
tion, similarly to the case of Gamei? ≈c Gamei?,1. Note that Gamei?,3 and
Gamei?+1 are equivalent.

36 Shweta Agrawal, Monosij Maitra, and Shota Yamada

GameFinal: This is the same as Gameq+1 except that the challenge ciphertext is a
E-normal one for a random message in GT . By a similar proof to Lemma 5, we can
prove Gameq+1 ≈c GameFinal. Note that the advantage of A in this game is 0.

From the above discussion, it suffices to show that Gamei?,1 and Gamei?,2 are
indistinguishable to complete the proof of Theorem 14. In [22], these games are shown
to be statistically indistinguishable. However, since the statistical argument given in [22]
does not work in the multi-use setting, we replace it with the computational argument
using the DLIN assumption. The idea of using computational argument instead of
statistical argument to make a secret key semi-functional is taken from previous works
[51, 11, 12]. Note that this is the only step where our proof doe not work for the case of
adaptive security. In order to prove the indistinguishability of Gamei?,1 and Gamei?,2,
we further introduce following sequence of games.

Gamei?,1,0 : This is the same as Gamei?,1.
Gamei?,1,1 : In this game, we change the form of the challenge ciphertext as follows.

Let us pick c, cj ← span(A1), c ← Zp, a2,a2,j ← span(A2) for j ∈ [`]. The
challenge ciphertext is computed as follows:

ct(L,ρ) :=

 C0 = [c> + c · a>2]1,
C = e([c> + c · a>2]1, [k]2) · µβ

,


C1,j = [C1,j]1

C2,j = [c>j + a>2,j]1,

C3,j = [(c>j + a>2,j)Ûρ(j)]1


j∈[`]


where

C1,j = Lj

(
(c>+ca>2)U0

U

)
+ (cj + a2,j)

>V̂ρ(j).

Gamei?,1,2: In this game, the challenge ciphertext and the i?-th key are changed. Let
a
‖
2 ← span(A

‖
2). Then, i?-th secret key is sampled as follows:

skS :=

(
[k+U0d+ u0(b

‖>d)a
‖
2]2, [d]2, {[V̂sd+ Ûsds + vs(b

‖>d)a
‖
2]2 [ds]2}s∈S

)
where b‖ is some fixed vector such that Bb‖ = 0, d,ds ← Zk+1

p , and u0, vs ← Zp
for s ∈ S. We also change the ciphertext component [C1,j]1 as

C1,j = Lj

(
(c>+ca>2)U0

U

)
+ a>2 a

‖
2 · Lj

(
cu0b

‖>

0

)
+(cj+a2,j)

>V̂ρ(j)+ vρ(j)a
>
2,ja

‖
2b
‖> ,

for j ∈ [`].
Gamei?,1,3: In this game, we further change how we sample a2,j and the ciphertext

component C1,j . Namely, we sample cj ← Zp and a2,j for j ∈ [`] as

a2,j ← span(A2) conditioned on a>2,ja
‖
2 = (a>2 a

‖
2)cj . Furthermore, we sample

C1,j as

C1,j = Lj

(
(c>+ca>2)U0

U

)
+(cj+a2,j)

>V̂ρ(j)+ a>2 a
‖
2 ·
(
Lj (

cu0
u) + cjvρ(j)

)
· b‖> ,

where u← Zm−1p .

Attribute Based Encryption for Deterministic Finite Automata from DLIN 37

Gamei?,1,4: In this game, we further change the i?-th secret key to be

skS :=

(
[k+U0d+ ka

‖
2 + u0(b

‖>d)a
‖
2]2, [d]2, {[V̂sd+ Ûsds + vs(b

‖>d)a
‖
2]2 [ds]2}s∈S

)
.

Gamei?,1,5: In this game, we revert the challenge ciphertext to be sampled as in
Gamei?,1,0 (namely, it is E-normal ciphertext) and change the i?-th secret key as
follows:

skS :=
(
[k+U0d+ ka

‖
2]2, [d]2, {[V̂sd+ Ûsds]2 [ds]2}s∈S

)
,

where k ← Zp and a
‖
2 ← span(A2).

