
Homomorphic Time-Lock Puzzles
and Applications

Giulio Malavolta1? and Sri Aravinda Krishnan Thyagarajan2

1 Carnegie Mellon University
2 Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract. Time-lock puzzles allow one to encrypt messages for the future, by efficiently generating a
puzzle with a solution s that remains hidden until time T has elapsed. The solution is required to be
concealed from the eyes of any algorithm running in (parallel) time less than T .
We put forth the concept of homomorphic time-lock puzzles, where one can evaluate functions over puz-
zles without solving them, i.e., one can manipulate a set of puzzles with solutions (s1, . . . , sn) to obtain
a puzzle that solves to f(s1, . . . , sn), for any function f . We propose candidate constructions under
concrete cryptographic assumptions for different classes of functions. Then we show how homomorphic
time-lock puzzles overcome the limitations of classical time-lock puzzles by proposing new protocols for
applications of interest, such as e-voting, multi-party coin flipping, and fair contract signing.

1 Introduction

Time-lock puzzles [30] allow one to encapsulate messages for a precise amount of time or, equivalently, to
encrypt messages for the future. On input a secret s and a hardness parameter T , the puzzle generation
algorithm allows one to compute a Z such that s can be recovered only after time T . Time-lock puzzles are
characterized by the following properties.

– Fast puzzle generation: The time needed to generate a puzzle is much shorter than T . This is crucial
when secrets are hidden for a long time, e.g., 10 years.

– Security against parallel algorithms: The secret s is hidden for circuits of depth less than T , regardless
of their size.

The latter can be seen as a more fine-grained notion of the classical semantic security [19], where simply
lowering the security parameter may enable faster algorithms that exploit massive parallelization to solve the
puzzle. Note that ignoring either of the above properties makes the problem trivial since it can be either solved
with standard probabilistic encryption or any inherently sequential computation (such as repeated hashing).
Applications of time-lock puzzles include sealed-bid auctions [30], fair contract signing [6], zero-knowledge
arguments [12], and non-malleable commitments [23], to mention a few.

To compensate for the absence of a trusted party, time-lock puzzles force the decrypter to perform a long
computation before being able to recover the secret. When time-lock puzzles are deployed within large scale
protocols, this slight drawback is magnified and parties may incur in a significant computational burden.
While performing some computation is clearly unavoidable, this effort should not become the bottleneck of
the protocol. To the best of our knowledge, there is currently no solution to mitigate this problem.

1.1 Limitations of Time-Lock Puzzles

To illustrate the aforementioned limitations of time-lock puzzles, we consider the scenario of e-voting in the
absence of a trusted authority, one of the motivating examples for the usage of the primitive. Throughout
the following discussion we assume that the voters have access to a public and append-only bulletin board,
e.g., a blockchain, and we will not consider the privacy of the votes nor their authenticity. Both problems are
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well studied and can be dealt with using standard techniques, e.g., unlinkable transactions and anonymous
credentials. Instead, we are going to focus on constructing a system that allows a large set of voters to cast
their preference without any bias.

If one were to assume a trusted administrator, then the voters could simply encrypt their preference and
let the administrator count and announce the result. However, the absence of trusted authorities makes the
problem non-trivial. The standard approach to avoid voters being biased by the current majority is to divide
the protocol in two phases: In the voting phase the voters commit to their vote and post the commitment
on the bulletin board. In the counting phase, new commitments are ignored, and voters are asked to reveal
their openings, which makes it possible to compute and announce the result of the election.

This however leaves open the question of how to handle users who send valid commitments in the first
phase but fail to reveal their openings in the second. One could either (i) repeat the voting phase or (ii)
ignore such “unopened” votes. Repeating the voting process could empower an attacker to successfully mount
a denial-of-service attack at essentially no cost. On the other hand, the latter solution might be exploited
to manipulate the final outcome: An attacker controlling the network traffic might block those openings
corresponding to an unwanted candidate, thereby generating a bias towards a the preferred side.

Time-lock puzzles elegantly resolve this by replacing commitments as the hiding mechanism for the votes.
The votes of those users who fail to publish their coins (i.e., reveal their vote) can be simply determined
by solving their time-lock puzzles. Setting the hardness parameter T to be a safe amount longer than the
voting phase makes sure that the votes are kept secret until such a phase is over, thereby avoiding any bias.
Unfortunately, this solution does not come without additional costs: Consider what happens when a large
amount of voters, say 100.000, fail to open their puzzles. Then the computation of the election winner tally
requires brute-forcing those puzzles, which means that a massive amount of (parallel) computation is needed
in order to complete the election within reasonable time. Taking into account the typical number of voters
for an election which is usually in the range of millions, it is safe to say that the problem is of practical
relevance.

We stress that, even though e-voting exemplifies well the scalability issues of time-lock puzzles, it is
certainly not the only scenario where they emerge. Essentially any other application that involves a large
number of users (e.g., sealed bid auctions or multi-party coin flipping), encounters similar problems. We
conjecture that such constraints constitute one of the main obstacles that so far prevented the large scale
adoption of time-lock puzzles.

1.2 Our Solution

Put in different words, the main shortcoming of time-lock puzzle-based solutions is that one needs to solve
(brute-force) many puzzles before computing some function over the embedded secrets. What if we could
(homomorphically) evaluate the function first and then solve a single puzzle containing the function output?
This would dramatically reduce the computational burden of time-lock puzzle-based protocols. Consider the
e-voting example as described above: To compute the election winner one could homomorphically evaluate
the corresponding circuit over the puzzles and then solve a single puzzle, regardless of the number of offline
voters.

Motivated by this question, we propose the notion of Homomorphic Time-Lock Puzzles (HTLP): Loosely
speaking, an HTLP is an augmented time-lock puzzle that allows anyone to evaluate a circuit C over
sets of puzzles (Z1, . . . , Zn) homomorphically, without necessarily knowing the secret messages (s1, . . . , sn)
encapsulated within these puzzles. The resulting output (which is also a puzzle) contains the circuit output
C(s1, . . . , sn) and the timing hardness of this puzzle does not depend on the size of the circuit C that was
evaluated (compactness). We stress that the compactness of the evaluation algorithm is a crucial requirement
for HTLP (as it is the case for fully-homomorphic encryption [16]): If we were to ignore it, then the trivial
solution of solving the puzzles (Z1, . . . , Zn) and then evaluating C over the secrets would suffice.

In this work we put forward the concept of HTLPs and we formally characterize their security guarantees.
We then propose several schemes that support the homomorphic evaluation of different classes of circuits
and we demonstrate their usefulness by presenting several concrete applications.
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1.3 Technical Overview

Towards instantiating HTLPs, our starting point is the classical construction of Rivest, Shamir, and Wag-
ner [30], whose hardness is rooted in the (conjectured) inherent sequentiality of squaring in finite fields. Let
N = p · q be an RSA integer, a time-lock puzzle for a secret s and for a time T consists of the tuple

(N, T , x, x2
T
· k,Enc(k, s))

where (x, k) are uniformly sampled elements from Z∗N , and Enc(k, s) is a symmetric encryption of the secret

s. Note that knowing the group order ϕ(N) allows one to efficiently compute the term x2
T

by reducing 2T

modulo ϕ(N) first. On the other hand the decrypter has to perform T -many squarings before recovering the
key k. Here the hybrid encryption approach breaks the structure of the group, and therefore the scheme has
no homomorphic properties.

Linearly Homomorphic. Our first observation is that the term x2
T

acts essentially as a one-time pad
and we can choose a more structured embedding that admits an efficiently computable homomorphism. We
follow the blueprint of Paillier [28], i.e., we exploit the fact that the group Z∗N2 can be written as the product
of the group generated by (1+N), which has order N , and the group of N -th residues {xN : x ∈ Z∗N}, which
has order ϕ(N). Consider the following (flawed) attempt to construct HTLPs for linear functions:

(N, T , x, xN ·2
T
· (1 +N)s),

for a random x ∈ Z∗N . Assume for the moment that N is fixed across all puzzles, then the scheme is clearly
linearly homomorphic as shown below:

(N, T , x · y, xN ·2
T
· yN ·2

T
· (1 +N)s · (1 +N)s

′
) = (N, T , (x · y), (x · y)N ·2

T
· (1 +N)s+s

′
).

Observe that the time needed to homomorphically add secrets is independent of T . Further recall that
the group generated by (1 + N) admits a polynomial-time algorithm to compute discrete logarithms, so

recovering the output is easy once xN ·2
T

is computed. Unfortunately there are two major issues with the
current scheme: (i) If N is shared across all users who also generated them, then everybody potentially knows
the factorization of N (and therefore ϕ(N)), which is a problem for security, and (ii) the blinding factor

xN ·2
T

is trivially distinguishable from a uniform element in Z∗N as the Jacobi symbol of xN ·2
T

is always +1.
The latter issue can be easily countered by restricting the random choice to those elements in Z∗N whose
Jacobi symbol is equal to +1. Our idea to sidestep the former limitation is to use the random self-reducibility

of the problem: In our augmented scheme, the tuple (N, x, x2
T

), where x is a random element of Z∗N with
Jacobi symbol +1, is fixed in a setup phase. A freshly-looking HTLP can now be computed as

(N, T , xr, (xN ·2
T

)r · (1 +N)s) = (N, T , y, yN ·2
T
· (1 +N)s),

where r is uniformly sampled from {1, . . . , N2}, whose distribution (modulo ϕ(N)) is statistically close to
sampling from {1, . . . , ϕ(N)}. Note that the newly generated puzzle is correctly distributed and the knowledge
of ϕ(N) is not needed to compute it. It can be shown that the scheme is an HTLP for linear functions,
assuming the inherent sequentiality of squaring modulo N and other standard intractability assumptions
over hidden-order groups.

