
A preliminary version of this paper appears in CRYPTO 2019. This is a revised full version, with
significant changes over the prior full version.

Nonces are Noticed: AEAD Revisited

Mihir Bellare1 Ruth Ng2 Björn Tackmann3

November 2019

Abstract

We draw attention to a gap between theory and usage of nonce-based symmetric encryption,
under which the way the former treats nonces can result in violation of privacy in the latter.
We bridge the gap with a new treatment of nonce-based symmetric encryption that modifies
the syntax (decryption no longer takes a nonce), upgrades the security goal (asking that not
just messages, but also nonces, be hidden) and gives simple, efficient schemes conforming to
the new definitions. We investigate both basic security (holding when nonces are not reused)
and advanced security (misuse resistance, providing best-possible guarantees when nonces are
reused).

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in
part by NSF grants CNS-1526801 and CNS-1717640, ERC Project ERCC FP7/615074 and a gift from Microsoft.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: ring@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~ring. Supported by
DSO National Laboratories

3 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland. Email: bta@zurich.ibm.com. URL:
https://researcher.watson.ibm.com/researcher/view.php?person=zurich-BTA.



Contents

1 Introduction 2

2 Preliminaries 7

3 Two frameworks for nonce-based encryption 9

4 Some general results 13

5 Usage of NBE1: The Transmit-Nonce transform 15

6 Basic transforms 16
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 The HN1 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 The HN2 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 The HN3 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Advanced transforms 21
7.1 Advanced security of HN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Advanced security of HN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 The HN4 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.4 The HN5 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Dedicated transform for GCM 25

9 A real-world perspective 29

10 Acknowledgements 29

References 29

A Adversary classes AaeX
r-n ,AauthX

r-n 34

B Proof of Theorem 4.1 35

C Proofs of Theorems 6.1 and 7.1 36

D Proof of Theorem 6.2 38

E Proof of Theorem 6.3 39

F Proof of Theorem 7.2 41

G Proof of Theorem 7.3 42

H Proof of Theorem 7.4 44

I Proof of Theorem 8.2 45

1



1 Introduction

This paper revisits nonce-based symmetric encryption, raising some concerns, and then addressing
them, via a new syntax, a new framework of security definitions, and schemes that offer both
usability and security benefits.

Background. As the applications and usage of symmetric encryption have evolved and grown, so
has a theory that seeks to support and guide them. A definition of symmetric encryption (as with
any other primitive) involves a syntax and then, for this syntax, definitions of security. In the first
modern treatment [11], the syntax asked the encryption algorithm to be randomized or stateful.
Security for these syntaxes evolved from asking for various forms of privacy [11] to asking for both
privacy and authenticity [16, 13, 38], inaugurating authenticated encryption (AE). The idea that
encryption be a deterministic algorithm taking as additional input a non-repeating quantity called
a nonce seems to originate in [55] and reached its current form with Rogaway [51, 53].

NBE1 and AE1-security. We refer to the syntax of this current form of nonce-based symmetric
encryption [51, 53] as NBE1. An NBE1 scheme SE1 specifies a deterministic encryption algorithm
SE1.Enc that takes the key K, a nonce N , message M and a header (also called associated data)
H to return what we call a core ciphertext C1. Deterministic decryption algorithm SE1.Dec takes
K,N,C1, H to return either a message or ⊥.

Security asks for privacy of M and integrity of both M and H as long as nonces are unique,
meaning not re-used. Rogaway’s formalization [51] asks that an adversary given oracles for en-
cryption (taking nonce, message and header) and decryption (taking nonce, core ciphertext and
header) be unable to distinguish between the case where they perform their prescribed tasks under
a hidden key, and the case where the former returns random strings and the latter returns ⊥, as
long as the adversary does not repeat a nonce across its encryption queries. We will refer to this
as basic AE1-security.

NBE1 providing basic AE1-security has been the goal of recent schemes, standards and proposed
standards, as witnessed by GCM [45, 26] (used in TLS), OCB [55, 52, 40], CAESAR candidates [19]
and RFC 5116 [44]. The security of NBE1, which we revisit, is thus of some applied interest.

The gap. Our concern is a gap between theory and usage that can result in privacy vulnerabilities
in the latter. Recall that the decryption algorithm SE1.Dec, to be run by the receiver, takes as
input not just the key K, core ciphertext C1 and header H, but also the nonce N . The theory
says that how the receiver gets the nonce is “outside of the model” [51] or that it is assumed to
be communicated “out-of-band” [53]. Usage cannot so dismiss it, and must find a way to convey
the nonce to the receiver. The prevailing understanding, reflected in the following quote from
RBBK [55], is that this is a simple matter— if the receiver does not already have the nonce N , just
send it in the clear along with the core ciphertext C1:

The nonce N is needed both to encrypt and to decrypt. Typically it would be communicated,
in the clear, along with the (core) ciphertext.

RFC 5116 is a draft standard for an interface for authenticated encryption [44]. It also considers
it fine to send the nonce in the clear:

... there is no need to coordinate the details of the nonce format between the encrypter and the
decrypter, as long the entire nonce is sent or stored with the ciphertext and is thus available to
the decrypter ... the nonce MAY be stored or transported with the ciphertext ...