Gamei?,1,6: In this game, we change the i?-th secret key as follows:

skS :=
(
[k+U0d+ ka

‖
2 + k(2)]2, [d]2, {[V̂sd+ Ûsds]2 [ds]2}s∈S

)
,

where k ← Zp and a
‖
2 ← span(A2).

Gamei?,1,7: In this game, we change the i?-th secret key to be SF key. Namely, i?-th
secret key is sampled as follows:

skS :=
(
[k+U0d+ k(2)]2, [d]2, {[V̂sd+ Ûsds]2 [ds]2}s∈S

)
.

Note that Gamei?,1,7 is equivalent to Gamei?,2. Therefore, to complete the proof, it
suffices to show the following lemmas. In the following, we denote the advantage of A
in Gamexx by Advxx.

Lemma 13. For i? ∈ [q], we have Advi?,1,0 = Advi?,1,1 unconditionally.

Proof. Here, we replace c ← span(A1,A2) and cj ← span(A1,A2) with c + ca2
and cj + a2,j such that c, cj ← span(A1), a2,a2,j ← span(A2). This clearly does not
change the distribution and the lemma follows.

Lemma 14. For i? ∈ [q], we have Advi?,1,1 = Advi?,1,2 unconditionally.

Proof. We claim that if we replace V
(2)
s and U0 with V

(2)
s + vsa

‖
2b
‖> and U0 +

u0a
‖
2b
‖> in Gamei?,1,1, the resulting distribution is the same as that of Gamei?,1,2.

Since this substitution does not change the view of the adversary, this implies the lemma.
First, we observe that A>1 (U0 + u0a

‖
2b
‖>) = AU0 and thus the distribution of mpk is

the same as that of Gamei?,1,2. As for the keys, we have

k+ (U0 + u0a
‖
2b
‖>)d = k+U0d+ u0(b

‖>d)a
‖
2

and similarly,(
V̂s + vsa

‖
2b
‖>
)
d+ Ûsds = V̂sd+ Ûsds + vs(b

‖>d)a
‖
2.

38 Shweta Agrawal, Monosij Maitra, and Shota Yamada

In the case of i-th key for i 6= i? (namely, both for E-normal and SF keys), we have
b‖
>
d = 0 because d ← span(B). Therefore, we can see that this corresponds to the

distribution of the secret key in Gamei?,1,2.
As for the ciphertext, we have

C1,j = Lj

(
(c>+ca>2)(U0+u0a

‖
2b
‖>)

U

)
+ (cj + a2,j)

>
(
V̂ρ(j) + vρ(j)a

‖
2b
‖>
)

= Lj

(
(c>+ca>2)U0

U

)
+ a>2 a

‖
2 · Lj

(
cu0b

‖>

0

)
+ (cj + a2,j)

>V̂ρ(j) + vρ(j)a
>
2,ja

‖
2b
‖>,

where we use c>a
‖
2 = 0 and c>j a

‖
2 = 0 in the second equation, which follow from

c, cj ← span(A1). Again, the distribution of the ciphertext corresponds to that of
Gamei?,1,2. This completes the proof of the lemma.

Lemma 15. For i? ∈ [q], we have Advi?,1,2 = Advi?,1,3 unconditionally.

Proof. We first observe that even if we replace U with U+a>2 a
‖
2 ·ub‖

>
in Gamei?,1,2,

the distribution is unchanged. By rearranging the terms and substituting cj with
(a>2 a

‖
2)
−1a>2,ja

‖
2 in Gamei?,1,3, we can see that C1,j in both games are actually the

same. Furthermore, since a>2,ja
‖
2 is distributed uniformly at random over Zp for random

a2,j sampled from span(A2) and a>2 a
‖
2 6= 0, the distribution of a2,j is unchanged even

if we first sample cj ← Zp and then sample it conditioned on a>2,ja
‖
2 = (a>2 a

‖
2)cj .

Therefore, these games are actually equivalent and the lemma follows.

Lemma 16. For i? ∈ [q], we have |Advi?,1,3 − Advi?,1,4| = negl(λ) under the DLIN
assumption.

