
Trapdoor Hash Functions and Their Applications

Nico Döttling∗ Sanjam Garg† Yuval Ishai‡ Giulio Malavolta§ Tamer Mour¶

Rafail Ostrovsky‖

Abstract

We introduce a new primitive, called trapdoor hash functions (TDH), which are hash func-
tions H : {0, 1}n → {0, 1}λ with additional trapdoor function-like properties. Specifically, given
an index i ∈ [n], TDHs allow for sampling an encoding key ek (that hides i) along with a
corresponding trapdoor. Furthermore, given H(x), a hint value E(ek, x), and the trapdoor cor-
responding to ek, the ith bit of x can be efficiently recovered. In this setting, one of our main
questions is: How small can the hint value E(ek, x) be? We obtain constructions where the hint
is only one bit long based on DDH, QR, DCR, or LWE.

This primitive opens a floodgate of applications for low-communication secure computation.
We mainly focus on two-message protocols between a receiver and a sender, with private inputs
x and y, resp., where the receiver should learn f(x, y). We wish to optimize the (download) rate
of such protocols, namely the asymptotic ratio between the size of the output and the sender’s
message. Using TDHs, we obtain:

1. The first protocols for (two-message) rate-1 string OT based on DDH, QR, or LWE. This
has several useful consequences, such as:
(a) The first constructions of PIR with communication cost poly-logarithmic in the database

size based on DDH or QR. These protocols are in fact rate-1 when considering block
PIR.

(b) The first constructions of a semi-compact homomorphic encryption scheme for branch-
ing programs, where the encrypted output grows only with the program length, based
on DDH or QR.

(c) The first constructions of lossy trapdoor functions with input to output ratio ap-
proaching 1 based on DDH, QR or LWE.

(d) The first constant-rate LWE-based construction of a 2-message “statistically sender-
private” OT protocol in the plain model.

2. The first rate-1 protocols (under any assumption) for n parallel OTs and matrix-vector
products from DDH, QR or LWE.

We further consider the setting where f evaluates a RAM program y with running time T � |x|
on x. We obtain the first protocols with communication sublinear in the size of x, namely T ·

√
|x|

or T · 3
√
|x|, based on DDH or, resp., pairings (and correlated-input secure hash functions).

∗CISPA Helmholtz Center for Information Security, doettling@cispa.saarland.
†University of California, Berkeley, sanjamg@berkeley.edu.
‡Technion, yuvali@cs.technion.ac.il.
§Carnegie Mellon University, giulio.malavolta@hotmail.it. Part of the work done while at Friedrich-Alexander-

Universität Erlangen-Nürnberg.
¶Weizmann Institute of Science, tamer@weizmann.ac.il. Part of the work done while at UCLA and Technion.
‖University of California, Los Angeles, rafail@cs.ucla.edu.

1

Contents

1 Introduction 4
1.1 Our Setting and Questions of Interest . 5
1.2 Our Results . 6

2 Technical Outline 9
2.1 Trapdoor Hash Functions . 9
2.2 Trapdoor Hash from QR and LWE . 13
2.3 Rate-1 Oblivious Transfer and More . 15
2.4 Private Laconic Oblivious Transfer . 17
2.5 Concurrent Work . 21

3 Preliminaries 21
3.1 Number Theoretical Assumptions . 21
3.2 The Learning with Errors Assumption . 22
3.3 Statistics and Information Theory . 23

4 Trapdoor Hash Functions 25
4.1 Model and Formal Definition . 25
4.2 Trapdoor Hash for Index Predicates from DDH . 27

4.2.1 Basic Construction . 27
4.2.2 From Rate-1/λ to Rate-1 . 31

4.3 Trapdoor Hash for Linear Predicates from QR . 32
4.4 Trapdoor Hash for Linear Predicates from LWE . 35

5 Rate-1 Oblivious Transfer and More 39
5.1 Model and Definitions . 39
5.2 Useful Functionalities . 41
5.3 Rate-1 Batch Oblivious Transfer from Trapdoor Hash 42
5.4 From Weakly Correct Batch OT to String OT . 44

5.4.1 Correcting the Errors . 44
5.4.2 Bootstrapping to Optimal Overall Rate . 46
5.4.3 Malicious Security . 46

5.5 OLE, Vector-Matrix Product, and Other Generalizations 47
5.6 On the Tightness of Our Protocols . 49

6 Applications of Rate-1 OT 50
6.1 Private Information Retrieval . 50
6.2 Evaluating Branching Programs over Encrypted Data 52
6.3 Lossy Trapdoor Functions . 52

7 Private Laconic Oblivious Transfer 54
7.1 Formal Definitions . 54
7.2 Private Laconic OT from Trapdoor Hash: The Basic Construction 57
7.3 The Balancing Technique . 61

2

8 Acknowledgements 65

A Trapdoor Hash for Index Predicates from DCR 72

B Trapdoor Hash with Reusable Secret Encoding under DDH 74
B.1 Correlation in the Basic Construction . 75
B.2 Warm-up: Breaking the Correlation with Random Oracle 75
B.3 Replacing the Random Oracle with CIH . 75

C Sublinear Trapdoor Hash from Pairings 79

3

1 Introduction

Seminal results from the 1980s [Yao86, GMW87] showed that it is possible for a group of mutually
distrustful parties to compute a joint function on their private inputs without revealing anything
more than the output of the computation. These foundational results were seen as providing the first
theoretical proofs of concept. However, significant theoretical and practical advances over the years
provide support for the idea that perhaps secure computation can be as practical and ubiquitous as
public-key cryptography.

In the quest to make secure computation efficient, realizing communication efficient secure com-
putation protocols has emerged as a central theme of research. Moreover, secure computation
protocols with large communication cost can often be prohibitive in practice. Consequently, sub-
stantial effort has been put towards realizing communication efficient protocols. Nonetheless, our
understanding of communication efficient secure computation protocols remains significantly lim-
ited. Specifically, known protocols for circuits with communication independent of the circuit size
are only known using fully homomorphic encryption (FHE) [Gen09] and can only be based on vari-
ants of LWE. In the two-party case, the communication complexity of such protocols is comparable
to the length of the shorter input plus the length of the output. For simpler functions that can
be represented by log-depth circuits or polynomial-size branching programs, similar protocols were
recently constructed from other assumptions such as DDH [BGI16] or a circular-secure flavor of
DCR [FGJI17]. Here the communication is comparable to the total length of both inputs plus the
length of the output.

The above state of affairs leaves several types of gaps between secure and insecure communication
complexity.1 First, even when applying the best known FHE schemes, there is a constant-factor gap
for functions whose output length is comparable to (or longer than) the length of the shorter input.2

Second, the communication gap can be even bigger when considering restricted interaction. For
instance, when one input is much shorter than the other, FHE cannot be used to get communication-
efficient 2-message protocols where the party holding the long input sends the first message. Finally,
and most importantly for this work, under standard assumptions other than LWE, the gaps between
secure and insecure communication are much bigger, especially when considering functions with
unbalanced input sizes.

To illustrate the current gaps, consider the fundamental problem of private information retrieval
(PIR) [KO97, CGKS95] over m-bit records, where a client wants to privately learn the ith record
of a server’s database that consists of n records of length m each. Here, a protocol that achieves
near-optimal communication from the server to the client (i.e., roughly m bits) is only known under
DCR [DJ01, Lip05]. For the case of retrieving m different 1-bit records, the situation is even worse.
In the best known protocol, the gap between the server’s message length and the output length
is a big multiplicative constant [GKL10]. Finally, even for the case m = 1, obtaining polylog(n)
communication under (subexponential variants of) standard assumptions such as DDH or QR is
open.

1It seems plausible that these gaps can be closed using indistinguishability obfuscation [GGH+13]. However, the
focus of this work is on constructions that can be based on more traditional assumptions.

2 A simple “hybrid FHE” technique [GGI+15] can generically convert any FHE scheme into one whose encrypted
(long) input is roughly as long as the input. However, no such generic technique is known for compressing the
encrypted output.

4

1.1 Our Setting and Questions of Interest

Setting: Two-Message Secure Computation. We consider two-party protocols in which a
receiver and a sender have private inputs x and y, respectively. We consider protocols for evaluating
a function f(x, y) using only two messages. First, based on its input x, the receiver sends the first
message msg1 to the sender who, based on its input y, responds with the second message msg2.
Finally, the receiver uses its secret state and msg2 to compute f(x, y). Sender’s privacy requires
that the receiver learns nothing more about y than f(x, y) and the length of y. Similarly, receiver’s
privacy requires that the sender learns nothing about x other than its length. By default, we only
consider security against semi-honest parties.3

Case I: Large Receiver Output. We are primarily interested in the case where the output
of f is long, and define the download rate of such a 2-message protocol (or rate for short) as the
asymptotic ratio between |f(x, y)| and |msg2|. We will also consider the overall rate, defined as the
asymptotic ratio between the insecure communication complexity of f and that of the protocol. A
fundamental functionality in this regime is oblivious transfer (OT). We start with the special case of
string OT, implemented via a two-message protocol. Recall that in the string OT functionality the
inputs of the sender and receiver are two strings s0, s1 ∈ {0, 1}n and a bit i ∈ {0, 1}, respectively.
For this functionality, the receiver’s output should be si. Here the download and overall rate are
the asymptotic ratios n

|msg2|
and n

|msg1|+|msg2|
, respectively, when the security parameter λ tends to

infinity and n is a sufficiently big polynomial in λ (see Definition 5.2 for a precise formulation).
We also consider batch OT ; this functionality allows n parallel instances of bit-OT (string OT with
1-bit strings).

Even for the special case of OT, the state-of-the-art with optimal overall rate (or optimal down-
load rate) is quite unsatisfactory.4 Any 2-message string-OT protocol can be compiled into a similar
protocol with rate 1/2 using hybrid encryption as follows: Given a string-OT protocol for messages
of size λ, the sender uses the OT protocol to transmit one out of two symmetric keys to the receiver,
and uses these keys with a rate-1 symmetric encryption scheme to encrypt the actual messages. The
two ciphertexts are sent along with the OT sender message. The receiver recovers one of the two keys
and decrypts the corresponding ciphertext. However, going beyond rate 1/2 seems to hit barriers!
Interestingly enough, for information-theoretic OT in the correlated randomness model, rate 1/2 (as
e.g. in Beaver’s standard reduction [Bea95a]) is optimal [WW10, IKM+13]. In the computational
setting, constructions based on additively homomorphic encryption or homomorphic secret sharing
hit a similar barrier [Ste98, BGI17b, JVC18a]. Currently, the only construction of OT known to
achieve rate better than 1/2 is based on the Damgård-Jurik cryptosystem [DJ01], which relies on
the DCR assumption. Even here, optimal rate in only achieved by undesirably letting the size of
the group used in the scheme grow with the size of the inputs.5 Moreover, in the more general case
of batch OT, rate 1 could not even be achieved based on DCR. This brings us to our first motivating
question:

3Our protocols can be efficiently extended to provide security against malicious parties (under the same assump-
tions) using sublinear arguments [NN01]. This increases the number of rounds, but does not affect the asymptotic
communication.

4 The work of Cho et al. [CDG+17] on laconic OT gives a batch OT protocol where |msg1| is independent of
|x|. This generalizes to arbitrary functions f ; however, even in the simple case of batch OT the download rate is
sub-constant. The same applies to the more recent work of Quach et al. [QWW18] on laconic function evaluation.

5In this work, we consider this question in the more stringent two-message setting. However, we note that no
other protocols with rate > 1

2
are known even when additional rounds of communication are allowed.

5

Can we realize OT with rate > 1
2 from assumptions other than DCR? Can we realize

such batch OT from any assumption?

Why care about OT with rate > 1
2? As mentioned earlier, there is a large body of work

on minimizing the communication complexity of secure computation. The special case of OT is
not only natural and useful as a standalone application, but it also serves as a stepping stone for
other applications. Indeed, high-rate 2-message OT implies: (i) high-rate PIR with polylogarithmic
communication complexity in the number of records [KO97, IP07]; (ii) a semi-compact homomorphic
encryption scheme that supports evaluation of bounded-length branching programs (in particular,
finite automata, decision trees and OBDDs) over encrypted data [IP07], (iii) a high-rate lossy-
trapdoor function [PW08], and (iv) statistically sender-private (SSP) two-message OT with constant
rate [BGI+17a, BD18]. We will elaborate on these applications below. To sum up, while high-rate
OT is a powerful primitive with important consequences, very little is known about how to construct
it.

Case II: Large Receiver Input. Up to this point, we were mainly concerned with functions
f(x, y) that have a long output, where our goal was to make the communication from the sender
to the receiver very close to |f(x, y)|. Even multi-round protocols of this type were not known
prior to our work. A second setting we consider applies to two-round protocols in the case where
|x| � |y| and the output is short. In this case, an insecure protocol for f can simply have the sender
communicate y to the receiver. Since secure computation with only one message is impossible
(except in trivial cases), our goal is to obtain a two-message secure protocol with similar efficiency
features, namely where the total communication complexity is comparable to |y| rather than |x|. As
a motivating example, consider the case where the receiver has a large n-bit database x, the sender’s
input y describes a small RAM machine M whose running time is T � n, and the receiver’s output
is M(x). For instance, M can select a single entry y ∈ [n] of x, outputting M(x) = xy. Note that a
natural FHE-based protocol where the receiver sends an encryption of x and receives an encryption
of M(x) does not meet our efficiency goal of using less than n bits of communication. On the other
hand, allowing for a higher round complexity, our goal can be met using any PIR protocol [NN01].

From here on, we restrict the attention to 2-message protocols with o(n) communication. The
recent laconic function evaluation primitive [QWW18] provides such a protocol with overall com-
munication of |y|+ poly(λ, T), where λ is a security parameter. However, results in this setting are
only known under LWE (with subexponential modulus-to-noise ratio). This brings us to our second
main question:

Are there 2-message protocols computing M(x) with o(n) bits of communication from
any assumptions other than LWE?

1.2 Our Results

In this work, we introduce a new primitive that we call trapdoor hash functions (TDHs).6 TDHs
are hash functions H : {0, 1}n → {0, 1}λ with additional trapdoor-function-like properties. Specif-
ically, given an index i ∈ [n], TDHs allow for sampling an encoding key ek (that hides i) along
with a corresponding trapdoor. Furthermore, given H(x), a hint value E(ek, x), and the trapdoor

6The notion of trapdoor hash functions is inspired by the closely related notion of hash encryption [DG17,
DGHM18, BLSV18, GH18] and somewhere statistically binding hash functions [HW14, KLW15, OPWW15].

6

corresponding to ek, the ith bit of x can be efficiently recovered. In this setting, one of our main
questions is: how small can the hint value E(ek, x) be? We define the rate of TDH as the inverse of
the size of the hint.

We obtain constructions of rate-1 TDHs from standard assumptions, namely DDH, QR, DCR,
and LWE. The surprising twist in these constructions is the close integration of techniques developed
in two very recent and seemingly unrelated lines of investigation: (i) A new type of hash function
for constructing identity-based encryption by Döttling and Garg [DG17] and its extension to con-
structions of trapdoor functions by Garg, Gay and Hajiabadi [GH18, GGH18] and (ii) techniques
for homomorphic secret sharing by Boyle, Gilboa and Ishai [BGI16].

Main Result: Rate-1 Two-Message String OT. Our TDHs yield the first construction of
string OT with rate-1 from the {DDH, QR, LWE} assumption. Additionally, we get a new con-
struction under DCR, for which, unlike the Damgård-Jurik construction [DJ01], the size of the
group used is independent of the size of the inputs. We stress that while our constructions use only
two messages; previously, even multi-round constructions with rate > 1

2 were not known under these
assumptions.7 This allows us to obtain the following new results:

1. Private Information Retrieval : We obtain the first constructions of private information re-
trieval (PIR) from {DDH, QR, LWE} with download rate 1 (for retrieving long records).
The total communication complexity grows only logarithmically with the number of records.8

Previously, such PIR protocols were only known under DCR [Lip05]. This also resolves the
longstanding open question of building PIR with polylogarithmic communication (for 1-bit
records) from {DDH, QR} [KO97]. Such protocols were only known under DCR, LWE, and
the Phi-hiding assumptions [CMS99, Lip05, Cha04, OI07]. For example, the best known con-
struction from DDH required O(2

√
logn · λ) bits of communication, for database size n and

security parameter λ [KO97, Ste98].

2. Semi-Compact Homomorphic Encryption for Branching Programs: We obtain the first encryp-
tion schemes based on {DDH, QR} that allow evaluating a branching program on an encrypted
input, where the encrypted output grows only with the length of the branching program and
not with its size. Previously, such schemes were only known under {DCR, LWE} [IP07].

3. Lossy Trapdoor Functions: We obtain the first construction of lossy trapdoor functions [PW08]
with rate 1 from the {DDH, QR, LWE} assumption. Here, rate is defined as the ratio of the
input length and output length for the trapdoor function. Very recently, Garg et al. [GGH18]
obtained construction from DDH with a small constant rate. However, besides that, no
constructions with constant rate were known under these assumptions.

4. Malicious Statistically Sender Private OT: We obtain the first LWE-based 2-message OT
protocol in the plain model that offers statistical sender privacy against a malicious receiver
and has a constant rate. This improves over the 1/ log(λ) rate of a recent LWE-based protocol

7Our protocols achieve asymptotic download rate 1, which is clearly optimal. However, the (additive) difference
between the sender’s message length and the output length grows with the security parameter λ. In the full version
we show that that this gap is necessary even in the more liberal setting of secure computation with preprocessing.

8More specifically, as our group-based constructions are black-box in the underlying group, we can count the
communication complexity in terms of the number of group elements, which in our case is logn · poly(λ), where n is
the size of the database and λ is the security parameter.

7

of Brakerski and Döttling [BD18]. Similar protocols were previously known under {DDH,
DCR} [NP01, AIR01, HK12].

Rate-1 Protocols for Functionalities Generalizing OT. We generalize the techniques for
rate-1 OT to yield secure 2-message protocols with download rate 1 for other useful functionalities.
In these cases, we obtain the first protocols under any assumption. We obtain such protocols for
the following functionalities.

1. Batch OT: Batch OT allows n instances of bit-OT to be performed in parallel. We obtain 2-
message batch OT protocol with download rate 1 (but sub-constant upload rate) from QR and
LWE. Allowing for inverse polynomial error probability, we obtain a similar protocol under
DDH. Protocols with smaller constant download rates (and constant overall rate) were known
under a variety of assumptions; see [IKOS08, BGI17b, BMN18] and references therein.

2. Batch OLE: An oblivious linear function evaluation (OLE) scheme allows the sender to eval-
uate an affine function f(x) = ax+ b over the receiver’s private input x. We obtain the first
batch OLE (over either a field of a small characteristic or smooth modulus) with download rate
1 based on QR or LWE. We also get a DDH-based construction if we allow inverse-polynomial
error. For the case of fields, smaller constant download rate (and constant overall rate) could be
realized under LWE [DHRW16, JVC18a] or code-based assumptions [NP99, IPS09, ADI+17].

3. Matrix-Vector Products: We generalize the above to oblivious matrix-vector product evalua-
tion (OMV), where the sender has a matrix M , the receiver holds a vector v, and the output
is Mv. A two-message OMV protocol can be thought as a relaxed form of additively ho-
momorphic encryption. Our techniques can be generalized to construct OMVs over F2 with
optimal download rate, based on QR or LWE. We can also generalize the LWE-based con-
struction to fields modulo small primes or smooth integers. Compared to previous LWE-based
constructions (e.g., [JVC18a]), we get better (optimal) download rate but worse overall rate.

As mentioned for rate-1 OT, all the aforementioned results were known only under the DCR as-
sumption (and in the case of functionalities generalizing OT, were not known under any standard
assumptions), where optimal rate was achieved by letting the size of the group grow with the size of
the inputs. Our work improves in this setting. Specifically, assuming only DCR, our work implies
all of the above results in groups of size independent of the message length.

As in the context of rate-1 OT, while we consider only two-message protocols, we stress that,
prior to our work, none of the above-mentioned results were known even when additional rounds of
communication are allowed.

Beyond OT: Two-Message SFE with Sublinear Communication. Armed with our new
techniques, we attempt to broaden the class of functionalities for which two-message secure-function
evaluation (SFE) can be achieved with sublinear communication. Specifically, we start with the
following example setting: Alice would like to share her DNA sequence online so that various
medical researchers can use it to provide her with valuable insights about her health. However,
Alice wants to keep her “large” genetic information confidential and each researcher wants to keep
the specific parts of the genetic code it looks at private. In a bit more detail, Alice wants to publish
a hash h(x) of her input x (of length n) online, such that any contractor Bob, with a private machine
M with “small running time” (denoted by T) can send Alice a “short” message, enabling her to learn

8

M x, where M has random access to x. In summary, we are interested in a setting that allows Alice
to evaluate Bob’s private small machine on her private large input with sublinear communication.

Positive results for the above setting with sublinear communication are only known from lattice
assumptions — namely, using laconic function evaluation [QWW18]. In contrast, for the case of
DDH-based constructions, such protocols need communication complexity proportional to n. We
note that constructions based on laconic OT [CDG+17] do not keep the locations accessed by M
private and thus, do not suffice for this application.9

We obtain the first protocol for non-interactive secure computation on large inputs from DDH
with communication proportional to T ·

√
n, where T is the running time of the machine and n is

the size of the database. Furthermore, using pairings (and appropriate correlated-input secure hash
functions [IKNP03, GL10, BC10, GOR11, AMN+18]) we obtain a protocol with communication
cost proportional to T · 3

√
n.

Further, in a scenario where Bob’s machine M is repeatedly executed over different large inputs
(possibly owned by different Alices), we achieve protocols with communication proportional to T ,
and independent of n, per execution, assuming a non-interactive “offline phase” where Bob publishes
an “encoding” of M of length proportional to n or

√
n (from DDH or pairings, resp.), which can be

amortized over all executions.
Our results are obtained by constructing a variant of laconic OT [CDG+17], that keeps the

locations accessed by M private. We call this primitive private laconic OT. The key technical
challenge here is to realize this primitive with communication cost sublinear in the size of Alice’s large
input. By using private laconic OT, rather than laconic OT, in the constructions from in [CDG+17],
we obtain SFE for RAM programs with sublinear communication which, as opposed to the protocol
from [CDG+17], also hides the access pattern made by the machine to the input database and
therefore achieves a full notion of security.

2 Technical Outline

We will now provide an outline of the technical parts of this work.

2.1 Trapdoor Hash Functions

We start by providing an overview of our basic construction for trapdoor hash. Recall that a
trapdoor hash scheme (TDH) defines a family of samplable publicly-parameterized hash functions
Hhk : {0, 1}n → {0, 1}η, accompanied with the following three algorithms:

– Key generation: given the public hash key, Bob generates a pair of an encoding key and a
trapdoor (ek, td)← G(hk, i), corresponding to a private index i ∈ [n].

– Encoding: using the encoding key ek, Alice, with a private input x ∈ {0, 1}n, can compute a
hint e← E(ek, x), which essentially encodes the bit x[i].

– Decoding: Bob, who has the secret trapdoor td, can now decode any encoding e generated for
some input x as above, to recover xi, given only the hash Hhk(x). In fact, Bob would be able
to generate two encodings (e0, e1)← D(td, h), where it is guaranteed that e = ex[i].

9For this application, we insist on the two-message setting. Allowing O(T) rounds of interaction, similar protocols
can be based on any single-server PIR scheme [NN01].

9

Rate-1
Trapdoor Hash

for linear predicates
(QR,LWE)

Rate-1
Trapdoor Hash
(DDH,QR,LWE,DCR)

Download-rate-1
Batch OT

Download-rate-1
Batch OLE

Download-rate-1
Mat-Vec Product

Rate-1 OT

PIR

BP Evaluation
over encrypted data

Lossy Trapdoor
Functions [PW08]

Sec. 5.5
Const. 5.1

Const. 5.2
+Thm. 5.4

[IP07]

[IP07] Const. 6.2

Sec. 5.5

by def.

Figure 1: Overview of the results in this work, Part I: optimal-rate protocols for OT-like sender-
receiver functionalities and their applications. Dotted lines correspond to corollaries from prior
work.

We actually consider a more general notion of TDH where Bob with a private predicate f :
{0, 1}n → {0, 1}, chosen from a predefined class of predicates F , generates a key ek, using which
Alice encodes the bit f(x), and a corresponding trapdoor, using which Bob decodes. Such a scheme
is called trapdoor hash for F , and the above special case is referred to as trapdoor hash for index
predicates.

A formal definition of trapdoor hash can be found in Section 4.1.
For this outline, we focus on TDH for index predicates and think of trapdoor hashing as a

protocol where Alice and Bob play the roles of a sender with input x and, respectively, a receiver
who wants to learn x[i]. For now, we will mostly focus on receiver privacy (which we refer to as
function privacy in the general setting), as sender’s privacy (generally, input privacy) is much easier
to achieve. Receiver privacy means that the encoding key ek hides the index i (or, generally, the
predicate f ∈ F). We also require that the hash function will be compressing, specifically that the
length of its output is independent of the size of the input. Our main efficiency goal, however, is to
construct trapdoor hash where the hint e is as small as possible. The size of e is referred to as the
rate of the scheme. Our target is to achieve rate-1 trapdoor hash (which is clearly optimal).

We start with our DDH-based construction, which is presented in details in Section 4.2.

The Basic Hash Function. The starting point of this work is the following group-based hash
function mapping {0, 1}n to a group G

H(A, x) =

n∏
j=1

gj,x[j]

where x ∈ {0, 1}n is the input and A = (gj,b)j∈[n],b∈{0,1}
$←− G2×n is chosen uniformly at random and

serves as the hash key hk. By choosing n larger than the representation size of a group element in G,

10

this function becomes compressing. Collision resistance of this function can be routinely established
from the discrete logarithm assumption in G.

This surprisingly powerful function plays a central role in recent constructions of identity based
encryption [DG17], trapdoor functions [GH18], deterministic encryption and lossy trapdoor func-
tions [GGH18].

Adding Trapdoors. We show how this function can be made invertible, using techniques of
[GGH18]. Clearly, the hash value h ← H(hk, x) is too short to information-theoretically specify x.
Thus we will add additional hints, which we also call encodings, to allow recovery of x. We will first
discuss how the receiver can recover a single bit x[i] of x.

Let i ∈ [n] be an index of the receiver’s choice. The receiver will generate a matrix B ∈ G2×n,
that serves as an encoding key ek, such that the following holds for all x ∈ {0, 1}n: If H(A, x) = h,
then H(B, x) = hs · gx[i] for some s ∈ Zp. We can construct such a matrix B = (uj,b)j∈[n],b∈{0,1} by

choosing s $←− Zp uniformly at random, and setting

uj,b = gsj,b

for all j 6= i and
ui,b = gsi,b · gb. (2.1)

Since s is uniform, we immediately get, via the DDH assumption, that all gsj,b are pseudorandom,
and consequently, the matrix B is pseudorandom as well. Thus, the matrix B computationally
hides the index i.

Given the values h = H(A, x) and the hint e = H(B, x), as well as a trapdoor consisting of s,
the receiver can recover x as follows. As by the above property it holds that e = hs · gx[i], we can
recover x[i] by testing e

?
= hs · gb for both b ∈ {0, 1} and setting x[i] ← b for the b which satisfies

this test. While we can construct a trapdoor hash function in this way, its rate will be far from 1:
To encode a single bit x[i] of x, we need to spend one full group element e. Assuming that a group
element has size λ, this will give us a construction of rate 1/λ (see Construction 4.1 for a technical
description).

Towards Rate 1. Clearly, sending a group element e to encode a single bit x[i] is wasteful.
However, we make the following observation: The term e can only assume two different values,
namely hs and hs · g, depending on whether the bit x[i] is 0 or 1. So what we need is a way for the
sender to signal to the receiver that either e = hs or e = hs · g, without actually sending e. Yet,
since the sender does not know i, he generally does not know whether he is encoding 0 or 1, that
is, he does not know whether e is of the form hs or hs · g.

However, assume the sender could somehow determine the distance to a nearby reference point
of e which is insensitive to small perturbations. This would for instance be the case if the group G
had a subgroup G′, such that we can efficiently test membership in G′ and the quotient G/G′ is of
polynomial size. Since |G/G′| is only of polynomial size, we can efficiently compute the distance to
G′ for every e ∈ G. That is, the function Dist(e) which exhaustively searches for the smallest z ∈ Z
such that e · gz ∈ G′ is efficiently computable. Assuming further for simplicity that |G/G′| is even,
it holds for every e ∈ G that

Dist(e · g) mod 2 = (Dist(e) + 1) mod 2.

11

This means that hs and hs · g never map to the same bit under the function Dist(·) mod 2. Via
this observation, the sender can signal to the receiver whether e is hs or hs · g as follows. Instead of
sending e itself to the receiver, he just sends the bit ê = Dist(e) mod 2 ∈ {0, 1} to the receiver.

Modifying the recovery procedure of above, the receiver can recover x[i] by testing ê
?
= Dist(hsgb)

mod 2 for b ∈ {0, 1} and setting x[i]← b for the b which satisfies this test. This procedure recovers
the correct bit x[i] with ê = Dist(hs · gx[i]), as the value e computed by the sender must have been
either hs or hs · g, and by the above Dist(hs) mod 2 6= Dist(hs · g) mod 2.

Achieving Rate 1. Alas, since G is typically a cyclic group of prime order, it has no non-trivial
subgroups. But upon closer inspection, the signalling technique above does not really rely on any
additional group structure. All we need is that Dist(e · g) = Dist(e) + 1.