To repeat and summarize, the literature and proposed standards suggest transmitting what we call
the “full” ciphertext, consisting of the nonce and the core ciphertext. Yet, as we now explain, this
can be wrong.

2



Nonces can compromise privacy. We point out that communicating a nonce in the clear with
the ciphertext can damage, or even destroy, message privacy. One simple example is a nonce N =
F (M) that is a hash —under some public, collision-resistant hash function F— of a low-entropy
message M , meaning one, like a password, which the attacker knows is likely to fall in some small
set or dictionary D. Given a (full) ciphertext C2 = (N,C1) consisting of the core ciphertext C1

= SE1.Enc(K,N,M,H) together with the nonce N = F (M), the attacker can recover M via “For
M ′ ∈ D do: If F (M ′) = N then return M ′.” To take a more extreme case, consider that the nonce
is some part of the message, or even the entire message, in which case the full ciphertext clearly
reveals information about the message.

The concern that (adversary-visible) nonces compromise privacy, once identified, goes much
further. Nonces are effectively meta-data. Even recommended and innocuous-seeming choices like
counters, device identities, disk-sector numbers or packet headers reveal information about the
system and identity of the sender. For example, the claim that basic-AE1-secure NBE1 provides
anonymity —according to [54, Slide 19/40], this is a dividend of the requirement that core cipher-
texts be indistinguishable from random strings— is moot when the nonce includes sender identity.
Yet the latter is not only possible but explicitly recommended in RFC 5116 [44], which says: “When
there are multiple devices performing encryption ... use a nonce format that contains a field that is
distinct for each one of the devices.” As another concrete example, counters are not a good choice
of nonce from a user privacy perspective, as pointed out by Bernstein [20] and the ECRYPT-CSA
Challenges in Authenticated Encryption report [5].

The above issues apply to all NBE1 schemes and do not contradict their (often, proven) AE1-
security. They are not excluded by the unique nonce requirement or by asking for misuse resis-
tance [56], arising in particular for the encryption of a single message with a single corresponding
nonce.

A natural critique is that the privacy losses we have illustrated occur only for “pathological”
choices of nonces, and choices made in practice, such as random numbers or counters, are “fine.”
This fails, first, to recognize the definitional gap that allows the “pathological” choices. With regard
to usage, part of the selling point of NBE1 was exactly that any (non-repeating, unique) nonce is
fine, and neither existing formalisms [51] nor existing standards [44] preclude nonce choices of the
“pathological” type. Also, application designers and users cannot, and should not, carry the burden
of deciding which nonces are “pathological” and which are “fine,” a decision that may not be easy.
(And as discussed above, for example, counters may not be fine.) Finally, Section 9 indicates that
poor choices can in fact arise in practice.

Our perspective is that the above issues reflect a gap between the NBE1 formalism and the
privacy provided by NBE1 in usage. Having pointed out this gap, we will also bridge it.

Contributions in brief. The first contribution of this paper is to suggest that the way NBE1
treats nonces can result (as explained above) in compromise of privacy of messages or users. The
second contribution is to address these concerns. We give a modified syntax for nonce-based
encryption, called NBE2, in which decryption does not get the nonce, a corresponding framework of
security definitions called AE2 that guarantee nonce privacy in addition to authenticity and message
privacy, and simple ways to turn NBE1 AE1-secure schemes into NBE2 AE2-secure schemes.

AE2-secure NBE2 obviates application designers and users from the need to worry about privacy
implications of their nonce choices, simplifying design and usage. With AE2-secure NBE2, one can
use any nonce, even a message-dependent one such as a hash of the message, without compromising
privacy of the message. And the nonces themselves are hidden just as well as messages, so user-
identifying information in nonces doesn’t actually identify users.

3



Our NBE2 syntax. In an NBE2 scheme SE2, the inputs to the deterministic encryption algorithm
SE2.Enc continue to be key K, nonce N , message M and header H, the output C2 now called a
ciphertext rather than a core ciphertext. The deterministic decryption algorithm SE2.Dec no longer
gets a nonce, taking just key K, ciphertext C2 and header H to return either a message M or ⊥.

Just as an interface, NBE2 already benefits application designers and users, absolving them
of the burden they had, under NBE1, of figuring out and architecting a way to communicate the
nonce from sender to receiver. The NBE2 receiver, in fact, is nonce-oblivious, not needing to care,
or even know, that something called a nonce was used by the sender. By reducing choice (how to
communicate the nonce), NBE2 reduces error and misuse.

We associate to a given NBE1 scheme SE1 the NBE2 scheme SE2 = TN[SE1] that sets the
ciphertext to the nonce plus the core ciphertext: SE2.Enc(K,N,M,H) = (N, SE1.Enc(K,N,M,
H)) and SE2.Dec(K, (N,C1), H) = SE1.Dec(K,N,C1, H). We refer to TN as the Transmit Nonce
transform. This is worth defining because it will allow us, in Section 5, to formalize the above-
discussed usage weaknesses in NBE1, but SE2 = TN[SE1] is certainly not nonce hiding and will
fail to meet the definitions we discuss next.