Multiplicatively Homomorphic. Armed with the tools discussed above, we can easily switch the message
encoding to obtain HTLPs that supports the evaluation of multiplication gates. This is done by adapting

the scheme of above to a Diffie-Hellman structure in a natural way: Given that the tuple (N, x, x2
T

) is fixed
in a setup phase, a puzzle to encapsulate a secret s ∈ JN (where JN is the subgroup of Z∗N whose elements
have Jacobi symbol +1) is generated as

(N, T , xr, (x2
T

)r · s)
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for some uniformly chosen r. The procedure to recover the puzzle is essentially unchanged, except that now all
the operations are performed in the subgroup JN . Clearly, there is no need to compute any discrete logarithm
since s is already in its plain form. In [10] it was shown that the decisional Diffie-Hellman (DDH) assumption
over JN is implied by the DDH assumption over Z∗p and Z∗q and the quadratic residuosity assumption over
Z∗N . Thus the security of our scheme follows from the same set of hard problems (in addition to assuming
the sequential nature of squaring modulo N).

Fully Homomorphic. The schemes constructed above support the homomorphic evaluation of some
restricted classes of functions over the secrets. The next natural question is whether there exists an HTLP
for any polynomially-computable function. It seems like the techniques developed so far are not very helpful
in this context since constructing homomorphic encryption from RSA groups (and related assumptions) has
been an elusive task so far. For this reason we turn our attention to constructions based on indistinguishability
obfuscation [14]. The scheme that we obtain shall be interpreted as a feasibility result. We leave constructing
HTLPs for any function without the aid of obfuscation as a fascinating open problem. Our candidate solution
follows the blueprint of the fully-homomorphic encryption (FHE) scheme from [9]. Omitting most of the
technicalities, their FHE is constructed from standard public-key encryption by obfuscating a program that
decrypts two input ciphertexts, computes a NAND gate over the messages, and re-encrypts the output. This
approach allows one to construct FHE without relying on circular assumptions, since the obfuscated program
can evaluate circuits of any depth without growing in size.

At a first glance, this strategy does not seem to translate directly to the time-lock puzzle settings, since
puzzles do not necessarily have a trapdoor that allows one to efficiently recover the secret (see, e.g., the
construction from [2]). Instead of replacing the public key encryption, our scheme augments it by addi-
tionally time-locking the message: The puzzle consists of a tuple (c, Z), where the ciphertext c and any
(non-homomorphic) time-lock puzzle Z encode the same message. To open it, one simply ignores c and
solves Z. To support homomorphic computations, we obfuscate a program that takes as input two puzzles
(c0, Z0) and (c1, Z1), decrypts c0 and c1, computes the NAND of the messages and produces a fresh pair
(c′, Z ′) encoding the output bit. Note that, although the program discards Z0 and Z1, the output puzzle is
still well-formed. Such a program is obfuscated in the setup phase and it is made available to all parties.

Extensions. The constructions presented above constitute the backbone of our results, but there are still
a few shortcomings that need to be addressed in order to enjoy all advantages of HTLPs. For example, all
of the schemes (as described above) require a trusted setup that needs to be re-initialized once time T has
passed. We show that this is in fact not necessary for our RSA-based schemes and that the common reference

string (N, x, x2
T

) can be fixed once and for all in a one-time setup, assuming a mildly stronger version of the
sequential squaring problem. We also show how to compute homomorphic operations over puzzles generated
under different hardness parameters and we explore the feasibility of a non-trusted (public-coin) setup.
Finally, we present a semi-compact HTLP for branching programs (a superclass of NC1), where the size of
the evaluated puzzle grows with the length of the program but not with its size.

1.4 Applications

We substantiate our claims with concrete examples of scenarios where HTLPs are useful. Due to the dif-
ferent nature of our constructions, we focus on how to exploit our efficient (RSA-based) schemes to build
applications of interest.

E-Voting and Sealed Bid Auctions over Blockchains. We consider the settings where n voters choose
one among m candidates and we assume that n � m. In our protocol, each voter generates a vector of m
linearly-homomorphic puzzles (Z1, . . . , Zm) encapsulating 0, except for the j-th puzzle Zj that encodes 1,
where j is the index of the preferred candidate.3 The vector of each voter is made available to all parties
(by, e.g., posting it on a blockchain) during the voting phase. Afterwards, the outcome of the election can
be determined by simply summing up all vectors and opening the resulting m puzzles. The resulting vector

3 We implicitly assume that all puzzles are honestly generated, which can be enforced with standard cryptographic
tools.
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will contain the amount of votes per candidate and the winner can then be easily determined. Note that
this is a public operation and therefore there is no need for a trusted tallying authority. Furthermore, the
computational effort needed to determine the result of the election is that of solving m puzzles, regardless on
the amount of voters. The typical values for m are in the order of tens, which corresponds to a manageable
amount of computation for essentially any machine. This is a significant improvement with respect to the
original solution that required the opening of potentially hundreds of thousands puzzles.

Similar techniques can be used to design a sealed bid auction protocol: Each bidder time-locks its bid
and the index corresponding to the highest bidder is homomorphically computed over the puzzles. The
winner of the auction can be determined by solving a single puzzle. Unfortunately the resulting protocol
is not yet practical since the circuit being evaluated exceeds the capability of linear functions and requires
fully-homomorphic time-lock puzzles.

Multi-Party Coin Flipping. Coin flipping protocols are one of the classical problems in cryptography [3]
and have recently found applications in real-life cryptocurrencies [22]. The security required by an n-party
coin flipping protocol is that n− 1 colluding parties should not be able to bias the final outcome. Boneh and
Naor [6] proposed a solution for coin flipping among two parties based on time-lock puzzles. However, naively
extending their protocol to the multi-party setting suffers from predictable drawbacks: The computational
effort of the participants is proportional to the amount of parties that do not reveal their random coins.
This becomes very significant when coin flipping protocols are executed on a large scale (e.g., thousands of
participants). Using linearly-homomorphic time-lock puzzles we obtain a very simple solution to this problem.
Each participant encapsulates a random bit for a safe amount of time and broadcasts it to all parties. Then
each party homomorphically add all puzzles, without the need for further interactions. Solving the resulting
output puzzle and isolating the least significant bit of the solution gives us an unbiased coin.

Multi-Party Contract Signing. Consider the scenario where n mutually distrusting parties want to
exchange signatures on a document. Boneh and Naor [6] proposed a protocol for fair exchange of signatures
based on time-lock puzzles. The protocol proceeds in rounds where each party generates a time-lock puzzle
of their signature and broadcasts it. When all signatures are published, the protocol repeats except that the
hardness parameter of the time-lock puzzle is halved. The protocol is strongly fair in the sense that the work
required to recover the signatures by all parties differs at most by a factor of (roughly) 2.

Observe that if at any round any party fails to broadcast its puzzle, then all other parties need to solve
all the puzzles ((n− 1)-many) from the previous round to learn the signatures necessary for the validity of
the contract. Our multiplicatively-homomorphic time-lock puzzles can be plugged in this protocol to solve
exactly this issue. More specifically, we can leverage a recent result on RSA-aggregate signatures [20], where
Hohenberger and Waters proposed a scheme where signatures live in QRN , where N is fixed in the setup,
and can be aggregated by simply multiplying them modulo N . Recall that QRN is a subgroup fo JN and
therefore signatures encapsulated in our HTLP can be aggregated homomorphically.

Equipped with this tool, we can simply replace the time-lock puzzle of Boneh and Naor with our multi-
plicatively homomorphic construction and combine it with the signature scheme of Hohenberger and Waters.
Then, in the case that any party goes offline ahead of time, each other party can homomorphically aggregate
the signatures from the previous round and then solve a single time-lock puzzle, regardless of the number of
participants.

1.5 Related Work

Time-lock puzzles were envisioned in the seminal work by Rivest, Shamir, and Wagner [30]. Their scheme
builds on the (conjectured) inherent sequentiality of repeated squaring in RSA groups. Recently, Bitanski
et al. [2] proposed a different approached to construct time-lock puzzles, assuming the existence of succinct
randomized encodings [1] and non-parallelizable languages. We also mention a new construction paradigm
from Liu et al. [24] that combines witness encryption [15] with a reference clock, such as a blockchain.

A related but different notion is that of verifiable delay functions [4], which allow a prover to convince a
verifier that a certain amount of sequential computation has been performed. The two notions are incompara-
ble since verifiable delay functions (in general) do not allow one to encapsulate secrets and time-lock puzzles
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are (in general) not efficiently verifiable. Proofs of sequential work [26] can be seen as a non-unique verifiable
delay functions. Interestingly, Mahmoody et al. [25] showed a blackbox separation between time-lock puzzles
and proofs of sequential work.

2 Preliminaries

We denote by λ ∈ N the security parameter. We we say that a function µ is negligible if it vanishes faster
than any polynomial. Given two ensembles D0 and D1, we write D0 ≈µ D1 if all probabilistic polynomial-
time distinguishers succeed with probability µ-close to 1/2. Given a set U , we denote by u←$U the uniform
sampling from U . Recall the definition of statistical distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables over a finite set U . The
statistical distance between X and Y is defined as

SD [X,Y ] =
∑
u∈U
|Pr[X = u]− Pr[Y = u]| .

We say that an ensemble D is ε-uniform in U if the statistical distance between D and uniformly sampling
from U is at most ε. We recall the following useful lemma from [7].

Lemma 1. Let (n, ñ) ∈ N2 and let x←$ {1, . . . , ñ}, then x (mod n) is (n/ñ)-uniform in Zn.

Proof. Let d = ñ (mod n), then conditioned on the event that x ∈ {1, . . . , ñ− d}, it holds that x (mod n) is
uniformly distributed in Zn. Therefore x (mod n) is (d/ñ) ≤ (n/ñ)-uniform.

2.1 Number Theory and Assumptions

Let N = p · q, where p and q are random primes of equal length, we define Z∗N := {x ∈ ZN : gcd(x,N) = 1}
and JN as the group of elements of Z∗N with Jacobi symbol +1 and we denote by g a generator of JN . Euler
totient function is denoted by ϕ(·). We say that N is a strong RSA integer if p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes. Note that if N is a strong RSA integer then JN is cyclic and has order
ϕ(N)/2. Also note that a generator g for JN can be found by sampling g̃←$Z∗N and setting g := −g̃2 since
the order of g̃ is either ϕ(N)/2 or ϕ(N)/4 with all but negligible probability.