Fortunately, a technique to determine the distance to a reference point was recently proposed
by Boyle, Gilboa and Ishai [BGI16]. In a nutshell, instead of computing the distance to a subgroup,
we compute the distance to a moderately dense pseudorandom subset of G. Such a pseudorandom
subset can be succinctly represented via the key of a pseudorandom function by setting SK to
be the set of all points h ∈ G for which PRFK(h) starts with k = O(log(λ)) zeros. By tuning the
parameter k appropriately, we can achieve an average separation of the points in SK by an arbitrary
polynomial amount. We can now define Dist(e) to be the smallest z ∈ Z such that e · gz ∈ SK , i.e.
PRFK(e · gz) starts with k zeros. Note that this function can be computed efficiently for the above
choice of k.

However, as the vigilant reader might have observed already, when using this distance function,
the above signalling procedure does not have perfect correctness anymore. If hs and hs · g decode
to different points in SK , it might be that Dist(hs) mod 2 = Dist(hs · g) mod 2, in which case the
receiver cannot infer whether x[i] = 0 or x[i] = 1 and must declare an erasure.

Fortunately, by choosing k large enough, we can make the probability of such an erasure happen-
ing an arbitrarily small polynomial fraction 1/p(λ), while still ensuring that the decoding procedure
runs in polynomial time10. As it turns out, in many applications, we can deal with this small erasure
probability by resorting to standard coding techniques.

Construction 4.2 contains full technical details of the above.

Sender Privacy. So far we have not addressed issues concerning the privacy of the sender’s
inputs. However, in our DDH-based construction this is easy to achieve by providing an additional
random input to the hash function H. That is, we define H as

H(A, x; r) = gr ·
n∏
j=1

gj,x[j],

for a uniformly random r
$←− Zp. The hash value h = H(A, x; r) is now uniformly random (over the

choice of r) and therefore does not leak information about x. Furthermore, given the trapdoor s
and a single bit x[j] of the input x we can perfectly simulate e by computing e← hs · gx[j]. From e
we can compute ê as before. Thus, the modified construction has perfect sender privacy.

10We can ensure that both sender and receiver run in strict polynomial time by introducing a suitable polynomial
upper bound for the number of tries in the exhaustive search step of Dist(·).

12

2.2 Trapdoor Hash from QR and LWE

We will now briefly discuss instantiations of these techinques based on the Quadratic Residuosity
(QR) and Learning With Errors (LWE) assumptions (Constructions 4.3 and 4.4, resp.). As it turns
out, in both these cases we will have structures with exact subgroups. However, in both cases there
will also be new challenges which will have to be addressed with slightly different ideas.

Construction from QR. We will start with the QR-based construction. Instead of relying on
QR directly, we will use the fact that we can use QR to construct a group G in which the subgroup
indistinguishability problem is hard [BG10]. More specifically, the group G we use has a subgroup
G′ such that |G/G′| = 2. We can represent every h ∈ G as h = (−1)b · a, where b ∈ {0, 1}
and a ∈ G′. For the hash function H, we can use exactly the same construction as above, that
is H(hk, x) =

∏n
j=1 gj,x[j]. The only difference is that we choose the elements in the key hk = A

from the subgroup G′ instead of G, that is, A = (gj,b)j∈[n],b∈{0,1}
$←− G′2×m. Similar as in the

DDH-based construction, for an index i ∈ [n], the matrix B generated by G now has the form
B = (uj,b)j∈[n],b∈{0,1} where

uj,b = gsj,b

for all j 6= i and
ui,b = gsi,b · (−1)b.

Here, s is uniformly random in an appropriate domain. The crucial difference is that in ui,b, we have
replaced the generator g in the DDH-based construction by −1. It follows directly via the subgroup
indistinguishabilty assumption that gsi,b · (−1)b is indistinguishable from gsi,b. Thus, as before, the
index i is hidden.

By a similar analysis as before, it holds that if h = H(A, x), then e = H(B, x) = hs · (−1)x[i].
However, there is a crucial difference now: As e = hs · (−1)x[i], the sender can also compute
e · (−1) = hs · (−1)1−x[i]. That is, one of these two elements is hs and the other one is hs · (−1).
Recall that the receiver can also compute these two elements using the hash value h and the trapdoor
s. Thus, the only task left for the sender is to signal to the receiver which one of the two elements the
element e he got is. This can be easily done by communicating a single bit: The sender compares
e and e · (−1) under some total order �, say, by representing both elements as bit strings, and
computing the lexicographic order. Now, he sends the bit ê = 0 if e � e · (−1) and ê = 1 otherwise.
The receiver can recover x[i] as follows: If hs � hs · (−1) and ê = 0 he sets x[i] = 0, otherwise
x[i] = 1.

The main difference of this instantiation compared to our DDH-based construction is that there
is no decoding error. We can even leverage this fact to achieve a stronger functionality. So far, we
have only discussed how the receiver can recover individual bits x[i] of the sender’s input, namely
realize trapdoor hash for index predicates. We will now show how this can be upgraded in a way
such that the receiver can learn an inner product 〈y, x〉 mod 2, and therefore obtain trapdoor hash
for the more general class of linear predicates. The vector y is chosen by the receiver and is used to
generate the matrix B. Concretely, for a vector y ∈ {0, 1}n the receiver sets

uj,b = gsj,b · (−1)b·y[j]

for all j ∈ [n] and b ∈ {0, 1}. As before, we can use the subgroup indistinguishability assumption
to establish that the matrix B hides the vector y.

13

A simple calculation shows that H(B, x) = hs · (−1)〈y,x〉. The encoding and decoding procedures
are exactly the same as before, with the difference that now the receiver learns the inner product
〈y, x〉 mod 2. While this modification to our construction is nearly straightforward, it has several
important applications.

Refer to Section 4.3 for details and analysis.

Construction from LWE. We will finally turn to our construction from LWE (Construction 4.4).
On a conceptual level, the construction is very similar to the QR-based construction. We will directly
explain the construction for linear predicates, i.e. inner products over F2. In this instantiation, let
q = 2p be an even modulus. The hashing key hk = A is a 2×n matrix of uniformly random column
vectors aj,b ∈ Zkq , that is, each component of this matrix is a vector itself. The hash of an input
x ∈ {0, 1}n is now computed as the sum of the corresponding aj,b, that is

H(A, x) =
n∑
j=1

aj,x[j].

The encoding key contains a matrix B = (uj,b)j∈[n],b∈{0,1}, which consists of elements uj,b ∈ Zkq
which are computed by

uj,b = s>aj,b + ej,b + y[j] · b · (q/2),

where s is chosen uniformly from Zkq and the ej,b are sampled from a short LWE-error distribution
such as a discrete gaussian. By the LWE assumption, we immediately get that the values s>aj,b+ej,b
are pseudorandom, and consequently the matrix B hides the vector y. Assume further that PRF
is a pseudorandom function from Zkq to Zq. For this instantiation, the receiver will also include a

uniformly random PRF-key K $←− {0, 1}λ into the encoding key.
As before, the sender computes h = H(A, x) and e = H(B, x). Notice that it holds that

e =
n∑
j=1

uj,x[j] = s>
n∑
j=1

aj,x[j] +
n∑
j=1

ej,x[j] + 〈y, x〉 · (q/2) = s>h + e′ + 〈y, x〉 · (q/2),

where e′ =
∑n

j=1 ej,x[j] is a small error.
The challenge in this instantiation is that e is noisy, so the comparison-based technique from

the QR-based construction will not work here. Nevertheless, a standard tool to robustly deal with
this kind of error in the world of LWE is the rounding technique, introduced by Banerjee, Peikert
and Rosen [BPR12]. Define the rounding function b·e2 by bze2 = bz · 2/qe mod 2. The sender now
computes ê by

ê = bH(B, x) + PRFK(h)e2
and sends h along with the bit ê to the receiver. The receiver now computes and outputs (ê−bs>h+
PRFK(h)e2) mod 2.

To establish correctness, we will use the fact that, for a sufficiently large q, the rounding function
is insensitive to small perturbations. That is, for a uniformly random z

$←− Zq, and a sufficiently
small noise e, it holds that bz+ee2 = bze2, except with small probability over the choice of z. Now,
since the term PRFK(h) is pseudorandom in Zq, it holds that

ê = bH(B, x) + PRFK(h)e2 = bs>h + e′ + 〈y, x〉 · (q/2) + PRFK(h)e2
= bs>h + PRFK(h)e2 + 〈y, x〉,

14

except with small probability over the choice over K. This is the reason why we include the key K
in the receiver’s message, that is, to enable the sender to randomize H(B, x) without increasing the
size of the sender message. Correctness of the scheme follows.

The magnitude of the correctness error depends on the modulus-to-noise ratio. If we choose a
superpolynomial modulus-to-noise ratio, the correctness error becomes negligible. For a polynomial
modulus-to-noise ration the correctness error will be inverse polynomial and we have to compensate
with coding techniques.

2.3 Rate-1 Oblivious Transfer and More

Equipped with our newly developed tool, we show how to construct OT with rate 1 given any
trapdoor hash with the same rate.

Batch OT. Recall that a trapdoor hash scheme for index predicates allows one to recover the
ith bit of a string x given the hash value H(hk, x) and a single additional bit e (which we denote ê
above). With this tool at hand, we can realize the 1-out-of-2 bit OT functionality by letting the
receiver specify the hash key hk and the encoding key ek corresponding to the choice bit i ∈ {0, 1}.
The sender then sets its input x := s0‖s1 to be the concatenation of the two secret bits and computes
h = H(hk, x) together with the encoding e. Given such an information, the receiver can recover the
chosen secret bit by running the decoding algorithm. The obvious shortcoming of this approach
is that it is wasteful in terms of download rate, in the sense that the hash of the string must be
included to recover a single bit.

The key observation here is that the hash key hk can be reused across several executions.
Therefore the size of the hash h can be amortized across multiple independent bit OT protocols.
That is, if the bit OTs are executed in a batch, we can boost the download rate of the construction to
approach 1: Given n independent instances of bit OT, the receiver samples a hash key hk as before,
this time for inputs of length 2n rather than 2, and samples a set of encoding keys (ek1, . . . , ekn),
where the jth key allows the receiver to learn the input bit at position (2j + ij), where ij ∈ {0, 1}
is the choice bit of the jth OT instance. It is important that all of the encoding keys are generated
with respect to the same hk, since it will allow us to re-use the corresponding hash. The sender
defines x := s1,0‖s1,1‖ . . . , ‖sn,0‖sn,1, where sj,0, sj,1 are the secrets for the jth instance, and computes
the hash h = H(hk, x) as before, in addition to the additional hints, i.e. TDH encodings, (e1, . . . , en).
The recovery procedure is then run in parallel for each bit OT instance. Note that the sender’s
message consists of a hash (i.e., a single group element) and n bits. That is, the impact of h in the
communication vanishes as n grows, and thus, the download rate of the scheme approaches 1.

We elaborate in Section 5.3.

String OT. We showed how to obliterate the impact of the hash value h in the second OT message
by executing multiple bit OT instances in a batch. The same can be accomplished for a single OT
instance, when executed on sufficiently long secret strings (rather than single bits)11. The protocol
can be derived generically from the batch OT by adapting the encodings of the inputs: The receiver
executes the batch OT protocol of above by replicating the same choice bit i over each of the n
instances, whereas the sender parses the two strings (s0, s1) ∈ {0, 1}n as n pairs of bits and encodes

11In fact, string OT can be thought of as a special case of batch OT, where all the choice bits ij are equal.

15

the string x as before. Since the choice bit of the receiver is the same in all positions, the decoding
algorithm will recover the string si in its entirety.

In the above discussion we omitted a few important aspects of our transformation that need to
be addressed in order to obtain a fully-fledged rate-1 OT. More specifically, (i) some instances of
trapdoor hash have a correctness error, in the sense that the secret might not be recoverable with
a certain probability ε. Furthermore, (ii) the upload rate of the construction is inverse polynomial
in λ. To resolve the former point we preprocess the sender’s inputs with a sufficiently strong error-
correcting code. One has to be careful that the encoding function does not affect the download rate
of the protocol. Fortunately, our error probability ε lies in a regime of parameters that allow us to
efficiently instantiate the encoding function. For the latter issue, we show that any string OT with
download rate 1 can be generically bootstrapped to a string OT with overall rate 1. Our method is
based upon the simple observation that the first message of an OT is always reusable and therefore
can be amortized by executing the same OT over blocks of a sufficiently long string.

The same techniques can be generalized to 1-out-of-k OT, for any k ∈ N. Please refer to
Section 5.4 for the details of the above construction.

We now discuss few interesting applications of rate-1 OT.

Private Information Retrieval. Given a 1-out-of-2 string OT with rate 1, a (block) single-
server PIR protocol [KO97], with optimal download rate and polylogarithmic overall communication,
follows as a simple corollary of the main theorem of Ishai and Paskin [IP07]. We hereby recall the
transformation for completeness.

Recall that in (block) PIR, a client queries a server, that holds a database consisting of N
blocks, each of length β bits, in order to privately retrieve a block of his choice. Observe that a
1-out-of-2 string OT can be seen as a hash function that compresses the size of its input by a factor
of roughly two. The idea is to use such a hash function and let the server compute a Merkle tree
over the database x ∈ {0, 1}N ·β . Every node in the tree consists of a block and, for simplicity, we
assume that N = 2d for some d ∈ N, which is the depth of the tree. Thus, the lowest level in the
tree consists of the N database blocks: x0, . . . , xN−1, and every other level ` = 1, . . . , d in the tree
consists of N/2`-many blocks: h`,0, . . . , h`,N/2`−1, that are hashes of the nodes in level `. Notice that
every index i ∈ {0, . . . , N − 1} corresponds to a path in the tree, which we denote by (i1, . . . , id),
which represents the path from database block xi to the root of the tree.

The protocol proceeds as follows: First, the client generates the receiver message msg
(`)
1 of an

OT for strings of appropriate length, for each layer ` = 1, . . . , d in the tree, where the choice bit is
set to be the index i`. Then the client sends (msg

(1)
1 , . . . ,msg

(`)
1) to the server, who computes all

of the hash values in the Merkle tree, i.e. OT sender messages, and sends the root msg
(d)
2 to the

client. The client can recover the entry of interest by recursively applying the decoding algorithm
of the OT, starting from the top level d.

See Section 6 for details and more applications of rate-1 OT.

Evaluating Branching Programs over Encrypted Data. Another result in the work of Ishai
and Paskin [IP07], which can be seen as a generalization of the above, is a compiler that takes
any 2-message rate-1 OT12 into a semi-compact homomorphic encryption scheme for branching

12In fact they require an OT protocol with a strong notion of sender privacy, which is satisfied by all of our
constructions.

16

programs (a superclass of NC1), where the size of the evaluated ciphertexts depends only on the
length of the branching program but not on its size. This immediately yields a sublinear secure
function evaluation protocol where the client’s work is independent of the size of the branching
program (which is in fact hidden to its eyes).

Lossy Trapdoor Functions. As a yet another application, we show a simple construction of lossy
trapdoor functions [PW08, HO12] with optimal rate from any 2-message rate-1 OT, and therefore
obtain schemes based on DDH, QR, or LWE. Prior to our work, rate optimal schemes were known
to exist only under the DCR assumption.

Rate-Optimal Protocols for Other OT-like Functionalities. It turns out that using trap-
door hash for index predicates, we can already capture a wide variety of predicate classes through a
simple transformation. More specifically, if a given predicate class F is “small”, i.e. contains poly(n)
predicates for input size n, then we can obtain TDH for F on input x by applying TDH for index
predicates on input x′, where the ith bit in x′ is the evaluation of the ith predicate in F on x.

We use this observation to extend the range of functionalities for which we can construct rate-
optimal protocols. For instance, an interesting special case of small predicate classes are functions
f(x) = ax + b over F2, which essentially allow realizing batch oblivious linear function evaluation
(OLE) [NP99] by replacing the TDH for index predicates, in the batch OT construction described
above, with TDH for such predicates. Further, one can extend the idea to OLE over other constant
size rings (e.g. fields Fp for constant prime p), by evaluating each output bit separately.

An even more general functionality, that allows evaluating matrix-vector products over F2 (with
the vector and matrix respectively being the receiver’s and sender’s input), can be realized using the
same technique by relying on TDH for linear predicates, which can be instantiated, as mentioned
earlier, under the LWE and QR assumptions. The LWE-based TDH scheme can be further extended
to allow trapdoor-evaluation of linear functions over small fields, thus yielding oblivious matrix
vector multiplication (OMV) over such fields. It is worth mentioning that OMV can be also seen
as a variant of rate-1 additively homomorphic encryption, where inner products (and in particular
matrix multiplication) can be evaluated over encrypted vectors.

Lastly, we note that using OLE and OMV schemes over small fields, we can realize similar
functionalities over larger algebraic structures through standard algebraic manipulations. More
specifically, we can get OLE and OMV over smooth rings, via the Chinese Remainder Theorem,
and over extension fields of small characteristic using basic extension field algebra.

We provide more details in Section 5.5.

2.4 Private Laconic Oblivious Transfer

Next, we outline another application of trapdoor hash: private laconic oblivious transfer. As dis-
cussed in the introduction, private laconic OT has strong applications in secure computation. In
particular, following the outline presented in [CDG+17] to utilize laconic OT for non-interactive se-
cure RAM computation with unprotected memory access, we can use private laconic OT to obtain
secure RAM computation where the access pattern to the memory is also hidden, and therefore
achieve a stronger notion of security.

13 We also assume correlated-input secure hash over bilinear groups.

17

Trapdoor Hash
w/ secret encoding
(DDH:O(n),SXDH:O(

√
n))

Trapdoor Hash
w/ reusable secret encoding

(DDH:O(n),SXDH13:O(
√
n))

Private Laconic OT
(DDH:O(

√
n),SXDH13:O(3√n))

Reusable
Private Laconic OT
(DDH:O(n),SXDH13:O(

√
n))

Laconic OT [CDG+17]

Const. B.2

Const. 7.2

Const. 7.1
(inefficient)

Const. 7.1

by def.

Figure 2: Overview of the results in this work, Part II: safe-function evaluation with sublinear
communication. Thin lines correspond to non-generic transformations.

Recall that in laconic OT (`OT) [CDG+17], a receiver with an input database x ∈ {0, 1}n
communicates with a sender, with two secrets s0, s1 ∈ {0, 1} and an index i ∈ [n] as input, in order
to learn sx[i] ,while keeping both x and s1−x[i] private. In private laconic OT (formally defined in
Section 7.1), we also require that the index i remains hidden from the receiver.

Recall that in laconic OT (`OT) [CDG+17], a receiver with an input database x ∈ {0, 1}n
communicates with a sender, with two secrets s0, s1 ∈ {0, 1} and an index i ∈ [n] as input, in order
to learn sx[i] ,while keeping both x and s1−x[i] private. In private laconic OT (p`OT), we also require
that the index i remains hidden from the receiver.

Our end goal is to realize the p`OT functionality through a two-message protocol where the over-
all communication is sublinear in n in order to obtain sublinear SFE protocols (due to [CDG+17]).

As a start, however, we aim for receiver-compact p`OT where the upload communication (i.e.,
the communication from the receiver to the sender) is independent of the receiver’s database size
n, and set no restrictions on the communication from the sender to the receiver. We then describe
such a receiver-compact p`OT construction with linear sender-receiver communication through our
DDH-based trapdoor hash, and then show to get sublinear communication (namely

√
n) using

pairings.
Lastly, we show that if we are willing to compromise receiver-compactness, then we can balance

our protocols using what we call reusable private laconic OT and obtain more efficient SFE protocols
with sublinear communication under both DDH and pairings.

Basic Construction from Trapdoor Hash. Let us first try to realize the relaxed notion of `OT
using trapdoor hash in a straight-forward way. In order to that, the roles of Alice and Bob from
above, as a sender and a receiver, must be swapped.

Given a TDH for index predicates, the construction proceeds as follows. The public parameters
of the `OT scheme simply consist of a hash key hk of the TDH. The receiver (which is now played
by Alice) computes a hash value of his database h = H(hk, x), which he sends to the sender (now
Bob). Observe that the size of h is independent of the size of x, and thus satisfying our requirement
regarding upload communication.

The sender generates a pair (ek, td) of an encoding key and a trapdoor corresponding to the
hash key hk and his input index i. Using td and h, he computes two symmetric encryption keys

18

(e0, e1) = D(td, h), using which he encrypts his secret inputs s0 and s1, respectively, to obtain two
ciphertexts. He now sends the key ek as well as the two ciphertexts to the receiver, who will be able
to decrypt one of them by recovering ex[i] using the encoding algorithm E of the TDH.

To establish security of this `OT construction, we need the following to ensure that (i) the hash h
hides x (receiver privacy), and (ii) the encoding key ek hides e1−x[i] (sender privacy). While receiver
privacy is implied directly from the input privacy of the underlying TDH, sender privacy does not
generically follow. Thus, we need to augment our definition of TDH with the requirement that,
for every i, the value e1−x[i] is uniformly random given hk, ek and x, where (ek, td)

$←− G(hk, i) and
(e0, e1) = D(td,H(hk, x)). A TDH that satisfies this requirement is said to have secret encoding.

Notice that the secret encoding property is in conflict with achieving high rate in a TDH. In
particular, in any rate-1 TDH, correctness requires that e1−x[i] = 1− ex[i] with a high probability.

Fortunately, the basic DDH-based TDH construction without the rate optimization, which is
sketched above, fulfills the secret encoding property under DDH. This is not surprising, as so far,
this construction is very similar to the original `OT construction of [CDG+17].

In fact, the above outlined protocol, which is presented in details in Construction 7.1, realizes the
stronger notion of p`OT. By relying on the function privacy of the underlying TDH, we immediately
get that the sender’s input index i is kept hidden from the receiver, and hence, we get the p in p`OT.

As hinted earlier, the above construction suffers from an undesired property: download commu-
nication is linear in the size of the receiver’s database. We propose two solutions. The first relies on
the SXDH assumption over bilinear groups and uses pairings in order to reduce the communication
to O(

√
n). In the second, we introduce a resuablitiy notion of p`OT, that can be realized under both

DDH and SXDH with similar communication. We then show how to transform any reusable p`OT
into a (non-reusable) p`OT scheme while reducing the overall communication complexity, to obtain
efficient p`OT protocols under DDH, resp. SXDH, with download communication proportional to√
n and 3

√
n, respectively.

Shrinking the Keys Using Pairings. The bottleneck in the efficiency of the DDH-based p`OT
scheme from above lies in the size of the public parameters and sender’s message, namely the keys
hk and ek of the trapdoor hash, which both grow linearly in n.

Towards achieving sublinear communication, we start with the following observation. The high
entropy of the public parameters, i.e. matrix A in hk, is not essential for security in the DDH-based
TDH scheme. Thus, if we could produce such a matrix A = (gj,b)j∈[n],b∈{0,1} using a shorter “seed”,
and then let Alice compute a short “seed” that expands to a matrix B = (uj,b)j∈[n],b∈{0,1} which can
be used as an encoding key ek, then we are able to reduce the size of hk and ek and, therefore, the
communication of the resulted p`OT.

Roughly speaking, we choose the seed for A to be two 2 ×
√
n matrices, A1 ∈ G2×

√
n and

A2 ∈ H2×
√
n, for two different groups G and H. We then use a bilinear map e : G × H → Ĝ to

pair elements in A1 with elements in A2 and get 2 × n elements in Ĝ, which we use as the hash
key hk = A ∈ Ĝ2×n. To generate a seed to the corresponding encoding key B, we begin by defining
B1 = A1

s1 and B2 = A2
s2 , which would expand to B = As1+s2 using the pairing. To achieve

functionality, we would want to “puncture” the (i, 1)th entry in B and multiplying it by a random
group element (see Equation 2.1). For this task, we use a bilinear pairing with a special property,
that allows us to multiply every element in B1 and B2 by carefully sampled random elements from
G and H (resp.). We do this in a way that when pairing elements from the two matrices to generate
B, these random factors cancel each other out, except at the (i, 1)th element, which will be randomly

19

distributed.
Appendix C contains full details of the parings-based TDH.
Having shown how to obtain receiver-compact private laconic OT from DDH and SXDH, we

next describe in a high level how to transform such “unbalanced” schemes to p`OT schemes which,
despite being non-receiver-compact, have lower overall communication, and in particular, give us
sublinear non-interactive secure computation protocols also from DDH.

How to Reuse the Sender’s Message. Let us reexamine the p`OT scheme from TDH. The
sender’s message consists of an encoding key ek and encryptions of the two sender’s secrets, each
under a corresponding TDH encoding. We observe that the encoding key ek, which is actually the
larger part of the sender’s message, is actually independent of the hash value h = H(hk, x). It can
therefore be reused for different p`OT invocations corresponding to different values of the receiver’s
database x and the sender’s secrets s0, s1 (but that share the same index i).

This brings us to define a notion of reusable p`OT, where we distinguish between two parts of the
sender’s message: (i) a reusable part, of size sublinear in n, that depends only on i and, therefore,
can be reused for different inputs x, s0, s1, and (ii) a compact part, of size independent in n, that is
generated w.r.t. a specific receiver’s database x and sender’s secrets s0 and s1.

As mentioned above, the p`OT construction from TDH already gives reusability, with ek being
reusable. However, a subtle issue concerning the sender privacy has to be resolved. Take for
instance the p`OT construction from the DDH-based TDH. Above, we argued that the encoding
e1−x[i] is uniformly distributed given hk and ek, in what we called the secret encoding property.
Notice, however, that this is not sufficient for reusable p`OT, where many such encodings e1−x[i],
namely symmetric encryption keys, are generated w.r.t. different values of x. Although each of these
encryption keys is individually uniform, they are highly correlated. Encryption under correlated
keys is clearly insecure. Thus, we do not get sender privacy when ek is reused.

We handle this issue by defining a related reusable secret encoding property for TDH. In Ap-
pendix B we show that both the DDH-based and pairings-based TDH schemes can be extended to
have reusable secret encoding using suitable correlated-input secure hash [AMN+18], which can be
fortunately realized under DDH and, resp., appropriate hardness assumptions over bilinear groups.

Reusable p`OT can be useful by itself for applications in secure computation, in particular when
we allow to amortize the communication cost over many computations of the same functionality
on different inputs. Further, as mentioned earlier, reusable p`OT turns out to be useful to achieve
p`OT schemes which, although non-reusable, have smaller download communication. We elaborate
below.

Exploiting Reusability for More Efficient Schemes. Lastly, we show how to use reusable
p`OT to achieve more efficient p`OT schemes. Our final results are a DDH-based p`OT with com-
munication proportional to

√
n, and a pairing-based p`OT with communication proportional to

3
√
n. Although the construction is generic, it is parameterized differently according to the under-

lying reusable p`OT. For presentation, we take the DDH-based reusable p`OT, where the public
parameters and sender’s message grow linearly in n as a special case.

The idea is as follows. We divide the receiver’s database x to
√
n smaller databases, x1, . . . , x√n,

each of size
√
n. Consequently, every index j ∈ [n] is interpreted as (j1, j2) ∈ [

√
n]2 (particularly,

i = (i1, i2)) where xj := xj1 [j2]. On the sender’s side, each of the secrets s0, s1 is additively shared

20

to s0,1, . . . , s0,
√
n ∈ {0, 1} and, respectively, s1,1, . . . , s1,√n ∈ {0, 1} s.t.

∑
j sj,b = sb for b ∈ {0, 1}. In

fact, the sender generates the shares such that sj,0 = sj,1 for any j 6= i1.
The idea is to use the underlying reusable p`OT to send to the receiver, for every j ∈ [

√
n], either

sj,0 or sj,1, conditioned on xj [i2]. For any j 6= i1, both bits are equal, and therefore, the receiver
obtains sj , regardless of the value of xj [i2]. The only database bit that matters is x[i] := xi1 [i2],
which determines whether the receiver receives sj := sj,0, and therefore can compute

∑
j sj = s0, or

sj := sj,1, which would allow him to compute
∑

j sj = s1.
The construction is described in detail in Section 7.3.

2.5 Concurrent Work

In a concurrent work, Gentry and Halevi [GH19] constructed an efficient rate-1 FHE schemes from
LWE, which in particular also yield rate-1 OT constructions. When instantiated from LWE with
polynomial modulus-to-noise ratio, their construction achieves rate 1 − ε for any constant ε. In
comparison, our OT constructions achieve rate 1 − 1/λ in this regime and can also be based on
DDH or QR.

3 Preliminaries

Notation. For an integer n ∈ N, [n] denotes the set {1, . . . , n}. We use λ for the security
parameter and negl(λ) for a negligible function in λ. We say that a distribution ensemble {xλ}λ∈N
is polynomial-length if there exists a polynomial `(λ) such that |xλ| ≤ `(λ) for any λ ∈ N. We use

c≡
and

s≡ to denote computational and, resp., statistical indistinguishability between two distribution
ensembles, and we use ≡ when the two ensembles are identical. For a distribution D we use x $←− D
to say that x is sampled according to D and use x ∈ D to say that x is in the support of D. For a
set S we overload the notation to use x $←− S to indicate that x is chosen uniformly at random from
S. We conventionally denote vectors as v and matrices as M. For a group G of order p, an element
g ∈ G and a vector v = (v1, . . . , vn) ∈ Znp , we denote by gv the vector (gv1 , . . . , gvn) ∈ Gn. Given a
vector g = (g1, . . . , gn) and a scalar c, we denote by (g)c the vector (gc1, . . . , g

c
n) ∈ Gn.

3.1 Number Theoretical Assumptions

The Decisional Diffie-Hellman Assumption. In the following we state the decisional version
of the Diffie-Hellman (DDH) assumption [DH76].