Proof. We assume an adversary A who distinguishes the games and construct another
adversary B who distinguishes the two distributions in Lemma 12. B first samples mpk

and msk, k(2), as well as A2, A3, A‖2, A‖3, b‖ such that Bb‖ = 0. B also samples U(2)
s

and V
(2)
s for s ∈ [n], where n is the upper bound on the running time of A. B then

gives mpk to A, who then specifies the key queries and the attribute S for the challenge
ciphertext. Let the i?-th key query made by A be (L, ρ). Then, B declares S and (L, ρ)
as its target and then is given the problem instance (sk, ct). B generates the secret keys
for A as specified by the game except for the i?-th key.

We then describe how B embeds the problem instance into the i?-th key using
sk = ([Φ]2, {[vs]2}s∈S) from the problem instance, where Φ = u0 or Φ ← Zp. It
samples d,ds ← Zk+1

p for s ∈ S and computes the i?-th key as

skS :=
(
[k+U0d+ Φ(b‖

>
d)a
‖
2]2, [d]2, {[V̂sd+ Ûsds + vs(b

‖>d)a
‖
2]2 [ds]2}s∈S

)
.

It is clear that the above terms are efficiently computable from sk. Furthermore, we can
see that B simulates the i?-th key in Gamei?,1,3 if the problem instance comes from
the left distribution and Gamei?,1,4 otherwise.

We then describe how B simulates the challenge ciphertext using the problem
instance ct. B samples c, cj ← span(A1) for j ∈ [`], a2 ← span(A2) and a

‖
2 ←

Attribute Based Encryption for Deterministic Finite Automata from DLIN 39

span(A
‖
2). B then computes C0 = [c> + c · a>2]1 and C = e([c> + c · a>2]1, [k]2) · µβ

from [c]1. We then observe that [a2,j]1 can be sampled by first sampling a′2,j such that

a′2,j
>
a
‖
2 = a>2 a

‖
2 and then compute [a2,j]1 := [(a′2,j)cj]1 from [cj]1. We therefore can

simulate C2,j = [cj + a2,j]1 using [a2,j]1. We finally observe that C1,j = [C1,j]1 can
be efficiently computable from [c]1 and [Lj (

cu0
u) + cjvρ(j)]1, and [a2,j]1.

This completes the proof of the lemma.

Lemma 17. For i? ∈ [q], we have Advi?,1,4 = Advi?,1,5 unconditionally.

Proof. To prove this, we undo the changes we added from Gamei?,1,0 to Gamei?,1,3

in the reverse order, except that k in the i?-th secret key is replaced with k+ ka
‖
2. Note

that all the proofs proving the (statistical) indistinguishability of the neighbouring games
carry over even if the distinguisher is given a

‖
2.

Lemma 18. For i? ∈ [q], we have Advi?,1,5 = Advi?,1,6 unconditionally.

Proof. First observe that a‖2 is used only in the i?-th key query and not used anywhere
else. Furthermore, the distribution of ka‖2 and ka‖2 + k(2) for a‖2 ← span(A(2)) and
k ← Zp are the same. By these observations, it follows that these games are actually
equivalent.

Lemma 19. For i? ∈ [q], we have |Advi?,1,6 − Advi?,1,7| = negl(λ) under the DLIN
assumption.

Proof. To prove this, we undo the changes we added from Gamei?,1,0 to Gamei?,1,5
in the reverse order, except that k in the i?-th secret key is now replaced with k+ k(2).

6 Putting it all together: ABE for DFA

In this section, we discuss instantiation of our generic construction of ABE for DFA by
putting together all the ingredients developed so far.

As we have seen in Sec. 3.1, ABE for RDFA (i.e., ABE for DFA) can be constructed
from ABE for RDFA≥ and ABE for RDFA≤. Furthermore, as we have seen in Theorem
10 (resp., Theorem 9), ABE for RDFA> (resp., ABE for RDFA≤) is implied by ABE for
RMUCP (resp., RMUKP).

To instantiate the ABE for RMUKP, we use the construction in Section 5.2. As was
shown in Theorem 13, this construction is semi-adaptively secure under the MDDHk
assumption. To instantiate the ABE for RMUCP, we use the construction in Section 5.4.
As was shown in Theorem 14, this construction satisfies selective* security under the
DLIN assumption. Putting all pieces together, we obtain the following theorem.