We state and prove the following simple lemma, which is going to be useful in the analysis of our schemes.

Lemma 2. For every x ∈ N and every N ∈ N it holds that

xN (mod N2) = (x (mod N))
N

(mod N2).

Proof. Let us rewrite x = x̃+ kN , for some k and some x̃ < N . Then we have

xN (mod N2) = (x̃+ kN)N (mod N2)

= x̃N +
(
x̃N−1kN

)
N + . . . (mod N2)

= x̃N (mod N2)

= (x (mod N))
N

(mod N2).

Sequential Squaring. In the following we recall the intractability assumption (implicitly) introduced by
Rivest, Shamir, and Wagner [30].
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Assumption 1 (Sequential Squaring) Let N be a uniform strong RSA integer, g be a generator of JN ,
and T (·) be a polynomial. Then there exists some 0 < ε < 1 such that for every polynomial-size adversary
A = {Aλ}λ∈N who’s depth is bounded from above by T ε(λ), there exists a negligible function µ(·) such that

Pr

b← A(N, g, T (λ), x, y) :

x←$ JN ; b←$ {0, 1}
if b = 0 then y←$ JN
if b = 1 then y := x2

T (λ)

 ≤ 1

2
+ µ(λ).

Note that we restrict the domain of x and y to JN to avoid trivial attacks where the distinguisher computes
the Jacobi symbol of the group element.

Decisional Composite Residuosity. Here we recall the decisional composite residuosity (DCR) assump-
tion as of [28].

Assumption 2 (Decisional Composite Residuosity) Let N be a uniform strong RSA integer. Then for
every polynomial-size adversary A = {Aλ}λ∈N there exists a negligible function µ(·) such that

Pr

b← A(N, y) :
x←$Z∗N ; b←$ {0, 1}
if b = 0 then y←$Z∗N2

if b = 1 then y := xN

 ≤ 1

2
+ µ(λ).

Decisional Diffie-Hellman. Here we recall the decisional composite Diffie-Hellman (DDH) assumption
over JN as stated in [10]. In the same work, it was shown that such a conjecture is implied by the DDH
assumption over Z∗p and Z∗q and by the quadratic residuosity assumption over Z∗N .

Assumption 3 (Decisional Diffie-Hellman) Let N be a uniform strong RSA integer and g be a generator
of JN . Then for every polynomial-size adversary A = {Aλ}λ∈N there exists a negligible function µ(·) such
that

Pr

b← A(N, g, gx, gy, gz) :
(x, y)←$ {1, . . . , ϕ(N)/2}; b←$ {0, 1}
if b = 0 then z←$ {1, . . . , ϕ(N)/2}
if b = 1 then z := x · y (mod ϕ(N)/2)

 ≤ 1

2
+ µ(λ).

2.2 Cryptographic Building Blocks

In the following we introduce the cryptographic primitives used in our work.

Puncturable PseudoRandom Functions. A puncturable pseudorandom function (PRF) is an augmented
PRF that has an additional puncturing algorithm. Such an algorithm produces a punctured version of the
key that can evaluate the PRF at all points except for the punctured one. It is required that the PRF value
at that specific point is pseudorandom even given the punctured key. A puncturable PRF can be constructed
from any one-way function [18].

Definition 2 (Puncturable PRFs). A puncturable family of PRFs is a tuple of polynomial-time algo-
rithms (Key,Puncture,PRF) defined as follows.

– K ← Key(1λ) a probabilistic algorithm that takes as input the security parameter and outputs a key K.
– K−i ← Puncture(K, i) a deterministic algorithm that takes as input a key K and a position i ∈ {0, 1}n

and returns a punctured key K−i.
– y ← PRF(K, i) a deterministic algorithm that takes as input a key K and an index i ∈ {0, 1}n and

returns a string y ∈ {0, 1}m.

Definition 3 (Correctness). For all λ ∈ N, for all outputs K ← Key(1λ), for all points i ∈ {0, 1}n and
x ∈ {0, 1}n \ i, and for all K−i ← Puncture(K, i), we have that PRF(K−i, x) = PRF(K,x).
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Definition 4 (Pseudorandomness). For all λ ∈ N and for every polynomial-time adversaries (A1,A2)
there is a negligible function µ(·), such that

Pr

b← A2(τ,K−i, i, y) :

(i, τ)← A1(1λ)
K ← Key(1λ)
K−i ← Puncture(K, i)
b←$ {0, 1}
if b = 0 then y←$ {0, 1}m
if b = 1 then y ← PRF(K, i)

 ≤
1

2
+ µ(λ).

Time-Lock Puzzles. We recall the definition of standard time-lock puzzles [2]. For conceptual simplicity
we consider only schemes with binary solutions.

Definition 5 (Time-Lock Puzzles). A time-lock puzzle is a tuple of two algorithms (PGen,PSolve) defined
as follows.

– Z ← PGen(T , s) a probabilistic algorithm that takes as input a hardness-parameter T and a solution
s ∈ {0, 1}, and outputs a puzzle Z.

– s← PSolve(Z) a deterministic algorithm that takes as input a puzzle Z and outputs a solution s.

Definition 6 (Correctness). For all λ ∈ N, for all polynomials T in λ, and for all s ∈ {0, 1}, it holds that
s = PSolve(PGen(T , s)).

Definition 7 (Security). A scheme (PGen,PSolve) is secure with gap ε < 1 if there exists a polynomial
T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary A = {Aλ}λ∈N of depth
≤ T ε(λ), there exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr
[
b← A(Z) : Z ← PGen(T (λ), b)

]
≤ 1

2
+ µ(λ).

Trapdoor Encryption. A trapdoor encryption scheme is a public key encryption scheme that allows one
to generate a trapdoor version of the public key. Such trapdoor key is indistinguishable from a normal public
key, however encrypting under the trapdoor key hides the message in an information-theoretic sense. Canetti
et al. [9] showed that any public-key encryption with perfect re-randomization (such as ElGamal or Paillier
encryption) can be used generically to construct such a primitive.

Definition 8 (Trapdoor Encryption). A trapdoor encryption scheme is a tuple of polynomial-time algo-
rithms (KeyGen,Enc,Dec, tKeyGen) defined as follows.

– (pk , sk)← KeyGen(1λ) a probabilistic algorithm that takes as input the security parameter and outputs a
key pair (pk , sk).

– pk ← tKeyGen(1λ) a probabilistic algorithm that takes as input the security parameter and outputs a
trapdoor key pk.

– c ← Enc(pk ,m) a probabilistic algorithm that takes as input a message m ∈ {0, 1} and a key pk and
returns a ciphertext c.

– m ← Dec(sk , c) a deterministic algorithm that takes as input a secret key sk and a ciphertext c and
returns a message m.

Definition 9 (Correctness). For all λ ∈ N, for all m ∈ {0, 1} it holds that m = Dec(sk ,Enc(pk ,m)),
where (pk , sk)← KeyGen(1λ).

Definition 10 (Trapdoor Public Keys). For all λ ∈ N and for all probabilistic polynomial-time adver-
saries A there exists a negligible function µ(·) such that

Pr

b← A(pk) :
b←$ {0, 1}
if b = 0 then pk ← tKeyGen(1λ)
if b = 1 then (pk , sk)← KeyGen(1λ)

 ≤ 1

2
+ µ(λ).
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Definition 11 (µ-Hiding). For all λ ∈ N and for all unbounded adversaries A there exists a negligible
function µ(·) such that

Pr

[
b← A(pk ,Enc(pk , b)) :

b←$ {0, 1}
pk ← tKeyGen(1λ)

]
≤ 1

2
+ µ(λ).

Probabilistic Obfuscation. A probabilistic obfuscator piO is an algorithm that obfuscates probabilistic
circuits and it can be constructed assuming sub-exponentially secure indistinguishability obfuscation [14]
and sub-exponentially secure one-way functions [9].

Definition 12 (piO for a class of samplers S). A uniform polynomial-size machine piO is an indistin-
guishable obfuscator for a class of samplers S over the (possibly randomized) circuit family C = {Cλ}λ∈N
if, on input a (possibly probabilistic) circuit C ∈ Cλ and the security parameter 1λ, outputs a deterministic
circuit Λ of size p(|C|, λ), for some fixed polynomial p(·).

Definition 13 (Correctness). For every non-uniform polynomial-size distinguisher D, every (possibly
probabilistic) circuit C ∈ Cλ and string y, we define the following experiments

– EXPD0 (1λ, C, y): D on input 1λ, C, y, participates in as many number of iterations as he wants. In iteration
i, it chooses an input xi; if xi = xj for j < i, then abort; else, D gets back (C(xi, ri)) where ri are fresh
randomness (ri = null, if C is deterministic). At the end of the final iteration, D outputs a bit b. (Note
that D is stateful.)

– EXPD1 (1λ, C, y): Obfuscate circuit C to obtain Λ ← piO(1λ, C; r) using fresh randomness r. Run D as
described in the above experiment, except that in each iteration give Λ(xi) to D instead.

We require that for every non-uniform polynomial-size distinguisher D, there is a negligible function µ(·),
such that, for every λ ∈ N, every C ∈ Cλ, and every polynomial-size auxiliary input y it holds that

Pr[b← EXPDb (1λ, C, y)] ≤ 1

2
+ µ(λ).

Definition 14 (Security with respect to S). For every sampler D = {Dλ}λ∈N ∈ S, and for every
non-uniform polynomial-size machine A, there exists a negligible function µ(·) such that

Pr[b← A(C0, C1, piO(1λ, Cb), y) : b←$ {0, 1}; (C0, C1, y)← Dλ)].

Indistinguishability Obfuscation. We can cast the definition of indistinguishability obfuscation (iO) for
circuits as a special case of worst-case input piO for the class C′ = {C′λ}λ∈N of deterministic circuits as done
in [9].

Definition 15 (iO for Circuits [14]). A uniform PPT machine iO is an indistinguishable obfuscator for
circuits, if it is a piO for the class of worst-case input Indistinguishability samplers Sw−Ind over C′ that
includes all deterministic circuits of size at most λ.