Definition 3.1 (Decisional Diffie-Hellman (DDH) assumption). A (prime-order) group generator
is an algorithm G that takes as an input a security parameter 1λ and outputs (G, p, g), where G is
the description of a multiplicative cyclic group, p is the order of the group which is always a prime
number, and g is a generator of the group. We say that G satisfies the DDH assumption (or is
DDH-hard) if for any PPT adversary, A, it holds that

| Pr[A((G, p, g), (ga1 , ga2 , ga1a2)) = 1]− Pr[A((G, p, g), (ga1 , ga2 , ga3)) = 1] |= negl(λ)

where (G, p, g)
$←− G(1λ) and a1, a2, a3

$←− Zp.

21

The Quadratic Residuosity Assumption. We say that N is a Blum integer if N = p · q for
some primes p and q such that p (mod 4) = q (mod 4) = 3. We denote by JN the multiplicative
group of the elements in Z∗N with Jacobi symbol +1 and by QRN the multiplicative group of
quadratic residues modulo N with generator g. Note that QRN is a subgroups of JN and they
have order ϕ(N)

4 and ϕ(N)
2 , respectively, where ϕ(·) is Euler’s totient function. It is useful to write

JN : H × QRN , where H is the multiplicative group (±1, ·) of order 2. Note that if N is a Blum
integer then gcd(2, ϕ(N)

4) = 1 and −1 ∈ JN \ QRN . We recall the quadratic residuosity (QR)
assumption [GM82].

Definition 3.2 (Quadratic Residuosity Assumption). Let N be a uniformly sampled Blum integer
and let QRN be the multiplicative group of quadratic residues modulo N with generator g. We say
the Quadratic Residuosity assumption holds with respect to QRN if for any PPT adversary A it
holds that

| Pr[A(N, g, a) = 1]− Pr[A((N, g, (−1) · a)) = 1] |= negl(λ)

where a $←− QRN .

In the following we recall a useful proposition from [BG10].

Proposition 3.1 ([BG10]). Let QRN be the multiplicative group of quadratic residues modulo N
with generator g, where N is a uniformly sampled Blum integer, and let ` = `(λ) be a polynomial. If
the quadratic residuosity assumption holds then for any PPT adversary A = (A0,A1) it holds that∣∣∣∣ Pr[A1(τ, (−1)a · (g)r) = 1 | A0(N, g,g) = (τ,a)]

−Pr[A1(τ, (g)r) = 1 | A0(N, g,g) = (τ,a)]

∣∣∣∣ = negl(λ)

where a ∈ {0, 1}`, g $←− QR`N , and r
$←−
[
N−1

2

]
.

3.2 The Learning with Errors Assumption

The learning with errors (LWE) problem was defined by Regev [Reg05]. In this work we exclusively
use the decisional version.

Definition 3.3 (Learning with Errors (LWE) assumption). The LWEm,m̃,q,χ problem, for (m, m̃, q)
∈ N and for a distribution χ supported over Z, is two distinguish between the distributions (A, sA+e

mod q) and (A,u), where A
$←− Zm×m̃q , s $←− Zmq , and u

$←− Zm̃q . The LWEm,m̃,q,χ assumption is that
the two distributions are computationally indistinguishable.

The assumption is consider to hold if for any m̃ = poly(m log q) and we denote this problem by
LWEm,q,χ. As shown in [Reg05, PRSD17], the LWEm,q,χ problem with χ being the discrete Gaussian
distribution with parameter σ = αq ≥ 2

√
m (i.e. the distribution over Z where the probability

of x is proportional to e−π(|x|/σ)2), is at least as hard as approximating the shortest independent
vector problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. This
is proven using a quantum reduction. Classical reductions (to a slightly different problem) exist as
well [Pei09, BLP+13] but with somewhat worse parameters. The best known (classical or quantum)
algorithms for these problems run in time 2Õ(m/ log γ), and in particular they are conjectured to be
intractable for γ = poly(m).

22

A discrete gaussian with parameter αq is B = αq bounded, except with negligible probability.
For parameter α the worst-to-average case reduction of [Reg05] gives a worst-case approximation
factor of Õ(m/α) for SIVP. Consequently, in terms of the bound B and the modulus q we get a
worst-case approximation factor of Õ(mq/B) for SIVP.

3.3 Statistics and Information Theory

We recall the notion of statistical distance and some results from information theory.

Definition 3.4 (Statistical Distance). Let X and Y be two random variables over a finite set U .
The statistical distance between X and Y is defined as

SD [X,Y] =
∑
u∈U
|Pr[X = u]− Pr[Y = u]|

Definition 3.5 (Average Conditional Min-Entropy). Let X be a random-variable supported on a
finite set X and let Z be a (possibly correlated) random variable supported on a finite set Z. The
average-conditional min-entropy H̃∞(X|Z) of X given Z is defined as

H̃∞(X|Z) = − log

(
Ez

[
max
x∈X

PrX = x|Z = z

])
.

Definition 3.6 (Extractor). A function Ext : {0, 1}d × X → {0, 1}` is called a seeded strong
average-case (k, ε)-extractor, if it holds for all random variables X with support X and Z defined
on some finite support that if H̃∞(X|Z) ≥ k, then it holds that

SD[(seed,Ext(seed, X), Z), (seed, U, Z)] = ε,

where seed
$←− {0, 1}d and U $←− {0, 1}`

Such extractors can be constructed from universal hash functions [DRS04, DORS08]. In fact,
any extractor is an average-case extractor for slightly worse parameters by the averaging principle.

Definition 3.7 (Universal Hash Functions). An ensemble of functions H : X → Y is called univer-
sal, if it holds for all x 6= x′ ∈ X that

Pr
H

[H(x) = H(x′)] ≤ 1/|Y|,

where H $←− H is chosen uniformly random.

Lemma 3.1 (Leftover Hash Lemma [DRS04]). Let X be a random-variable supported on a finite
set X and let Z be a (possibly correlated) random variable supported on a finite set Z such that
H̃∞(X|Z) ≥ k. Let H : X → {0, 1}`, where ` ≤ k − 2 log

(
1
ε

)
, be a family of universal functions.

Then H is a strong average-case (k, ε)-extractor.

Chernoff Bound. We recall the following useful bound for binomial distributions.

Definition 3.8 (Chernoff Bound). Let X be binomially distributed with parameters n ∈ N and
p ∈ [0, 1]. Let p′ > p. Then it holds that

Pr[X > 2p′n] < e−p
′n/3.

23

Erasure- and Error-Correcting Codes. We recall the definition of erasure- and error-correcting
codes.

Definition 3.9 (Erasure- and Error-Correcting Codes). A (binary) (N,n) code consists of a pair of
efficiently computable functions (Encode,Decode), where Encode : {0, 1}n → {0, 1}N and Decode :
{0, 1,⊥}N → {0, 1}n. The rate r of such a code is defined as r := n/N .

• We say that a code (Encode,Decode) efficiently corrects from t erasures if the following holds.
Let x ∈ {0, 1}n and y′ ∈ {0, 1}N be such that y′ is ⊥ in at most t positions but otherwise
identical to y = Encode(x). Then it holds that Decode(y′) = x.

• We say that a code (Encode,Decode) efficiently corrects from t errors if the following holds.
Let x ∈ {0, 1}n and y′ ∈ {0, 1}N be such that y′ differs from y = Encode(x) in at most t
positions. Then it holds that Decode(y′) = x.

We will now briefly discuss suitable instantiations of error and erasure correcting codes for our
constructions. Our main concern is finding an explicit family with rate approaching 1 which can
still be efficiently decoded.

While concatenated codes with an outer Reed Solomon code seem like a natural choice, their rate
is insufficient for our purposes. The reason is that since the inner code has length at most O(log(λ)),
their asymptotic rate can be at most 1− 1/O(log(λ)), which implies a rate of 1− 1/O(log(λ)) for
the concatenated code. But this is below our target of 1 − 1/λ. For erasure correcting codes, we
could choose a a random linear code of appropriate parameters and rely on the Gilber-Varshamov
bound to get good distance, but this would result in a probabilistic construction.

Instead, our approach will be to instantiate Sipser-Spielman expander codes [SS94, CRVW02]
with a suitable expander that allows us to achieve rate 1 − 1/λ. The Guruswami-Umans-Vadhan
(GUV) construction [GUV07] provides such an expander.

Definition 3.10 (Expander Graphs). A bipartite graph H with N left nodes L and M right nodes
R is called (N,M,D,K, γ) expander, if the degree of every left node is D and it holds for every set
X ⊆ L of size at most K that |N(X)| ≥ γ|X|, where N(X) ⊆ R is the neighborhood of X in R.

Theorem 3.1 (Guruswami-Umans-Vadhan [GUV07]). For all constants α, ε > 0, for every N and
K ≤ N there exists an explicit (N,M,D,K, (1−ε)D) expander, where D ≤ O(log(N) log(K)/ε)1+1/α

and M ≤ D2 ·K1+α.

Theorem 3.2 (Sipser-Spielman [SS94, CRVW02]). Let H be an (N,M,D,K, (1 − ε)D) expander
for ε < 1/12. Then there exists a binary error correcting code (Encode,Decode) with rate 1−M/N
which can efficiently decode (1− 3ε)K errors in time O(D ·N).

We will now instantiate the codes of Theorem 3.2 with the expanders from Theorem 3.1. Fix
any ε < 1/12 and set α = 1. Setting N = Θ((log λ)8 · λ3) and K = Θ(λ), we get D = O((log λ)4)
and M = O((log λ)8 · λ2). This gives leads to a rate 1−O(1/λ).

Theorem 3.3. There exists an efficient family of binary error correcting codes (Encode,Decode) of
length N = Õ(λ3) and rate 1−O(1/λ) which can efficiently decode from Ω(λ) errors or erasures.

Notice that since the GUV expander does not have constant degree, the resulting decoding
algorithm is not linear time, but still polynomial time (in fact quasi-linear).

24

We remark, however, that the above requirements are asymptotic in nature. In practice, one
would use either a concrete LDPC code [Gal63, Mac02] or a concatenated code with an inner Reed
Solomon code, as in practically speaking a rate of 1−1/ log(λ) is sufficiently close to 1 for reasonable
parameters of λ.

4 Trapdoor Hash Functions

In this section, we provide a formalization of our main primitive: a trapdoor hash scheme TDH
for a class of predicates F , then show how to realize it for the class of index predicates, and more
generally, for linear predicates, under three different cryptographic assumptions: DDH, QR, and
LWE.

4.1 Model and Formal Definition

Defining Trapdoor Hash. A trapdoor hash scheme (TDH for short), in essence, defines a publicly
parameterized hash function hhk : {0, 1}n → {0, 1}η, through its sampling algorithm, that allows
two parties, Alice and Bob, to perform the following functionality:

– Generating a key and trapdoor for encoding: Alice, who has a private predicate f ∈ F over
{0, 1}n (for a pre-defined class of predicates F), generates a pair of an encoding key ek and
a trapdoor td. Alice can publish ek on her website, while keeping f private (hence, function
privacy).

– Hashing: using the public hash key hk, Bob, who has a private input x ∈ {0, 1}n, can compute
a hash hhk(x) that does not reveal x (hence, input privacy), and send it to Alice.

– Encoding: using the encoding key ek, anyone, including Bob, can compute an encoding e :=
E(ek, x) for his input x ∈ {0, 1}n.

– Decoding: Alice, who has the secret trapdoor td, can decode the encoding e to recover f(x),
given only the hash hhk(x). In fact, Alice would be able to generate two encodings: a 0-
encoding e0 and a 1-encoding e1, where it is guaranteed that e = ef(x) (this is correctness).
Notice that since the encodings are computable by Alice using the hash, they too do not reveal
any information about x.

Definition 4.1 (Trapdoor Hash Scheme (TDH)). Let F = {Fn}n∈N be a class of predicates, where
each Fn is a set of predicates defined over over {0, 1}n, and let ω := ω(λ) ∈ N for any λ ∈ N. A
rate- 1

ω TDH scheme for F is a tuple of five PPT algorithms H = (S,G,H,E,D) with the following
properties.

• Syntax:

– hk ← S(1λ, 1n). The sampling algorithm takes as input a security parameter λ and an
input length n, and outputs a hash key hk.

– (ek, td)← G(hk, f). The generating algorithm takes as input a hash key hk and a predicate
f ∈ Fn, and outputs a pair of an encoding key ek and a trapdoor td.

– h← H(hk, x; ρ). The hashing algorithm takes as input a hash key hk, a string x ∈ {0, 1}n
and randomness ρ ∈ {0, 1}∗, and deterministically outputs a hash value h ∈ {0, 1}η.

25

– e ← E(ek, x; ρ). The encoding algorithm takes as input an encoding key ek, string
x ∈ {0, 1}n and randomness ρ ∈ {0, 1}∗, and deterministically outputs an encoding
e ∈ {0, 1}ω.

– (e0, e1)← D(td, h). The decoding algorithm takes as input a trapdoor td, a hash value h ∈
{0, 1}η, and outputs a pair of a 0-encoding and a 1-encoding (e0, e1) ∈ {0, 1}ω × {0, 1}ω.

• Correctness: H is (1 − ε)-correct (or has ε error probability), for ε := ε(λ) < 1, if the
following holds for any λ, n ∈ N, any x ∈ {0, 1}n and any predicate f ∈ Fn.

Pr[e = ef(x)] ≥ 1− negl(λ) Pr[e 6= e1−f(x)] ≥ 1− ε− negl(λ)

where hk := S(1λ, 1n), (ek, td) := G(hk, f), h := H(hk, x; ρ) and e := E(ek, x; ρ) for ρ $←− {0, 1}∗,
and (e0, e1) := D(td, h). When ε = 0 we say that the scheme is fully correct.

• Function Privacy: H is function-private if for any polynomial-length {1nλ}λ∈N and any
{fn}n∈N and {f ′n}n∈N such that fn, f ′n ∈ Fn for all n ∈ N, it holds that

{(hkλ, ekλ)}λ∈N
c≡ {(hkλ, ek′λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), (ekλ, tdλ)

$←− G(hkλ, fnλ) and (ek′λ, td
′
λ)

$←− G(hkλ, f
′
nλ

).

• Input Privacy: H is input-private if for any polynomial-length {xλ}λ∈N and {x′λ}λ∈N such
that nλ := |xλ| = |x′λ|, it holds that

{(hkλ, hλ)}λ∈N
c≡ {(hkλ, h′λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), hλ = H(hkλ, xλ; ρ) and h′ = H(hkλ, x

′
λ; ρ′) for ρ, ρ′ $←− {0, 1}∗. When

the indistinguishability above is statistical, we say we have statistical input privacy.

• Compactness: we require that the image length of the hash function, η, is independent of n,
and is bounded by some polynomial in the security parameter λ.

We will also define a weaker version of correctness, as one of our LWE-based construction does
not achieve the slightly stronger version above.

Definition 4.2 (Weakly Correct TDH). A TDH scheme H = (S,G,H,E,D) for the class of pred-
icates F is (1 − ε)-weakly correct, for ε := ε(λ) < 1, if the following holds for any λ, n ∈ N, any
x ∈ {0, 1}n, and any predicate f ∈ F .

Pr[e = ef(x)] ≥ 1− ε− negl(λ) Pr[e 6= e1−f(x)] ≥ 1− ε− negl(λ)

where hk := S(1λ, 1n), (ek, td) := G(hk, f), h := H(hk, x; ρ) and e := E(ek, x; ρ) for ρ $←− {0, 1}∗, and
(e0, e1) := D(td, h).

26

Useful Classes of Predicates. In this work, we consider TDH schemes for two classes of predi-
cates over {0, 1}n. The first is the class of index predicates, that output the ith bit of an input x for
some index i ∈ [n], and is formally defined as I = {In}n∈N, where

In = {f[i](x) = x[i] | i ∈ [n]} (4.1)

The second is a generalization that consist of all linear predicates over F2, L = {Ln}n∈N, where

Ln = {fα(x) =
n∑
i=1

αjxi | α ∈ {0, 1}n} (4.2)

where addition and multiplication are defined in F2.

Remark 4.1 (On the generality of index predicates). We note that one can obtain a TDH scheme
for any class of predicates F using a TDH scheme for the class of index predicates I. Given an
input x ∈ {0, 1}n, we simply compute the hashing algorithm on the string x′ := (f1(x), . . . , fm(x)),
where f1, . . . , fm are all the predicates in Fn. To encode inputs w.r.t. predicate fi, we generate
an encoding key (and a corresponding trapdoor) for the index predicate f[i], and accordingly, the
encoding is computed over x′. The obtained scheme would have a rate and hash length equal to
those of the underlying scheme. Observe, however, that the length of the hashing and encoding keys
become proportional to m, rather than the input length n. The correctness and security properties
are clearly preserved.

Remark 4.2 (Trapdoor hash for general functions). Although we define trapdoor hash only w.r.t.
predicates, the same functionality can be realized for general classes of functions, with outputs longer
than a single bit, through multiple executions. More specifically, every function f : {0, 1}n → {0, 1}m
can be looked at as a collection of m predicates, each defined for one bit of the output string. If we are
able to construct TDH scheme for each of these predicates, then we obtain a TDH for the function
f . The rate in such a general setting is the ratio between m and the length of the TDH encoding.

4.2 Trapdoor Hash for Index Predicates from DDH

In this section, we present our first realization of TDH. We begin with a “basic” construction of
a rate- 1

λ TDH scheme for index predicates. The scheme provides full correctness, statistical input
privacy, and function privacy based on the DDH assumption. We then show how to use further
techniques to achieve a rate-1 TDH in the expense of a 1

λ error probability.
We note that the basic construction is not merely an intermediary step, as it provides a property

that is crucial for some of our applications (in particular, the secret encoding property for private
laconic OT - see Section 7), and that is inherently unachievable by a rate-1 TDH.

4.2.1 Basic Construction

The basic scheme is inspired by a construction given in [CDG+17, DG17] in the contexts of la-
conic OT and identity-based encryption (resp.). Our scheme, however, is a variant closer to the
construction from [GH18], which is also based on [CDG+17, DG17], and used to construct a KEM
for one-way function with encryption (OWFE). In contrast to prior works we only achieve security
under DDH while these previous works based security under CDH. This need of stronger assumption
arrise because our constructions need to satisfy a more stringent notion of security.

27

Overview. Similar to the aforementioned works, we define the public hash key to consist of a
2 × n matrix of random group elements A :=

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
and a generator g, and define the

hash value of an input x to be h := Hg,A(x; r) := gr
∏
j gj,x[j]. Notice that when r is uniform, so is

the hash of an input x. Thus, our scheme provides statistical input privacy.
Now, given an index i ∈ [n], Alice computes a corresponding encoding key as u := gs and

B :=
(
u1,0, u2,0, . . . , un,0
u1,1, u2,1, . . . , un,1

)
, where s ∈ Zp is random and, for every j ∈ [n], b ∈ {0, 1}, uj,b := gsj,b.

The only exception is ui,1 which is set as gsi,1g
t for another random exponent t ∈ Zp. Alice’s secret

trapdoor is set to be s and t. We rely on the DDH assumption to show that the elements in B are
all indistinguishable from random, and therefore, i remains private given the encoding key.

Given the encoding key (u,B), Bob computes an encoding e := Hu,B(x; r) := ur
∏
j uj,x[j].

Observe that when xi = 0, then this value is equal to hs, and that otherwise, it is equal to hsgt.
Both of these values are computable by Alice given her trapdoor, and that is indeed how we define
the output of the decoding algorithm: e0 and respectively e1.

Construction 4.1 (Rate- 1
λ TDH for I from DDH). Our basic DDH-based TDH scheme consists of

the following algorithms.

• S(1λ, 1n) :

1. Sample (G, p, g)
$←− G

2. Sample a matrix

A :=

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
$←− G2×n

3. Output
hk := ((G, p, g),A) (4.3)

• G(hk, fi) : parse hk as in Equation 4.3 and proceed as follows.

1. Sample s, t $←− Zp.
2. Set

u := gs

and

B :=

(
u1,0, u2,0, . . . , un,0
u1,1, u2,1, . . . , un,1

)
where uj,b :=

{
gsj,b · gt if (j, b) = (i, 1)

gsj,b otherwise

3. Output

ek := (u,B) td := (s, t) (4.4)

• H(hk, x; ρ) : parse hk as in Equation 4.3, A = (gj,b)j∈[n],b∈{0,1} and ρ as r ∈ Zp, and output

h := gr ·
n∏
j=1

gj,x[j] (4.5)

28

• E(ek, x; ρ): parse ek as (u,B), B = (uj,b)j∈[n],b∈{0,1} and ρ as r ∈ Zp and output

e := ur ·
n∏
j=1

uj,x[j] (4.6)

• D(td, h) : parse h ∈ G and td as in Equation 4.4 and output

e0 := hs e1 := hsgt (4.7)

Analysis. Full correctness of the above construction is immediate. We now proceed to show that
the scheme provides statistical input privacy and (computational) function-privacy under the DDH
assumption.

Theorem 4.1 (Input privacy of basic DDH-based construction). The TDH scheme from Construc-
tion 4.1 provides statistical input security.

Proof. It is not hard to see that since the hash value is multiplied by gr for a uniform r ∈ Zp
(see equation 4.5), then it also distributes uniformly given hk. Thus, for any x ∈ {0, 1}n, it holds
that (hk, h) ≡ (hk, h) for a uniform h ∈ G, when hk

$←− S(1λ, 1n) and h := H(hk, x; ρ) where
ρ

$←− {0, 1}∗.

Theorem 4.2 (Function privacy of basic DDH-based construction). The TDH scheme from Con-
struction 4.1 provides function privacy under the DDH assumption.

Proof. Fix some λ, n ∈ N. We show that, under the DDH assumption, for any i ∈ [n], it holds that

(hk, ek)
c≡ (hk, (u′,B′)) (4.8)

where hk
$←− S(1λ, 1n), (ek, ·) $←− G(hk, fi) and u′ $←− G and B′

$←− G2×n. This clearly suffices.
We prove the indistinguishability using a hybrids argument. More specifically, we define 2n+ 2

hybrid distributions: Hybrid0,Hybrid1,0,Hybrid1,1, . . . ,Hybridn,0,Hybridn,1, where

Hybrid0 := (hk, ek) Hybridn,1 := (hk, (u′,B′))

and show that every two adjacent hybrids in the sequence are computationally indistinguishable
using reduction to DDH. This would complete the proof.

For every k ∈ [n] and b ∈ {0, 1}, define Hybridk,b by taking its preceding hybrid (which is either
Hybridk,b−1 or Hybridk−1,b) and replacing uk,b inB with a uniform group element u′k,b. More formally,

Hybridk,0 :=

(
hk,

(
u,

(
u′1,0, . . . , u

′
k−1,0,u

′
k,0, uk+1,0, . . . , un,0

u′1,1, . . . , u
′
k−1,1, uk,1, uk+1,1, . . . , un,1

)))
Hybridk,1 :=

(
hk,

(
u,

(
u′1,0, . . . , u

′
k−1,0, u

′
k,0, uk+1,0, . . . , un,0

u′1,1, . . . , u
′
k−1,1,u

′
k,1, uk+1,1, . . . , un,1

)))

where hk
$←− S(1λ, 1n), (u, (uj,b)j∈[n],b∈{0,1}) := G(hk, fi), and (u′j,b)j∈[n],b∈{0,1}

$←− G2×n.

29

It is easy to see that Hybridi−1,1 ≡ Hybridi,0 ≡ Hybridi,1, and therefore, we focus on the case
where k 6= i. Actually, w.l.o.g. we show that Hybridk−1,1

c≡ Hybridk,0 for every k > i. Proving
indistinguishability for k < i, or for hybrids Hybridk,0 and Hybridk,1 is identical up to technicalities.

Let D be a PPT distinguisher for which

| Pr[D(Hybridk−1,1) = 1]− Pr[D(Hybridk,0) = 1] |> negl(λ)

for any negligible function negl(·). We construct an adversary A that uses D to break the DDH
assumption. A takes as input a tuple ((G, p, g), (R,S, T)), and proceeds as follows.

1. For every j ∈ [n]\{k} and b ∈ {0, 1}, sample rj,b
$←− Zp.

2. For every j ∈ [k − 1] and b ∈ {0, 1}, sample tj,b
$←− Zp.

3. For every j ∈ [k − 1], set

g̃j,0 := grj,0 g̃j,1 := grj,1

ũj,0 := gtj,0 ũj,1 := gtj,1

4. Set

g̃k,0 := R g̃k,1 := grk,1

ũk,0 := T ũk,1 := Stk,1

5. For every k < j ≤ n, set

g̃j,0 := grj,0 g̃j,1 := grj,1

ũj,0 := Srj,0 ũj,1 := Srj,1

6. Set

h̃k :=

(
(G, p, g),

(
g̃1,0, g̃2,0, . . . , g̃n,0
g̃1,1, g̃2,1, . . . , g̃n,1

))
ẽk :=

(
S,

(
ũ1,0, ũ2,0, . . . , ũn,0
ũ1,1, ũ2,1, . . . , ũn,1

))
and output D

(
h̃k, ẽk

)
.

From the definitions of the hybrids, one can see that if (R,S, T) ≡ (gr, gs, grs) for r, s $←− Zp, then

(h̃k, ẽk) ≡ Hybridk−1,1

and that otherwise, if (R,S, T) ≡ (gr, gs, gr) for r, s, t $←− Zp, then

(h̃k, ẽk) ≡ Hybridk,0

This completes the proof of the lemma.

30

4.2.2 From Rate-1/λ to Rate-1

We next show how to use additional techniques to achieve an optimal rate TDH.

Overview. Our rate-1 construction builds over the basic construction from Section 4.2.1 above.
Recall that in the basic construction, the encodings e0 and e1 are essentially group elements with
e1 = e0g

t for t that is independent of the input. To achieve rate-1, we “compress” each of the
encodings to a single bit using a distance function, a variant of which was first used by Boyle et
al. [BGI16] in a different context. Roughly speaking, the distance function is defined over a group
G, and computes, with high probability, the distance of a group element h ∈ G from a global
random epoch h0 ∈ G, in terms of multiplications by a public generator g ∈ G. The idea, then, is
to compute the distance of both encodings w.r.t. multiplications by gt. Since e0 and e1 are one step
far of each other, their distances from the epoch have different parities, and therefore, it is sufficient
to encode using the least significant bit of the distance. This idea of compression to one is inspired
by Garg et al. [GGH18], although we use very different techniques to achieve the compression.

Below, we formally define the distance function, and state its useful property. We then proceed
to a detailed description of the rate-1 construction and its analysis.

The Distance Function. Let G be a multiplicative cyclic group of prime order p, and let g ∈ G
be a generator. We recall the definition of the subroutine DistG,g from [BGI16], which takes as input
an element h ∈ G, bounds on the failure probability δ > 0 and on the input range M ∈ N, and a
pseudo-random function [GGM84] PRFK : G → {0, 1}dlog(2M/δ)e. Roughly speaking, the function
outputs the parity of the “distance” between h and the next zero of PRFK (as opposed to the original
definition where the output is the actual distance).

DistG,g(h, δ,M,K) :

1. Define T := [2M loge(2/δ)]/δ, and set i := 0.

2. While i ≤ T :
2.1. If PRFK(h · gi) = 0dlog(2M/δ)e then output LSB(i), else set i := i+ 1.

3. Output LSB(i).

where LSB returns the least significant bit of a certain integer.

We hereby state a property of the distance function.

Proposition 4.1 (Proposition 3.2 in [BGI16]). Let G be a multiplicative cyclic group of prime order
p, and let g ∈ G, δ > 0, M ∈ N with [2M loge(2/δ)]/δ < p. Let PRFK : G → {0, 1}dlog(2M/δ)e be
a pseudo-random function with a uniformly random key K $←− {0, 1}λ. Then, for any h ∈ G and
x ≤M , it holds that

Pr[DistG,g(h, δ,M,K)⊕ DistG,g(hg
x, δ,M,K) = LSB(x)] ≥ 1− δ

where the probability is taken over the choice of K.

We stress that our construction is completely parameteric in the implementation of the distance
function and therefore other variants [DKK18] can also be used.

31

Construction 4.2 (Rate-1 TDH for I from DDH). Let H′ = (S′,G′,H′,E′,D′) be the basic DDH-
based TDH from construction 4.1. Our rate-1 DDH-based TDH scheme for index predicates consists
of the following algorithms.

• S(1λ, 1n) : output hk $←− S′(1λ, 1n).

• G(hk, fi) : sample ((u,B), (s, t))
$←− G′(hk, fi) and K $←− {0, 1}λ, and output

ek := (u,B, t,K) td := (s, t,K) (4.9)

• H(hk, x; ρ) : output h := H′(hk, x; ρ).

• E(ek, x; ρ): parse ek as in Equation 4.9, set e := E′(ek, x; ρ), and output

e := Distgt(e, 1/λ, 1,K) (4.10)

• D(td, h) : parse h ∈ G and td as in Equation 4.9, set (e0, e1) := D′(s, h) and output

e0 := Distgt(e0, 1/λ, 1,K) e1 := Distgt(e1, 1/λ, 1,K) (4.11)

Analysis. In the following we show that the scheme has 1
λ error probability. The statistical input

privacy and function privacy of the scheme are implied (almost) immediately from Theorems 4.1
and 4.2 (resp.).

Theorem 4.3 (Correctness of rate-1 DDH-based construction). Let PRF be a psuedorandom func-
tion, then the TDH scheme from Construction 4.2

(
1− 1

λ

)
-correct TDH.

Proof. Fix λ, n ∈ N, x ∈ {0, 1}n and i ∈ [n] and consider the execution of E(ek, x; ρ) and D(td, h) for
ρ

$←− {0, 1}∗, (ek, td)
$←− G(hk, fi) and h := H(hk, x; ρ) where hk

$←− S(1λ, 1n). If xi = 0 then, from the
full correctness of the basic construction, it holds w.p. at least 1−negl(λ), that e0 = e and therefore
e = e0 (see Equations 4.10 and 4.11). We also know that e 6= e1, and specifically, e = e1 · gt (see
Equation 4.7). Using Proposition 4.1, with δ = 1/λ and x = M = 1, we imply that e 6= e1 w.p. at
least 1− 1/λ. The case where xi = 1 is symmetric. This concludes our proof.