Our AE2-security framework. Our AE2 game gives the adversary an encryption oracle Enc
(taking nonceN , messageM and headerH to return a ciphertext C2) and decryption oracle Dec (as
per the NBE2 syntax, taking ciphertext C2 and header H but no nonce, to return either a message
M or ⊥). When the challenge bit is b = 1, these oracles reply as per the encryption algorithm
SE2.Enc and decryption algorithm SE2.Dec of the scheme, respectively, using a key chosen by the
game. When the challenge bit is b = 0, oracle Enc returns a ciphertext that is drawn at random
from a space SE2.CS(|N |, |M |, |H|) that is prescribed by the scheme SE2 and that depends only
on the lengths of the nonce, message and header, which guarantees privacy of both the nonce and
message. (This space may be, but unlike for AE1 need not be, the set of all strings of some length,
because NBE2 ciphertexts, unlike NBE1 core ciphertexts, may have some structure.) In the b = 0
case, decryption oracle Dec returns ⊥ on any non-trivial query. The adversary eventually outputs
a guess b′ as to the value of b, and its advantage is 2 Pr[b = b′]− 1.

We say that SE2 is AE2[A]-secure if practical adversaries in the class A have low advantage.
Let Aae2

u-n be the class of unique-nonce adversaries, meaning ones that do not reuse a nonce across
their Enc queries. We refer to AE2[Aae2

u-n]-security as basic AE2-security. As the nonce-hiding
analogue of basic AE1-security, it will be our first and foremost target.

Before moving to schemes, we make two remarks. First that above, for simplicity, we described
our definitions in the single-user setting, but the definitions and results in the body of the paper are
in the multi-user setting. Second, the framework of a single game with different notions captured
via different adversary classes allows us to unify, and compactly present, many variant definitions,
including basic, advanced (misuse resistance), privacy-only and random-nonce security, and in
Section 3 we give such a framework not just for AE2 but also for AE1.

Our general results. The analysis of schemes is simplified by some general results we give in
Section 4. Foremost is a decomposition theorem that tightly bounds the ae-advantage of a given
adversary in terms of the advantage of a privacy-only adversary (no decryption queries) and a very
restricted type of authenticity adversary that we call orderly— it needs only verification queries
(not decryption queries) and these follow its encryption queries and are all made in parallel. Here
we are following Bose, Hoang and Tessaro (BHT) [22], who gave such a result for basic AE1-security.
Theorem 4.1 slightly improves their bound and also extends the result to both advanced security
and AE2, our single theorem thus capturing four results. Additionally, Theorem 4.2 states the
standard reduction of mu security to su security and Theorem 4.3 reduces security for random

4



NBE2 scheme
AE2-security provided

Basic Advanced

HN1[SE1,F] Yes Yes

HN2[SE1, `,E, Spl] Yes Yes if ` ≥ 128

HN3[SE1,F] Yes No

HN4[SE1, `,F] Yes

HN5[TE, `, `z] Yes

Figure 1: Security attributes of the NBE2 schemes defined by our Hide-Nonce (HN) transforms.
In the table SE1 denotes an NBE1 scheme, F a PRF, E a block cipher, and TE a variable-length
tweakable block cipher. Spl is a splitting function, and `, `z are non-negative integer parameters.
A blank entry in the Basic column means the transform is not for that purpose. Note that HN1’s
advanced security only holds when ciphertexts have sufficiently large (e.g. 128 bits) minimum
length, and HN2’s depends on the length of the stolen ciphertext.

nonces to security for unique nonces.

Our transforms. In the presence of a portfolio of efficient AE1-secure NBE1 schemes supported
by proofs of security with good concrete bounds [55, 45, 19, 40, 36, 59, 49, 31, 30, 22, 35], designing
AE2-secure NBE2 schemes from scratch seems a step backwards. Instead we give simple, cheap ways
to transform AE1-secure NBE1 schemes into AE2-secure NBE2 schemes, obtaining a corresponding
portfolio of AE2-secure NBE2 schemes and also allowing implementors to more easily upgrade
deployed AE1-secure NBE1 to AE2-secure NBE2.

Since NBE2 schemes effectively take care of nonce communication, we expect ciphertext length
to grow by at least SE1.nl, the nonce length of the base NBE1 scheme. The ciphertext overhead is
defined as the difference between the ciphertext length and the sum of plaintext length and SE1.nl.
All our transforms have zero ciphertext overhead. One challenge in achieving this is that nonce
lengths like SE1.nl = 96 are widely-used but short of the block length 128 of many blockciphers,
precluding inclusion of an extra blockcipher output in the ciphertext. With regard to computational
overhead, the challenge is that it should be constant, meaning independent of the lengths of the
message and header for encryption, and of the ciphertext and header for decryption. All our
transforms have constant computational overhead.

The following discussion first considers achieving basic security and then advanced security.
Security attributes of our corresponding “Hide-Nonce (HN)” transforms are summarized in Figure 1.