What is left to be defined is the class of worst-case input samplers.

Definition 16 (Worst-case input Indistinguishable Samplers). The class Sw−Ind of worst-case input
indistinguishable samplers for a circuit family C contains all circuit samplers D = {Dλ}λ∈N for C with the
following property: For all adversary A = {(A1,A2)λ}λ∈N where A1 is an unbounded non-uniform machine
and A2 is PPT, there is a negligible function µ(·), such that

Pr

b← A2(st, C0, C1, z, x, y) :

(C0, C1, z)← Dλ

(x, st)← A1(C0, C1, z)
b←$ {0, 1}
y ← Cb(x)

 ≤ 1

2
+ µ(λ).
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3 Homomorphic Time-Lock Puzzles

In the following we give a definition for the main object of interest of this work, homomorphic time-lock
puzzles (HTLP). The syntax follows the standard notation for time-lock puzzles except that we consider an
additional setup phase that depends on the hardness parameter but not on the secret. Furthermore, HTLPs
are augmented with an evaluation algorithm that allows one to manipulate puzzles in a meaningful way.

Definition 17 (Homomorphic Time-Lock Puzzles). Let C = {Cλ}λ∈N be a class of circuits and let S
be a finite domain. A homomorphic time-lock puzzle (HTLP) with respect to C and with solution space S is
tuple of four algorithms (HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) defined as follows.

– pp← HP.PSetup(1λ, T ) a probabilistic algorithm that takes as input a security parameter 1λ and a time
hardness parameter T , and outputs public parameters pp.

– Z ← HP.PGen(pp, s) a probabilistic algorithm that takes as input public parameters pp, and a solution
s ∈ S, and outputs a puzzle Z.

– s← HP.PSolve(pp, Z) a deterministic algorithm that takes as input public parameters pp and a puzzle Z
and outputs a solution s.

– Z ′ ← HP.PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as input a circuit C ∈ Cλ, public
parameters pp and a set of n puzzles (Z1, . . . , Zn) and outputs a puzzle Z ′.

Security requires that the solution of the puzzles is hidden for all adversaries that run in (parallel) time less
than T . Here we consider a basic version where the time is counted from the moment the public parameters
are published. We also consider a stronger version, i.e., where the time is taken from the moment each puzzle
is generated, in Section 5.2.

Definition 18 (Security of HTLP). An HTLP scheme (HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) is
secure with gap ε < 1 if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every
polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by T ε(λ),
there exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr

b← A2(pp, Z, τ) :

(τ, s0, s1)← A1(1λ)
pp← HP.PSetup(1λ, T (λ))
b←$ {0, 1}
Z ← HP.PGen(pp, sb)

 ≤ 1

2
+ µ(λ)

and (s0, s1) ∈ S2.

We consider the basic notion of correctness, that concerns with a single application of the evaluation algo-
rithm. The definition can be easily extended to the multi-hop settings (in the same spirit as [17]) in a natural
way.

Definition 19 (Correctness). Let C = {Cλ}λ∈N be a class of circuits (together with their respective repre-
sentations). An HTLP scheme (HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) is correct (for the class C) if for
all λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈ Sn, all pp in the
support of HP.PSetup(1λ, T ), and all Zi in the support of HP.PGen(pp, si), the following two conditions are
satisfied:

– There exists a negligible function µ(·) such that

Pr
[
HP.PSolve(pp,HP.PEval(C, pp, Z1, . . . , Zn)) 6= C(s1, . . . , sn)

]
≤ µ(λ).

– There exists a fixed polynomial p(·) such that the runtime of HP.PSolve(pp, Z) is bounded by p(λ, T ),
where Z ← HP.PEval(C, pp, Z1, . . . , Zn).
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The central property for HTLPs is compactness, which requires that the size of evaluated ciphertexts is
independent of the size of the circuit and that the running time of the evaluation algorithm is independent
of the hardness parameter.

Definition 20 (Compactness). Let C = {Cλ}λ∈N be a class of circuits (together with their respective
representations). An HTLP scheme (HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) is compact (for the class C)
if for all λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈ Sn, all pp in
the support of HP.PSetup(1λ, T ), and all Zi in the support of HP.PGen(pp, si), the following two conditions
are satisfied:

– There exists a fixed polynomial p(·) such that |Z| = p(λ, |C(s1, . . . , sn)|), where Z ← HP.PEval(C, pp, Z1,
. . . , Zn).

– There exists a fixed polynomial p̃(·) such that the runtime of HP.PEval(C, pp, Z1, . . . , Zn) is bounded by
p̃(λ, |C|).

Finally we observe that one can define circuit privacy for HTLPs analogously to the FHE notion. Since it
is not of significance for our applications we refrain from giving a formal definition and we refer the reader
to [27].

4 Constructions

In this section we describe our HTLP schemes for different classes of functions.

4.1 Linearly Homomorphic

We describe a scheme (LHTLP) homomorphic over the ring (ZN ,+) below.

LHP.PSetup(1λ, T ) :

– Sample a pair of primes (p, q) such that p = 2p′+ 1 and q = 2q′+ 1, where p′ and q′ are also primes,
and set N := p · q.

– Sample a uniform g̃←$Z∗N and set g := −g̃2 (mod N).

– Compute h := g2
T

, which can be optimized by reducing 2T modulo ϕ(N)/2 first.
– Output pp := (T , N, g, h).

LHP.PGen(pp, s) :

– Parse pp := (T , N, g, h).
– Sample a uniform r←$ {1, . . . , N2}.
– Generate the elements u := gr (mod N) and v := hr·N · (1 +N)s (mod N2).
– Output Z := (u, v) as the puzzle.

LHP.PSolve(pp, Z) :

– Parse pp := (T , N, g, h).
– Parse the puzzle Z := (u, v).

– Compute w := u2
T

(mod N) by repeated squaring.

– Output s := v/(w)N (mod N2)−1
N as the solution.

LHP.PEval(⊕, pp, Z1, . . . , Zn) :

– Parse pp := (T , N, g, h).
– Parse every Zi := (ui, vi) ∈ JN × Z∗N2 .
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– Compute ũ :=
∏n
i=1 ui (mod N) and ṽ :=

∏n
i=1 vi (mod N2).

– Output the puzzle (ũ, ṽ).

To see why the scheme is correct, observe that

s̃ =
ṽ/(w̃)N (mod N2)− 1

N

=

∏n
i=1 vi/

(∏n
i=1 u

2T

i (mod N)
)N

(mod N2)− 1

N

=

∏n
i=1 h

ri·N · (1 +N)si/ (
∏n
i=1 h

ri (mod N))
N

(mod N2)− 1

N

=

∏n
i=1 h

ri·N · (1 +N)si/
∏n
i=1 h

ri·N (mod N2)− 1

N

=
(1 +N)

∑n
i=1 si (mod N2)− 1

N

by Lemma 2. Furthermore,

s̃ =
(1 +N)

∑n
i=1 si (mod N2)− 1

N
=

1 +N ·
∑n
i=1 si − 1

N
=

n∑
i=1

si

by binomial expansion. The security of our construction is shown in the following.

Theorem 1. Let N be a strong RSA integer. If the sequential squaring assumption and the DDH assump-
tions hold over JN and the DCR assumption hold over Z∗N2 , then the scheme LHTLP is a secure homomorphic
time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: Is defined as the original scheme.

Hybrid H1: In this hybrid h is sampled uniformly from JN , instead of being computed as h := g2
T

. Let
(A1,A2) be an efficient distinguisher where the depth of A2 is less than T . We construct the following
reduction against the sequential squaring assumption: The reduction runs the adversary A1 on input the
security parameter 1λ and receives two secrets (s0, s1) and some advice τ . Then receives as input the tuple
(N, g, T , x, y), sets pp := (T , N, x, y) and computes Z exactly as specified by the scheme using sb as the
solution, for a random b←$ {0, 1}. Then it invokes the adversary A2 on input (pp, Z, τ) and outputs whatever
A2 returns. Observe that the depth of the reduction is only a constant fraction larger than that of A2. We
the analyze the two cases separately.

1. (N, g, x, y) is a uniform tuple: Then x = g and y = h are uniform in JN . Thus

(T , N, x, y) = (T , N, g, h)

is distributed as in H1.
2. (N, g, x, y, z) is a squared tuple: In this case we have that (N, g, x, y) = (N, g, x, x2

T
). Which means that

the tuple

(T , N, x, y) = (T , N, g, g2
T

)

is distributed according to H0.

Thus the existence of an efficient distinguisher (with depth smaller than T ) between the two hybrids con-
tradicts the sequential squaring assumption.
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Hybrid H2: In this hybrid r is sampled from the set {1, . . . , ϕ(N)/2}, rather than {1, . . . , N2}. The two
hybrids are statistically indistinguishable by Lemma 1. We stress that the encrypter does not know ϕ(N)/2,
however the argument is purely statistical and therefore there is no need for a polynomial-time simulation.

Hybrid H3: In this hybrid u is sampled uniformly at random from JN . We show indistinguishability with
a reduction against the DDH assumption over JN . The reduction runs the adversary on input the security
parameter to receive (τ, s0, s1). On input (N, g, gx, gy, gz), the reduction sets the public parameters of the
scheme to (T , N, g, gx) and the puzzle to (gy, (gz)N · (1 + N)sb), then feeds A2 with those inputs and it
returns whatever the adversary returns. Clearly the reduction is efficient, so what is left to be shown is that
the inputs are distributed correctly, according to the two hybrids.

1. (N, g, gx, gy, gz) is a uniform tuple: Then gx = h is uniform in JN , gy = u is uniform in JN , and gz is
uniform in JN , so we rewrite it as gz = hr (for some random r ∈ {1, . . . , ϕ(N)/2}). Thus

(T , N, g, gx), (gy, (gz)N · (1 +N)sb) = (T , N, g, h), (u, hr·N · (1 +N)sb)

are distributed identically to H3.
2. (N, g, gx, gy, gz) is a DDH tuple: For the sake of clarity we rewrite the input tuple as (N, g, gx, gy, gxy).