4.3 Trapdoor Hash for Linear Predicates from QR

In the following we introduce our construction based on the QR assumption over composite order
groups. Unless differently specified, all of the following arithmetic operation are done modulo N .

Overview. The structure of our QR-based scheme is very similar to the DDH-based construction
with a few critical difference. Foremost, the scheme naturally extends the class of functions sup-
ported by the TDH from index predicates to linear predicates (computed over F2). Secondly, the
scheme exploits the structure of the group JN to achieve full correctness.

Recall that JN is the composition of two subgroups H × QRN , where H is the multiplicative
group (±1, ·) generated by −1. The matrix A = (gj,b)j∈[n],b∈{0,1} is a collection of random elements
of QRN and the function fα = (α1, . . . , αn) is encoded in B = (uj,b)j∈[n],b∈{0,1} as follows: Each
component gj,b of A is raised to some exponent s and then −1 is multiplied to all components

32

with index i of the second row of A where αj = 1. When computing the encoding of some string
x, then

∏n
j=1 uj,x[j] =

∏n
j=1 g

s
j,x[j] · (−1)fα(x), which means that the element is either a quadratic

residue or not depending on the value of fα(x). At this point it would be sufficient for the encoding
algorithm to output a single bit encoding this information, which however is hard compute since
the factorization of N is not given.

Fortunately we can circumvent this issue by exploiting the fact that if an element e belongs to
QRN , then −e does not, and vice versa. The single-bit encoding is computed by simply comparing e
and −e according to any ordering, e.g., lexicographical. Note that this trick allows us to bypass the
use of the distance function an yields a fully correct TDH with optimal rate, which is an improvement
over the DDH-based scheme.

Comparison Operator. We define the function LEq : JN × JN → {0, 1} to return 1 if the bit
representation of the first input is smaller or equal than the bit representation of the second input
according to some order (e.g., lexicographical).

Construction 4.3 (Rate-1 TDH for L from QR). Our QR-based TDH scheme consists of the
following algorithms.

• S(1λ, 1n) :

1. Sample a Blum integer N := p · q, where p = q = 3 (mod 4).

2. Sample g $←− QRN .
3. Sample a matrix

A :=

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
$←− QR2×n

4. Output
hk := ((N, g),A) (4.12)

• G(hk, fα) : parse hk as in Equation 4.12, A = (gj,b)j∈[n],b∈{0,1} and proceed as follows.

1. Sample s $←−
[
N−1

2

]
.

2. Set
u := gs

and

B :=

(
u1,0, u2,0, . . . , un,0
u1,1, u2,1, . . . , un,1

)
where uj,b :=

{
gsj,b · (−1)αj if b = 1

gsj,b otherwise

3. Output

ek := (u,B) td := s (4.13)

• H(hk, x; ρ) : parse hk as in Equation 4.12, A = (gj,b)j∈[n],b∈{0,1} and ρ as r ∈
[
N−1

2

]
, and

output

h := gr ·
n∏
j=1

gj,x[j] (4.14)

33

• E(ek, x; ρ): parse ek as (u,B), B = (uj,b)j∈[n],b∈{0,1} and ρ as r ∈
[
N−1

2

]
, set

e := ur ·
n∏
j=1

uj,x[j] (4.15)

and output
e := LEq(e, (−1) · e) (4.16)

• D(td, h) : parse h ∈ QR and td as in Equation 4.13 and output

e0 := LEq(hs, (−1) · hs) e1 := LEq((−1) · hs, hs) (4.17)

Analysis. In the following we show that the scheme satisfies all of the properties for a TDH.

Theorem 4.4 (Correctness of QR-based construction). The TDH scheme from Construction 4.3 is
a fully correct TDH.

Proof. To show that the scheme is correct, it is enough to observe that

e = LEq(e, (−1) · e)

= LEq

ur · n∏
j=1

uj,x[j], (−1) · ur ·
n∏
j=1

uj,x[j]


= LEq

(−1)fα(x) ·

gr · n∏
j=1

gj,x[j]

s

, (−1)fα(x)⊕1 ·

gr · n∏
j=1

gj,x[j]

s
= LEq

(
(−1)fα(x) · hs, (−1)fα(x)⊕1 · hs

)
= efα(x)

with probability 1. Also note that e0 6= e1 for all hs ∈ QRN .

Theorem 4.5 (Input privacy of QR-based construction). The TDH scheme from Construction 4.3
provides statistical input security.

Proof. Let r $←−
[
N−1

2

]
and r̃ $←−

[
ϕ(N)

2

]
, then it holds thathk, h := gr ·
n∏
j=1

gj,x[j]

 s≡

hk, h̃ := gr̃ ·
n∏
j=1

gj,x[j]


since (N−1) and ϕ(N) are statistically close. Note that gr̃ is a uniformly sampled element of QRN ,
thus so is h̃, for all x ∈ {0, 1}n. This concludes our proof.

Theorem 4.6 (Function privacy of QR-based construction). The TDH scheme from Construc-
tion 4.3 provides function privacy under the QR assumption.

34

Proof. Fix some (λ, n) ∈ N. Let us rewrite

(hk, ek)

= ((N, g,A), (u,B))

=

((
N, g,

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

))
,

(
gs,

(
gs1,0, gs2,0, . . . , gsn,0

gs1,1 · (−1)α1 , gs2,1 · (−1)α2 , . . . , gsn,1 · (−1)αn

)))
.

Next we define ek′ as

ek′ :=

(
gs,

(
gs1,0, gs2,0, . . . , gsn,0
gs1,1, gs2,1, . . . , gsn,1

))
.

By an invocation of Proposition 3.1 it holds that

(hk, ek)
c≡ (hk, ek′).

Observe that in (hk, ek′) the variable fα is hidden in an information theoretic sense.

Trapdoor Hash from DCR. The above approach can be easily generalized to be instanti-
ated with the subgroup indistinguishability assumption (as defined in [BG10]), which captures the
quadratic residuosity and the decisional composite residuosity (DCR) assumption as special cases.
For the latter case however, the “message” group (borrowing the terminology from [BG10]) has order
N as opposed to 2, which is exponentially large. Therefore we need a different strategy for the en-
coding algorithm: We suggest using the same mechanism as in our DDH-based construction, which
leverages the distance function to establish a noisy channel with a

(
1− 1

λ

)
-fraction of erasures.

Since it is a trivial extension of what already shown, we defer the description of the DCR-based
construction to Appendix A.

4.4 Trapdoor Hash for Linear Predicates from LWE

In the following we present our lattice-based construction.

Overview. We briefly explain how to adapt the ideas from the previous schemes to the lattice
settings. The first step is to replace the subset product function with a subset sum, defined in a
natural way: The hash function is set to be h :=

∑ñ
j=1 aj,x̃[j] for uniformly random aj,b

$←− Zk. We
then embed a linear function fα in the encoding key by simply adding (q/2) ·αj to the i-th element
uj,1, where each uj,b is an LWE sample of aj,b with secret vector s. The effect of this is that the
subset sum encoding effectively evaluates fα over the input x, since (ignoring the error) it holds
that e :=

∑n
j=1 uj,x̃[j] = s>h + fα(x) · q/2.

Observe that e is either equal to s>h or an additive factor (q/2) off, depending on the function
output. This information can be compressed to a single bit rounding e to the nearest multiple of
q/2. An important property of this encoding is that it is insensitive to small perturbations, which
allows us to establish correctness even in the presence of noise.

The Rounding Function. Let q = 2p be an even integer modulus. Define the rounding function
b·e2 : Zq → Z2 by

bxe2 = bx̄ · 2/qe mod 2

35

where x̄ ∈ Z is an arbitrary residue-class representative of x ∈ Zq. In our instantiations. We are
going to use the following simple lemma about the rounding function b·e2, implicitly proven in
[BPR12].

Lemma 4.1. Let q = 2p be an even integer modulus. Let x $←− Zq be distributed uniformly random.
Then it holds for all v ∈ [−B,B] that bx+ ve2 = bxe2, except with probability (2B + 1) · 2/q over
the choice of x.

Proof. There are exactly 2 multiples of q/2 in {0, . . . , q−1}, namely 0 and q/2. Thus, the probability
that a uniform x ∈ Zq lands B-close from the nearest multiple of q/2 is exactly

(2B + 1) · 2/q.

Construction 4.4 (Rate-1 trapdoor hash for L from LWE). Set q := 2q̃ be an even modulus, let
k, n, `, B be positive integers and let χ be a B-bounded error distribution over Z.

• S(1λ, 1n) :

1. For j = 1, . . . , n+ ` choose a random a
$←− Zkq

2. Set

A :=

(
a1,0,a2,0, . . . ,an+`,0

a1,1,a2,1, . . . ,an+`,1

)
3. Set A := (Â, Ã) and output

hk := A (4.18)

• G(hk, fα) : parse hk as in Equation 4.18 and proceed as follows.

1. Sample s
$←− Zkq and for j = 1, . . . , n+ ` and b ∈ {0, 1} ej,b

$←− χ
2. For j = 1, . . . , n+ ` and b ∈ {0, 1} set uj,b ← s>aj,b + ej,b + αj · b · (q/2) (where αj = 0

for j > n)
3. Set

B :=

(
u1,0, u2,0, . . . , un+`,0

u1,1, u2,1, . . . , un+`,1

)
4. Choose a PRF-key K $←− {0, 1}λ

5. Output

ek := (hk,B,K) td := (s,K) (4.19)

• H(hk, x; ρ) : parse hk as in Equation 4.18, ρ as r ∈ {0, 1}`, set x̃ := x‖r and proceed as follows.

1. Output

h :=

n+∑̀
j=1

aj,x̃[j] (4.20)

36

• E(ek, x; ρ): parse ek as in Equation 4.19 and ρ as r ∈ {0, 1}`, set x̃ := x‖r, define

e :=
n+∑̀
j=1

uj,x̃[j] (4.21)

and output
e := be+ PRFK(h)e2 (4.22)

• D(td, h) : parse h as in Equation 4.20 and td as in Equation 4.19, compute h ← H(hk, x, r)
and output

e0 :=
⌊
s>h + PRFK(h)

⌉
2

e1 :=
⌊
s>h + PRFK(h) + q/2

⌉
2

(4.23)

Analysis. We start by showing that Construction 4.4 satisfies the notion of weak correctness.
By choosing the modulus-to-noise ratio sufficienly large (e.g. superpolynomial), we can achieve a
negligble correctness error.

Theorem 4.7 (Correctness of LWE-based Construction). The TDH scheme from Construction 4.4
is a ((2B(n+ `) + 1) · 2/q)-weakly correct TDH, given that PRF is a pseudorandom function.

Proof. Let us rewrite

e = be+ PRFK(h)e2

=

n+∑̀
j=1

uj,x̃[j] + PRFK(h)


2

=

n+∑̀
j=1

(s>aj,x̃[j] + ej,x̃[j] + αj · x[j] · (q/2)) + PRFK(h)


2

=

s> n+∑̀
j=1

aj,x̃[j] +
n+∑̀
j=1

ej,x̃[j] + fα(x) · (q/2) + PRFK(h)


2

=
⌊
s>h + e∗ + fα(x) · (q/2) + PRFK(h)

⌉
2
,

where e∗ =
∑n+`

j=1 ej,x̃[j]. Note that since all ej,b are B-bounded, it holds that e∗ is (n+`)B-bounded
via the triangle inequality. Now, as PRFK is pseudorandom, we can switch it to a truly random
function while only incurring a negligible difference in correctness. Thus assume that PRFK(h) is
truly random. By Lemma 4.1 we have that

e =
⌊
s>h + (q/2) · fα(x) + e∗ + PRFK(h)

⌉
2

=
⌊
s>h + (q/2) · fα(x) + PRFK(h)

⌉
2

= efα(x)

except with probability (2B(n + `) + 1) · 2/q over they choice of PRFK(h). To conclude the proof
it is sufficient to observe that, for all z ∈ Zq, it holds that

bze2 6= bz + q/2e2 .

37

We will briefly discuss different parameter instantiations of Theorem 4.7. By choosing q/B to
be superpolynomial, we get that ((2B(n + `) + 1) · 2/q) is negligible and thus there is a negligible
correctness error. On the other hand, by choosing q ≥ 2·(2Bn+1)λ = O(Bnλ), we get a 1/λ-weakly
correct TDH. With this choice of parameters however, we get a polynomial modulus-to-noise ratio
of q/B = O(n · λ). Towards establishing input privacy, we will show that the function H is in fact
a universal hash function.

Lemma 4.2. Let hk be chosen uniformly at random as above, then the function H(hk, x, ρ) is a
universal hash function in the input x̃ = (x‖r).

Proof. Let x̃ 6= x̃′ ∈ Zn+`
q and let j∗ ∈ [n+ `] be the index such that x̃[j∗] 6= x̃′[j∗]. It holds that

H(hk, x̃) =
n+∑̀
j=1

aj,x̃[j] H(hk, x̃′) =
n+∑̀
j=1

aj,x̃′[j] =
∑

j∈[n+`]\j∗
aj,x̃′[j] + ax̃′[j∗],j∗ .

Observe that ax̃[j∗],j∗ is uniform and independent of all the other aj,b. Moreover, it does not appear
in H(hk, x̃). It follows that

Pr
[
H(hk, x̃) = H(hk, x̃′)

]
=

1

qk
.

We are now in the position of proving the following theorem.

Theorem 4.8 (Input privacy of LWE-based construction). The TDH scheme from Construction 4.4
provides statistical input security.

Proof. Fix any x ∈ {0, 1}n and let r
$←− {0, 1}`, where ` ≥ k · log(q) + 2λ. Set x̃ := x‖r. As r is

uniformly random on {0, 1}`, it holds that H∞(x̃) ≥ `. The Leftover Hash Lemma (Lemma 3.1)
yields that hk := A, h :=

n+∑̀
j=1

aj,x̃[j] = H(hk, x̃)

 s≡ (A, u)

where u is uniformly chosen from Zkq .

Theorem 4.9 (Function privacy of LWE-based construction). The TDH scheme from Construc-
tion 4.4 provides function privacy under the LWEk,q,χ assumption.

Proof. As the aj,b ∈ Zkq are chosen uniformly at random, we can replace the s>aj,b + ej,b with
uniformly random values under the LWEk,q,χ assumption. Consequently, we can replace the

uj,b = s>aj,b + ej,b + αj · b · (q/2)

with uniformly random values and conclude

(hk, ek) = (A,B)
c≡ (A, B̃)

where A and B are sampled as in Construction 4.4 and B̃ is chosen uniformly from Z2×(n+`)
q . Note

that in the RHS distribution is independent of the function fα, which concludes the proof.

38

5 Rate-1 Oblivious Transfer and More

In this section, we present the first family of applications of trapdoor hash. We show how to use
rate-1 trapdoor hash to securely realize basic sender-receiver functionalities through single-round
protocols with optimal sender-receiver communication, i.e. optimal download rate.

The first fundamental functionality we investigate is oblivious transfer (OT), where a receiver
with private input i ∈ [k] communicates with a sender with k secrets in order to obtain the ith

secret. We consider two scenarios where download-rate-1 can be achieved. The first is batch OT,
where a batch of OT instances are invoked in parallel, and the second is string OT, which consists
of a single OT instance with secrets that are assumed to be sufficiently long. We also discuss a
couple of related primitives: oblivious linear function evaluation (OLE), where the sender has a
linear function f(x) = ax + b and the goal is to evaluate f on the receiver’s private input x, and
the more general matrix-vector product where the sender has a matrix M , the receiver has a vector
v, and the goal is to compute the product Mv>.

We begin by setting a general formal framework for our model and defining the functionalities of
focus. We then show how to construct batch OT with optimal download rate using rate-1 TDH for
index predicates, and further obtain a string OT protocol with optimal overall rate. Moreover, using
trapdoor hash for linear predicates, we extend our constructions to achieve optimal-rate protocols
for both OLE and oblivious matrix-vector product (OMV). For completeness, we prove that rate-1
OT is impossible when the sender’s input is small, and, in particular, that exact rate-1 OT (rather
than asymptotic) is unachievable, even when pre-processing is allowed, thus justifying the focus on
large input scenarios.

5.1 Model and Definitions

We consider a general sender-receiver setting, where a receiver with input x ∈ {0, 1}∗ and a sender
with input y ∈ {0, 1}∗ invoke a two-message protocol, at the end of which the receiver is able to
recover a value f(x, y) but otherwise learns nothing about y. We also require that x is kept hidden
from the sender.

Thus, we formally define a sender-receiver functionality as a two-input function f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗, which is defined over an input domain Df ⊆ {0, 1}∗ × {0, 1}∗. We next formalize
our requirements from a two-message protocol for such a functionality f . We define standard notions
of correctness and privacy, both for sender and receiver. We also define a stronger notion of sender
privacy, which was first proposed in [IP07], and is necessary for some applications.

Definition 5.1 (Two-message protocol for sender-receiver functionality). A two-message protocol
(a protocol for short) is a triple of PPT algorithms Π = (Π1,Π2,Π3) with the following syntax:

– (st,msg1) ← Π1(1λ, x). Π1 takes as input a security parameter λ and a receiver input x ∈
{0, 1}∗, and outputs a receiver message msg1 and a receiver state st.

– msg2 ← Π2(msg1, y). Π2 takes as input a receiver message msg1 and a sender input y ∈
{0, 1}∗, and outputs a sender message msg2.

– z ← Π3(st,msg2). Π3 takes as input a receiver state st and a sender message msg2, and
outputs a receiver output z ∈ {0, 1}∗.

We say that such a two-message protocol Π realizes a sender-receive functionality f if the following
properties hold.

39

• Correctness: Π is correct if there exists a negligible function ε(λ) such that following holds
for all λ ∈ N and all (x, y) ∈ Df .

Pr

z = f(x, y)

∣∣∣∣∣∣
(st,msg1)← Π1(1λ, x)
msg2 ← Π2(msg1, y)
z ← Π3(st,msg2)

 ≥ 1− ε(λ)

We say that Π is weakly correct if the above holds for ε(λ) that is vanishing (but possibly
non-negligible).

• Receiver Privacy: Π is (computationally) receiver-private if for any (non-uniform, stateful)
polynomial time environment Env, there exists a negligible function ε(λ) such that for all λ ∈ N,
Pr[RPrivΠ,Env(1

λ) = 1] ≤ 1
2 +ε(λ), where RPrivΠ,Env(1

λ) is defined as the following experiment:

1. (x0, x1, y)← Env(1λ)

2. b $←− {0, 1}; (·,msg1)← Π1(1λ, xb)

3. b′ ← Env(msg1)

4. Output 1 if b = b′ and (x0, y) ∈ Df and (x1, y) ∈ Df , otherwise output 0.

• Sender Privacy: Π is statistically, resp. computationally, sender-private if there exists a
PPT algorithm Sim such that for any polynomial-length {xλ, yλ}λ∈N, such that (xλ, yλ) ∈ Df
for all λ, the distribution ensembles {Realλ}λ∈N and {Idealλ}λ∈N, where

Realλ = (st,Π2(msg1, yλ)) Idealλ = (Sim(1λ, xλ, f(xλ, yλ))

for (st,msg1)
$←− Π1(1λ, xλ), are statistically, resp. computationally, indistinguishable.

We say that strong sender privacy holds if the above holds with Sim that is not given xλ as
input.

Download Rate. At a high level, the download rate of a two-message protocol measures the
multiplicative blow-up in the sender-receiver communication relative to a trusted setting, where the
sender can simply send z = f(x, y) given x. That is, the download rate is defined as the asymptotic
ratio between the length of f(x, y) and the length of the sender’s messagemsg2 for inputs (x, y) ∈ Df .
Since the difference between the latter two quantities should grow with the security parameter λ
(see Section 5.6), we need to use an asymptotic notion of rate where the output length also grows
with λ parameter.

Definition 5.2 (Download rate). Let 0 ≤ ω ≤ 1. We say that a protocol Πf = (Π1,Π2,Π3) for a
sender-receiver functionality f has download rate ω if there exists a polynomial B(λ) such for all
polynomial-length input sequences {(xλ, yλ)}λ∈N such that (xλ, yλ) ∈ Df and |f(xλ, yλ)| ≥ B(λ) for
all λ, we have

lim inf
λ→∞

|f(xλ, yλ)|
mλ

= ω

where mλ is the maximal length of msg2 when Πf runs on inputs (xλ, yλ) and security parameter λ.

40

In this work we consider protocols whose download rate is 1, which is clearly optimal. This
intuitively means that whenever the output length is a sufficiently big polynomial in the security
parameter, the ratio between the output length and the sender’s message length tends to 1. When
it is important, we will explicitly specify the convergence rate. The convergence rate of interest will
mostly be 1−O(1/λ).

5.2 Useful Functionalities

Next, we define several useful sender-receiver functionalities, for which we construct two-message
protocols with optimal download rate using trapdoor hash.

Oblivious Transfer. In standard (single-bit) OT, the sender has k secret bits (s1, . . . , sk), for
some k ∈ N, and the receiver, with input i ∈ [k], wishes to retrieve the ith secret, si. As will be
shown in Section 5.6, achieving rate-1 is impossible in the single-bit OT setting, and therefore, we
consider scenarios with longer outputs. Most generally, we may consider batch string OT where the
parties wish to perform n independent instances of OT: in the jth instance the sender has k secret
strings (sj,1, . . . , sj,k) and the receiver has an index ij ∈ [k]. The receiver’s output is defined to
consist of sj,ij for every j ∈ [n]. It is easy to see that optimal-rate construction to this general case
can be derived from optimal-rate constructions for the following two special cases that we consider:

– Batch Oblivious Transfer. In batch (single-bit) OT, we consider a setting where a batch of
independent single-bit OT instances are carried out in parallel. The sender’s input consists
of n k-tuples of single-bit secrets 〈(sj,1, . . . , sj,k)〉j∈[n], each corresponding to a single-bit OT
instance, and the receiver’s input is a tuple of n indices 〈ij〉j∈[n], where ij ∈ [k] for every j.
We require that the receiver’s output contains the ithj secret of every OT instance j.

DbOT = {(〈ij〉j∈[n], 〈(sj,1, . . . , sj,k)〉j∈[n]) | n, k ∈ N and ∀j, ` ij ∈ [k], sj,` ∈ {0, 1}}
bOT(〈ij〉j∈[n], 〈sj,1, . . . , sj,k〉j∈[n]) = 〈sj,ij 〉j∈[n]

– String Oblivious Transfer. Another OT variant we consider is string OT (or just OT), which
is a generalization of the standard setting where the sender has k secret n-bit strings (rather
than single bits). In fact, string OT can be seen as a special case of batch OT, where all OT
instances share a common receiver’s input.

DOT = {((1k, i), (s1, . . . , sk)) | n, k ∈ N and i ∈ [k], ∀j sj ∈ {0, 1}n}
OT((1k, i), (s1, . . . , sk)) = si

We sometimes consider a variant where k is fixed, to which we refer as (batch) 1-out-of k OT and
denote by

(
k
1

)
-OT.

Evaluation of Linear Functions. It is well-known that
(

2
1

)
-OT can be also viewed as the eval-

uation of the linear function fs0,s1(i) = s0 + (s1 − s0)i over F2, for sender’s input (s0, s1) ∈ {0, 1}2
and receiver’s input i ∈ {0, 1}. In oblivious linear function evaluation (OLE for short) [NP99], we
consider a generalization of OT to evaluation of any linear function of the form f(x) = ax+ b over
a finite ring R. In fact, we consider a batch variant of OLE, which is formalized as follows.

41

– Batch OLE. In batch OLE over a finite ring R, the sender’s input consists of a batch of n
linear functions over R, each defined by a pair of coefficients aj , bj ∈ R, where fj(x) = ajx+bj
for every j ∈ [n]. The receiver’s input is a batch of n ring elements 〈xj〉j∈[n] ∈ Rn, and his
output is defined as 〈fj(xj)〉j∈[n].

DbOLER = {(〈xj〉j∈[n], 〈(aj , bj)〉j∈[n]) | n ∈ N and ∀j xj , aj , bj ∈ R}
bOLER(〈xj〉j∈[n], 〈(aj , bj)〉j∈[n]) = 〈ajxj + bj〉j∈[n]

Generalizing to Linear Maps. We take a further step and generalize OLE to evaluation of
linear maps as follows.

– Oblivious Matrix-Vector Product. In oblivious matrix-vector product (or OMV for short) over
a finite ring R, the sender has as input a matrix M ∈ Rn×k , which defines a linear map
Rk → Rn for some n, k ∈ N, and the receiver has as input a row vector v ∈ Rk. The
matrix-vector product functionality is simply defined as the product Mv>.

DOMVR = {(v,M) | n, k ∈ N and v ∈ Rk,M ∈ Rn×k}
OMVR(v,M) = Mv>

5.3 Rate-1 Batch Oblivious Transfer from Trapdoor Hash

We now show our first TDH-based construction in the sender-receiver setting: a batch OT protocol.
In fact, when the underlying TDH is (1−ε)-correct for a non-negligible ε, we obtain a weakly correct
batch OT protocol, where a failure in each of the instances in the batch occurs independently and
with probability ε, in which case the protocol outputs ⊥.

Overview. The idea is very straight forward. For a batch 1-out-of-k OT with batch size n, we
use TDH for inputs of length n · k bits. Speaking ahead, the input for the trapdoor hash function
consists of all the secrets of the sender, i.e. 〈sj,1, . . . , sj,n〉j∈[n]. The receiver, with input 〈ij〉j∈[n],
samples a hash key hk and a pair of encoding key and a trapdoor (ekj , tdj), for every j ∈ [n],
corresponding to the index predicate for sj,ij , i.e. f[(j−1)k+ij](x) = x[(j − 1)k + ij]. He then sends
the hash key and each of the encoding keys to the sender. The sender, in return, computes the hash
of his input 〈(sj,1, . . . , sj,k)〉j∈[n], and encodes, using ekj , the secret sj,ij . He then sends the hash
value and the single-bit encodings to the receiver who uses the decoding algorithm of the TDH to
recover sj,ij for every j ∈ [n]. Below, we give a formal description of the construction.

Construction 5.1 (Download-rate-1 weakly correct batch OT from rate-1 TDH). Let H = (S,G,H,E,D)
be a rate-1 (weakly) correct TDH for index predicates. Our batch OT protocol bOT = (bOT1, bOT2, bOT3)
with download rate-1, and error probability ε per instance, consists of the following algorithms.

• bOT1(1λ, 1k, 〈ij〉j∈[n]):

1. Sample hk
$←− S(1λ, 1n·k).

2. For every j = 1, . . . , n, sample (ekj , tdj)
$←− G(hk, f[(j−1)·k+ij]).

3. Output

st := (〈i1, . . . , in〉, hk, td1, . . . , tdn) msg1 := (hk, ek1, . . . , ekn) (5.1)

42

• bOT2(msg1, 〈(sj,1, . . . , sj,k)〉j∈[n]): parse msg1 as in Equation 5.1 and proceed as follows.

1. Sample ρ ∈ {0, 1}∗ and compute h← H(hk, 〈(s1,1, . . . , s1,k), . . . , (sn,1, . . . , sn,k)〉; ρ).
2. For every j = 1, . . . , n, set ej ← E(ekj , 〈(s1,1, . . . , s1,k), . . . , (sn,1, . . . , sn,k)〉; ρ).
3. Output

msg2 := (h, e1, . . . , en) (5.2)

• bOT3(st,msg2): parse st and msg2 as in Equations 5.1 and 5.2 (resp.), and proceed as follows.

1. For every j = 1, . . . , n,
1.1. Compute (ej,0, ej,1)← D(tdj , h).
1.2. If ej,0 = ej,1 set s̃j := ⊥.
1.3. Otherwise, if ej = ej,0, set s̃j := 0.
1.4. Otherwise, if ej = ej,1, set s̃j := 1.

2. Output 〈̃s1, . . . , s̃n〉

Analysis. (Weak) correctness follows immediately from the correctness of the underlying TDH
scheme. Notice that since the TDH has one-sided error probability of ε, then any output bit of the
OT equals ⊥ with probability ε. Since the bits are generated using independent TDH encodings,
the error is independent over the different output bits.

In the two theorems below, we show that the privacy properties of the scheme follow from the
respective privacy properties of the underlying TDH.

Theorem 5.1 (Receiver Privacy of TDH-based batch OT). Let H be a function-private TDH. Then,
the batch OT protocol from Construction 5.1 is receiver-private.

Proof. Let (〈i1, . . . , in〉, 〈i′1, . . . , i′n〉) be the challenge indices chosen by Env1, then, via a standard
hybrid argument against the function privacy of TDH, one can see that

(hk, ek1, . . . , ekn)
c≡ (hk, ek′1, . . . , ek

′
n)

where hk
$←− S(1λ, 1n·k), and (ekj , tdj)

$←− G(hk, f[(ij−1)·n+j]) and (ek′j , td
′
j)

$←− G(hk, f[(i∗j−1)·n+j]) for
all j = 1, . . . , n. Therefore, a polynomial-time Env2 cannot distinguish between the two distributions
with non-negligible advantage.

For the following theorem we need a TDH with standard correctness, that is the theorem is not
applicable for schemes that only satisfy weak correctness.

Theorem 5.2 (Sender Privacy of TDH-based batch OT). Let H be a statistically (resp., com-
putationally) input-private TDH with (standard) correctness. Then, the batch OT scheme from
Construction 5.1 provides statistical (resp. computational) sender privacy.