Basic HN transforms. We prove that all the following transforms turn a basic-AE1-secure
NBE1 scheme SE1 into a basic-AE2-secure NBE2 scheme SE2. (Recall basic means nonces are
unique, never reused across encryption queries.) Pseudocode and pictures for the transforms are in
Figure 5.

Having first produced a core ciphertext C1 under SE1, the idea of scheme SE2 = HN1[SE1,F] is
to use C1 itself as a nonce to encrypt the actual nonce in counter mode under PRF F. A drawback
is that this requires the minimal core-ciphertext length SE1.mccl to be non-trivial, like at least 128,
which is not true for all SE1. Scheme SE2 = HN2[SE1, `,E, Spl] turns to the perhaps more obvious
idea of enciphering the nonce with a PRF-secure blockcipher E. The difficulty is the typicality of
96-bit nonces and 128-bit blockciphers, under which näıve enciphering would add a 32-bit ciphertext
overhead, which we resolve by ciphertext stealing, ` representing the number of stolen bits (32 in

5



our example) and Spl an ability to choose how the splitting is done. Scheme SE2 = HN3[SE1,F]
uses the result of PRF F on the actual nonce as a derived nonce under which to run SE1. This is
similar to SIV [56, 49]; the difference is to achieve AE2 rather than AE1 and to apply the PRF only
to the nonce (rather than nonce, message and header) to have constant computational overhead.

Advanced HN transforms. Unique nonces are easier to mandate in theory than assure in prac-
tice, where nonces may repeat due to errors, system resets, or replication. In that case (returning
here to NBE1), not only does basic AE1-security give no security guarantees, but also damaging
attacks are possible for schemes including CCM and GCM [37, 58]. Rogaway and Shrimpton’s
misuse resistant NBE1, which we refer to as advanced-AE1-secure NBE1, minimizes the damage
from reused nonces, retaining AE1-security as long as no nonce, message, header triple is re-
encrypted [56]. This still being for the NBE1 syntax, however, the concerns with adversary-visible
nonces compromising message and user privacy are unchanged. We seek the NBE2 analogue, corre-
spondingly defining and achieving advanced-AE2-secure NBE2 to provide protection against reused
nonces while also hiding them.

With our framework, the definition is easy, calling for no new games; the goal is simply
AE2[Aae2

u-nmh]-security where Aae2
u-nmh is the class of unique-nonce, message, header adversaries,

meaning ones that do not repeat a query to their Enc oracle. The presence of well-analyzed
advanced-AE1-secure NBE1 schemes [56, 33, 31, 30, 22] again motivates transforms rather than
from-scratch designs.

We start by revisiting our basic-security preserving transforms, asking whether they also pre-
serve advanced security, meaning, if the starting NBE1 scheme is advanced-AE1-secure, is the
transformed NBE2 scheme advanced-AE2-secure? We show that for HN1, the answer is YES. We
then show that it is YES also for HN2 as long as the amount ` of stolen ciphertext is large enough.
(In practical terms, at least 128.) For HN3, the answer is NO.

That HN1 and HN2 have these properties is good, but we would like to do better. (Limitations
of the above are that HN1 puts a lower bound on SE1.mccl that is not always met, and setting `
= 128 in HN2 with typical 96-bit nonces will call for a 224-bit blockcipher.) We offer HN4 and
HN5, showing they provide advanced AE2-security. Pseudocode and pictures are in Figure 6.

Scheme SE2 = HN4[SE1, `,F] uses the result of PRF F on the actual nonce, message and header
as a derived nonce for SE1. The difference with SIV [56, 49] is that what is encrypted under SE1
includes the actual nonce in order to hide it. The computational overhead stays constant because
SE1 need provide only privacy, which it can do in one pass. Scheme SE2 = HN5[TE, `, `z] is differ-
ent, using the encode-then-encipher paradigm [16] to set the ciphertext to an enciphering, under
an arbitrary-input-length, tweakable cipher TE, of the nonce, message and `t-bits of redundancy,
with the header as tweak. Instantiating TE via the very fast AEZ tweakable block cipher [33] yields
correspondingly fast, advanced-AE2-secure NBE2.

Dedicated transform for GCM. While our generic transforms are already able, with low
overhead, to immunize GCM [45, 26] —by this we mean turn this basic-AE1-secure NBE1 scheme
into a basic-AE2-secure NBE2 scheme— we ask if a dedicated transform —one that exploits the
structure of GCM— can do even better. The goal is not just even lower cost overhead, but
minimization of software changes. We show that simply pre-pending a block of 0s, of length equal
to the nonce length, to the message, and then GCM-encrypting, provides basic-AE2-security. This
means no new key materiel needs to be added, and existing encryption software can be used in a
blackbox way. Ciphertext overhead remains zero. Decryption software does however need a change.