Fix gx = h and observe that the tuples

(T , N, g, gx), (gy, (gxy)N · (1 +N)sb) = (T , N, g, h), (gy, hy·N · (1 +N)sb)

are distributed according to H2.

It follows that any non negligible advantage in distinguishing the two hybrids directly implies an attack
against DDH.

Hybrid H4: In this hybrid v is computed as w · (1 + N)sb (mod N2), where w is uniformly sampled
from Z∗N2 (constrained on having Jacobi symbol +1). Consider the following reduction against the DCR
assumption: Prior to the challenge, the reduction runs A1 on input 1λ and receives (τ, s0, s1). On input
(N, y), the reduction sets N as the modulus and samples g and h uniformly from JN (as specified in the
H3). Then it computes the Jacobi symbol of y and samples some ỹ with the same Jacobi symbol as y. Then
it samples some u←$ JN and sets v := y · ỹN · (1 +N)sb (mod N2), for a uniform b←$ {0, 1}. Finally it runs
A2 on input ((T , N, g, h), (u, v)) and returns whatever A2 returns. Note that the reduction is efficient since
the Jacobi symbol is efficiently computable without the factorization of N . If y is uniform in Z∗N2 , then so
is y · ỹN (mod N2), and therefore the reduction perfectly simulates H4. On the other hand if y is an N -th
residue, then y · ỹN = xN · ỹN = (xỹ)N (mod N2) is also an N -th residue. Note that the Jacobi symbol of
xỹ is +1, since the Jacobi symbol is multiplicatively homomorphic. It follows that in this case the inputs of
the reduction are identical to that of H3. We can therefore bound from above the distance between these
two hybrids by a negligible amount.

Observe that in the last hybrid every bit of information about the message is lost. This concludes our proof.

4.2 Multiplicatively Homomorphic

In the following we describe our scheme (MHTLP) which is multiplicatively homomorphic over the ring
(JN , ·). The algorithms are described below.

MHP.PSetup(1λ, T ) :

– Sample a pair of primes (p, q) such that p = 2p′+ 1 and q = 2q′+ 1, where p′ and q′ are also primes,
and set N := p · q.

– Sample a uniform g̃←$Z∗N and set g := −g̃2 (mod N).

– Compute h := g2
T

, which can be optimized by reducing 2T modulo ϕ(N)/2 first.
– Output pp := (T , N, g, h).

MHP.PGen(pp, s) :
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– Parse pp := (T , N, g, h).
– Sample a uniform r←$ {1, . . . , N2}.
– Generate the elements u := gr (mod N) and v := hr · s (mod N).
– Output Z := (u, v) as the puzzle.

MHP.PSolve(pp, Z) :

– Parse pp := (T , N, g, h).
– Parse the puzzle Z := (u, v).

– Compute w := u2
T

(mod N) by repeated squaring.
– Output s := v/w as the solution.

MHP.PEval(⊗, pp, Z1, . . . , Zn) :

– Parse pp := (T , N, g, h).
– Parse every Zi := (ui, vi) ∈ J2N .
– Compute ũ :=

∏n
i=1 ui (mod N) and ṽ :=

∏n
i=1 vi (mod N).

– Output the puzzle (ũ, ṽ).

For correctness it suffices to observe that

s̃ =
ṽ

w̃
=

ṽ

ũ2T
=

∏n
i=1 vi∏n
i=1 u

2T
i

=

∏n
i=1 h

ri · si∏n
i=1 g

ri·2T
=

∏n
i=1 h

ri · si∏n
i=1 h

ri
=

n∏
i=1

si.

For security we prove the following theorem.

Theorem 2. Let N be a strong RSA integer. If the sequential squaring and the DDH assumptions hold over
JN , then the scheme MHTLP is a secure homomorphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: Is defined as the original scheme.

Hybrid H1: Same as Theorem 1.

Hybrid H2: Same as Theorem 1.

Hybrid H3: In this hybrid v is computed as w · s, for a uniform w←$ JN . Indistinguishability follows
from an invocation of the DDH assumption over JN : The reduction runs the adversary on input the security
parameter and receives (τ, s0, s1). On input (N, g, gx, gy, gz), the reduction sets the public parameters of the
scheme to (T , N, g, gx) and computes the puzzle Z as (gy, gz · sb), for a randomly sampled b←$ {0, 1}. The
adversary is fed with (pp, Z, τ) and the reduction returns whatever the adversary returns. The reduction is
clearly polynomial-time. We consider the two distributions in the following.

1. (N, g, gx, gy, gz) is a uniform tuple: Then the tuples

(T , N, g, gx), (gy, gz · sb) = (T , N, g, h), (gy, w · sb)

are distributed identically to H3.
2. (N, g, gx, gy, gz) is a DDH tuple: For the sake of clarity we rewrite the input tuple as (N, g, gx, gy, gxy).

Fix gx = h and observe that the tuples

(T , N, g, gx), (gy, gxy · sb) = (T , N, g, h), (gy, hy · sb)

are distributed according to H2.

It follows that any non negligible advantage in distinguishing the two hybrids directly implies an attack
against DDH.

The proof is concluded by observing that in H3 the secret sb is information-theoretically hidden by w.
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XOR-Homomorphism. If we set N to be a Blum integer and encode the secret s ∈ {0, 1} as (−1)s, then
the same construction gives us an XOR homomorphic scheme. This is because if N is a Blum integer, then
(±1, ·) is a subgroup of JN .

4.3 Fully Homomorphic

In the following we describe our construction for a fully-homomorphic time-lock puzzle (FHTLP). Without
loss of generality we consider binary secrets and circuits that are composed exclusively by NAND gates. Let
(KeyGen,Enc,Dec, tKeyGen) be a trapdoor encryption scheme, (Key,Puncture,PRF) be a puncturable PRF,
(PGen,PSolve) be any (non-homomorphic) time-lock puzzle, piO be an obfuscator for probabilistic circuits,

and iO be an obfuscator for deterministic circuits. Define the circuit Prog(sk ,pk)(α, β) and MProg(sk0,k,k
′)(i)

as

Prog(sk ,pk)(α, β) :

parse α := (zα, cα)

parse β := (zβ , cβ)

sα ← Dec(sk , cα), sβ ← Dec(sk , cβ)

s := sα NAND sβ

z ← PGen(T , s)
c← Enc(pk , s)

return (z, c)

MProg(sk0,k,k
′)(i) :

ri−1 ← PRF(k, i− 1)

ri ← PRF(k, i), r′i ← PRF(k′, i)

(pk i−1, sk i−1)← KeyGen(1λ; ri−1)

(pk i, sk i)← KeyGen(1λ, ri)

Pi ← Prog(ski−1,pki)

Λi ← piO(1p, Pi; r
′
i)

return (Λi)

Let L be a super-polynomial function L(λ) := 2ω(log(λ)). The four algorithms of the scheme are described
below.

FHP.PSetup(1λ, T ) :

– Sample a pair of keys (pk0, sk0)← KeyGen(1λ)
– Sample two PRF keys k, k′ ← Key(1λ)

– Obfuscate using iO the circuit MProg(sk0,k,k
′), that is, sample MEvk ← iO(1p,MProg(sk0,k,k

′))

where the security parameter p = p(λ) for obfuscation is an upper-bound on the size of MProg(sk0,k,k
′).

– Output pp := (T , pk0,MEvk).

FHP.PGen(pp, s) :

– Parse pp := (T , pk0,MEvk).
– Generate a ciphertext c← Enc(pk0, s).
– Generate a puzzle z ← PGen(T , s).
– Output Z := (z, c) as the puzzle.

FHP.PSolve(pp, Z) :

– Parse the puzzle Z := (z, c).
– Compute s← PSolve(z) and output s as the solution.

FHP.PEval(C, pp, Z1, . . . , Zn) :

– Evaluate C (of depth ` ≤ L(λ)) layer by layer. For iteration i ∈ {0, . . . , `}, generate the evaluation
key for the layer as Λi ← MEvk(i).

– For each NAND gate g in this layer i, let α(g), β(g) be the puzzles of the values of its input wires
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– Evaluate g homomorphically by computing γ(g) = Λi(α(g), β(g)) as the puzzle of the value of g’s
output wire.

– Output the puzzle generated in the last iteration `.

Correctness easily follows from the correctness of the underlying primitives. Towards arguing about security,
we define a useful subroutine tProg(tpk)(α, β) as follows

tProg(tpk)(α, β) :

z ← PGen(T , 0)

c← Enc(tpk , 0)

return (z, c)

which is instrumental for probabilistic obfuscator piO. Let SK = {skλ} be the set of all strings of length
n = n(λ). Define the distribution DSK as follows: Sample a trapdoor key tpk ← tKeyGen(1λ) and some

sk ←$SK and return (C0 = Prog(sk ,tpk), C1 = tProg(tpk), tpk). Then S is the class of samplers that include
the distribution ensembles DSK for all strings SK of length n. Security is established by the following
theorem and the proof is given in Section A.

Theorem 3. Let (PGen,PSolve) be a secure time-lock puzzle. Define µ(λ) := µ̃(λ) · L−1, where µ̃(·) is
some negligible function. Assume the following primitives with distinguishing gaps bounded by µ(λ) against
a polynomial-size adversary who’s depth is bounded by T ε(λ), for some constant ε < 1:

– (KeyGen,Enc,Dec, tKeyGen) is a secure µ-hiding trapdoor encryption scheme,
– piO is a secure indistinguishable obfuscator for the class of samplers S,
– iO is a secure indistinguishable obfuscator for circuits, and
– (Key,Puncture,PRF) is a secure puncturable PRF.

Then, the scheme FHTLP is a secure homomorphic time-lock puzzle.

5 Extensions

In the following we explore and discuss several extensions of our constructions.