Proof. We construct a simulator Sim which, on inputs 1λ, 〈i1, . . . , in〉 and 〈s1,i1 , . . . , sn,in〉, samples

a hash key hk′
$←− S(1λ, 1n·k) and a pair (ek′j , td

′
j)

$←− G(hk, f[(ij−1)·n+j]) for every j ∈ [n], then
computes

h′ ← H(hk′, s′; ρ′) (e′j,0, e
′
j,1)← D(td′j , h

′) for all j = 1, . . . , n

43

where s′ = 〈(0ij−1, s1,ij , 0
n−ij)〉j∈[n] and ρ′

$←− {0, 1}∗. The output of Sim is defined as

st′ := (〈ij〉j∈[n], hk
′, td′1, . . . , td

′
n) msg′2 := (h′, e′1,s1,i1

, . . . , e′n,sn,in)

Now, let Ideal = (st′,msg′2) and let Real = (st,msg2) be the distribution obtained from a real
execution of bOT with inputs 〈ij〉j∈[n] and s = 〈(sj,1, . . . , sj,k)〉j∈[n], where

st = (〈ij〉j∈[n], hk, td1, . . . , tdn) msg2 = (h, e1,s1,i1
, . . . , en,sn,in)

It is obvious that st ≡ st′, and therefore, Real ≡ Real′, where Real′ = (st′,msg′′2) is a hybrid
distribution with msg′′2 = (h′′, e′′1, . . . , e

′′
n) where

h′′ ← H(hk′, s; ρ) e′′j ← E(ek′j , s; ρ)

Next, since the underlying TDH scheme is statistically input-private, we have that (hk′, h′)
s≡

(hk′, h′′) (computational case is similar), and therefore we can replace h′ in Ideal with h′′. Fur-
ther, by the correctness of the TDH, D(td′j , h

′′) = e′′j , for all j = 1, . . . , n, except with negligible
probability over the random choice of ρ. It follows that the simulated view is statistically (resp.,
computationally) indistinguishable from Real′, and therefore, from Real.

5.4 From Weakly Correct Batch OT to String OT

In the previous section, we show how to construct batch OT from trapdoor hash. If we instantiate the
construction using the QR- and LWE-based TDH schemes from Sections 4, which have a negligible
error probability, then we get batch OT with full correctness as defined in Definition 5.1. Thus,
since string OT is a special case of batch OT as mentioned earlier, then we immediately get string
OT schemes with optimal download rate based on QR and LWE. However, when the underlying
TDH has non-negligible error, as it is with the DDH-based scheme, then the obtained OT has
non-negligible error as well.

In this section, we show how to overcome the non-negligible error in the string OT from the
DDH-based TDH through a generic error correction technique that preserves the download rate.
We also show how to bootstrap any OT protocol with optimal download rate to a protocol with
optimal overall rate, and thus achieving rate-1 even when we consider the first message as well.

5.4.1 Correcting the Errors

In the following, we show how to use rate 1 error-correcting codes to construct a string OT protocol
with download-rate 1 and negligible error from any batch OT with non-negligible but “small” error
probability. We then show how to instantiate the construction with the TDH schemes from Section 4
and appropriate codes.

Overview. Again, when the underlying batch OT has negligible error, then, to invoke string OT
with sender’s inputs s1, . . . , sk ∈ {0, 1}n and receiver’s selection i ∈ [k], we simply perform batch
(1-out-of-k) OT for a batch of size n, where the jth input tuple consists of the jth bit of every
secret, i.e. (s1[j], . . . , sk[j]) and ij = i for every j. When the TDH induces a non-negligible error
probability, the receiver might not be able to recover si entirely. More specifically, if the TDH is
(1 − ε)-correct, then we expect to have ε fraction of errors (or erasures) in the decoded string (for

44

one-sided error we get erasures). In such a case, we use error-correcting codes to ensure successful
recovery, and apply the described protocol over encodings of the secrets using sufficiently good code.
To maintain the optimal rate of the OT, we require that the code has rate 1−O(1/λ).

We now describe the construction in details.

Construction 5.2 (String OT from weakly correct batch OT). Let bOT = (bOT1, bOT2, bOT3) be
a batch OT scheme with download-rate 1, where an independent error (⊥ output) occurs at every OT
instance with probability at most ε(λ) for security parameter λ. Let {(Encodeλ,n,Decodeλ,n)}λ,n∈N
be a family of error-correcting codes which can efficiently correct 2εN errors.

Our download-rate-1 OT protocol OT = (OT1,OT2,OT3) consists of the following algorithms.

• OT1(1λ, 1n, 1k, i): output (st,msg1)← bOT1(1λ, 1k, 〈iNn〉).

• OT2(msg1, (s1, . . . , sk)) :

1. For every j = 1, . . . , k, compute

(z1,j , . . . , zN,j)← Encodeλ,n(sj)

2. Output msg2 ← bOT2(msg1, 〈(z1,1, . . . , z1,k), . . . , (zN,1, . . . , zN,k)〉).

• OT3(st,msg2) : compute z ← bOT2(st,msg2) and output

s̃← Decodeλ,n(z) (5.3)

Analysis. We start with correctness, and show that as long as δ(λ) is sufficiently large, then the
erasure code is able to recover the message correctly with an overwhelming probability.

Theorem 5.3 (Correctness of string OT). Given that εN = Ω(λ), the OT scheme from Construc-
tion 5.2 is correct.

Proof. Let y := Encodeλ,n(si). We have that for every index j it holds that zj = yj , except with
probability ε and independently of j. Thus, in expectation the number of errors among the {zj} is
εN . Using the Chernoff bound, we get that the probability of having more than 2εN errors is at
most e−εN/3 which is negligible in λ. Conditioned that we have less than 2εN errors, decoding will
succeed and we get s̃ = si.

Instantiations. Using a TDH with negligible error would result in a batch OT with negligible
error, and therefore, an OT scheme that satisfies correctness (see Definition 5.1). This means that
with the superpoly LWE-, QR- and DCR-based schemes as the underlying TDH, we can set the
error correcting code to simply be the identity function. In the case where we use the DDH-based
TDH, we can set the parameters such that the correctness error is at most 1/λ. Consequently, we
need a code of rate 1−O(1/λ) which can correct a 1/λ fraction of errors. Such a code is provided
by Theorem 3.3. The same holds for our construction from LWE with polynomial modulus, i.e. by
choosing n = O(Bnλ), we get a correctness error of at most 1/λ. Consequently, we can also use the
codes of Theorem 3.3 in this case.

Recall that the second message in the OT protocol is of the form msg2 := (h, e1, . . . , eN).
Consequently, we also have to account for the size of the hash value h. But since the representation
size of h is a fixed polynomial in λ, we can amortize it by choosing the parameter n sufficiently
large, e.g. by choosing n such that size(h) ≤ n/λ. Once this is given, we can bound the overall rate
of the construction by 1−O(1/λ).

45

Remark 5.1. There is a gap between the syntax of Construction 5.2 and the definition of the OT
functionality from Section 5.2. In particular, the receiver is given 1n as input, in contrary to the
definition where receiver’s input is defined to be just i ∈ [k] (in addition to the security parameter).
This is fixed in the final OT construction, which is obtained from Theorem 5.4 in the next section.

5.4.2 Bootstrapping to Optimal Overall Rate

Recall that our two-message string OT protocol achieves a download rate of 1 − O(1/λ), but the
overall rate (when considering also the first message) is inverse in the security parameter. Fortu-
nately, any 2-message string OT with a download rate of 1−O(1/λ) can be generically bootstrapped
to a 2-message OT with overall rate of 1−O(1/λ). The transformation is very simple and it stems
for the observation that for any two-message OT, the first message is always reusable, thus its rate
can be amortized by running independent OTs on small message blocks. Let the upload rate be
defined just like the download rate (Definition 5.2) except that mλ is a bound on the length of the
output of Π1. We give the following theorem of two-message string OT.

Theorem 5.4 (OT with overall rate-1−O(1/λ)). Let OT = (OT1,OT2,OT3) be a 1-out-of-k string
OT protocol with upload rate of 1/q0(λ, n), for some polynomial q0(λ, n) in the security parameter λ
and in the message length n, and with download rate of 1−O(1/λ). Then there exists a 1-out-of-k
two-message string OT protocol with overall rate 1.

Proof. Fix ñ = q0(λ, n) · n, for some n ∈ N. The OT protocol is modified as follows: The OT1

algorithm is executed on input a length parameter 1n and the output msg1 is defined to be whatever
the algorithm outputs. Let s be a string of length ñ and denote by (s(1), . . . , s(q0(λ,n))) its n-
size blocks. The algorithm OT2 is executed on input msg1 independently on each set of inputs
(s

(i)
1 , . . . , s

(i)
k) together with the message msg1. Denote the set of outputs by (msg

(1)
2 , . . . ,msg

(q0(λ,n))
2)

and let this set be the output of OT2. Then OT3 is executed independently on each element and
the output is defined as the concatenation of all resulting strings.

It is not hard to see that correctness and security are preserved under parallel composition.
Since the download rate of the underlying OT protocol is 1−O(1/λ) (for a growing n), then so is
the second-message rate of the modified protocol (for a growing ñ). Then the upload rate of the
resulting OT (for a growing ñ) is

ñ

q0(λ, n)
=
q0(λ, n) · n
q0(λ, n)

= n

which approaches infinity as n grows.

5.4.3 Malicious Security

Any semi-honest two-message OT is also secure (at least for an indistinguishability notion of se-
curity) against a fully corrupted sender. While the same does not necessarily hold for a corrupted
receiver, Badrinarayanan et al. [BGI+17a] showed how to compile any semi-honest two-message OT
with rate > 1

2 into statistically sender private (SSP) OT with constant rate (although lower than
1).

Theorem 5.5 ([BGI+17a]). If OT = (OT1,OT2,OT3) is a high rate (> 1/2) two-message semi-
honest OT protocol, then there exists a constant rate two-message SSP OT protocol.

46

Prior to our work, the only SSP OT from LWE was presented in a recent work of Brakerski
and Döttling [BD18] (with inverse logarithmic rate in the security parameter). Our work directly
improves upon their result as it yields the first constant-rate SSP OT from LWE.

It is worth mentioning that one can generically upgrade passive security to active security,
without affecting the asymptotic rate, by using succinct zero-knowledge arguments [Kil92]. This
comes at the cost of additional interaction (or reliance of non-falsifiable assumptions [GW11]) and
settling for computational security. Interactive arguments can be based on collision resistance hash
function, which can in turn be instantiated from the DDH, QR, or LWE assumption [NN01]. We
stress that, even with interaction and computational security, rate-1 OT from DDH, QR, or LWE
was not known prior to our work. In fact, even under DCR, achieving rate-1 required the group
size to grow with the rate.

5.5 OLE, Vector-Matrix Product, and Other Generalizations

In the previous sections, we were able to utilize rate-1 trapdoor hash functions to realize the first rate-
1 OT protocols from various assumptions. However, we have not yet exploited all the possibilities
that trapdoor hash has to offer in the sender-receiver setting. In this section, we describe a few
directions for extending the use of trapdoor hash in order to realize more general functionalities,
such as oblivious linear function evaluation (OLE) and oblivious matrix-vector product (OMV). The
latter can be viewed as a relaxed form of additively homomorphic encryption, allowing the client to
encrypt a vector v over a ring, while supporting multiple evaluations of inner products uv> over the
encrypted v, with download rate 1. Concretely, we can support this form of encryption over rings
of aribitrary size, provided that they are either of the form ZN for a smooth integer N or are fields
of small characteristic (namely, Fq where q is a power of a small prime). In most of these cases,
even under the DCR assumption it was not known how to achieve rate 1, let alone under other
assumptions. See [JVC18b] and references therein for constructions and applications of additively
homomorphic encryption.

Oblivious Evaluation of Small Classes of Functions. As discussed in Remark 4.1, trapdoor
hash for index predicates can be transformed into trapdoor hash for any class of predicates F =
{F`}`∈N. The transformation is efficient when |F`| is bounded by some polynomial in `, in which
case we say that the class of predicates is “small”. By deploying trapdoor hash for such a class F
to Construction 5.1, we obtain a two-message protocol that realizes batch oblivious evaluation of F
where, roughly speaking, receiver has as input a batch of private predicates x = 〈f1, . . . , fn〉 ∈ Fn` ,
sender has a private input y ∈ {0, 1}`, and the goal is to give 〈f1(y), . . . , fn(y)〉 ∈ {0, 1}n to the
receiver. One can see that the batch OT protocol from Construction 5.1 is a special case for F = I.

Even more generally, we can realize the above functionality for general “small” classes of functions
F = {F`}`∈N, where F` is a polynomially large set of functions from {0, 1}` to {0, 1}p(`) for some
polynomial p(`), by applying the above p(`) times in parallel, once for every output bit.

Since the transformation from Remark 4.1 preserves the rate of the trapdoor hash, we get
protocols with optimal asymptotic rate.

Special Case: OLE over Small Fields. It appears that one can also describe the batch OLE
functionality over a “small” field Fp (formalized as bOLE in Section 5.2), as a special case of oblivious
evaluation of a “small” function class. More specifically, recall that a sender’s input in bOLE is defined

47

as y = 〈(aj , bj)〉j∈[n] ∈ Fn×2
p . Consequently, for any bOLE receiver input x = 〈x1, . . . , xn〉, we define

a corresponding x̂ = 〈f1, . . . , fn〉, where for any i ∈ [n], the function fi : Fn×2
p → Fp is defined as

fi(〈(aj , bj)〉j∈[n]) = aixi + bi for all i ∈ [n]. Now, if we take the function class F = {F`}`∈N where
F2ndlog pe = {fi,x(〈(a1, b1), . . . , (an, bn)〉) = aix + bi | i ∈ [n], x ∈ Fp}, then it clearly holds that
realizing bOLE for inputs x and y is equivalent to oblivious batch evaluation of F with inputs x̂ and
y. Further, when we fix p as a constant, then F is a small function class, and therefore, following
the outline from above, we obtain an efficient download-rate-1 bOLE protocol based on DDH, QR,
or LWE (more specifically, with communication growing polynomially in n and p).

Oblivious Matrix-Vector Product. Lastly, we explain how to use trapdoor hash for the more
general class of linear predicates in order to realize the oblivious matrix-vector product functionality
over F2 (formalized as OMV in Section 5.2). Recall that in OMV over F2, the receiver has as input
a vector v ∈ Fk2 and the sender has a matrix M ∈ Fn×k2 and the goal is for the receiver to learn the
product Mv>. It would be convenient to look at OMV as an oblivious batch evaluation of inner
products between vectors: if we let u1, . . . un ∈ Fk2 be the row vectors of M , then our goal becomes
to provide the inner products 〈uiv>〉i∈[n] to the receiver while keeping v and the ui’s private.

Again, we refer to Construction 5.1 as a starting point, and replace the trapdoor hash for index
predicates with trapdoor hash for linear predicates (to which we have constructions from QR and
LWE, see Section 4). The receiver generates a hashing key hk for input length n · k and n pairs of
an encoding key and a trapdoor (ek1, td1), . . . , (ekn, tdn), where (eki, tdi) correspond to the linear
predicate f(0k(i−1)||v||0n−i)(u1|| . . . ||un) = uiv

>. He then sends hk and eki, for all i ∈ [n], to the
sender. Using the keys, the sender computes the hash of his matrix M , then encodes uiv> for every
i ∈ [n]. The receiver uses the hash and the trapdoor tdi to decode uiv>, for all i ∈ [n], and recover
the product Mv>. From the optimal rate of the trapdoor hash, we get a download-rate-1 protocol
for OMV.

Lastly, we observe that the LWE-based TDH constructions from Section 4 can be easily tweaked
to support “trapdoor-evaluation” of linear functions over fields Fp where p is a small constant prime.
Roughly speaking, we can choose the modulus q to be a multiple of p and define the rounding
function modulo p instead of 2. Furthermore, the encoding keys are computed by replacing the
factor q/2 with q/p in in the corresponding terms of the matrix B. This defines a subgroup of order
p and allows us to compute linear functions over Fp.

Extending Beyond Small Fields. So far we were able to realize algebraic functionalities over
small fields only. Fortunately, standard algebraic tricks allow us to extend these results to achieve
the same functionalities over two more general and larger types of algebraic structures: 1. rings
modulo a smooth integer (an integer that can be written as the multiplication of small primes), and
2. fields with small characteristics (extensions of Fp where p is a small prime).

More specifically, to get OLE or OMV over smooth moduli, we use the Chinese Remainder
Theorem, which defines a homomorphism between such a ring ZN for a smooth N = p1 · · · · · pk
(where p1, . . . , pk are primes) and Fp1 × · · · × Fpk . Now, to realize the target functionality over ZN ,
we simply perform k invocations of the appropriate protocol, each over some small field Fpi , while
translating each of the inputs in ZN to an input in the appropriate Fpi . As for OLE (or OMV)
over extensions fields Fpk , we still rely on executions over Fp, except here, we use the fact that
multiplication over Fpk can be expressed as a linear mapping over the base field, Fp.

48

5.6 On the Tightness of Our Protocols

Our protocols achieve asymptotic download rate of 1 (as in Definition 5.2), which is clearly optimal.
However, the (additive) difference between the sender’s message length and the output length grows
with the security parameter λ. We argue that this gap is necessary. Moreover, we show that the
same holds in the preprocessing model when the sender’s input is long.

Let us first consider the case of 1-out-of-2 OT in the plain model where the sender’s input
is short, e.g., consists of two single-bit secrets. It is not hard to see that in the case where the
sender’s message msg2 is also short, specifically - shorter than the security parameter λ, then the
OT scheme cannot be secure. In particular, 2-message OT with |msg2| = t implies PKE with t-bit
ciphertexts [GMR01], which can be easily broken via a O(2t) brute-force attack.

It follows from the above that when the OT output length is constant, the difference between
the output length and the sender’s message length should indeed grow with λ. This simple lower
bound does not rule out the possibility that when the output length is bigger than λ, the sender’s
message length is the same. Moreover, it does not allow to the setting of secure computation with
a correlated randomness setup (or equivalently, input-independent preprocessing). In this setting,
there is a simple protocol that for output length n has sender message of length 2n [Bea95b]. The
following theorem shows that even in this relaxed setting, there is an inherent gap between the
output length and the sender message length.

Theorem 5.6. Let OT = (OT1,OT2,OT3) be a 1-out-of-2 OT protocol with a correlated random-
ness setup. Suppose that the sender’s input strings are of length n and the sender’s message is of
length t < 2n. Then there is a distinguisher running in time O(2(t−n)/2) that distinguishes between
messages corresponding to the two receiver inputs with constant advantage.

Proof. We construct a distinguisher D that takes as input a receiver’s message msg1, which either
corresponds to receiver input i = 1, in which casemsg1 ← OT1(1λ, 1n, 1), or to a receiver input i = 2,
i.e. msg1 ← OT1(1λ, 1n, 2), and distinguishes between the two cases with advantage ≥ 1

3 − negl(λ).

D(msg1) :

1. Sample a uniform s1
$←− {0, 1}n.

2. Set X ← ∅ and repeat the following T times (T will be specified below).

2.1. Sample a uniform s2
$←− {0, 1}n that was not sampled before and set

m = OT2(msg1, (s1, s2))

2.2. If m ∈M output 1, otherwise update M ←M ∪ {m}.

3. Output 0.

Let t′ := t − n < n, and denote by s
(j)
2 and m(j) the values of s2 and m of the jth iteration in the

attack. From the correctness of the OT, if msg1 was generated for i = 2, then, with probability at
least 1− negl(λ), it holds that OT3(st,m

(j)) = s
(j)
2 for every j ∈ [T]. Since all the s

(j)
2 are distinct,

this implies that M contains no collisions, and therefore, Pr[D(OT1(1λ, 1n, 2)) = 1] ≥ 1− negl(λ).
On the other hand, if msg1 corresponds to i = 1 then, OT3(st,m

(j)) = s1 for every j. Denote
msg2(s1) := {OT3(st,m) = s1 | m ∈ {0, 1}t}. Now observe that OT3(st, ·) maps {0, 1}t to {0, 1}n,

49

and therefore, |msg2(s1)| has expected value of 2t
′ for a uniform s1. Using Markov’s inequality, we

get that |msg2(s1)| ≤ 2t
′+1 with non-negligible probability at least 1

2 .
Assume for now that |msg2(s1)| ≤ 2t

′+1 indeed. Notice that them(j)’s are sampled from msg2(s1)
according to some distribution. D outputs 1 when it detects a collision, i.e. s(j) = s(j

′), and
therefore, what we essentially have is a variant of the Birthday Paradox where the items sampled
are not replaced (as we never pick the same s(j) twice). It is well-known that the case where the
values are sampled uniformly is the case where a collision is least probable (one way to show that
is using Schur convexity), and therefore we assume that for every m ∈ msg2(s1) there are exactly
Z := 2n/|msg2(s1)| ≥ 2n−t

′−1 values of s2 such that OT2(msg1, (s1, s2)) = m. The probability for
finding a collision, and thus outputting 1, can be bound as follows.

1−
(

1− Z − 1

2n − 1

)(
1− 2(Z − 1)

2n − 1

)
. . .

(
1− T (Z − 1)

2n − 1

)
> 1−

T∏
j=1

(
1− j(Z − 1)

2n

)

> 1−
T∏
j=1

e−
j(Z−1)

2n = 1− e−
Z−1
2n

T (T−1)/2

For T = 2
√

ln 3 · 2n+1/(Z − 1), the above probability is larger than 2
3 , and thus we have that

Pr[D(OT1(1λ, 1n, 1)) = 0] ≥ 1
3 . This concludes the proof.

A simple corollary of Theorem 5.6 is that 1/2 is a barrier for the download rate of information-
theoretic 1-out-of-2 OT in the correlated randomness model.

6 Applications of Rate-1 OT

In the following we discuss several new implications that stem from our main theorem.

6.1 Private Information Retrieval

A single-server private information retrieval (PIR) protocol [KO97] allows a client to query a large
database of entries, which is stored in a remote server(s), without leaking the index of the entries of
interest. The general efficiency of PIR protocols is measured in terms of communication complexity,
which is required to be sub-linear in the size of the database. Another important efficiency measure
of PIR is download rate, which is defined as the asymptotic ratio between the length of the server’s
answer to a query and the length of a database entry. In fact, definitions of PIR and its download
rate are identical to the definitions of string OT and its related notion of download rate given in
Section 5 (see Definitions 5.1 and 5.2), except that for PIR we do not require sender privacy.

Ishai and Paskin [IP07] showed that a rate-1 2-message OT implies a round-optimal single-
server PIR with poly-logarithmic communication in the size of the database. Thus, PIR protocols
from DDH, QR, LWE and DCR follow as immediate corollaries of our results. In fact, all of
the resulting protocols have an asymptotically optimal download rate of 1. In the following we
recall the construction from [IP07] and prove a somewhat stronger statement, i.e., that any 1-out-
of-λ 2-message OT14 with constant rate already suffices to construct PIR with poly-logarithmic

14In fact, k = λ can be replaced with any poly(λ).

50

communication overhead. When the underlying OT has download rate 1, the obtained PIR has
download rate 1 as well.

Construction 6.1 (PIR from constant-rate OT). Let OT = (OT1,OT2,OT3) be an OT protocol
with download rate 1

c for some constant c. We assume, without loss of generality, that our database
DB consists of N entries, each of size B, where N = λd for some d ∈ N. Our download-rate-1 PIR
protocol PIR = (PIR1,PIR2,PIR3) consists of the following algorithms.

• PIR1(1λ, (i ∈ [N], 1N)) : parse i as (i1, . . . , id), where ij ∈ [λ] for all j, and proceed as follows.

1. For all ` ∈ [d] compute
(
st(`),msg

(`)
1

)
← OT1

(
1λ, 1λ, i`

)
2. Output a query msg1 and an internal state st defined as follows

msg1 =
(
msg

(1)
1 , . . . ,msg

(d)
1

)
st =

(
st

(1)
1 , . . . , st

(d)
1

)
(6.1)

• PIR2(msg1, (DB, 1
N , 1B)): parse msg1 as in Equation 6.1 and proceed as follows.

1. Set Y = DB and B(1) = B.
2. For every ` = 1, . . . , d,

2.1. Parse Y as the concatenation of N/λ` tuples, where the jth tuple consists of λ entries
(yj,1, . . . , yj,λ), each of length B(`) bits.

2.2. For all j ∈
[
N/λ`

]
, set msg

(`)
2,j ← OT2

(
msg

(`)
1 , (yj,1, . . . , yj,λ)

)
2.3. Update Y ←

(
msg

(`)
2,1, . . . ,msg

(`)

2,N/λ`

)
and B(`+1) = |msg

(`)
2,· |.

3. Output msg2 = msg
(d)
2,1.

• PIR3(msg2, st): parse st as in Equation 6.1 and proceed as follows.

1. Set msg
(d)
2 = msg2.

2. For every ` = d, . . . , 1, set msg
(`−1)
2 ← OT3(msg

(`)
2 , st(`)).

3. Output msg
(0)
2 .

Analysis. We begin by discussing the communication complexity of the above protocol, and
in particular, its download rate. We claim that for a database of length poly(λ) and large enough
block size, the asymptotic download rate approaches 1. More specifically, let B(λ) be the polynomial
bound on the sender’s secret length for which we achieve asymptotic rate 1

c in OT (see Definition 5.2).
Then, if N is polynomial in λ, i.e. d is constant, and the length of the database entries, i.e. B, is
larger than B(λ), we have that B(`+1)/B(`) → 1/c with λ→∞, for any `. From induction, we get
that |msg2|/B → 1/cd, which is constant, and equals 1 when c = 1.

Regarding client-server communication, then, the client sends d = logλN OT messages, each
is clearly of length at most polynomial in λ, which makes it O(poly(λ) logN) communication com-
plexity overall. The security of the construction is established by the following theorem.

Theorem 6.1 (PIR from Constant-Rate OT). Let OT be a receiver-private 2-message OT protocol,
then the protocol PIR from Construction 6.1 is receiver-private.

The proof follows from a standard hybrid argument over the receiver privacy of the OT. We
refer the reader to [IP07] for further details.

51

6.2 Evaluating Branching Programs over Encrypted Data

Another result in the work of Ishai and Paskin [IP07] is a compiler that takes any 2-message rate-1
OT with strong sender privacy into a homomorphic encryption scheme that allows anyone to evaluate
branching programs (a superclass of NC1) over encrypted data. The crucial property of the scheme
is that the size of the evaluated ciphertexts depends only on the length of the branching program
but not on its size. This immediately yields a sublinear secure function evaluation protocol where
the client’s work is independent of the size of the branching program (which is in fact hidden to its
eyes). The scheme can be seen as a generalized version of the PIR construction (see Section 6.1)
where the answer of the server is determined by a polynomial-width unbounded length branching
program. Several interesting applications of this scheme are discussed in [IP07], such as a keyword
search protocol which hides from the client the size of the database held by the server.

We note that the rate-1 OT scheme from Construction 5.2 does not generically provide strong
sender privacy from any trapdoor hash. However, it can be easily verified that by using the trapdoor
hash schemes from Section 4 (based on DDH, QR or LWE) we do obtain strong sender privacy as
defined in Definition 5.1. Hence, combining their approach with our rate-1 OT protocols, we obtain
the following new implications.

Corollary 6.1. There exists a homomorphic encryption scheme that supports the evaluation of
branching programs of unbounded size s and depth d, where the size of the evaluated ciphertext is
poly(d, λ) (and in particular independent of s), from the {DDH, QR} assumption.

Corollary 6.2. There exists a homomorphic encryption scheme that supports the (semi-)compact
evaluation of branching programs of unbounded size with message-ciphertext rate approaching 1 (for
a growing message length), from the {DDH, QR, LWE} assumption.

Prior to our work, compact homomorphic encryption schemes for branching programs were only
known under the LWE or the DCR assumption, and only the latter class of schemes achieved an
(asymptotically) optimal rate.

6.3 Lossy Trapdoor Functions

A lossy trapdoor function [PW08] (InjectiveSetup, LossySetup,Eval, Invert) is an augmented trapdoor
function where the setup comes in two different (but computationally indistinguishable) flavors: In
the injective mode (InjectiveSetup), the function (Eval) can be efficiently inverted (Invert), given the
random coins of the setup. In the lossy mode (LossySetup), the input of the function is lost in an
information theoretic sense. Lossy trapdoor functions were originally introduced as a building block
in the construction of CCA-secure encryption. Constructing lossy trapdoor functions from OT was
first considered in [HO12]. There is a very simple rate-preserving transformation from rate-1 OT to
lossy trapdoor function, which we show below.

Construction 6.2 (Lossy Trapdoor Functions from OT). Let OT = (OT1,OT2,OT3) be a 2-
message 1-out-of-2 OT with rate 1. The algorithms for a lossy trapdoor function are described in
the following.

• InjectiveSetup(1λ, 1n) :

1. Sample r $←− {0, 1}n.

52

2. Compute (st,msg1)← OT1

(
1λ, 12, 1

)
.

3. Output a function key k and a trapdoor td defined as follows

k = (msg1, r) td = st (6.2)

• LossySetup(1λ, 1n) :

1. Sample r $←− {0, 1}n.
2. Compute (st,msg1)← OT1

(
1λ, 12, 2

)
.

3. Output k = (msg1, r) as the function key.

• Eval(k, x) : parse k as in Equation 6.2 and output y = OT2 (msg1, (x, r)) as the image of x.

• Invert(t, y) : parse td as in Equation 6.2 and output x = OT3 (st,msg2) as the pre-image of y.

The rate of the lossy trapdoor function (defined as the asymptotic ratio between length of the
input and length of the output of Eval) is clearly identical to the download rate of the underlying
OT. We say that a function is L-lossy if the size of the lossy range is by a factor L smaller than the
domain.

Theorem 6.2 (Lossiness). Let OT be a rate-1 OT and let n′ be the size of the output of Eval(k, ·),
where k← LossySetup(1λ, 1n). Then Construction 6.2 is a

(
2n

2n′−n

)
-lossy trapdoor function.