The proceedings version of our paper [14] had claimed basic-AE2-security of our GCM variant
assuming the blockcipher E was prp-cca secure (also called strong prp-security, this means the

6



adversary is allowed both forward and backward queries) and the hash family H was AXU. In
this full version, we do better, reducing the assumption on E to just PRF security, and that on
H to computational AXU. The proof of security is greatly simplified by establishing privacy and
authenticity separately, which suffices courtesy of our general decomposition result (Theorem 4.1).
Privacy is easily reduced (Theorem 8.1) to that of GCM itself, allowing us to conclude it via known
results on the latter [45, 36, 18, 43, 35] and in particular to inherit the good bounds of [35]. The
proof of Theorem 8.2, establishing authenticity, is more invasive and in our view the most non-trivial
proof in this paper.

Related work. In a 2013 mailing list message, Bernstein [20] argues that the security definitions
for authenticated encryption fail to fully capture practical requirements, giving sequence privacy
leakage via sequence-number nonces as an explicit example. AE2-secure NBE2 addresses these
concerns. Bernstein also proposed a solution that can be seen as a specific instantiation of our
HN2 transformation.

As a technical step in achieving security against release of unverified plaintext (RUP), Ashur,
Dunkelman and Luykx (ADL) [4] use a syntax identical to NBE2, and their techniques bear some
similarities with ours that we discuss further in Section 8.

The CAESAR competition’s call for authenticated encryption schemes describes a syntax where
encryption receives, in place of a nonce, a public message number (PMN) and a secret message
number (SMN), decryption taking only the former [23]. The formalization of Namprempre, Rog-
away and Shrimpton (NRS) [48] dubs this “AE5.” In this light, an NBE1 scheme is a AE5 scheme
without a SMN and an NBE2 scheme is an AE5 scheme without a PMN.

Possible future work. The concerns we have raised with regard to a gap between theory and
usage, and privacy vulnerabilities created by adversary-visible nonces in the latter, arise fundamen-
tally from the choice of syntax represented by NBE1, and as such hold also in other contexts where
an NBE1-style syntax is used. This includes AE secure under release of unverified plaintext [3],
KDM-secure AE [12, 21, 24], robust AE [27], online AE [28, 34], committing AE [29, 25], indiffer-
entiable AE [6], subtle AE [8], leakage-resilient AE [7, 21] and MiniAE [47]. A direction for future
work is to treat these with an NBE2-style syntax (decryption does not get the nonce) to provide
nonce hiding.

While our transforms can be applied to promote the advanced-AE1-secure AES-GCM-SIV
NBE1 scheme [30] to an advanced-AE2-secure NBE2 scheme, the bounds we get are inferior to
those of [22]. Bridging this gap to get advanced-AE2-secure NBE2 with security bounds like [22] is
a direction for future work. Another is to prove better bounds for the authenticity of our AE2-secure
version of GCM, in the vein of those for GCM [43, 35].

2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. If Z is a string then Z[i..j] is bits i through j of Z if 1 ≤ i ≤ j ≤ |Z|, and otherwise
is ε. By x‖y we denote the concatenation of strings x, y. If x, y are equal-length strings then
x⊕y denotes their bitwise xor. If i is an integer then 〈i〉n ∈ {0, 1}n denotes the representation of
i mod 2n as a string of (exactly) n bits. (For example, 〈3〉4 = 0011.) If S is a finite set, then |S|
denotes it size. We say that a set S is length-closed if, for any x ∈ S it is the case that {0, 1}|x| ⊆ S.
(This will be a requirement for message, header and nonce spaces.)

If D,R are sets and f :D → R is a function then its image is Im(f) = { f(x) : x ∈ D } ⊆ R.
By FUNC(D,R) we denote the set of all functions f :D → R. If |D| = |R| then by BFUNC(D,R)

7



we denote the set of all bijections f :D → R. Then PERM(D) = BFUNC(D,D) is the set of all
permutations π :D → D.

If X is a finite set, we let x←$X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,
we let y ← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω, with oracle access
to O1, . . ., and assigning the output to y. By y←$AO1,...(x1, . . .) we denote picking ω at random
and letting y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible outputs
of A when run on inputs x1, . . . and with oracle access to O1, . . .. An adversary is an algorithm.
Running time is worst case, which for an algorithm with access to oracles means across all possible
replies from the oracles. We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed
to not be in {0, 1}∗.

Games. We use the code-based game-playing framework of BR [17]. A game G (see Fig. 2 for an
example) starts with an optional Init procedure, followed by a non-negative number of additional
procedures called oracles, and ends with a Fin procedure. Execution of adversary A with game G
consists of running A with oracle access to the game procedures, with the restrictions that A’s first
call must be to Init (if present), its last call must be to Fin, and it can call these procedures at most
once. The output of the execution is the output of Fin. By Pr[G(A)] we denote the probability
that the execution of game G with adversary A results in this output being the boolean true.

Note that our adversaries have no output. The role of what in other treatments is the adversary
output is, for us, played by the query to Fin.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G.

In games, integer variables, set variables boolean variables and string variables are assumed
initialized, respectively, to 0, the empty set ∅, the boolean false and ⊥.