5.1 Semi-Compact Scheme for Branching Programs

The linearly homomorphic scheme described in Section 4.1 can be easily generalized to higher powers of N ,
along the lines of the work of Damgrd and Jurik [11], where the message domain is ZNy−1 and the ciphertexts
live in ZNy , for an arbitrary y ∈ N. The public parameters are identical to the ones generated by LHP.PSetup,
whereas the puzzle is generated as

u := gr (mod N) and v := hr·N
y−1

· (1 +N)s (mod Ny).

The solving algorithm factors hr·N
y−1

(mod Ny) out of v, via a series of sequential squarings, and recovers s
from (1 +N)s (mod Ny) using the polynomial-time discrete-logarithm algorithm described in [11]. Security
follows from a natural generalization of the DCR assumption, also introduced in [11].

Note that the asymptotic message-ciphertext rate approaches 1 as y grows. This is desirable from a
practical perspective but also it allows us to instantiate the compiler of Ishai and Paskin [21] with our
extended scheme: As a corollary we obtain a (semi-compact) HTLP for branching programs (a superclass of
NC1) where the ciphertext size grows linearly in the length of the branching program but does not depend
on its width.
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5.2 Reusing the Setup

A shortcoming of our primitive is that security is guaranteed to hold against a depth-constrained adversary
that takes as input both the public parameters pp and the puzzle Z. This is equivalent to saying that the
secrets are hidden until time T since the generation of the setup rather than the generation of the puzzle.
From a practical perspective, this cripples the applicability of our primitive since the public parameters need
to be re-initialized after time T .

Ideally, we would like to set the public parameters once and for all and compute polynomially many
puzzles at arbitrary time intervals. Each puzzle should then hide the secret until time T , starting from the
generation of the puzzle itself. Thus we consider a two stage adversary (A1,A2), where A1 is polynomial-size
(unbounded depth) and is allowed to craft the polynomial-size advice τ after being given the the public
parameters pp. Then the depth-bounded A2 is asked to guess the bit b on input the puzzle Z and the advice
τ . This is formalized in the following.

Definition 21 (Reusable Security of HTLP). An HTLP scheme (HP.PSetup,HP.PGen,HP.PSolve,HP.PEval)
is reusable secure with gap ε < 1 if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·)
and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above
by T ε(λ), there exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr

b← A2(Z, τ) :

pp← HP.PSetup(1λ, T (λ))
(τ, s0, s1)← A1(pp)
b←$ {0, 1}
Z ← HP.PGen(pp, sb)

 ≤ 1

2
+ µ(λ)

and (s0, s1) ∈ S2.

Arguing about the security of the constructions described in Section 4.1 and Section 4.2 in these settings
requires a slightly modified version of the standard sequential squaring assumption (Assumption 1) that we
describe below.

Assumption 4 (Strong Sequential Squaring) Let N be a uniformly sampled strong RSA integer, g be a
generator of JN , and T (·) be a polynomial. Then there exists some 0 < ε < 1 such that for every polynomial-
size adversary (A1,A2) = {(A1,A2)λ}λ∈N, where the depth of A2 is bounded from above by T ε(λ), there
exists a negligible function µ(·) such that

Pr

b← A2(x, y, τ) :

τ ← A1(N, g, T (λ))
x←$ JN ; b←$ {0, 1}
if b = 0 then y←$ JN
if b = 1 then y := x2

T (λ)

 ≤ 1

2
+ µ(λ).

This essentially corresponds to stating that the prior knowledge of the group structure does not help one
breaking the sequentiality of the squaring operation, which seems to be a mild strengthening of the original
conjecture. We remark that similar assumptions have already appeared in the context of verifiable delay
functions [29,31,5]. We are now ready to state the following theorems.

Theorem 4. Let N be a strong RSA integer. If the strong sequential squaring assumption and the DCR
assumption hold over JN and Z∗N2 , respectively, then the scheme LHTLP is a reusable secure homomorphic
time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: In this hybrid r is randomly sampled from {1, . . . , ϕ(N)/2}. By Lemma 1, H0 and H1 are
statistically close.
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Hybrid H2: In this hybrid v is computed as zN · (1 +N)sb (mod N2), for a uniform z←$ JN . Let (A1,A2)
be an efficient distinguisher where the depth of A2 is less than T . We construct the following reduction
(R1,R2) against the strong sequential squaring assumption: R1 takes as input the tuple (N, g, T ) and

computes h := g2
T

, then it sets pp := (T , N, g, h) and runs A1(pp), who outputs some (τ, s0, s1), which
is also the output of R1. The challenger sends to R2 the triple (x, y, (τ, s0, s1)), who sets u := x and
v := yN · (1 + N)sb (mod N2), for a random b←$ {0, 1}, and runs A2((u, v), τ) outputting whatever the
adversary outputs. Observe that R1 is efficient, since T is a polynomial, and that the depth of R2 is
identical (up to a constant factor) to that of A2. We distinguish two cases.

1. y = x2
T

: Let x = gr, for some r ∈ {1, . . . , ϕ(N)/2}. Then the puzzle

(u, v) = (x, x2
T ·N · (1 +N)sb (mod N2)) = (gr, hr·N · (1 +N)sb (mod N2))

is distributed according to H1.
2. y←$ JN : In this case the puzzle

(u, v) = (x, yN · (1 +N)sb (mod N2))

is distributed according to H2.

Thus the existence of (R1,R2) contradicts the sequential squaring assumption.

Hybrid H3: In this hybrid v is computed as w · (1 +N)sb (mod N2), where w is uniformly sampled from
Z∗N2 (constrained to have Jacobi symbol +1). The indistinguishability follows from an invocation of the DCR
assumption and the argument is identical to the last hybrid of Theorem 1.

The proof concludes by observing that the message in the last hybrid is hidden in an information-theoretic
sense.

Theorem 5. Let N be a strong RSA integer. If the strong sequential squaring assumption holds over JN ,
then the scheme MHTLP is a secure reusable homomorphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: Same as Theorem 4.

Hybrid H2: In this hybrid we compute v as w · s, for a uniform w←$ JN . The two hybrids are indistin-
guishable by the sequential squaring assumption over JN . Consider the following two-stage reduction: R1

takes as input the tuple (N, g, T ) and computes h := g2
T

, then it sets pp := (T , N, g, h) and runs A1(pp),
who outputs some message (τ, s0, s1). The output of R1 is the string (τ, s0, s1). The challenger provides R2

with the triple (x, y, (τ, s0, s1)), who sets u := x and v := y · sb and runs A2((u, v), τ) and outputs whatever
the adversary outputs. Observe that R1 is efficient, since T is a polynomial, and that the depth of R2 is

close to that of A. It is not hard to see that whenever y = x2
T

then reduction reproduces the distribution
of H1, whereas if y is uniformly sampled in JN , then the simulation is identical to H2. Thus the success
probability of R is identical to that of A. This contradicts the sequential squaring assumption and bounds
the difference between the two hybrids to a negligible factor.

Observe that in H2 the puzzle consists of two uniform elements of JN .

5.3 Public-Coin Setup

All of our schemes require a trusted setup where the random coins have to be kept private. If revealed, they
would give one an unfair advantage in solving any puzzle. This does not seem to be an inherent limitation of
the primitive and we could envision a dream-version of HTLPs where the setup can be run with public random
coins. Towards this objective, one can generalize the techniques presented in Section 4.1 and Section 4.2 to
hidden-order groups with public-coin setups [8], however this would hinder the efficiency of the schemes as
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the tuple (g, h = g2
T

) is no longer efficiently computable (by assumption). Depending on T , this may require
a significant initial investment in terms of computation.

Nevertheless, for certain applications (e.g., e-voting or sealed bid auctions) it might be perfectly acceptable
to run T sequential squarings ahead of time to generate the tuple (g, h). Note that, in the variants described
above, the puzzle is guaranteed to hide the payload for time proportional to T , starting from the moment
the puzzle is published. Therefore arbitrarily many puzzles can be efficiently spawned once (g, h) is fixed.
Constructing an HTLP with an efficient public-coin setup is a fascinating open question.

5.4 Combining Puzzles of Different Hardness

Another limitation of our schemes is that the time parameter T is fixed once and for all in the setup. An
easy solution to make our construction more flexible is to augment the setup with multiple (T1, . . . , Tn). For
the constructions in Section 4.1 and Section 4.2 is sufficient to set the public parameters as

pp :=
(
g, h1 := g2

T1
, . . . , hn := g2

Tn
)

which can be efficiently computed using the factors of N . Our scheme in Section 4.3 can also be extended
by producing different obfuscated circuits (MEvk (1), . . . ,MEvk (n)), with the appropriate Ti hardwired. Here
it is important that the obfuscated circuits are sampled with fresh coins, so also the corresponding keys

(pk
(1)
0 , . . . , pk

(n)
0 ) must be included in the setup.

It turns out that one can even combine puzzles generated with different parameters T1 and T2 in a natural
way: Assume without loss of generality that T1 > T2, then clearly 2T2 · t̃ = 2T1 , for some integer t̃ = 2t. Then
the homomorphic evaluation over two puzzles (u1, v1) and (u2, v2) is done as follows

ũ := u2
t

1 · u2 (mod N) and ṽ := v1 · v2 (mod N2) / (mod N),

where the second modulus depends on whether we are considering linearly or multiplicatively homomorphic
puzzles. Note that the hardness of the resulting puzzles (ũ, ṽ) corresponds to the time proportional to solving
it (T2) + homomorphic evaluation (t) = T1. This is aligned with the expectation that the evaluation algorithm
does not decrease the difficulty of a puzzle. For the fully-homomorphic construction the argument is a bit
more delicate since the obfuscated circuits contain a trapdoor to efficiently solve the puzzles. Therefore, one
has to ensure that the puzzles are re-encoded with the correct hardness parameter. This can be done via
standard techniques, e.g., signing the puzzles and verifying the signatures inside the obfuscated circuits.

6 Applications

In this section we present some of the most interesting applications of HTLPs. We stress that our purpose
is to demonstrate the usefulness of our primitive in broader contexts and not to construct systems that
are ready to be deployed in practice. The precise implementation and the complete characterization of the
security of such systems is beyond the scope of this work. In favor of a simpler presentation, we implicitly
assume that all HTLPs are well-formed and all secrets are sampled from the correct domains. This can be
always enforced by augmenting our schemes with non-interactive zero-knowledge proofs [13].