Proof. First, note that r ∈ {0, 1}n is sampled uniformly at random and, in particular, is chosen
independently of the random coins of the OT. Furthermore, by the correctness of the OT it holds
that

r = OT3 (st,OT2 (msg1, (x, r)))

with all but negligible probability. Since r is fixed and does not depend on x, at most n′− n bits of
x are leaked by the output of Eval, on input a lossy key k. Thus the size of the range of Eval(k, ·) is
bounded by 2n

′−n.

Observe that, since the download rate of the OT approaches 1, then the term 2n
′−n approaches 1

as n grows. This means that the lossiness of the function increases with n. In the following we argue
that the output of the injective setup and the lossy setup are computationally indistinguishable.

Theorem 6.3 (Mode Indistinguishability). Let OT be a receiver private OT, then Construction 6.2
is mode-indistinguishable.

Proof. The proof follows from a simple reduction against the receiver privacy of the OT.

Our results imply the existence of a rate-1 lossy trapdoor function under the {DDH, QR, LWE}
assumption. Prior to our work, rate optimal schemes were known to exist only under the DCR
assumption.

53

7 Private Laconic Oblivious Transfer

In this section, we discuss another application of trapdoor hash: private laconic oblivious trans-
fer, or p`OT for short. As discussed in the introduction, p`OT has strong applications in secure
computation. In particular, following the outline presented in [CDG+17] to utilize laconic OT for
non-interactive secure RAM computation with unprotected memory access, we can use private la-
conic OT to obtain secure RAM computation where the access pattern to the memory is also hidden,
and therefore achieve a stronger notion of security.

We start by defining p`OT, as well as a useful associated reusability notion. We then show how
to realize p`OT using TDH for the class of index predicates. In fact, to obtain p`OT schemes that
satisfy our security requirements, it is not sufficient to rely on the basic security notion of TDH,
and we need a stronger one. Therefore, we first define a TDH scheme with secret encoding, and
then show how to construct p`OT from any such a scheme. We also achieve reusable p`OT using a
generalization of the secret encoding property.

To instantiate these constructions, we show that the basic DDH-based TDH from Section 4.2.1
has secret encodings, and further, in Appendix C, we describe a more efficient construction of a
TDH with secret encodings based on the SXDH assumption over bilinear groups. We also show how
to upgrade both schemes to have reusable secret encodings in Appendix B.

Lastly, we observe that the p`OT schemes we obtain are somewhat “unbalanced” in their pa-
rameters, and that their efficiency can be enhanced by applying a generic balancing technique, that
takes any such “unbalanced” reusable p`OT, and transforms it into a more efficient p`OT scheme.
By applying the balancing technique to our DDH-based and pairing-based constructions, we achieve
p`OT schemes with overall communication complexity proportional to

√
n and, respectively, n1/3.

7.1 Formal Definitions

Formal definitions of p`OT and reusable p`OT are provided below. We build over the formalization
of laconic OT from [CDG+17] and introduce the new notions of privacy, then reusability.

Private Laconic OT. In Oblivious Transfer (OT), a sender and a receiver want to perform the
following functionality: the sender has two secrets (s0, s1) and the receiver has a bit b ∈ {0, 1}. The
sender wishes to transfer secret sb to the receiver. The bit b must not be leaked to the sender, and
the receiver must not learn the other secret s1−b. Clearly, in order to realize OT, the sender has to
have some information that depends on b, and therefore, a first round, were the receiver sends an
encoding of b, is necessary.

In laconic OT [CDG+17], the receiver has a large database x ∈ {0, 1}n, and the sender wishes
to transfer message sx[i] for a “selector” index i ∈ [n] of his choice. Again, x must not be leaked to
the sender, and the receiver must not learn the other message s1−x[i]. Clearly, laconic OT can be
realized by letting the receiver send an “OT encoding” of every x[i] in the first round. However, we
require that the encoding of x, namely its hash, is laconic (hence the name).

Private laconic OT is a variant of laconic OT, where we additionally require that the index i
remains private, and is not leaked to the receiver. We formalize p`OT as follows.

Definition 7.1 (Private Laconic OT). A private laconic OT scheme (p`OT for short) is a tuple of
four PPT algorithms Πp`OT = (Gen,Hash,Send,Receive) with the following properties.

• Syntax:

54

– pp ← Gen(1λ, 1n). The generating algorithm takes as input the security parameter 1λ,
and the size of the database n, and outputs public parameters pp ∈ {0, 1}∗.

– h ← Hash(pp, x; ρ). The hashing algorithm takes as input the public parameters pp, a
database x ∈ {0, 1}n, and randomness ρ ∈ {0, 1}∗, and deterministically outputs a hash
value h ∈ {0, 1}η.

– ct ← Send(pp, h, i, (s0, s1)). The sending algorithm takes as input the public parameters
pp, a hash value h, an index i ∈ [n], and a pair of secrets (s0, s1) ∈ {0, 1} × {0, 1}, and
outputs a ciphertext ct ∈ {0, 1}∗.

– s← Receive(pp, ct, x; ρ). The receiving algorithm takes as input the public parameters pp,
a ciphertext ct, a database x ∈ {0, 1}n, and randomness ρ ∈ {0, 1}∗, and deterministically
outputs a secret s ∈ {0, 1}.

• Correctness: Πp`OT is correct if there exists a negligible function ε(λ) such that the following
holds for all λ, n ∈ N, any database x ∈ {0, 1}n, any index i ∈ [n], and any pair of secrets
s0, s1 ∈ {0, 1}.

Pr

s = sx[i]

∣∣∣∣∣∣∣∣∣∣∣

pp← Gen(1λ, n)

ρ
$←− {0, 1}∗

h ← Hash(pp, x; ρ)
ct ← Send(pp, h, i, (s0, s1))
s ← Receive(pp, ct, x; ρ)

 ≥ 1− ε(λ)

• Receiver Privacy: Πp`OT is statistically, resp., computationally, receiver-private if for any
polynomial-length {xλ, x′λ}λ∈N where nλ := |xλ| = |x′λ| for all λ ∈ N, the following two distri-
bution ensembles

{(ppλ, hλ)}λ∈N {(ppλ, h′λ)}λ∈N

where ppλ
$←− Gen(1λ, 1nλ) and hλ := Hash(ppλ, xλ; ρ), h′λ := Hash(ppλ, x

′
λ; ρ′) for ρ, ρ′ $←−

{0, 1}∗, are statistically, resp. computationally, indistinguishable.

• Sender Privacy (against a semi-honest receiver): Πp`OT is (computationally) sender-
private if there exists a PPT algorithm Sim such that for any s0, s1 ∈ {0, 1}, any polynomial-
length {xλ}λ∈N and any {iλ}λ∈N, where nλ := |xλ| and iλ ∈ [nλ] for all λ ∈ N, the distribution
ensembles {Realλ}λ∈N and {Idealλ}λ∈N, where

Realλ = (ppλ, xλ, (ctλ, ρ)) Idealλ = (ppλ, xλ, Sim(1λ, ppλ, xλ, sxλ[i]))

such that ρ $←− {0, 1}∗, ppλ
$←− Gen(1λ, 1nλ) and ctλ

$←− Send(ppλ, hλ, iλ, (s0, s1)) for hλ =
Hash(ppλ, xλ; ρ), are computationally indistinguishable.

• Receiver Compactness: Πp`OT is receiver-compact if the output length of Hash, η, is inde-
pendent in n, and is bounded by some polynomial in the security parameter λ.

55

Reusable Private Laconic OT. Reusable p`OT is a special case of p`OT that allows the sender
and receiver to efficiently perform many instances of p`OT that share the same selector index i w.r.t.
to many different databases, such that the overhead in the communication cost is only additive in the
number of instances. More specifically, in reusable p`OT, the sender generates a reusable ciphertext
ct that depends only on i (but not on a database) and sends it to the receiver in a preliminary
phase. In the “online phase”, every time the receiver sends a hash corresponding to some database
x, the sender responds by sending a “compact” ciphertext c, specific to x, that allows the receiver to
retrieve the x[i]th message among a fresh pair of s0 and s1. Below, we provide a formal definition.

Definition 7.2 (Reusable Private Laconic OT). We say that a p`OT scheme (Gen, Hash, Send,
Receive) is reusable if it satisfies the following properties.

• Syntax: we require that there exist two PPT algorithms, Send1 and Send2, for which the Send
procedure can be written as follows:

Send(pp, h, i, (s0, s1)):

1. Sample σ $←− {0, 1}∗.
2. Output (Send1(pp, i;σ), Send2(pp, h, i, (s0, s1);σ))

We sometimes write Πp`OT = (Gen,Hash, Send1,Send2,Receive).

• Multi-data Sender Privacy (against a semi-honest receiver): we require that there
exists a PPT algorithm Sim such that for any polynomial-length {〈xλ,1, . . . , xλ,`〉}λ∈N, any
{iλ}λ∈N, such that nλ := |xλ,j | and iλ ∈ [nλ] for all λ, j, and any (s1,0, s1,1), . . . , (s`,0, s`,1) ∈
{0, 1}2, the distribution ensembles {Realλ}λ∈N and {Idealλ}λ∈N, where

Realλ = (ppλ, 〈xλ,j〉j∈[`], (ctλ, 〈cλ,j〉j∈[`], ρ))

Idealλ = (ppλ, 〈xλ,j〉j∈[`],Sim(1λ, ppλ, 〈xλ,j , sj,xλ,j [i]〉j∈[`]))

such that ρ := 〈ρj〉, σ
$←− {0, 1}∗, ppλ

$←− Gen(1λ, 1nλ), ctλ = Send1(ppλ, iλ;σ), and cλ,j =
Send2(ppλ, hλ,j , iλ, (sj,0, sj,1);σ) for hλ,j = Hash(ppλ, xλ,j ; ρj), for all j ∈ [`], are computation-
ally indistinguishable.

• Sender Compactness: Πp`OT is sender-compact if the output length of Send2 is independent
in n, and is bounded by some polynomial in the security parameter λ.

We conclude with few remarks.

Remark 7.1 (Generically achieving receiver privacy and compactness). We note that, as mentioned
in [CDG+17] regarding laconic OT, the requirement for receiver privacy can be realized using a
generic two-round secure computation protocol, and in particular, using standard OT and garbled
circuits. More specifically, if we have a scheme that satisfies both correctness and sender privacy,
then we can transform it to a p`OT by letting the receiver, in the hashing phase, to send an OT
commitment for every bit in the hash value h. The sender then sends a garbled circuit for the
functionality Send(pp, ·, i, (s0, s1)), and uses OT to transfer garbling labels for h. The receiver uses
the labels to evaluate the garbled circuit and obtain the corresponding ciphertext ct, using which
he can compute the secret s := Receive(pp, ct, x; ρ). Further, by replacing the standard OT in the

56

transformation with “receiver-compact” laconic OT15 to transfer garbling labels for h, we can convert
any non-receiver-compact p`OT into a receiver-compact scheme in exchange of an additive blow-up
in the sender-receiver communication.

Remark 7.2 (Correctness and receiver privacy in reusable p`OT). We do not need to define new
notions of correctness and receiver privacy for reusable p`OT since they are implied by the syntax
and the corresponding properties of (standard) p`OT.

Remark 7.3 (On sender-compactness). Any p`OT scheme Πp`OT can be transformed to a non-
sender-compact reusable p`OT by setting Send2 := Πp`OT.Send, and Send1(·) = ⊥. In such a
case, reusing a scheme is equivalent to multiple independent executions, and thus, without sender-
compactness, reusabilitiy is trivial.

7.2 Private Laconic OT from Trapdoor Hash: The Basic Construction

We now present our basic construction of p`OT from trapdoor hash for index predicates.

Overview. Consider the following outline for constructing p`OT from trapdoor hash for index
predicates. The public parameters contain a hash key hk which is generated using the generating
algorithm of the underlying TDH scheme and defines a trapdoor hash function hhk over inputs of
size n. The receiver computes the hash of his input x as h := hhk(x), and sends it to the sender. The
sender, in his turn, generates a pair (ek, td) corresponding to his private selector index, i (i.e. to
fi(x) = xi), and computes the 0-encoding e0 and 1-encoding e1 that correspond to h under ek. The
sender encrypts each of the secrets, s0 and s1, under the corresponding encoding, e0 and respectively
e1, and sends both ciphertexts to the receiver, together with the encoding key ek.

From the correctness of the underlying TDH, the receiver is able to compute the encoding ex[i]
using the encoding algorithm of the TDH, and therefore, he can decrypt the appropriate ciphertext
and obtain sx[i]. Moreover, the encoding key ek does not reveal any information about i, and therefore
i remains private. We notice, however, that the security notion of TDH, from Definition 4.1, does
not guarantee that e1−x[i] is secret in any sense. Thus, the receiver can potentially learn information
about e1−x[i] and, therefore, about s1−x[i]. For instance, in any rate-1 TDH, correctness implies that
e1−x[i] = 1− ex[i] with a high probability.

Secret Encoding to the Rescue. For the above approach to work, we introduce a supplementary
notion of security for TDH, which we call secret encoding. Roughly speaking, in TDH with secret
encoding, we require that the encoding e1−f(x) is secret, even given the public hk and ek. It is not
hard to see that using a TDH with secret encoding, the construction outlined above satisfies full
sender privacy, and moreover, that a natural generalization of secret encoding for when the encoding
key is reused, yields a reusable p`OT construction.

We hereby provide formal definitions of the secret encoding property of a TDH and its general-
ization: reusable secret encoding.

Definition 7.3 (Trapdoor Hash with Secret Encoding). We say that a TDH scheme H = (S,G,H,E,D)
for predicates F = {Fn}n∈N has secret encoding if for any polynomial-length {xλ}λ∈N such that
nλ := |xλ| for all λ, and any {fn}n∈N such that fn ∈ Fn for all n, it holds that

{(xλ, hkλ, ekλ, eλ, ρ)}λ∈N
c≡ {(xλ, hkλ, ekλ, e′λ, ρ)}λ∈N

15Receiver-compactness is presented as an efficiency requirement for laconic OT in [CDG+17].

57

where ρ
$←− {0, 1}∗, hkλ

$←− S(1λ, 1nλ), (ekλ, tdλ)
$←− G(hkλ, fnλ), and eλ = eλ,1−fnλ (xλ) where

(eλ,0, e1,λ) = D(tdλ,H(hkλ, xλ; ρ)), and e′λ
$←− {0, 1}ω.

Definition 7.4 (Trapdoor Hash with Reusable Secret Encoding). We say that a TDH scheme
H = (S,G,H,E,D) for predicates F = {Fn}n∈N has reusable secret encoding if for any polynomial-
length {〈xλ,1, . . . , xλ,`〉}λ∈N such that |xλ,j | for all λ, j, and any {fn}n∈N such that fn ∈ Fn for all
n, it holds that

{(〈xλ,1, . . . , xλ,`〉, hkλ, ekλ, 〈eλ,1, . . . , eλ,`〉, ρ)} c≡ {(〈x1, . . . , x`〉, hkλ, ekλ, 〈e′λ,1, . . . , e′λ,`〉, ρ)}

where ρ := 〈ρ1, . . . , ρ`〉
$←− {0, 1}∗, hkλ

$←− S(1λ, 1nλ), (ekλ, tdλ)
$←− G(hkλ, fnλ), and eλ,j = eλ,j,1−fnλ (xλ,j)

where (eλ,j,0, eλ,j,1) = D(tdλ,H(hkλ, xλ,j ; ρj)), and e′λ,j
$←− {0, 1}ω, for j ∈ [`].

The Scheme. We now formally describe how to use any TDH with secret encoding to obtain
private laconic OT. The construction uses TDH in a very straight-forward manner, and consequently
obtains a p`OT scheme that is as efficient as the underlying TDH. Further, we show that when the
underlying TDH has reusable secret encoding, then the obtained p`OT is reusable.

Construction 7.1 (Basic p`OT from TDH). Let H = (S,G,H,E,D) be a (1−ε(λ))-correct rate- 1
p(λ)

TDH scheme for some negligible function ε(λ) and polynomial p(λ). Our p`OT construction builds
over such a TDH and consists of the following algorithms:

• Gen(1λ, 1n): output pp $←− S(1λ, 1n).

• Hash(pp, x; ρ): output H(pp, x; ρ).

• Send(pp, h, i, (s0, s1)):

1. Sample σ $←− {0, 1}∗.

Send1(pp, i;σ) :

2. Set (ek, td) := G(pp, i;σ).

Send2(pp, h, i, (s0, s1);σ) :

3. Set (e0, e1) := D(td, h).

4. Sample β $←− {0, 1}, and set

c0 := (0p(λ)−1||sβ)⊕ eβ c1 := (0p(λ)−1||s1−β)⊕ e1−β

5. Output
ct := (ek, c0, c1) (7.1)

• Receive(pp, ct, x; ρ): parse ct as in Equation 7.1.

1. Set e := E(ek, x; ρ).
2. Compute

c0 ⊕ e c1 ⊕ e

and output the LSB bit for whichever has p(λ)− 1 leading zeros.

58

Analysis. Receiver-compactness and correctness of the construction follow directly from the com-
pactness and correctness of the underlying TDH (resp.). Notice, however, that in Receive, there is
a negligible probability that both ct0 ⊕ e and ct1 ⊕ e will have p(λ)− 1 leading zeros, in which case
the receiver might obtain an incorrect value of s.

It is also easy to see that receiver privacy is immediately implied by the input privacy provided
by the underlying TDH. We thus focus on showing that the scheme satisfies sender privacy as well,
assuming the underlying TDH has secret encoding. In fact, we prove the more general notion of
multi-data privacy, which is satisfied when the TDH has reusable secret encoding (since the TDH
has inverse-polynomial rate, the resulting reusable scheme is sender-compact).

Theorem 7.1. Let H be a TDH with secret encoding. Then, the p`OT scheme from Construction 7.1
satisfies sender privacy. Further, if H has reusable secret encoding, then the p`OT scheme provides
multi-data sender privacy.

Proof. Again, we consider the case where H has reusable secret encoding, and show that, the
corresponding p`OT provides multi-data privacy. The proof for regular (one-time) privacy from
regular (one-time) secret encoding is a special case. We construct a simulator Sim which, on inputs
1λ, pp, 〈xj , sj,xj [i]〉j∈[`], generates ek′ = G(pp, i′;σ′) for an arbitrary i′ ∈ [n] and σ′ $←− {0, 1}∗, and sets

ct′ = ek′. Then, for every j ∈ [`], he samples ρ′j
$←− {0, 1}∗, computes encoding e′j = E(ek′, xj ; ρ

′
j),

and sets c′j,βj = (0p(λ)−1||sj,xj [i]) ⊕ e′j and c′j,1−βj
$←− {0, 1}p(λ), where β′j

$←− {0, 1} is a uniform bit.
We define the output of Sim to be ((ct, 〈(c′j,0, c′j,1)〉j∈[`]), 〈ρ′j〉j∈[`]).

Now, let Ideal = (pp, 〈xj〉j∈[`], (ct
′, 〈(c′j,0, c′j,1)〉j∈[`], 〈ρ′j〉j∈[`])) and let Real = (pp, 〈xj〉j∈[`], (ct,

〈(cj,0, cj,1)〉j∈[`], 〈ρj〉j∈[`])) be the distribution obtained from a real execution of Πp`OT with public

parameters pp and inputs 〈xj〉j∈[`] and i ∈ [n], where 〈ρj〉j∈[`]
$←− {0, 1}∗ and

ct = Send1(pp, i;σ) (cj,0, cj,1) = Send2(pp,Hash(pp, xj ; ρj), i, (sj,0, sj,1);σ)

for pp $←− Gen(1λ, 1n) and σ $←− {0, 1}∗.
Assume towards contradiction that there exists a distinguisher A that distinguishes between

Real and Ideal for some specific 〈x∗j 〉1≤j≤`, i∗, and 〈(s∗j,0, s∗j,1)〉1≤j≤`. We construct a distinguisher A′,
that breaks the reusable secret encoding property of H w.r.t. 〈x∗j 〉1≤j≤`. We define A′ that takes as
input a tuple (〈xj〉1≤j≤`, hk, ek, 〈ej〉j∈[`], 〈ρj〉j∈[`]) (see Definition 7.4), and calls A on View = (hk,
〈xj〉j∈[`], (ek, 〈(c′′j,0, c′′j,1)〉j∈[`], 〈ρj〉j∈[`])) where, for every j ∈ [`],

c′′j,βj = (0p(λ)−1||s∗j,βj)⊕ e′′j c′′j,1−βj = (0p(λ)−1||s∗j,βj)⊕ ej

for e′′j = E(ek, xj ; ρj) and βj
$←− {0, 1}.

Consider the distribution View with 〈x∗j 〉j∈[`], hk
$←− S(1λ, 1n), (ek, td)

$←− G(hk, fi∗) and 〈ρj〉j∈[`]
$←−

{0, 1}∗. It suffices to show that: (i) if ej = ej,1−xj [i] for all j ∈ [`], where (ej,0, ej,1) = D(td,H(hk, xj ; ρj)),

then View
c≡ Real, and, on the other hand, (ii) if ej

$←− {0, 1}p(λ) for j ∈ [`], then View
c≡ Ideal.

We start with (i) From inspection, we see that (pp, ct) ≡ (hk, ek). Further, from the correctness
property of H, we have that e′′j = ej,xj [i] except with negligible probability, which implies, together

with the fact that ej = ej,1−xj [i], that 〈(c′′j,0, c′′j,1)〉j∈[`]
c≡ 〈(cj,0, cj,1)〉j∈[`] given (pp, ct) ≡ (hk, ek),

59

For (ii), we again see that pp ≡ hk. This does not immediately imply that ek ≡ ct′, since ct′ = ek′

is computed using an arbitrary i′. Regardless, we can use the function privacy property of E , which
states that (hk, ek)

c≡ (hk, ek′) for such ek and ek′. The rest is immediate since when 〈ej〉j∈[`] are
uniform, so are 〈c′′j,1−xj [i]〉j∈[`], and therefore, they distribute equivalently to 〈c′j,1−xj [i]〉j∈[`].

Instantiation I: (Reusable) p`OT from DDH-based Trapdoor Hash. We instantiate the
construction from above using our basic DDH-based TDH from Section 4.2.1. Fortunately, as stated
and proven in the theorem below, the construction already satisfies the secret encoding property
and therefore we get p`OT for free.

Theorem 7.2. The TDH scheme from Construction 4.1 has secret encoding under DDH.

Proof. Fix some λ, n ∈ N, x ∈ {0, 1}n and i ∈ [n], and assume w.l.o.g. that x[i] = 0 (the proof for
x[i] = 1 is similar). Let hk $←− S(1λ, 1n), (ek, td)

$←− G(hk, fi), h := H(hk, x; ρ), where ρ is parsed as
r

$←− Zp, and (e0, e1) := D(td, h). Our proof is based on reductions to DDH similar to those in the
proof of Theorem 4.2. We first show that

(x, hk, ek, e1, r)
c≡ (x, hk, ek′, e′, r) (7.2)

where ek′ is defined as follows

ek′ :=

(
u,

(
u1,0, . . . , ui,0, . . . , un,0
u1,1, . . . , u

′
i,1, . . . , un,1

))
for a uniform u′i,1 and u, {uj,b} as defined in Equation 4.4, and then complete the proof by showing
that

(x, hk, ek, e′, r)
c≡ (x, hk, ek′, e′, r) (7.3)

Let D be a PPT distinguisher that breaks (7.2), i.e.,

| Pr[D(x, hk, ek, e1, r) = 1]− Pr[D(x, hk, ek′, e′, r) = 1] |> negl(λ)

for any negligible function negl(·). We construct an adversary A that uses D to break the DDH
assumption. A takes as input a tuple ((G, p, g), (R,S, T)), and proceeds as follows.

1. Sample r $←− Zp and rj,b
$←− Zp for every j ∈ [n] and b ∈ {0, 1}.

2. For every j ∈ [n]\{i}, set

g̃j,0 := grj,0 g̃j,1 := grj,1

ũj,0 := Srj,0 ũj,1 := Srj,1

3. Sample t $←− Zp, and set

g̃i,0 := grj,0 g̃i,1 := R

ũi,0 := Srj,0 ũi,1 := T · gt

60

4. Set

h̃k :=

(
(G, p, g),

(
g̃1,0, g̃2,0, . . . , g̃n,0
g̃1,1, g̃2,1, . . . , g̃n,1

))
ẽk :=

(
S,

(
ũ1,0, ũ2,0, . . . , ũn,0
ũ1,1, ũ2,1, . . . , ũn,1

))
ẽ := Sr

∏
j∈[n]

ũj,x[j]g
t

and output D(x, h̃k, ẽk, ẽ, r).

Simple calculations show that if D breaks 7.2 then A breaks the DDH assumption. We skip further
details as they are similar to the proof of Theorem 4.2. Moreover, a similar reduction, where the
distinguisher always outputs a uniform ẽ shows that 7.3 holds true as well.

Theorem 7.2 allows us to instantiate Construction 7.1 with the TDH scheme from Construc-
tion 4.1. Further, in Appendix B, we show how to use correlated-input secure hash (CIH) [GOR11,
AMN+18] to further extend the DDH-based TDH to a scheme with reusable secret encoding, and
thus, when used for the p`OT from Construction 7.1, gives a compact reusable p`OT scheme.

Corollary 7.1. There exists a reusable p`OT scheme, with statistical receiver privacy and sender
privacy under the DDH assumption, that has communication complexity O(poly(λ)n).

Instantiation II: Sublinear p`OT from Pairing-based Trapdoor Hash. In Appendix C, we
present another construction of trapdoor hash based on the SXDH assumption over bilinear groups,
which is the analog of DDH over groups with bilinear pairings. The construction is similar to the
DDH-based scheme, however, using pairings, we are able to shrink the public parameters and the
ciphertext to length proportional to

√
n. Reusable secret encoding can be also achieved for the

pairing-based scheme under ad hoc difficulty assumptions (or in the random oracle model). We
elaborate in Appendix C. Using the pairing-based TDH to construct p`OT obtains the following.

Corollary 7.2. There exists a p`OT scheme, with statistical receiver privacy and sender privacy
under the SXDH assumption, that has communication complexity O(poly(λ)

√
n). If we also assume

the existence of a random oracle, or a correlated-input secure hash16 over bilinear groups, then the
scheme can be extended to a reusable p`OT.

7.3 The Balancing Technique

We observe that in our DDH-based and pairing-based p`OT schemes (or any instantiation of Con-
struction 7.1 for the matter), and their reusable variants, the receiver-sender communication, which
consists only of the compact hash, is small compared to the sender-receiver communication, which
contains the ciphertext and the public parameters that are of size O(poly(λ)n) or O(poly(λ)

√
n)

(resp.). In this section, we propose a “balancing technique”, which takes any such unbalanced
reusable p`OT scheme and transforms it into a balanced scheme, which is although not reusable,
has better overall efficiency, and may be useful especially in applications where we seek to minimize
the non-amortized communication complexity of a single p`OT invocation (see introduction).

16In fact, we need a much weaker notion of CIH than the one used in prior work [GOR11, AMN+18].

61

Overview. For presentation, let us consider the reusable DDH-based p`OT, which is both receiver-
and sender-compact, and has public parameters and ciphertext of length O(poly(λ)n). We balance
the scheme as follows. We write the database x as

√
n databases x1, . . . , x√n, each of size

√
n, and

interpret every index j ∈ [n] as a pair (j1, j2) ∈ [
√
n]2. We then use the underlying reusable p`OT

w.r.t. index i2 over each of the
√
n small databases in order to transfer

√
n bits. That is, the

receiver receives
√
n bits conditioned on values x1[i2], . . . , x√n[i2]. The bits are chosen so that the

receiver is able to recover sb if and only if xi1 [i2] = b. More specifically, for every j 6= i1, the sender
chooses a random bit, mj , which is transferred to the receiver both in the case where xj [i2] = 0 and
where xj [i2] = 1. Intuitively, this cancels out the effect of xj [i2] for such j’s. The only element in the
database which should make a difference is xi1 [i2], and therefore, in the p`OT over xi1 , the sender
transfers m0

i1
:= s0 −

∑
j 6=i1 mj if xi1 [i2] = 0, and m1

i1
:= s1 −

∑
j 6=i1 mj if xi1 [i2] = 1. If xi1 [i2] = b,

then the receiver can sum up the
√
n bits from the

√
n p`OT’s, and obtain sb. The security of the

scheme is derived from the security of the underlying p`OT.
Although the described scheme is not receiver-compact, following Remark 7.1 we can obtain a

compact scheme by using laconic OT and garbled circuits to delegate some of the sender’s compu-
tation to the receiver-side.

The Scheme. In Construction 7.2 below, we generalize the above idea to work over any underlying
compact and reusable p`OT, with possibly different parameters, and therefore parametrize the
balancing as well. We then provide a formal proof for the construction.

Construction 7.2. Let Π′p`OT = (Gen′,Hash′,Send′1, Send
′
2,Receive

′) be a receiver-compact reusable
p`OT scheme where the outputs length of Gen′ and Send′1 are ψ(λ, n) and γ(λ, n), resp., for security
parameter λ and database size n. For any 0 < α < 1, we construct a non-compact p`OT scheme
Πp`OT = (Gen,Hash, Send,Receive) where the outputs length of Gen, Send and Hash are ψ(λ, n1−α),
γ(λ, n1−α) + poly(λ)nα, and poly(λ)n1−α, resp., for parameters λ and n.

• Gen(1λ, 1n): output Gen′(1λ, 1n1−α
).

• Hash(pp, x; ρ): parse ρ as (ρ1, . . . , ρnα), and x as (x1, . . . , xnα), where xj ∈ {0, 1}n
1−α for every

j ∈ [nα] (pad if necessary).