Reductions. Proofs give reductions that take a G2-adversary A2 and specify (construct) a G1-
adversary A1 that runs A2 as a subroutine, itself responding to oracle queries of A2. Let Init,O11,
. . . ,O1n1 ,Fin denote the oracles of G1 and Init,O21, . . . ,O2n2 ,Fin the oracles of G2. Then we
may write pseudocode of the form

Adversary A
Init,O11,...,O1n1 ,Fin
1

...

A
Init∗,O2∗1,...,O2∗n2

,Fin∗

2 // Run A2 with specified subroutines as oracles
...

procedure Init∗ // Subroutine simulating G2.Init
...
procedure O2∗1(. . .) // Subroutine simulating G2.O21
...

Here Init∗,O2∗1, . . . ,O2∗n2
,Fin∗ are subroutines, given in the code of A1, that are responsible for

simulating the corresponding oracles for A2 in G2, and will invoke A1’s oracles to do so. We
adopt the convention that if a simulation is trivial, meaning O2∗i (x) returns O1j(x), then, in the
superscripts to A2, we simply write O1j in place of O2∗i , and do not give code for the simulated
oracle.

Multi-user security. There is growing recognition that security should be considered in the
multi-user (mu) setting [9] rather than the traditional single-user (su) one. Our main definitions

8



Game Gprf
F

procedure Init

b←$ {0, 1}
procedure New

v ← v + 1
If (b = 1) then Kv←$ {0, 1}F.kl ; fv ← F.Ev(Kv, ·)
Else fv←$ FUNC(F.D, {0, 1}F.ol)
procedure Fn(i,X)

Return fi(X)

procedure Fin(b′)

Return (b = b′)

Figure 2: Game defining (multi-user) PRF security for function family F.

are in the mu setting. The games provide the adversary a New oracle, calling which results in a
new user being initialized, with a fresh key. Other oracles are enhanced (relative to the su setting)
to take an additional argument i indicating the user (key). We assume that adversaries do not
make oracle queries to users (also called sessions) they have not initialized.

Function families. A function family F specifies a deterministic evaluation algorithm F.Ev :
{0, 1}F.kl×F.D→ {0, 1}F.ol that takes a key K and input x to return output F.Ev(K,x), where F.kl
is the key length, F.D is the domain and F.ol is the output length. We say that F is invertible if there
is an inversion algorithm F.In : {0, 1}F.kl ×{0, 1}F.ol → F.D∪ {⊥} such that for all K ∈ {0, 1}F.kl we
have (1) F.In(K,F.Ev(K,x)) = x for all x ∈ F.D, and (2) F.In(K, y) = ⊥ for all y 6∈ Im(F.Ev(K, ·)).
We say that F is a permutation family if it is invertible and F.D = {0, 1}F.ol. In that case, we also
refer to F as a block cipher and to F.ol as the block length of F, which we may denote F.bl.

PRF security. We define (multi-user) PRF security [10] for a function family F and adversary A

via the game Gprf
F (A) in Fig. 2. Here b is the challenge bit. It is required that any Fn(i,X) query of

A satisfies i ≤ v andX ∈ F.D. The PRF advantage of adversary A is Advprf
F (A) = 2 Pr[Gprf

F (A)]−1.

3 Two frameworks for nonce-based encryption

We give definitions for both AE1-secure NBE1—current nonce-based encryption [55, 51, 53]— and
AE2-secure NBE2—our new nonce-based encryption. In each case there is a single security game,
different variant definitions then being captured by different adversary classes. This allows a unified
and compact treatment.

NBE1. An NBE1 scheme SE1 specifies several algorithms and related quantities, as follows. De-
terministic encryption algorithm SE1.Enc : SE1.KS × SE1.NS × SE1.MS × SE1.HS → {0, 1}∗ takes
a key K in the (finite) key-space SE1.KS, a nonce N in the nonce-space SE1.NS, a message M
in the message space SE1.MS and a header H in the header space SE1.HS to return what we
call a core ciphertext C1. This is a string of length SE1.ccl(|N |, |M |, |H|), where SE1.ccl is the
core-ciphertext length function. SE1 also specifies a deterministic decryption algorithm SE1.Dec :
SE1.KS× SE1.NS× {0, 1}∗ × SE1.HS→ SE1.MS∪ {⊥} that takes key K, nonce N , core ciphertext
C1 and header H to return an output that is either a message M ∈ SE1.MS, or ⊥. It is required

9



Game Gae1
SE1

procedure Init

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc(i,N,M,H)

If (b = 1) then

C1 ← SE1.Enc(Ki, N,M,H)

Else C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
M[i,N,C1, H]←M ; Return C1

procedure Dec(i,N,C1, H)

If (M[i,N,C1, H] 6= ⊥) then

Return M[i,N,C1, H]

If (b = 0) then M ← ⊥
Else M ← SE1.Dec(Ki, N,C1, H)

Return M

procedure Fin(b′)

Return (b = b′)

Game Gae2
SE2

procedure Init

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc(i,N,M,H)

If (b = 1) then

C2 ← SE2.Enc(Ki, N,M,H)

Else C2←$ SE2.CS(|N |, |M |, |H|)
M[i, C2, H]←M ; Return C2

procedure Dec(i, C2, H)

If (M[i, C2, H] 6= ⊥) then

Return M[i, C2, H]