6.1 E-Voting

We construct an e-voting protocol with n voters and m candidates. An e-voting protocol consists of a voting
phase and a counting phase and proceeds as follows: During the voting phase, each voter casts a vote for one
of the candidates and the votes are counted during the subsequent counting phase. Finally the candidate
with the largest amount of votes is announced as the winner of the election. The votes must be kept hidden
for the duration of the first phase to avoid any bias.
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Let T be the time bound of the voting phase. We propose an e-voting protocol based on our linearly
homomorphic time-lock puzzle from Section 4.1. Here, the i-th vote, denoted by votei, consists of a tuple of
m time-lock puzzles where the secret encoded is always 0 except at position j, where the secret is 1. This
encodes the preference for the j-th candidate Cj . After receiving votes from all the voters, the puzzles are
combined homomorphically to sum up the number of preferences for each candidate. We eventually obtain
a final vote consisting of m puzzles, which are then solved to obtain the final vote tallies for each candidate.

Election Setup: Generate the public parameters pp ← LHP.PSetup(1λ, T ) and publish them so that
they are accessible to all the voters.

Voting Phase: Each voter Vi, on deciding to vote the j-th candidate Cj (where j ∈ {1, . . . ,m}) does
the following.

– For all j′ ∈ {1, . . . ,m}/j, generate Zj′ ← LHP.PGen(pp, 0).
– Generate Zj ← LHP.PGen(pp, 1).
– Compute votei = (Z1, . . . , Zm) and output votei as the vote.

Counting Phase: Collect votes from all voters denoted by (vote1, . . . , voten) and do the following.

– Parse each vote as votei = (Z
(i)
1 , . . . , Z

(i)
m ).

– For all j ∈ {1, . . . ,m}:
• Compute the puzzle Z̃j ← LHP.PEval(⊕, pp, Z(1)

j , . . . , Z
(n)
j ).

• Count the votes received by j-candidate by vj ← LHP.PSolve(pp, Z̃j).
– Output j∗-th candidate as the winner of the election, where vj∗ = max(v1, . . . , vm).

By the security of LHTLP, the votes remain hidden for the whole duration of the voting phase. Furthermore,
observe that we eventually need to only solve m puzzles, one puzzle per candidate. This is regardless on how
many users go offline before the counting phase.

6.2 Multi-Party Coin Flipping

We consider the settings where n parties want to flip a coin in such a way that (i) the value of the coin
is unbiased even if n − 1 parties collude and (ii) all parties agree on the same value for the coin. Consider
the protocol where parties commit to a bit and the result is the XOR of all the bits. The problem with this
simple solution is that one party that controls the network traffic might learn all of the other bits and go
offline if he does not agree with the outcome, thus biasing the result.

We propose the use of our linearly homomorphic time-lock puzzles to solve this problem. Let T be a
bound on the runtime of the protocol. In our protocol, LHP.PSetup(1λ, T ) is run first to generate the public
parameters pp. Then, every party Pi randomly chooses a bit bi←$ {0, 1} and generates a time-lock puzzle
as Zi ← LHP.PGen(pp, bi) before publishing it. Once Pi receives the puzzles from all other parties, it runs
Z ← LHP.PEval(⊕, pp, Z1, . . . , Zn) to obtain the puzzle Z encoding the sum of all secrets. Each party Pi can
solve Z to recover the corresponding s and output its least significant bit as the result of the coin flipping.
Observe that only one puzzle needs to be solved regardless of the number of participants, even if everyone
goes offline after the first phase. Since the time-lock puzzle is correct, then so is our protocol, furthermore
the coins is unbiased by the security of LHTLP (in the timing model).

Setup: Generate the public parameters pp ← LHP.PSetup(1λ, T ) and publish them so that they are
accessible to all the parties.

Coin Flipping: Each party Pi does the following.

– Choose bi←$ {0, 1},
– Generate Zi ← LHP.PGen(pp, bi).
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– Broadcast Zi to all other parties.

Announcement of the Result: Each party Pi collects all the puzzles Z1, . . . , Zn from other parties
and does the following.

– Compute the final puzzle Z ← LHP.PEval(⊕, pp, Z1, . . . , Zn).
– Solve the final puzzle as s← LHP.PSolve(pp, Z)
– Output b← LSB(s) as the final result of the coin flipping.

6.3 Sealed Bid Auctions

Consider the settings where an auction is conducted with a set of n bidders (B1, . . . , Bn). The bids are sealed
throughout the bidding phase and disclosed during the opening phase. Once all of the bids are revealed,
the highest bidder (or some other bidder depending on the allocation rule of the auction) is awarded as
the winner. Sealed-bid auctions are one of the motivating examples for the usage of time-lock puzzles [6].
However, current solutions do not scale well with the amount of users going offline after the first phase.

To counter this issue we propose a protocol very similar to the coin-flipping one, where the setup generates
the public parameters of the time-lock puzzles pp. In the bidding phase, each bidder generates a puzzle Zi
on input a bound T and his bid. The winner of the auction is the recovered by homomorphically evaluating
the circuit Γ over all bids, where Γ computes the highest bid from a given list of bids and outputs the index
of the corresponding bidder. Also in this case, only one puzzle has to be solved in the announcement phase.
However, the function that needs to be homomorphically evaluated is no longer linear and therefore one
needs to resort to fully-homomorphic time-lock puzzles (such as the scheme described in Section 4.3).

6.4 Multi-Party Contract Signing

Consider the settings where n mutually distrusting parties want to jointly sign a contract. The contract is
enforceable only if signed by all parties. In a naive approach, a party Pi collects the signatures that were
broadcast by all other parties and add its own to seal the contract. However, if Pi fails to broadcast its own
signature, other parties are left empty-handed.

We propose a solution based on the combination of multiplicatively homomorphic time-lock puzzles (as
described in Section 4.2) and RSA-aggregate signatures [20]. Loosely speaking, an aggregate signature scheme
allows one to publicly combine signatures over different messages and under different keys in such a way
that the digest is still efficiently verifiable. The crucial property of the construction of Hohenberger and
Waters [20] is that signatures σ are elements of QRN , for some fixed RSA integer N , and the aggregation of
((pk1,m1, σ1), . . . , (pkn,mn, σn)) is computed as

σagg =

n∏
j=1

σj (mod N).

Since QRN is a subgroup of JN , we can seamlessly compute the aggregation function homomorphically.
Let M be the contract to be signed. Our contract-signing protocol proceeds as follows: In the setup phase,
the public parameters of the Hohenberger-Waters signature scheme (Setup,KeyGen,Sign) and of MHTLP
(with reusable setup) are generated. Note that we implicitly assume that both setup algorithms sample
the same strong RSA integer N . Then we fix T1 := T for some fixed T (which is suggested to be in the

order of 230 − 250 in [6]) and each Ti is defined as Ti−1

2 , until T` := 2. Each user generates a key pair

(pk i, sk i) and enters in the following loop. In the k-th iteration, each party Pi generates a signature σ
(k)
i

on the contract M via the signing algorithm Sign4. Then it time-locks σ
(k)
i with a timing hardness Tk via

Z
(k)
i ← MHP.PGen(pp2, σ

(k)
i , Tk) and broadcasts Z

(k)
i . If every user successfully broadcasts Z

(k)
i , then the

4 In [20] the signing algorithm requires an additional timing parameter, which we fix to be the round number and
omit for the sake of clarity.
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protocol proceeds to the next iteration. Otherwise each party collects the puzzles (Z
(k−1)
1 , . . . , Z

(k−1)
n ) from

the previous iteration and generates the final puzzle as Z(k−1) ← MHP.PEval(⊗, pp2, Z(k−1)
1 , . . . , Z

(k−1)
n ).

Solving this final puzzle reveals the aggregated signature σagg on M .

Setup Phase: Generate the public parameters of the aggregate signature scheme as pp1 ← Setup(1λ, 1T )
and the public parameters of the time-lock puzzle MHTLP (with reusable setup and multiple hardness
parameters) as pp2 ← MHP.PSetup(1λ, T1, T2, . . . , T`) and broadcast it to all parties.

Key Generation Phase: Before the start of the first iteration, each party Pi executes the key gener-
ation algorithm (pk i, sk i)← KeyGen(pp1) to generate a public and private key pair (pk i, sk i).

Signing Phase: At the beginning of the k-th iteration, each party Pi does the following.

– Generate a signature on M as σ
(k)
i ← Sign(pp1, sk i,M).

– Time-lock the signature via Z
(k)
i ← MHP.PGen(pp2, σ

(k)
i , Tk) with timing hardness Tk and broadcast

the puzzle.

Aggregation phase: If all parties had broadcast their puzzles, proceed to (k + 1)-th iteration. If not
(or if k = `), each party Pi does the following.

– Collect the puzzles (Z
(k−1)
1 , . . . , Z

(k−1)
n ) from the (k − 1)-th iteration.

– Generate the final puzzle as

Z(k−1) ← MHP.PEval(⊗, pp2, Z(k−1)
1 , . . . , Z

(k−1)
n ).

– Solve the puzzle to obtain the aggregated signature
σagg ← MHP.PSolve(pp2, Z

(k−1)) on M .
– Output (M,σagg).
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A Proof of Theorem 3

Proof. Our proof follows as a minor modification of the argument of Lemma 3.10 from [9]. For completeness,
we show the analysis in the following. Let A be an adversary such that A’s depth is bounded by T ε(λ). We
want to show that for every λ ∈ N, the following holds:

Pr

b← A2(pp, Z) :
pp← FHP.PSetup(1λ, T (λ))
b←$ {0, 1}
Z ← FHP.PGen(pp, b)

 ≤ 1

2
+ ν(λ)

where ν(·) is some negligible function. Towards this objective we define a sequence of hybrids.

Hybrid Hbreal: Defined as the original game. Note that the distribution induced by this hybrid, to they eyes
of the adversary, is (

T , pk0,MEvk ← iO(1p,MProg(sk0,k,k
′)), (PGen(T , b),Enc(pk0, b))

)
.