1. For every j ∈ [nα], set hj := Hash′(pp, xj ; ρj).
2. Output

h := (h1, . . . , hnα) (7.4)

• Send(pp, h, i, (s0, s1)): parse h as in Equation 7.4, and i as (i1, i2) ∈ [nα]× [n1−α].

1. Sample ρ′ $←− {0, 1}∗.
2. Set ct′ := Send′1(pp, i; ρ′).

3. For every j ∈ [nα]\{i1}, sample mj
$←− {0, 1}, and set cj := Send2(pp, hj , i2, (mj ,mj); ρ

′).
4. Set

m0
i1 := s0 −

∑
j∈[nα]\{i1}

mj m1
i1 := s1 −

∑
j∈[nα]\{i1}

mj

and
ci1 := Send2(pp, hj , i2, (m

0
i1 ,m

1
i1); ρ′)

62

5. Output
ct := (ct′, c1, . . . , cnα) (7.5)

• Receive(pp, ct, x; ρ): parse ct as in Equation 7.5.

1. For j ∈ [nα], set mj := Receive(pp, (ct′, cj), xj ; ρ).
2. Output

s :=
∑
j∈[n]

mj

Analysis. Correctness is immediate. In the following two theorems, we derive the privacy of the
balanced construction on the privacy of the underlying p`OT. We start with receiver privacy.

Theorem 7.3. Let Π′p`OT be a p`OT scheme with statistical (resp., computational) receiver privacy.
Then, the scheme Πp`OT from Construction 7.2, built over Π′p`OT with any α ∈ (0, 1), is statistically
(computationally) receiver-private.

Proof. We show that for any λ, n ∈ N and any two databases x, x′ ∈ {0, 1}n, it holds that

(pp, h)
c≡ (pp, h′)

where pp
$←− Gen(1λ, 1n), ρ, ρ′ $←− {0, 1}∗, h = Hash(pp, x; ρ) and h′ = Hash(pp, x′; ρ′).

Parse x and x′, as (x1, . . . , xnα) and (x′1, . . . , x
′
nα), where xj , x

′
j ∈ {0, 1}n

1−α for every j ∈ [nα].
Our goal is to prove that

(pp, (h1, . . . , hnα))
c≡ (pp, (h′1, . . . , h

′
nα))

where pp
$←− Gen′(1λ, 1n

1−α
) and, for any j, h := Hash′(pp, xj ; ρj) and h′ := Hash′(pp, x′j ; ρ

′
j) where

ρj , ρ
′
j

$←− {0, 1}∗.
We prove the indistinguishability using a hybrids argument with nα + 1 distributions Hybrid0,

Hybrid1, . . . , Hybridnα , where Hybrid0 := (pp, (h1, . . . , hnα)), Hybridnα := (pp, (h′1, . . . , h
′
nα)), and

every hybrid Hybridk in between is defined as

Hybridk := (pp, (h′1, . . . , h
′
k−1,h

′
k, h
′
k+1, . . . , hnα))

.
We now prove that Hybridk

c≡ Hybridk−1 for every k ∈ [nα] and by this we finish. We do
that using a reduction to the receiver privacy of the underling p`OT scheme, Π′p`OT. Let D be a
distinguisher for which

| Pr[D(Hybridk−1) = 1]− Pr[D(Hybridk) = 1] |> negl(λ)

for any negligible function negl(·).
We use D to construct an adversary A that breaks the receiver privacy of Πp`OT. A receives as

input (PP,H) and outputs

D(p̃p := PP, (h̃1, . . . , h̃k−1, h̃k := H, h̃k+1, . . . , h̃nα))

where h̃j := Hash′(PP, xj ; ρj) for 1 ≤ j < k and h̃j := Hash′(PP, x′j ; ρj) for k < j ≤ nα, where

ρ1, . . . , ρnα
$←− {0, 1}∗. It is easy to verify that if (PP,H) ≡ (pp, hk), then the input to D distributes

like Hybridk−1, and that if (PP,H) ≡ (pp, h′k), then it distributes like Hybridk. By this we finish.

63

Next, we show sender privacy.

Theorem 7.4. Let Π′p`OT := (Gen′,Hash′,Send′1, Send
′
2,Receive

′) be a reusable p`OT scheme with
multi-data sender privacy. Then, the p`OT scheme from Construction 7.2, built over Πp`OT with
any ε ∈ (0, 1), provides (regular) sender privacy.

Proof. We show that there exists a PPT simulator Sim such that for any λ, n ∈ N, any database
x ∈ {0, 1}n, any index i ∈ [n], and any pair of secrets s0, s1 ∈ {0, 1}, it holds that

(pp,Send(pp, h, i, (s0, s1)))
c≡ (pp, Sim(pp, x, sx[i]))

where pp
$←− Gen(1λ, 1n), ρ $←− {0, 1}∗, and h := Hash(pp, x; ρ).

From the multi-data receiver privacy of Πp`OT, we know that there exists a simulator, Sim′, such
that for any 〈xj〉1≤j≤`, any index i ∈ [n], and any 〈(sj,0, sj,1)〉1≤j≤`, it holds that

(pp, (Send′1(pp, i; ρ′), 〈Send′2(pp, hj , i, (sj,0, sj,1); ρ′)〉1≤j≤`))
c≡ (pp,Sim′(pp, 〈xj , sj,xj [i]〉1≤j≤`)) (7.6)

where pp
$←− Gen′(1λ, 1n), ρ, ρ′ $←− {0, 1}∗, and hj := Hash′(pp, xj ; ρ) for j = 1, . . . , `.

We use such a simulator to construct a simulator Sim, which takes as input a tuple (pp, x, sx[i]),
and proceeds as follows.

1. Parse x as (x1, . . . , xnε), where xj ∈ {0, 1}n
1−ε for every j (pad if necessary).

2. Sample m1, . . . ,mnε
$←− {0, 1} such that

∑
j mj = sx[i].

3. Output Sim′(pp, 〈xj ,mj〉1≤j≤nε).
From Construction 7.2, it can be seen that for any x, i, and (s0, s1),

Send(pp, h, i, (s0, s1)) ≡ (Send′1(pp, i; ρ′), 〈Send′2(pp, hj , i2, (mj,0,mj,1))〉1≤j≤nε) (7.7)

where 〈mj,xj [i]〉1≤j≤nε are uniform under the constraint that
∑

j mj,xj [i] = sx[i], pp
$←− Gen′(1λ, 1n

1−ε
),

ρ, ρ′
$←− {0, 1}∗, and hj := Hash′(pp, xj ; ρ) for j = 1, . . . , nε. By combining Equations 7.6 and 7.7,

we get
Send(pp, h, i, (s0, s1))

c≡ Sim(pp, 〈xj ,mj〉1≤j≤nε)
which concludes the proof.

Applying the Balancing over our Instantiations. Recall the reusable p`OT schemes based
on the DDH and SXDH assumption. The two constructions are unbalanced: the hash and output
of Send2 are compact while the public parameters and output of Send1 are linear and square-root,
respectively. Since the two constructions have different parameters, the optimal parameterization of
the balancing is different. For the DDH-based scheme, we use balancing parameter α = 1

2 , whereas
for the pairing-based TDH we use α = 1

3 , and obtain the following corollaries.

Corollary 7.3. There exists a p`OT scheme, with statistical receiver privacy and sender privacy
under the DDH assumption, that has overall communication complexity of O(poly(λ)

√
n).

Corollary 7.4. There exists a p`OT scheme, with statistical receiver privacy and sender privacy
assuming SXDH and correlated-input secure hash over bilinear groups (or a random oracle), that
has overall communication complexity of O(poly(λ)n

1
3).

64

8 Acknowledgements

We thank Craig Gentry, Shai Halevi, Srinath Setty, and Vinod Vaikuntanathan for helpful discus-
sions and pointers.

S. Garg supported by DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award
FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under contract N66001-15-C-4065,
a Hellman Award and research grants by the Okawa Foundation, Visa Inc., and Center for Long-
Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.

Y. Ishai supported by ERC Project NTSC (742754), ISF grant 1709/14, NSF-BSF grant 2015782,
and a grant from the Ministry of Science and Technology, Israel and Department of Science and
Technology, Government of India.

G. Malavolta supported by a gift from Ripple, a gift from DoS Networks, a grant from Northrop
Grumman, a Cylab seed funding award, and a JP Morgan Faculty Fellowship.

T. Mour supported by BSF grant 2012378, and NSF-BSF grant 2015782.
R. Ostrovsky supported by NSF grant 1619348, BSF grant 2015782, DARPA SafeWare sub-

contract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP Morgan Faculty Re-
search Award, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty
Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. The views expressed are those of the authors and do not
reflect position of the Department of Defense or the U.S. Government.

References

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 223–254, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 8

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT 2001, pages 119–135, 2001. 8

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Constrained PRFs for NC1 in traditional groups. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 543–574, Santa
Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 9, 20, 61, 75,
76

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably
secure against related-key attacks. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 666–684,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. 9, 75

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from
LWE. In TCC 2018: 16th Theory of Cryptography Conference, Part II, volume 11240

65

of Lecture Notes in Computer Science, pages 370–390, Panaji, India, November 11–14,
2018. Springer, Heidelberg, Germany. 6, 8, 47

[Bea95a] Donald Beaver. Precomputing oblivious transfer. In CRYPTO ’95, pages 97–109, 1995.
5

[Bea95b] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, Ad-
vances in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Computer Science,
pages 97–109, Santa Barbara, CA, USA, August 27–31, 1995. Springer, Heidelberg,
Germany. 49

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key en-
cryption under subgroup indistinguishability - (or: Quadratic residuosity strikes back).
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 1–20, Santa Barbara, CA, USA, August 15–19, 2010.
Springer, Heidelberg, Germany. 13, 22, 35, 73

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 509–539, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Hei-
delberg, Germany. 4, 7, 12, 31

[BGI+17a] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model
from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology – ASIACRYPT 2017, Part III, volume 10626 of Lecture Notes in Computer
Science, pages 275–303, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,
Germany. 6, 46

[BGI17b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimiz-
ing rounds, communication, and computation. In EUROCRYPT 2017, Part II, pages
163–193, 2017. 5, 8

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing, pages
575–584, Palo Alto, CA, USA, June 1–4, 2013. ACM Press. 22

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part I, volume 10820 of Lecture Notes in Computer Science, pages 535–564, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany. 6

[BMN18] Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure computation with
constant communication overhead using multiplication embeddings. In INDOCRYPT
2018, pages 375–398, 2018. 8

66

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 719–
737, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany. 14, 36

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume
10402 of Lecture Notes in Computer Science, pages 33–65, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany. 5, 9, 17, 18, 19, 27, 54, 56, 57

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In 36th Annual Symposium on Foundations of Computer Science, pages 41–
50, Milwaukee, Wisconsin, October 23–25, 1995. IEEE Computer Society Press. 4

[Cha04] Yan-Cheng Chang. Single database private information retrieval with logarithmic com-
munication. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors,
ACISP 04: 9th Australasian Conference on Information Security and Privacy, volume
3108 of Lecture Notes in Computer Science, pages 50–61, Sydney, NSW, Australia,
July 13–15, 2004. Springer, Heidelberg, Germany. 7

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In Jacques Stern, editor, Advances
in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 402–414, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg,
Germany. 7

[CRVW02] Michael R. Capalbo, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Randomness
conductors and constant-degree lossless expanders. In 34th Annual ACM Symposium
on Theory of Computing, pages 659–668, Montréal, Québec, Canada, May 19–21, 2002.
ACM Press. 24

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 537–
569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 6,
7, 11, 27

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International Conference
on Theory and Practice of Public Key Cryptography, Part I, volume 10769 of Lecture
Notes in Computer Science, pages 3–31, Rio de Janeiro, Brazil, March 25–29, 2018.
Springer, Heidelberg, Germany. 6

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976. 21

67

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO 2016, Part III, pages 93–122, 2016. 8

[DJ01] Ivan Damgård and Mats Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001: 4th
International Workshop on Theory and Practice in Public Key Cryptography, volume
1992 of Lecture Notes in Computer Science, pages 119–136, Cheju Island, South Korea,
February 13–15, 2001. Springer, Heidelberg, Germany. 4, 5, 7

[DKK18] Itai Dinur, Nathan Keller, and Ohad Klein. An optimal distributed discrete log proto-
col with applications to homomorphic secret sharing. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993
of Lecture Notes in Computer Science, pages 213–242, Santa Barbara, CA, USA, Au-
gust 19–23, 2018. Springer, Heidelberg, Germany. 31

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM journal on
computing, 38(1):97–139, 2008. 23

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 523–540, Interlaken, Switzerland, May 2–6,
2004. Springer, Heidelberg, Germany. 23

[FGJI17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Homo-
morphic secret sharing from paillier encryption. In ProvSec 2017, pages 381–399, 2017.
4

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 44–61,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany. 81

[Gal63] Robert G. Gallager. Low-density parity-check codes, 1963. 25

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178,
Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. 4

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages 40–49,
Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press. 4

[GGH18] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New techniques for efficient
trapdoor functions and applications. Cryptology ePrint Archive, Report 2018/872,
2018. https://eprint.iacr.org/2018/872. 7, 11, 31

68

https://eprint.iacr.org/2018/872

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith.
Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge
proofs. J. Cryptology, 28(4):820–843, 2015. 4

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. In Foundations of Computer Science, 1984. 25th Annual Symposium on, pages
464–479. IEEE, 1984. 31

[GH18] Sanjam Garg and Mohammad Hajiabadi. Trapdoor functions from the computational
Diffie-Hellman assumption. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 362–391, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany. 6, 7, 11, 27

[GH19] Craig Gentry and Shai Halevi. Compressible fhe with applications to pir. Technical
report, 2019. (personal communication). 21

[GKL10] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-query computationally-private
information retrieval with constant communication rate. In PKC 2010, pages 107–123,
2010. 4

[GL10] David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In Daniele
Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of
Lecture Notes in Computer Science, pages 255–272, Zurich, Switzerland, February 9–
11, 2010. Springer, Heidelberg, Germany. 9, 75

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th Annual ACM Symposium on
Theory of Computing, pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM
Press. 22

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trap-
door functions on trapdoor predicates. In 42nd Annual Symposium on Foundations of
Computer Science, pages 126–135, Las Vegas, NV, USA, October 14–17, 2001. IEEE
Computer Society Press. 49

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City,
NY, USA, May 25–27, 1987. ACM Press. 4

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash func-
tions. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference,
volume 6597 of Lecture Notes in Computer Science, pages 182–200, Providence, RI,
USA, March 28–30, 2011. Springer, Heidelberg, Germany. 9, 61, 75

[GUV07] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes. In IEEE Conference
on Computational Complexity, pages 96–108. IEEE Computer Society, 2007. 24

69

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual
ACM Symposium on Theory of Computing, pages 99–108, San Jose, CA, USA, June 6–
8, 2011. ACM Press. 47

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. J. Cryptology, 25(1):158–193, 2012. 8

[HO12] Brett Hemenway and Rafail Ostrovsky. Extended-ddh and lossy trapdoor functions.
In Public Key Cryptography - PKC 2012 - 15th International Conference on Prac-
tice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012.
Proceedings, pages 627–643, 2012. 17, 52

[HW14] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. Cryptology ePrint Archive, Report 2014/669, 2014. http:
//eprint.iacr.org/2014/669. 6

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In Amit
Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of
Lecture Notes in Computer Science, pages 600–620, Tokyo, Japan, March 3–6, 2013.
Springer, Heidelberg, Germany. 5

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA,
August 17–21, 2003. Springer, Heidelberg, Germany. 9, 75

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In STOC 2008, pages 433–442, 2008. 8

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume
4392 of Lecture Notes in Computer Science, pages 575–594, Amsterdam, The Nether-
lands, February 21–24, 2007. Springer, Heidelberg, Germany. 6, 7, 10, 16, 39, 50, 51,
52

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In TCC 2009, pages 294–314, 2009. 8

[JVC18a] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE:
A low latency framework for secure neural network inference. In USENIX Security
Symposium, pages 1651–1669, 2018. 5, 8

[JVC18b] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A
low latency framework for secure neural network inference. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1651–1669, Baltimore, MD, 2018. USENIX
Association. 47

70

http://eprint.iacr.org/2014/669
http://eprint.iacr.org/2014/669

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In 24th Annual ACM Symposium on Theory of Computing, pages 723–732,
Victoria, British Columbia, Canada, May 4–6, 1992. ACM Press. 47

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Computing,
pages 419–428, Portland, OR, USA, June 14–17, 2015. ACM Press. 6

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Founda-
tions of Computer Science, pages 364–373, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press. 4, 6, 7, 16, 50

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
ISC 2005, pages 314–328, 2005. 4, 7

[Mac02] David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, New York, NY, USA, 2002. 25

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In 33rd Annual ACM Symposium on Theory of Computing, pages 590–599,
Crete, Greece, July 6–8, 2001. ACM Press. 5, 6, 9, 47

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In 31st
Annual ACM Symposium on Theory of Computing, pages 245–254, Atlanta, GA, USA,
May 1–4, 1999. ACM Press. 8, 17, 41

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA 2001,
pages 448–457, 2001. 8

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th Annual Symposium on Foundations of Computer Science,
pages 458–467, Miami Beach, Florida, October 19–22, 1997. IEEE Computer Society
Press. 77

[OI07] Rafail Ostrovsky and William E. Skeith III. A survey of single-database private in-
formation retrieval: Techniques and applications. In Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 393–411. Springer, 2007. 7

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realiza-
tions of somewhere statistically binding hashing and positional accumulators. In Tetsu
Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT 2015,
Part I, volume 9452 of Lecture Notes in Computer Science, pages 121–145, Auckland,
New Zealand, November 30 – December 3, 2015. Springer, Heidelberg, Germany. 6

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of
Lecture Notes in Computer Science, pages 223–238, Prague, Czech Republic, May 2–6,
1999. Springer, Heidelberg, Germany. 72

71

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium
on Theory of Computing, pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009.
ACM Press. 22

[PRSD17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-LWE for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, 49th Annual ACM Symposium on Theory of Computing, pages 461–473,
Montreal, QC, Canada, June 19–23, 2017. ACM Press. 22

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on
Theory of Computing, pages 187–196, Victoria, British Columbia, Canada, May 17–20,
2008. ACM Press. 6, 7, 10, 17, 52

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and ap-
plications. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 859–870, 2018. 5, 6, 9

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on
Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM
Press. 22, 23

[SS94] Michael Sipser and Daniel A. Spielman. Expander codes. In 35th Annual Symposium
on Foundations of Computer Science, pages 566–576, Santa Fe, New Mexico, Novem-
ber 20–22, 1994. IEEE Computer Society Press. 24

[Ste98] Julien P. Stern. A new efficient all-or-nothing disclosure of secrets protocol. In Kazuo
Ohta and Dingyi Pei, editors, Advances in Cryptology – ASIACRYPT’98, volume 1514
of Lecture Notes in Computer Science, pages 357–371, Beijing, China, October 18–22,
1998. Springer, Heidelberg, Germany. 5, 7

[WW10] Severin Winkler and Jürg Wullschleger. On the efficiency of classical and quan-
tum oblivious transfer reductions. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 707–723,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. 5

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press. 4

A Trapdoor Hash for Index Predicates from DCR

In the following we present our TDH construction against the decisional composite residuosity
(DCR) assumption over Z∗N2 . Note that the group Z∗N2 can be rewritten as the product of the
subgroup H := {(1 +N)i : i ∈ [N]}, generated by (1 +N), and the group of N th residues NRN :=
{xN : x ∈ Z∗N2} of order ϕ(N). We recall the DCR assumption from [Pai99].

72

Definition A.1 (Decisional Composite Residuosity). Let N be a uniformly sampled Blum integer
and let NRN be the multiplicative group of N th residues. Then for any PPT adversary A it holds
that

| Pr[A(N, a) = 1]− Pr[A(N, b) = 1] |= negl(λ)

where a $←− Z∗N2 and b $←− NRN .

It is useful to recall the following proposition from [BG10].

Proposition A.1 ([BG10]). Let N be a uniformly sampled Blum integer, let NRN be the multiplica-
tive group of N th residues, and let ` = `(λ) be a polynomial. If the decisional composite residuosity
assumption holds then for any PPT adversary A = (A0,A1) it holds that∣∣ Pr[A1(τ,a · (g)r) = 1 | A0(N,g) = (τ,a)]− Pr[A1(τ, (g)r) = 1 | A0(N,g) = (τ,a)]

∣∣ = negl(λ)

where a ∈ H`, g $←− NR`N , and r
$←− [N − 1].

Construction A.1 (Trapdoor hash for In from DCR). Our DCR-based TDH scheme consists of
the following algorithms.

• S(1λ, 1n) :

1. Sample a Blum integer N := p · q, where p = q = 3 (mod 4)

2. Sample g $←− NRN
3. Sample a matrix

A :=

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
$←− NR2×n

N

4. Output
hk := (N, g,A) (A.1)

• G(hk, fi) : parse hk as in Equation A.1 and proceed as follows.

1. Sample s, t $←− [N − 1].
2. Set

u := gs

and

B :=

(
u1,0, u2,0, . . . , un,0
u1,1, u2,1, . . . , un,1

)
where uj,b :=

{
gsj,b · (1 +N)t if (j, b) = (i, 1)

gsj,b otherwise

3. Output

ek := (u,B) td := (s, t) (A.2)

• H(hk, x; ρ) : parse hk as in Equation A.1, A = (gj,b)j∈[n],b∈{0,1}, and ρ as r ∈ ZN , and output

h := gr ·
n∏
j=1

gj,x[j] (A.3)

73

• E(ek, x; ρ): parse ek as (u,B), B = (uj,b)j∈[n],b∈{0,1}, and ρ as r ∈ ZN and output

e := ur ·
n∏
j=1

uj,x[j] (A.4)

• D(td, h) : parse h ∈ G and td as in Equation A.2 and output

e0 := hs e1 := hsgt (A.5)

Analysis. The full correctness of the construction is trivial. In the following we show that the
scheme is stastically input-private and computationally function-private under the DCR assumption.

Theorem A.1 (Input privacy of DCR-based construction). The TDH scheme from Construc-
tion A.1 provides statistical input security.

Proof. Let r $←− [N − 1] and r̃ $←− ϕ(N), then it holds thathk, h := gr ·
n∏
j=1

gj,x[j]

 s≡

hk, h̃ := gr̃ ·
n∏
j=1

gj,x[j]


since (N−1) and ϕ(N) are statistically close. Note that gr̃ is a uniformly sampled element of NRN ,
thus so is h̃, for all x ∈ {0, 1}n. This concludes our proof.

Theorem A.2 (Function privacy of DCR-based construction). The TDH scheme from Construc-
tion A.1 provides function privacy under the DCR assumption.

Proof. Follows from a simple invocation of Proposition A.1.

From Rate-1/λ to Rate-1. Although the rate of our DCR-based construction is linear in λ, we
can easily apply the compiler described in Section 4.2.2 (with the distance function defined over
Z∗N2) to achieve rate 1, for a growing n.

B Trapdoor Hash with Reusable Secret Encoding under DDH

Although in our basic DDH-based TDH the encoding e1−x[i] distributes uniformly and therefore
remains secret, when the same encoding key is reused for multiple inputs one can see that the
corresponding e1−x[i]’s are not jointly uniform, and are in fact, strongly correlated. Thus, the
construction does not have reusable secret encoding. In this section, we address the encoding
correlation issue, then suggest a method to solve it to obtain DDH-based TDH with reusable secret
encoding for index predicates.

74

B.1 Correlation in the Basic Construction

Recall that for sequence of encodings (e1,0, e1,1), . . . , (e`,0, e`,1) computed w.r.t. inputs x1, . . . , x`, it
holds that

(e1,1−x1[i], . . . , e`,1−x`[i]) = (e1,x1[i] · g(1−2x1[i])t, . . . , e`,x`[i] · g
(1−2x`[i])t)

From correctness, an adversary who has x1, . . . , x`, and is given the keys hk and ek, is able to
compute the values ek,xk[i] for every k ∈ [`], and therefore every key ek,1−xk[i] in the sequence is the
product of a known value and another value which, despite indistinguishable from uniform, depends
only on xk[i] and, therefore, is used in the computation of any other encoding ek′,1−xk′ [i] for which
xk′ [i] = xk[i]. Thus,

((x1, . . . , x`), hk, ek, (e1,1−x1[i], . . . , e`,1−x`[i]), ρ)
c≡ ((x1, . . . , x`), hk, ek, (αx1[i]e1, . . . , αx`[i]e`), ρ) (B.1)

where ρ := 〈ρ1, . . . , ρ`〉
$←− {0, 1}∗, hk

$←− S(1λ, 1n), (ek, ·) $←− G(hk, fi), ek := E(ek, x; ρk), and
α0, α1

$←− G.

B.2 Warm-up: Breaking the Correlation with Random Oracle

A simple solution would be to use a random oracle to break the correlation between the encodings.
We change Construction 4.1 so that the output of E and, consequently, D is the random oracle image
of e and, respectively, e0 and e1, that are produced by the algorithms. Clearly, neither correctness
nor privacy are affected by this change. By the definition of a random oracle, the images of distinct,
however correlated, values are jointly uniform. Thus, we obtain resuable secret encoding.

B.3 Replacing the Random Oracle with CIH

It turns out that the random oracle model is an overkill for our task, and that we can achieve
multi-data security using much weaker cryptographic tools. Specifically, we can use correlated-input
secure hash functions, or CIH [IKNP03, GL10, BC10, GOR11, AMN+18].

What is CIH? At a high level, CIH is a publicly parameterized function hhk : Xhk → Yhk, where
hhk(x1), . . . , hhk(x`) look random and independent, even when x1, . . . , x` are correlated. Of course,
we have to specify which types of correlation we allow. We define a correlation through a set of
functions Fhk := {f : Xhk → Yhk}. Correlated inputs are inputs x1, . . . , x` that are generated as
f1(x), . . . , f`(x) for functions f1, . . . , f` ∈ Fhk chosen by the adversary, and randomness x $←− Xhk.

We follow the formalization of CIH given in [AMN+18]. The security definition they give is a
close generalization of the correlated-input pseudorandomness notion from [GOR11]. We stress,
however, that for our purpose, we need a much weaker security notion, and in particular, we do
not require any adaptiveness and we can strict the correlation functions f1, . . . , f` to be chosen
uniformly rather than adversarially. Clearly, any CIH that satisfies the security definition given
below is applicable to our construction.

Definition B.1 (Correlated-Input Secure Hash Function (CIH) [AMN+18]). A correlated-input
secure hash function, or a CIH, is a publicly parametrized function that is described by two PPT
algorithms H = (S,H) with the following properties.

75

• Syntax:

– hk
$←− S(1λ). The sampling algorithm takes as input the security parameter λ and outputs

a hash key hk that defines a domain Xhk and a range Yhk where |Xhk|, |Yhk| = Ω(2λ).

– y← H(hk, x). The hashing algorithm takes as input a hash key hk and an input x ∈ Xhk

and deterministically outputs an image y := hhk(x) ∈ Yhk.

• Correlated-Input Security: let F := {Fλ,hk}λ∈N,hk∈{0,1}∗ be a class of functions, where each

Fλ,hk is a set of functions parametrized by λ and hk, and for every λ ∈ N, if hk $←− S(1λ),
then functions in Fλ,hk have domain and range Xhk. For a CIH, H := (S,H), such a class of
functions F , and an adversary A, we define the experiment ExptH,F ,A(λ) as follows:

1. hk
$←− S(1λ)

2. b $←− {0, 1}

3. RF(·) $←− {f : Xhk → Xhk}

4. α $←− Xhk

5. b′ ← AORF,α(b,·)(hk)

6. Output 1 if and only if b = b′.

where ORF,α(b ∈ {0, 1}, f ∈ Fλ,pp) outputs H(pp, f(α)) if b = 1, and RF(f(α)) if b = 0.

We say that H provides correlated-input security w.r.t. F if, for all PPT adversaries A, it
holds that ∣∣∣∣Pr[ExptH,F ,A(λ) = 1]− 1

2

∣∣∣∣ = negl(λ)

Solution using CIH: Overview. Using a CIH that provides security w.r.t. inputs correlated as
e1,1−x1[i], . . . , e`,1−x`[i] in Equation B.1, we can replace the random oracle in the warm-up construction
above, and achieve reusable secret encoding. Following the formalization from Definition B.1, what
we seek is a CIH where the hash key hk consist of a description of a DDH-hard group G of prime
order p, and hhk : G → Yhk for every such hk. We want the scheme to provide security w.r.t.
the correlation from Equation B.1, which can be defined by a class F := {Fλ,hk}, where we set
FG := {fα(x) = αx | α ∈ G} (notice that, despite in Equation B.1 there are two α values, they are
independent and uncorrelated, therefore it suffices to break the correlation between values sharing
the same α).

Fortunately, although we are not aware of a DDH-based CIH with these exact specifications,
Attrapadung et al. [AMN+18] construct a CIH scheme that work with slightly different settings and
that we can use over our TDH to achieve reusable secret encoding. We recall their construction
below.

Construction B.1 (CIH construction from Section 3.2 in [AMN+18]). The CIH construction
from [AMN+18] consists of the following algorithms:

76

• S(1λ): sample a cyclic group H of prime order q = Ω(2λ), such that q = 2p+ 1 for a prime p,
and output hk := (H, q), that defines the following domain and range for hhk:

Xhk := QRm+1
q Yhk := H

where QRq is the group of quadratic residues in Z∗q and m = poly(λ).

• H(hk, x): output
hhk(x) := NR(x, 11||H(NR(x, e0), . . . ,NR(x, em)))

where e0 = 0m, ej is the jth m-bit unit vector, H : Hm+1 → {0, 1}m−2 is a collision-resistant
hash function (CRHF), and NR : (Z∗q)n+1 × {0, 1}n → H is the Noar-Reingold PRF [NR97]
defined as

NR(x, y) := h(x0
∏
i∈[m] x

yj
j)

for a generator h ∈ H.