If (b = 0) then M ← ⊥
Else M ← SE2.Dec(Ki, C2, H)

Return M

procedure Fin(b′)

Return (b = b′)

Ax
u-n

Unique nonce adversaries — A ∈ Ax
u-n does not repeat a

user-nonce pair i,N across its Enc queries

Ax
u-nmh

Unique nonce-message-header adversaries — A ∈ Ax
u-nmh

does not repeat a query to Enc

Ax
priv Privacy adversaries — A ∈ Ax

priv makes no Dec queries

Ax
1 Single-user adversaries — A ∈ Ax

1 makes only one New query

Ax
r-n

Random-nonce adversaries — The nonces in the Enc queries
of A ∈ Ax

r-n are distributed uniformly and independently at
random

Figure 3: Game defining AE1-security of NBE1 scheme SE1 (top left), game defining AE2-security
of NBE2 scheme SE2 (top right), and some classes of adversaries, leading to different security
notions, where x ∈ {ae1, ae2} (bottom).

that SE1.NS,SE1.MS, SE1.HS are length-closed sets as defined in Section 2. Most often nonces are
of a fixed length denoted SE1.nl, meaning SE1.NS = {0, 1}SE1.nl. Decryption correctness requires
that SE1.Dec(K,N,SE1.Enc(K,N,M,H), H) = M for all K ∈ SE1.KS, N ∈ SE1.NS, M ∈ SE1.MS
and H ∈ SE1.HS.

AE1 game and advantage. Let SE1 be an NBE1 scheme and A an adversary. We associate to
them the game Gae1

SE1(A) shown on the top left of Fig. 3. (We use the name “AE1” to associate the
game with the NBE1 syntax). The AE1-advantage of adversary A is Advae1

SE1(A) = 2 Pr[Gae1
SE1(A)]−

1. The game is in the multi-user setting, oracle New allowing the adversary to initialize a new
user with a fresh key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N

10



∈ SE1.NS, M ∈ SE1.MS and H ∈ SE1.HS. When the challenge bit b is 1, the encryption oracle
will return a core ciphertext as stipulated by SE1.Enc, using the key for the indicated user i. In
the b = 0 case, Enc will return a random string of length SE1.ccl(|N |, |M |, |H|). The array M is
assumed to initially be ⊥ everywhere, and holds core ciphertexts returned by Enc. It is required
that any Dec(i,N,C1, H) query of A satisfy 1 ≤ i ≤ v, N ∈ SE1.NS and H ∈ SE1.HS. When the
challenge bit b is 1, the decryption oracle will perform decryption as stipulated by SE1.Dec, using
the key for the indicated user i. In the b = 0 case, Dec will return ⊥ on any core ciphertext not
previously returned by the encryption oracle.

AE1 security metrics. AE1-security is clearly not achievable without restrictions on the adver-
sary. For example, if A repeats a query i,N,M,H to Enc, then, when b = 1 it gets back the same
reply both times, while if b = 0 it likely does not, allowing it to determine b with high probability.
We define different classes of adversaries, summarized by the table at the bottom of Figure 3, with
the superscript “x” here being ae1. We say that NBE1 scheme SE1 is AE1[A]-secure if adversaries
in A have low AE1-advantage. The definition is in the multi-user setting, but restricting attention
to adversaries in the class Aae1

1 allows us to recover the single-user setting. Different security no-
tions in the literature are then captured as AE1[A]-security for different classes of adversaries A,
as we illustrate below:

• Aae1
u-n is the class of adversaries whose Enc queries never repeat a user-nonce pair. AE1[Aae1

u-n ∩
Aae1

1 ]-security is thus AEAD as defined in [51, 53].

• AE1[Aae1
u-n]-security is the extension of this to the multi-user setting as defined in [18], which we

have referred to as basic AE1-security in Section 1.

• Adversaries in Aae1
u-nmh ⊇ Aae1

u-n are allowed to re-use a user-nonce pair across Enc queries as long
as they never repeat an entire query. AE1[Aae1

u-nmh ∩Aae1
1 ]-security is misuse resistant AE [56].

• AE1[Aae1
u-nmh]-security is the extension of this to the multi-user setting [22], which we have

referred to as advanced-AE1-security in Section 1.

• Adversaries in Aae1
r-n pick the nonces in their Enc queries uniformly and independently at random

from SE1.NS. (While the intent here is likely understandable, what precisely it means for an ad-
versary to be in this class does actually need a careful definition, which is given in Appendix A.)
No restriction is placed on how the adversary picks nonces in Dec queries. AE1[Aae1

r-n ∩Aae1
1 ]-

security is thus classical randomized AE [13] for schemes which make encryption randomness
public, which is the norm.

• Sometimes, in the unique-nonce setting, we consider schemes that provide only privacy, not
authenticity, and, rather than giving a separate game, can capture this as AE1[Aae1

priv ∩ Aae1
u-n]-

security. AE1[Aae1
priv ∩Aae1

u-n ∩Aae1
1 ]-security is IND$-CPA security, as defined in [51].