Theorem 15. There exists selective* secure key-policy ABE for RDFA from the DLIN
assumption.

40 Shweta Agrawal, Monosij Maitra, and Shota Yamada

Ciphertext Policy ABE for DFA. We observe that our construction dfaABE uses the
underlying kpABE and cpABE in a symmetric way. Thus, by swapping the use of kpABE
and cpABE in our construction, we can equivalently construct ciphertext-policy ABE
for DFA. Recall that analogous to ABE for MSP (Section 2), the ciphertext-policy
variant of ABE for DFA is defined simply by swapping the order of the domains in the
relation RDFA. In more detail, we set ACPDFA = BDFA and BCPDFA = ADFA and define
the relation RCPDFA analogously for a ciphertext policy scheme for DFA. Thus, in a
ciphertext-policy scheme, the encryptor to encrypt a machine and the key generator to
compute a key for an input x.

To modify dfaABE to be ciphertext-policy, we exchange the maps used by KeyGen
and Enc in the constructions of dfaABE≤ and dfaABE> in Sections 3.2 and 3.3
respectively. For instance, to construct a ciphertext-policy variant of dfaABE≤, we
modify the encrypt and key generation algorithms so that:

1. The key generation algorithm receives as input an attribute x, converts it to attributes
Sx using the map defined in Section 4.1 and computes cpABE key for Sx.

2. The encryption algorithm receives as input an MSP M , converts it to an MSP
(LM , ρM) using the map defined in Section 4.1 and computes cpABE encryption
for policy (LM , ρM).

The modification to dfaABE> is analogous. The compiler dfaABE remains the same.
Thus, we additionally obtain the following theorem:

Theorem 16. There exists selective* secure ciphertext-policy ABE for RDFA from the
DLIN assumption.

Acknowledgement. We would like to thank Nuttapong Attrapadung for pointing out an
error in the first version of our draft. The third author is supported by JST CREST Grant
Number JPMJCR19F6 and JSPS KAKENHI Grant Number 16K16068.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 41

References

1. Agrawal, S., Chase, M.: A study of pair encodings: Predicate encryption in prime order groups.
In: TCC 2016-A, Part II. pp. 259–288 (2016)

2. Agrawal, S., Chase, M.: Fame: Fast attribute-based message encryption. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS ’17
(2017)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product
predicates from learning with errors. In: Asiacrypt (2011)

4. Agrawal, S., Maitra, M.: Fe and io for turing machines from minimal assumptions. In: TCC
(2018)

5. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from learning with errors. In: Crypto (2019)

6. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learning with
errors. In: ICALP. vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

7. Ananth, P., Fan, X.: Attribute based encryption with sublinear decryption from lwe. Cryptology
ePrint Archive, Report 2018/273 (2018), https://eprint.iacr.org/2018/273

8. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin,
T. (eds.) Theory of Cryptography (2016)

9. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In: EUROCRYPT (2017)

10. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability
obfuscations of circuits over ggh13. eprint 2016 (2016)

11. Attrapadung, N.: Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In: EUROCRYPT. pp. 557–577
(2014)

12. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational
pair encodings. In: Proceedings, Part II, of the 22Nd International Conference on Advances in
Cryptology — ASIACRYPT 2016 - Volume 10032 (2016)

13. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of predicate
encryption and applications to abe with various compactness tradeoffs. In: International
Conference on the Theory and Application of Cryptology and Information Security. pp.
575–601. Springer (2015)

14. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the
(im)possibility of obfuscating programs. In: CRYPTO (2001)

15. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy. pp. 321–334 (2007)

16. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan,
V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: EUROCRYPT. pp. 533–556 (2014)

17. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes.
In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 455–470. Springer (2008)

18. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: TCC. pp.
535–554 (2007)

19. Boyen, X., Li, Q.: Attribute-based encryption for finite automata from lwe. In: ProvSec (2015)
20. Brakerski, Z., Vaikuntanathan, V.: Circuit-abe from lwe: Unbounded attributes and semi-

adaptive security. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016
(2016)

https://eprint.iacr.org/2018/273

42 Shweta Agrawal, Monosij Maitra, and Shota Yamada

21. Chen, J., Gay, R., Wee, H.: Improved dual system abe in prime-order groups via predicate
encodings. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015
(2015)

22. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded abe via bilinear entropy expansion,
revisited. In: EUROCRYPT (1). pp. 503–534 (2018)

23. CHEN, J., Wee, H.: Fully, (almost) tightly secure ibe and dual system groups. In: CRYPTO
(2013)

24. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for
boolean formula. In: Security and Cryptography for Networks (2014)

25. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over
the integers. In: Proc. of EUROCRYPT. LNCS, vol. 9056, pp. 3–12. Springer (2015)

26. Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new clt
multilinear map over the integers. Eprint 2016/135

27. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for ntru problems and cryptanalysis of the ggh
multilinear map without a low level encoding of zero. Eprint 2016/139

28. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A.,
Tibouchi, M.: Zeroizing without low-level zeroes: New mmap attacks and their limitations.
In: Advances in Cryptology–CRYPTO 2015, pp. 247–266. Springer (2015)

29. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistinguishability
obfuscation over clt13. Eprint 2016 (2016)

30. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for diffie-
hellman assumptions. In: CRYPTO 2. pp. 129–147 (2013)

31. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
EUROCRYPT (2013)

32. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013),
http://eprint.iacr.org/

33. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: STOC
(2013)

34. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing
machines on encrypted data. In: CRYPTO (2). pp. 536–553 (2013)

35. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled
circuits and succinct functional encryption. In: STOC. pp. 555–564 (2013)

36. Gong, J., Waters, B., Wee, H.: Abe for dfa from k-lin. In: Annual International Cryptology
Conference. pp. 732–764. Springer (2019)

37. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC
(2013)

38. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from lwe. In:
Crypto (2015)

39. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: Efficient abe for branching
programs. In: Proceedings, Part I, of the 21st International Conference on Advances in
Cryptology – ASIACRYPT 2015 - Volume 9452 (2015)

40. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made
generic and easy. In: TCC (2016)

41. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security. pp. 89–98 (2006)

42. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301
(2015)

43. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: EUROCRYPT. pp. 146–162 (2008)

http://eprint.iacr.org/

Attribute Based Encryption for Deterministic Finite Automata from DLIN 43

44. Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct
functional encryption: Improving security and efficiency, simultaneously. Cryptology ePrint
Archive, Report 2018/974 (2018), https://eprint.iacr.org/2018/974

45. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear
assumption. In: CRYPTO (2015)

46. Kowalczyk, L., Wee, H.: Compact adaptively secure abe for nc1 from k-lin. In: EUROCRYPT,
Part I. pp. 3–33 (2019)

47. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime
order setting. In: Proceedings of the 31st Annual International Conference on Theory and
Applications of Cryptographic Techniques. EUROCRYPT’12 (2012)

48. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure hibe with
short ciphertexts. In: Theory of Cryptography - 7th Theory of Cryptography Conference, TCC
2010, Proceedings (2010)

49. Lewko, A., Waters, B.: Unbounded hibe and attribute-based encryption. In: Proceedings of
the 30th Annual International Conference on Theory and Applications of Cryptographic
Techniques: Advances in Cryptology. EUROCRYPT’11 (2011)

50. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In:
EUROCRYPT (2010)

51. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In: CRYPTO. pp. 180–198 (2012)

52. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over ggh13. In: Crypto (2016)

53. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from
the decisional linear assumption. In: Proceedings of the 30th Annual Conference on Advances
in Cryptology. CRYPTO’10 (2010)

54. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based
encryption. In: Wang, X., Sako, K. (eds.) Advances in Cryptology – ASIACRYPT 2012
(2012)

55. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe
attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13 (2013)

56. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. pp. 457–473 (2005)
57. Waters, B.: Functional encryption for regular languages. In: Crypto (2012)
58. Wee, H.: Dual system encryption via predicate encodings. In: TCC (2014)

https://eprint.iacr.org/2018/974

	Attribute Based Encryption for Deterministic Finite Automata from DLIN