Hybrid Hbinter: Defined as the previous hybrid except that the time-lock puzzle of the challenge ciphertext
is computed hardwiring the secret to 0. The corresponding distribution is(

T , pk0,MEvk ← iO(1p,MProg(sk0,k,k
′)),
(
PGen(T , 0) ,Enc(pk0, b)

))
.

It is easy to show that Hbreal and Hbinter are computationally indistinguishable for an attacker of depth at most
T ε(λ) by an invocation of the security of the time-lock puzzle.

Hybrid Hbideal: Defined as the previous experiment except that the evaluation key is sampled by obfuscating

the trapdoor circuit tMProg(k,k
′)(i) defined as

tMProg(k,k
′)(i) :

ri ← PRF(k, i), r′i ← PRF(k′, i)

(tpk i)← tKeyGen(1λ; ri)

tPi ← tProg(tpki)

tΛi ← piO(1p, tPi; r
′
i)

return (tΛi)

and padded to the maximum circuit size. Thus, the view of the adversary is given by the following ensemble(
T , pk0,MEvk ← iO(1p, tMProg(k,k

′)) , (PGen(T , 0),Enc(pk0, b))

)
.

Observe that in Hbideal the view of the adversary is completely independent from the secret key sk0 and
therefore it holds that(

T , pk0,MEvk ← iO(1p, tMProg(k,k
′)), (PGen(T , 0),Enc(pk0, 0))

)
≈µ
(
T , pk0,MEvk ← iO(1p, tMProg(k,k

′)),
(
PGen(T , 0), Enc(pk0, 1)

))
by an invocation of the µ-hiding of the trapdoor encryption scheme. This implies that H0

ideal and H1
ideal

are computationally indistinguishable to the eyes of the adversary. Thus, all it is left to be shown is that
Hbinter and Hbideal are computationally indistinguishable. Towards this goal, consider the following sequence of
intermediate hybrids.

Hybrid Hb` for 0 ≤ ` ≤ L: These hybrids are identical to Hbinter except that MEvk is generated in a

different way. More specifically, instead of obfuscating the honest master evaluation program MProg(sk0,k,k
′),

obfuscate hMProg
(sk0,k,k

′)
` (i) (padded to the maximum circuit size) defined as
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hMProg
(sk0,k,k

′)
` (i) :

if i < L − ` then

Λi ← MProg(sk0,k,k
′)

return Λi

elseif i > L − ` then

tΛi ← tMProg(k,k
′)

return tΛi

elseif i = L − ` then
ri−1 ← PRF(k, i− 1), ri ← PRF(k, i), r′i ← PRF(k′, i)

(pk i−1, sk i−1)← KeyGen(1λ; ri−1)

tpk i ← tKeyGen(1λ, ri)

Pi ← Prog(ski−1,tpki)

hΛi ← piO(1p, Pi; r
′
i)

return (hΛi)

endif

The distribution induced by each hybrid is(
T , pk0,MEvk ` ← iO(1p, hMProg

(sk0,k,k
′)

` ) , (PGen(T , 0),Enc(pk0, b))

)
where pk0, sk0, k, k

′ are all randomly sampled. Observe that hMProg
(sk0,k,k

′)
0 ) is functionally equivalent to

MProg(sk0,k,k
′)) and therefore(

T , pk0,MEvk ← iO(1p,MProg(sk0,k,k
′)), (PGen(T , 0),Enc(pk0, b))

)
≈µ
(
T , pk0,MEvk ← iO(1p, hMProg

(sk0,k,k
′)

0 ) , (PGen(T , 0),Enc(pk0, b))

)
by an invocation of the µ-indistinguishability of iO. It follows that Hbinter and Hb0 are indistinguishable.
The same argument applies to Hb` and Hbideal. Therefore it suffices to show that the neighboring hybrids are
computationally close to the eyes of the adversary. This is captured by the following claim.

Claim. For all b ∈ {0, 1} and all 0 ≤ ` < L, Hbi and Hbi+1 are µ-indistinguishable.

Fix some b ∈ {0, 1} and some 0 ≤ ` < L. To prove the above claim one needs to show that(
T , pk0,MEvk ← iO(1p, hMProg

(sk0,k,k
′)

` ), (PGen(T , 0),Enc(pk0, b))
)

≈µ
(
T , pk0,MEvk ← iO(1p, hMProg

(sk0,k,k
′)

`+1 ) , (PGen(T , 0),Enc(pk0, b))

)
.

The only difference between the views of A lies in which hybrid master program is obfuscated, furthermore,

notice that hMProg
(sk0,k,k

′)
` and hMProg

(sk0,k,k
′)

`+1 output the same at all points except at two inputs x = L−`
and x− 1 = L − `− 1:

– At x, hMProg
(sk0,k,k

′)
` outputs a piO obfuscation of the hybrid program Prog(skx−1,tpkx), whereas the pro-

gram hMProg
(sk0,k,k

′)
`+1 outputs an obfuscation of the trapdoor program tProg(tpkx), all random variables

are generated with randomness output by the PRF’s using k, k′.
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– At x − 1, hMProg
(sk0,k,k

′)
` outputs an obfuscation of the honest program Prog(skx−2,pkx−1), whereas

hMProg
(sk0,k,k

′)
`+1 outputs an obfuscation of the hybrid program Prog(skx−2,tpkx−1).

With this in mind, we consider another sequence of hybrids G0, . . . ,G6 where G0 samples obfuscations of

programs Γ0 = hMProg
(sk0,k,k

′)
` and G6 samples obfuscations of programs Γ6 = hMProg

(sk0,k,k
′)

`+1 . The inter-
mediate hybrids namely Gi produces obfuscations of a hybrid program Γi in the following way:

Hybrid G1: In this hybrid a program Γ1 is constructed as follows: After sampling two PRF keys k and k′,
puncture the PRF key k at points x and x− 1 and k′ at x:

k(x, x− 1)← Puncture(k, {x, x− 1}), k′(x)← Puncture(k′, x)

and let rx−1, rx and r′x be the outputs of the PRF computed as:

rx−1 ← PRF(k, x− 1), rx ← PRF(k, x), r′x ← PRF(k′, x)

Note that in Γ0, rx−1 and rx are used only to generate keys for layers x−1 and x, and r′x is used to generate
the x-th layer evaluation key. Directly computing the variables that depend on rx−1, rx, r

′
x:

(pkx−1, skx−1)← KeyGen(1λ; rx−1),

tpkx ← tKeyGen(1λ, rx),

hΛx ← piO(1p, Px; r′x)

where Px = Prog(skx−1,tpkx). The program Γ1 is identical to Γ0, except for: (1) instead of having k, k′

hardwired, Γ1 has the punctured keys k(x, x − 1) and k′(x) hardwired in, along with pkx−1, hΛx (2) Γ1

proceeds the same way as Γ0 for all inputs except for x − 1 and x; for input x, it directly outputs hΛx,
and for x − 1, it uses the hardwired key pkx−1 to compute Λx−1 as in Γ0. Since Γ0 and Γ1 have the same
functionality, it follows from the µ-indistinguishability of iO that their obfuscation is µ-indistinguishable.

Hybrid G2: Hybrid G2 proceeds identically to G1, except that it computes the keys and obfuscated program
to be hardwired using true randomness instead of pseudorandom coins, that is,

(pkx−1, skx−1)← KeyGen(1λ),

tpkx ← tKeyGen(1λ),

hΛx ← piO(1p, Px)

where Px = Prog(skx−1,tpkx). G2 then obfuscates the program Γ2 that is identical to Γ1 except that it contains
pkx−1 and hΛx generated using true randomness as above. Since the puncturable PRF is pseudorandom, it
follows that G2 and G1 are µ-indistinguishable.

Hybrid G3: Hybrid G3 is identical to G2 except it samples hΛx that is an obfuscation of the trapdoor
program tPx := tProg(tpkx). That is,

tΛx ← piO(1p, tPx)

G3 then obfuscates Γ3 that is identical to Γ2 except that tΛx (together with pkx−1) is hardwired instead of
hΛx in G2. Indistinguishability follows from the security of piO for the class of S. More precisely, consider
any fixed sequence of {pkx−1, skx−1} and let SK = {skx−1}. The distribution DSK samples the following
tuple:

(Px = Prog(skx−1,pkx), tPx = tProg(tpkx), z = tpkx)← DSK
p

Thus by the security of piO with respect to DSK , the following is the case:

(Px, tPx, hΛx ← piO(1p, Px), tpkx) ≈µ (Px, tPx, tΛx ← piO(1p, tPx), tpkx)

Since this holds for all sequence of {pkx−1, skx−1}, it directly implies that G2 and G3 are µ-indistinguishable.
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Hybrid G4: The hybrid obfuscates the program Γ4 that works the same way as Γ3 except that the hardwired
honest public key pkx−1 is replaced by the trapdoor public key tpkx−1 ← tKeyGen(1λ). The indistinguisha-
bility of the hybrids follows from the µ-indistinguishability of the public and the trapdoor keys of Π.

Hybrid G5: The hybrid obfuscates the program Γ5 that is identical to Γ4 except that the values tpkx−1, tΛx
hardwired in Γ5 are generated using pseudorandom strings rx−1, rx, r

′
x:

tpkx−1 ← tKeyGen(1λ; rx−1),

tpkx ← tKeyGen(1λ, rx),

tΛx ← piO(1p, tPx; r′x)

where tPx = tProg(tpkx). Since the puncturable PRF is pseudorandom, it follows that G5 and G4 are µ-
indistinguishable.

Hybrid G6: The hybrid outputs an obfuscation of Γ6 = hMProg
(sk0,k,k

′)
`+1 . Since Γ6 has the same functionality

as Γ5, from the indistinguishability security of iO, it follows that G5 is µ-indistinguishable from G6. Therefore,
by hybrid argument, the experiment Hb` and Hb`+1 are µ′-indistinguishable, where µ′(λ) = c · µ(λ) for some
constant c. This proves the claim and concludes our proof. ut
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