Notice that when q is chosen as described above, then QRq is a prime-order group. This allows
us to base the security of the construction on the DDH assumption as follows.

Proposition B.1. Under the DDH assumption over QRq, and assuming H is a CRHF, the CIH
scheme from Construction B.1 provides correlated-input security w.r.t. F = {Fλ,hk}, where

Fλ,hk := {fz(α) = α ◦ z | z ∈ QRm+1
q }

and ◦ is the Hadamard product (element-by-element multiplication).

One issue still has to be resolved in order to use the above CIH for our DDH-based TDH: while
the enocdings generated by the TDH scheme lay in a prime-order group G, the CIH can be used
over inputs that are in QRm+1

q . We solve this by repeating the execution of the TDH independently
m + 1 times, to obtain a vector of m + 1 independent encodings, rather than a single encoding,
for every input. If we choose G := QRq to be the DDH-hard group underlying the TDH, then we
obtain correlated encodings that perfectly match the CIH domain and correlation class F .

The Scheme. We formalize the described construction as follows, then proof its security.

Construction B.2 (DDH-based TDH with reusable secret encoding). Let (S′,G′,H′,E′,D′) be the
TDH scheme from Construction 4.1, and let (SCIH,HCIH) be the CIH from Construction B.1. Our
DDH-based TDH scheme for index predicates with reusable secret encoding consists of the following
algorithms:

• S(1λ, 1n): sample a cyclic group H of prime order q = Ω(2λ), such that q = 2p + 1 for a
prime p, set G := QRq, and proceed as in S′ with (G, p, g $←− G) to obtain hk′. Also define
hkCIH := (H, q), and output hk := (hk′, hkCIH).

• G(hk, fi): output (ek, td)
$←− G′(hk′, fi), where G′ denotes m+ 1 independent executions of G′.

• H(hk, x; ρ): output h := H′(hk′, x; ρ).

• E(ek, x; ρ) :

77

1. Compute e← E′(ek, x) where E′ denotes m+ 1 executions of E′.

2. Output
e := HCIH(hkCIH, e)

• D(td, h):

1. Compute (e0, e1) := D′(td′, h), where D′ denotes m+ 1 executions of D′.

2. Output

e0 := HCIH(hkCIH, e0) e1 := HCIH(hkCIH, e1)

Analysis. Correctness, statistical input-privacy and function-privacy are easily implied from the
corresponding properties of the underlying TDH from Construction 4.1. We now show that the
scheme also satisfies the reusable secret encoding property.

Theorem B.1. The TDH scheme from Construction B.2 has reusable secret encoding under the
DDH assumption.

Proof. We prove the theorem using reduction to the security of the underlying CIH scheme. But
first, we show, assuming DDH, that the correlation from Equation B.1 holds for α0, α1 that are
indistinguishable from uniform. We notice that there are two independent sets of correlated encod-
ings: encodings ek,1−xk[i] for which xk[i] = 0, and those for which xk[i] = 1. We assume, w.l.o.g.
that the first set corresponds to k = 1, . . . , `′, and the second to k = `′ + 1, . . . , `. Thus, we use the
following hybrid distributions to prove privacy:

– Hybrid0 := (〈x1, . . . , x`〉, hk, ek, 〈e1,1−x1[i], . . . , e`,1−x`[i]〉, ρ), where ρ := 〈ρ1, . . . , ρ`〉
$←− {0, 1}∗

hk ← S(1λ, 1n), hk := H(hk, xk; ρk) for k = 1, . . . , `, (ek, td) := G(hk, fi), and (e0, e1) :=
D(td, h).

– Hybrid1 := (〈x1, . . . , x`〉, pp, ct, 〈k′1, . . . , k′`〉, ρ), where ρ, hk and ek := 〈ek(1), . . . , ek(m+1)〉 are
defined as above, and, for k = 1, . . . , `, e′k := hhkCIH(αxk[i] ◦ ek), where α0, α1

$←− Gm+1and
ek := E′(ek, x; ρ).

– Hybrid2 := (〈x1, . . . , x`〉, hk, ek, 〈e′′1, . . . , e′′`′ , e′`′+1, . . . , e
′
`〉, ρ), where ρ, hk, ek and e′k, for any k,

are as defined above, and e′′k
$←− H k = 1, . . . , `′.

– Hybrid3 := (〈x1, . . . , x`〉, hk, ek, 〈e′′1, . . . , e′′` 〉, ρ), where ρ, hk and ek are as defined above, and

e′′k
$←− H for k = 1, . . . , `.

From definition, to show security it suffices to show that every two consequent hybrids of the
above are computationally indistinguishable, and therefore Hybrid0

c≡ Hybrid3.
For showing Hybrid0

c≡ Hybrid1, we can follow the steps taken in the proof of Theorem 7.2, only
here we apply the reduction m+ 1 independent times. We skip the details for brevity.

We now prove that Hybrid1
c≡ Hybrid2. Showing that Hybrid2

c≡ Hybrid3 is identical up to
technicalities. Let D be a PPT distinguisher that distinguishes between Hybrid1 and Hybrid2,

| Pr[D(Hybrid1) = 1]− Pr[D(Hybrid2) = 1] |> negl(λ)

78

We construct an adversary A that uses D to win the security experiment ExptH,F ,A from Defi-
nition B.1, where F is the correlation class from Proposition B.1. A, which has an oracle access to
O : Fλ,hkCIH → YhkCIH , takes as input public parameters hkCIH and proceeds as follows:

1. Parse hkCIH as (H, q), set G := QRq, and proceed as in G′ with (G, p, g $←− G) to obtain h̃k
′
.

Set h̃k := (h̃k
′
, hkCIH) and (ẽk, ·) := G(h̃k, fi).

2. Sample ρ := 〈ρ1, . . . , ρ`〉
$←− {0, 1}∗, and, for k ∈ [`], set h̃k := H(h̃k, xk; ρk) and

ek := E′(ẽk, xk; ρk)

3. For k = 1, . . . , `′,
ẽk ← O(fk)

where fk(α) := α ◦ ek.

4. For k = `′ + 1, . . . , `,
ẽk := HCIH(hkCIH, α1 ◦ ek)

where α1
$←− Gm+1.

5. Output D(〈x1, . . . , x`〉, h̃k, ẽk, 〈ẽ1, . . . , ẽ`〉, ρ).

Using simple calculations, one can verify that when O(f) := HCIH(hkCIH, f(α0)) for a uniform
α0 ∈ Gm+1, then (〈x1, . . . , x`〉, h̃k, ẽk, 〈ẽ1, . . . , ẽ`〉, ρ)

c≡ Hybrid1, and that when O(f) := RF(f(α))

for a random function RF, then (〈x1, . . . , x`〉, h̃k, ẽk, 〈ẽ1, . . . , ẽ`〉, ρ)
c≡ Hybrid2. Hence, A wins in the

security experiment with non-negligible probability.

C Sublinear Trapdoor Hash from Pairings

The bottleneck in the efficiency of our DDH construction lays in the size of the underlying TDH
keys (hk and ek), which is linear in n. In this section, we show how to use pairings over prime-order
groups in order to reduce their size to O(poly(λ)

√
n).

We begin with recalling the definition of bilinear groups and the related SXDH assumption, and
then proceed to presenting the construction.

SXDH over Prime-Order Groups with Pairings. The SXDH assumption is the analog of
DDH over two prime-order groups, G and H, that are equipped with a bilinear pairing e : G×H→
Gt, and generated using what is called a bilinear group generator. We use such pairings to obtain
useful functionality and build efficient schemes with security based on SXDH.

We first define a bilinear group generator and the special case for prime-order groups. We then
formalize the SXDH assumption over such structures.

Definition C.1 (Bilinear group generator). A bilinear group generator is an algorithm G that takes
as input a security parameter 1λ, and outputs (G,H,Gt, e), where G,H,Gt are descriptions of three
abelian groups and e is an efficiently computable bilinear and nondegenerate map e : G×H→ Gt.

79

Definition C.2 (Prime-order bilinear group generator). We say that a bilinear group generator P
is prime-order if G and H both have prime order p > 2λ.

Definition C.3 (The SXDH assumption in prime-order bilinear groups). We say that a prime-order
bilinear group generator P satisfies the DDH assumption in G (resp. H) if for any PPT adversary,
A, it holds that

| Pr[A((p,G,H,Gt, e), (g
a1 , ga2 , ga1a2)) = 1]− Pr[A((p,G,H,Gt, e), (g

a1 , ga2 , ga3)) = 1] |= negl(λ)

where (p,G,H,Gt, e)
$←− P, g $←− G (resp. g $←− H) and a1, a2, a3

$←− Zp.
We say that P satisfies the symmetric external Diffie-Hellman assumption, if it satisfies the

DDH assumption both in G and in H.

Overview. The overall idea is as follows. We replace every row b ∈ {0, 1}, in the 2× n matrix in
hk with 2

√
n group elements: g1,b, . . . , g√n,b ∈ G and h1,b, . . . , h√n,b ∈ H, for two composite-order

groups G and H. Now, if we represent every index j ∈ [n] as a pair (j1, j2) ∈ [
√
n]2, then given such

elements, and using a pairing e : G × H → Ĝ, one can generate a matrix A :=
(
ĝ1,0, ĝ2,0, . . . , ĝn,0
ĝ1,1, ĝ2,1, . . . , ĝn,1

)
,

where we define ĝ(j1,j2),b := e(gj1,b, hj2,b). Using such a matrix, we can compute hash values as
described in the hashing algorithm of Construction 4.1 above. It remains to show how to generate
a corresponding short encoding key ek that would allow to compute encodings that give us both
correctness and privacy.

We follow the approach from the above construction, and design an ek, using which we eventually
generate a matrix B :=

(
û1,0, û2,0, . . . , ûn,0
û1,1, û2,1, . . . , ûn,1

)
, where, roughly speaking, for every j ∈ [n] and b ∈ {0, 1},

ûj,b = ĝsj,b for a random exponent s, except for ûi,1 which is also multiplied by a random element. As a
first attempt, let us define ek to contain u1,b := gs11,b, . . . , u

√
n,b := gs1√

n,b
and v1,b := hs21,b, . . . , v

√
n,b :=

hs2√
n,b

for random s1 and s2. Consequently, we get u(j1,j2),b := e(uj1,b, vj2,b) = ĝs1s2(j1,j2),b. This is
almost what we want, as we still need to “puncture” ui,1, and replace it with a random value.

To implement such a functionality, we construct a pairing e that has a special property. More
specifically, G, and respectively, H, are each generated as the product of three subgroups, G1×G2×
G3 = G, and resp. H1×H2×H3 = H, such that for every i 6= j, Gi and Hj are orthogonal to w.r.t.
e, i.e. e(g, h) = 1 for any g ∈ Gi and h ∈ Hj . Now, for every j1, j2 ∈ [

√
n], we set uj1,b := gs1j1,bγj1,b

and vj2,b := hs2j2,bδj2,b, where the γj1,b’s are chosen randomly from G1, and the δj2,b’s from H2. The
only exception are γi1,1 and δi2,1 which are taken from G3 and H3 (resp.).

We get correctness from the fact that, for any (j, b) 6= (i, 1), we get uj,b = ĝs1s2j,b e(γj1,b, δj2,b) =
ĝs1s2j,b since γj1,b and δj2,b are sampled from orthogonal subgroups, whereas e(γi1,1, δi2,1) does not
vanish in ui,1 = ĝs1s2i,1 e(γi1,1, δi2,1) since G3 and H3 are not orthogonal. To obtain function privacy,
we show that the elements {gs1j,b} and {h

s2
j,b} provide “random masks” and randomize the values in

ek which become indistinguishable form uniform. Although G and H are composite groups, we are
able to derive such a DDH-like argument by defining G and H as vector spaces over underlying
prime-order groups, G and H, where we assume SXDH.

Below, we give the details of the bilinear group generators that we use, and then proceed to a
technical description of our construction.

The Underlying Pairing. Let G and H be two groups of prime order p, equipped with a pairing
eP : G × H → Ĝ. We observe that we can define a pairing that maps vector spaces of G and H,

80

G := Gm and H := Hm resp., to a corresponding vector space of Ĝ, Ĝ := Gm. We chose to work
with vector spaces for a reason: this allows us to decompose each of the vector spaces to “parallel”,
i.e. linearly independent, subgroups. Consequently, we can create such a subgroup-decomposition
of G and H, such that every subgroup in G is orthogonal to all but one of the subgroups of H, and
vice versa. This essentialy enables us to implement the “cancelling” functionality, described above,
that we use to obtain correctness, with 3-dimensional vector spaces. Full details are given below.

Construction C.1 (Example 3.7 in [Fre10]). Let P be a prime-order bilinear group generator that,
on input 1λ, outputs (p,G,H, Ĝ, eP) (see Definition C.2). We hereby construct a bilinear group
generator algorithm G3, and an associated subgroup generator Gsub3 as follows:

• G3(1λ) :

1. Sample (p,G, g,H, h, Ĝ, eP)
$←− P(1λ).

2. Set

G := G3 H := H3 Ĝ := Ĝ3

3. Define pairing e : G×H→ Ĝ, such that

e((g1, g2, g3), (h1, h2, h3)) = eP(g1, h1)eP(g2, h2)eP(g3, h3) (C.1)

4. Output (G, g,H, h, Ĝ, e).

• Gsub3 (G, g,H, h):

1. Sample x1, x2, x3, y1, y2, y3, z1, z2, z3
$←− Zp such thatx1 y1 z1

x2 y2 z2

x3 y3 z3

x′1 x′2 x′3
y′1 y′2 y′3
z′1 z′2 z′3

 =

a1 0 0
0 a2 0
0 0 a3

 (C.2)

for a1, a2, a3 6= 0.
2. Set

G1 := 〈g(x1,y1,z1)〉 G2 := 〈g(x2,y2,z2)〉 G3 := 〈g(x3,y3,z3)〉

H1 := 〈h(x′1,y
′
1,z
′
1)〉 H2 := 〈h(x′2,y

′
2,z
′
2)〉 H3 := 〈h(x′3,y

′
3,z
′
3)〉

3. Output ((Gj , g
(xj ,yj ,zj))1≤j≤3, (Hj , h

x′j ,y
′
j ,z
′
j)1≤j≤3)

Another property we achieve from building over prime-order groups is the ability to assume
DDH over G and H (namely, SXDH w.r.t. eP), and derive a related hardness assumption over
the composite-groups G and H. More specifically, in Proposition C.1, we transform the SXDH
assumption to its “vector variant”. We skip the proof of the proposition as it is simple and straight-
forward, and essentially relies on the fact that, if it is hard to solve the DDH problem (or any
computational problem for the matter), then it is hard to jointly solve multiple independent instances
of DDH.

81

Proposition C.1. Let P be a prime-order bilinear group generator P that satisfies the SXDH
assumption. Then, for any PPT adversary, A, it holds that

| Pr[A((p,G,H, Ĝ, eP), (ga1 , ga2 , ga1a2), (hb1 , hb2 , hb1b2)) = 1] (C.3)

− Pr[A((p,G,H, Ĝ, eP), (ga1 , ga2 , ga3), (hb1 , hb2 , hb3)) = 1] |= negl(λ)

where (p,G,H, Ĝ, eP)
$←− P, g $←− G3, h $←− H3, and a1, a2, a3, b1, b2, b3

$←− Zp.

The Scheme. We now give the details of our pairing-based TDH construction, then prove it
satisfies the required properties.

Construction C.2 (Sublinear TDH from Pairings). Let G3 and Gsub3 be the algorithms from Con-
struction C.1. Our pairings-based TDH scheme consists of the following algorithms:

• S(1λ, 1n):

1. Sample (G, g,H, h, Ĝ, e) $←− G3(1λ)

2. Sample two matrices

A1 :=

(
g1,0, g2,0, . . . , g√n,0
g1,1, g2,1, . . . , g√n,1

)
$←− G2×

√
n A2 :=

(
h1,0, h2,0, . . . , h√n,0
h1,1, h2,1, . . . , h√n,1

)
$←− H2×

√
n

3. Output
hk :=

(
(G, g,H, h, Ĝ, e),A1,A2

)
(C.4)

• G(hk, f[i]): parse hk as in Equation C.4, i as (i1, i2) ∈ [
√
n]2 and proceed as follows.

1. Generate subgroups ((Gj , gj)1≤j≤3, (Hj , hj)1≤j≤3)
$←− Gsub3 (G,H).

2. Sample s1, s2, t1, t2
$←− Zp and set

γi1,1 := gt13 ∈ G3 γj,b
$←− G1 for any (j, b) 6= (i1, 1)

δi2,1 := ht23 ∈ H3 δj,b
$←− H2 for any (j, b) 6= (i2, 1) (C.5)

3. Set

u := gs1 v := hs2

and

B1 :=

(
u1,0, u2,0, . . . , u√n,0
u1,1, u2,1, . . . , u√n,1

)
where uj,b := gs1 · γj,b

B2 :=

(
v1,0, v2,0, . . . , v√n,0
v1,1, v2,1, . . . , v√n,1

)
where vj,b := hs2j,b · δj,b

4. Output

ek := (u,B1, v,B2) td := (s1, s2, t1, t2, g3, h3) (C.6)

82

• H(pp, x; ρ): parse hk as in Equation C.4 and ρ as r1, r2 ∈ Zp, and output

h := e(gr1 , hr2)
n∏
j=1

e(gj1,x[j], hj2,x[j]) (C.7)

• E(ek, x; ρ): parse ek as in Equation C.6 and ρ as r1, r2 ∈ Zp, and output

e := e(ur1 , vr2)
n∏
j=1

e(uj1,x[j], vj2,x[j]) (C.8)

• D(td, h): parse h ∈ Ĝ and td as in Equation C.6, and output

e0 := hs1s2 e1 := hs1s2e(gt13 , g
t2
3) (C.9)

Analysis. The analysis of the pairing-based TDH is ver similar to that of the DDH-based scheme,
only here, a more subtle treatment is needed, as the construction is a bit more evolved.

Correctness can be verified by inspection, based on Equation C.2, and input privacy is immediate.
To prove both function privacy and secret encoding, we find it useful to first prove Lemma C.1 below,
which basically states, that the encoding key ek (Equation C.6) is indistinguishable from uniform,
given the hash key hk. We even consider the joint distribution of such an encoding key, attached to
an encoding e1−f[i](x) and that corresponds to the values in ek.

For simplicity of notation, we associate every such ek distribution with a corresponding distribu-
tion of e1−f[i](x), as follows. For any x ∈ {0, 1}n, any hk as in Equation C.4, any ek = (u,B1, v,B2)

where u ∈ G, B1 ∈ G2×
√
n, v ∈ H, and B2 ∈ H2×

√
n, any γ ∈ G and δ ∈ H, and any ρ ∈ {0, 1}∗,

we define the following corresponding encoding

e(x, hk, ek, γ, δ; ρ) := E(ek, x; ρ)e(γ, δ)1−2x[i]

where e is taken from hk.
We make two simple observations regarding e(·):

(i) If hk $←− S(1λ, 1n), (ek, td)
$←− G(hk, f[i]), and γ := γi1,1 and δ := δi2,1 are as generated by

G(hk, f[i]) (Equation C.5) in the computation of ek, then

(x, hk, ek, e(x, hk, ek, γ, δ; ρ)) ≡ (x, hk, ek, e1−x[i])

where (e0, e1) = D(td,H(hk, x; ρ))

(ii) If ek consist of uniform group elements, and γ and δ are independent uniform group elements
in G and H (resp.), then

(x, hk, ek, e(x, hk, ek, γ, δ; ρ)) ≡ (x, hk, ek, e′)

where e′
$←− Ĝ.

We now state and prove the lemma.

83

Lemma C.1. Let ρ $←− {0, 1}∗, hk
$←− S(1λ, 1n), and (ek, td)

$←− G(hk, f[i]) and let γi1,1−x[i] and
δi2,1−x[i], be as defined in Equation C.5 in the computation of (ek, td). Then, under the SXDH
assumption over P, it holds that

(x, hk, ek, e(x, hk, ek, γi1,1−x[i], δi2,1−x[i]; ρ))
c≡ (x, hk, ek′, e(x, hk, ek′, γi1,1−x[i], δi2,1−x[i]; ρ)))

where ek′ consists of uniform independent group elements.

Proof. Roughly speaking, we follow the steps taken in the proof for Construction 4.1, except here we
rely on the hardness of SXDH, rather than DDH. We define 2

√
n+ 1 hybrid distributions: Hybrid0,

Hybrid1,0, Hybrid1,1, . . . , Hybrid√n,0, Hybrid√n,1. The first hybrid, Hybrid0, consists of hk and ek that
are produced by an execution of the protocol, together with the corresponding encoding e(x, hk, ek,
γi1,1−x[i], δi2,1−x[i]). In the following hybrids, we transform every gs1j,b and hs2j,b in ek with uniform
elements, g′j,b and h

′
j,b, one step at a time. Formally, we define

Hybridk,b :=
(
x, hk, ekk,b, e(x, hk, ekk,b, γi1,1−x[i], δi2,1−x[i]; ρ)

)
where

ekk,0 =

((
g′1,0γ1,0, . . . , g

′
k,0γk,0, . . . , g

s1√
n,0
γ√n,0

g′1,1γ1,1, . . . , g
s1
k,1γk,1, . . . , g

s1√
n,1
γ√n,1

)
,

(
h′1,0δ1,0, . . . ,h

′
k,0δk,0, . . . , h

s2√
n,0
δ√n,0

h′1,1δ1,1, . . . , h
s2
k,1δk,1, . . . , h

s2√
n,1
δ√n,1

))

ekk,1 =

((
g′1,0γ1,0, . . . , g

′
k,0γk,0, . . . , g

s1√
n,0
γ√n,0

g′1,1γ1,1, . . . , g
′
k,1γk,1, . . . , g

s1√
n,1
γ√n,1

)
,

(
h′1,0δ1,0, . . . , h

′
k,0δk,0, . . . , h

s2√
n,0
δ√n,0

h′1,1δ1,1, . . . ,h
′
k,1δk,1, . . . , h

s2√
n,1
δ√n,1

))

where {gj,b} and {hj,b} are as generated in hk
$←− G(1λ, 1n) (see Equation C.4), {γj,b}, {δj,b}, s1 and

s2 are as generated in (ek, td)
$←− E(hk, f[i]), and {g′j,b}

$←− G and {h′j,b}
$←− H are uniform.

It is easy to see

Hybrid√n,1 ≡ (x, hk, ek′, e(x, hk, ek′, γi1,1−x[i], δi2,1−x[i]; ρ)))

for a uniform ek′. Thus, it suffices to show that every two adjacent hybrids in the sequence are
computationally indistinguishable.

We take Hybridk−1,1
c≡ Hybridk,0 for k > i. The proofs for the other cases are conceptually

identical. Let D be a PPT distinguisher for which

| Pr[D(Hybridk−1,1) = 1]− Pr[D(Hybridk,0) = 1] |> negl(λ)

for any negligible function negl(·).
We construct an adversary A that uses D to break the indistinguishability in Equation C.3 from

Proposition C.1. A takes as input a tuple ((p,G,H, Ĝ, eP), (S1,W,U), (S2, Z, V)), and proceeds as
follows.

1. Set G := G3, H := H3 and Ĝ := Ĝ3, and define e : G×H→ Ĝ as in Equation C.1.

2. Choose generators g ∈ G and h ∈ H.

3. For every j ∈ [
√
n]\{k} and b ∈ {0, 1}, sample wj,b, zj,b

$←− Z3
p, and set

g̃j,b = gwj,b h̃j,b = hzj,b

84

4. Sample wk,1, zk,1
$←− Z3

p and set

g̃k,0 = W h̃k,0 = Z

g̃k,1 = gwk,1 h̃k,1 = gzk,1

5. Set

h̃k =

(
(G,H, Ĝ, e),

(
g̃0,1, . . . , g̃0,

√
n

g̃1,1, . . . , g̃1,
√
n

)
,

(
h̃0,1, . . . , h̃0,

√
n

h̃1,1, . . . , h̃1,
√
n

))

6. Generate subgroups ((Gj)1≤j≤3, (Hj)1≤j≤3)← Gsub3 (G,H).

7. For every j ∈ [k − 1] and b ∈ {0, 1}, sample

ũk,b
$←− G ṽk,b

$←− H

8. For b ∈ {0, 1}, sample γ̃k,b
$←− G1 and δ̃k,b

$←− H2, and set

ũk,0 = Uγk,0 ṽk,0 = V δk,0

ũk,1 = S
wk,1
1 γk,1 ṽk,1 = S

zk,1
2 δk,1

9. For k < j ≤
√
n and b ∈ {0, 1}, sample γ̃j,b

$←− G1 and δ̃j,b
$←− H2, and set

ũj,b := S
wj,b
1 γj,b ṽj,b := S

zj,b
2 δj,b

10. Set

ẽk :=

(
S1,

(
ũ0,1, . . . , ũ0,

√
n

ũ1,1, . . . , ũ1,
√
n

)
, S2,

(
ṽ0,1, . . . , ṽ0,

√
n

ṽ1,1, . . . , ṽ1,
√
n

))

11. Sample γ̃i1,1−x[i]
$←− G3 and δ̃i2,1−x[i]

$←− H3 (when k ≤ i, these appear in ẽk), and output

D(x, h̃k, ẽk, e(x, h̃k, ẽk, γ̃i1,1−x[i], δ̃i2,1−x[i]; ρ))

Now, observe that if ((S1,W,U), (S2, Z, V)) ≡ ((gs1 , gw, gs1w), (hs2 , hz, hs2z)) for s1, s2, w, z
$←− Z3

p,
then (p̃p, c̃t) ≡ Hybridk−1,1. Otherwise, if ((S1,W,U), (S2, Z, V)) ≡ ((gs1 , gw, gu), (hs2 , hz, hv)) for

s1, s2, w, z, u, v
$←− Z3

p, then (h̃k, ẽk) ≡ Hybridk,0. This completes the proof of the lemma.

We now proceed to prove function privacy and secret encoding hold. In fact, function privacy
is immediately implied by Lemma C.1, which is even a stronger claim. Thus, it remains to show
secret encoding, for which we prove the following lemma.

Theorem C.1. The TDH scheme from Construction C.1 has secret encoding under SXDH.

85

Proof. It appears that also for secret encoding, we have already done the hard work in Lemma C.1.
Let hk

$←− S(1λ, 1n), (ek, td)
$←− G(hk, f[i]) and (e0, e1) = D(td,H(hk, x; ρ)) for ρ $←− {0, 1}∗. By

combining the indistinguihsability from Lemma C.1 and observation (i) from above, we obtain

(x, hk, ek, e1−x[i])
c≡ (x, hk, ek′, e(x, hk, ek′, γ, δ; ρ))

where ek′ is uniform, and γ $←− G3 and δ $←− H3 for subgroups G3 and H3 sampled by Gsub3 (G,H).
Since such subgroups are sampled independently of hk and the uniform ek′, then γ and δ are
essentially uniform over G and H, independently of hk and ek′. This fact allows us to apply
observation (ii) from above, and obtain that

(x, hk, ek, e1−x[i])
c≡ (x, hk, ek′, e′)

for a uniform k′
$←− Ĝ.

It now suffices to show that (x, hk, ek, e′)
c≡ (x, hk, ek′, e′). For this, we can use a reduction similar

to the one in Lemma C.1, only now, A just generates a random ẽ
$←− Ĝ (notice that e′ is independent

of ek or ek′). This concludes the proof.

Achieving Reusable Secret Encoding. Similarly to the basic DDH-based scheme, although
the construction above satisfies the secret encoding property, it fails to provide the stronger security
notion for the reusable case. We observe that a correlation with a similar nature is obtained here
as well, and therefore, the same approach can be taken to solve the encoding correlation problem,
namely using CIH. Typical known hash function constructions can be assumed to be a CIH for the
required type of correlation in bilinear groups. This yields a TDH with reusable secret encoding
under the SXDH assumption.

86

	Introduction
	Our Setting and Questions of Interest
	Our Results

	Technical Outline
	Trapdoor Hash Functions
	Trapdoor Hash from QR and LWE
	Rate-1 Oblivious Transfer and More
	Private Laconic Oblivious Transfer
	Concurrent Work

	Preliminaries
	Number Theoretical Assumptions
	The Learning with Errors Assumption
	Statistics and Information Theory

	Trapdoor Hash Functions
	Model and Formal Definition
	Trapdoor Hash for Index Predicates from DDH
	Basic Construction
	From Rate-1/ to Rate-1

	Trapdoor Hash for Linear Predicates from QR
	Trapdoor Hash for Linear Predicates from LWE

	Rate-1 Oblivious Transfer and More
	Model and Definitions
	Useful Functionalities
	Rate-1 Batch Oblivious Transfer from Trapdoor Hash
	From Weakly Correct Batch OT to String OT
	Correcting the Errors
	Bootstrapping to Optimal Overall Rate
	Malicious Security

	OLE, Vector-Matrix Product, and Other Generalizations
	On the Tightness of Our Protocols

	Applications of Rate-1 OT
	Private Information Retrieval
	Evaluating Branching Programs over Encrypted Data
	Lossy Trapdoor Functions

	Private Laconic Oblivious Transfer
	Formal Definitions
	Private Laconic OT from Trapdoor Hash: The Basic Construction
	The Balancing Technique

	Acknowledgements
	Trapdoor Hash for Index Predicates from DCR
	Trapdoor Hash with Reusable Secret Encoding under DDH
	Correlation in the Basic Construction
	Warm-up: Breaking the Correlation with Random Oracle
	Replacing the Random Oracle with CIH

	Sublinear Trapdoor Hash from Pairings