Further adversary classes can be defined to capture limited nonce reuse [22] or other resource
restrictions.

We believe our (above) AE1 framework (single game, many adversary classes) is of independent
interest, as a way to unify, better understand and compactly present existing and new notions of
security for NBE1 schemes. We give a similar framework for AE2 next.

NBE2 syntax. An NBE2 scheme SE2 specifies several algorithms and related quantities, as follows.
Deterministic encryption algorithm SE2.Enc : SE2.KS× SE2.NS× SE2.MS× SE2.HS→ {0, 1}∗, just
like for NBE1, takes a key K in the (finite) key-space SE2.KS, a nonce N in the nonce-space
SE2.NS, a message M in the message space SE2.MS and a header H in the header space SE2.HS
to return a ciphertext C2 that is in the ciphertext space SE2.CS(|N |, |M |, |H|). SE2 also specifies a
deterministic decryption algorithm SE2.Dec : SE2.KS×{0, 1}∗×SE2.HS→ SE2.MS∪{⊥} that takes

11



key K, ciphertext C2 and header H to return an output that is either a message M ∈ SE2.MS, or
⊥. (Unlike in NBE1, it does not take a nonce input.) It is required that SE2.NS,SE2.MS, SE2.HS
are length-closed sets as defined in Section 2. Most often nonces are of a fixed length denoted
SE2.nl, meaning SE2.NS = {0, 1}SE2.nl. Decryption correctness requires that SE2.Dec(K,SE2.Enc
(K,N,M,H), H) = M for all K ∈ SE2.KS, N ∈ SE2.NS,M ∈ SE2.MS and H ∈ SE2.HS.

AE2 game and advantage. Let SE2 be an NBE2 scheme and A an adversary. We associate to
them the game Gae2

SE2(A) shown on the top right of Fig. 3. (We use the name “AE2” to associate the
game with the NBE2 syntax). The AE2-advantage of adversary A is Advae2

SE2(A) = 2 Pr[Gae2
SE2(A)]−

1. The game is in the multi-user setting, oracle New allowing the adversary to initialize a new
user with a fresh key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N ∈
SE2.NS, M ∈ SE2.MS and H ∈ SE2.HS. When the challenge bit b is 1, the encryption oracle will
return a ciphertext as stipulated by SE2.Enc, using the key for the indicated user i. When b = 0,
Enc will return a random element of the ciphertext space SE2.CS(|N |, |M |, |H|). The array M is
assumed to initially be ⊥ everywhere, and holds ciphertexts returned by Enc. It is required that
any Dec(i, C2, H) query of A satisfy 1 ≤ i ≤ v and H ∈ SE2.HS. When the challenge bit b is
1, the decryption oracle will perform decryption as stipulated by SE2.Dec, using the key for the
indicated user i. When b = 0, Dec will return ⊥ on any ciphertext not previously returned by the
encryption oracle.

AE2 security metrics. As with AE1-security, restrictions must be placed on the adversary to
achieve AE2-security, and we use adversary classes to capture restrictions corresponding to different
notions of interest. The classes are summarized by the table at the bottom of Figure 3, with the
superscript “x” now being ae2. The classes and resulting notions are analogous to those for AE1.
Thus, AE2[Aae2

1 ]-security recovers the single-user setting. Aae2
u-n is the class of adversaries whose

Enc queries never repeat a user-nonce pair, so AE2[Aae2
u-n]-security is what we have referred to as

basic AE2-security in Section 1. Adversaries in Aae2
u-nmh ⊇ Aae2

u-n are allowed to re-use a user-nonce
pair across Enc queries as long as they never repeat an entire query, so AE2[Aae2

u-nmh]-security is
what we have referred to as advanced AE2-security in Section 1. Adversaries in Aae2

r-n pick the nonces
in their Enc queries uniformly and independently at random from SE2.NS. AE2[Aae2

priv]-security is
privacy only.

Discussion. The main (small but important) change in the syntax from NBE1 to NBE2 is that
in the latter, the decryption algorithm no longer gets the nonce as input. It is up to encryption to
ensure that the ciphertext contains everything (beyond key and header) needed to decrypt. Nonces
are thus no longer magically communicated, making the interface, and the task of application
designers, simpler and less error-prone, reducing the possibility of loss of privacy from poor choices
of nonces and opening the door to nonce-hiding security as captured by AE2. Another change
is that, rather than a ciphertext length function, an NBE2 scheme specifies a ciphertext space.
The reason is that a ciphertext might have some structure, like being a pair (C,C ′). Ciphertexts
like this cannot be indistinguishable from random strings, but they can be indistinguishable from
pairs of random strings, which is captured by defining the ciphertext space correspondingly. This
follows [29], in whose committing AE definition the same issue arose.

Nonce-Recovering NBE2. A natural subclass of NBE2 schemes are those which recover the
nonce explicitly during decryption. We provide definitions to capture such schemes. We say that an
NBE2 scheme SE2 is nonce-recovering if there exists a deterministic nonce-plus-message recovery
algorithm SE2.NMR such that for any (K,C2, H) ∈ SE2.KS×{0, 1}∗× SE2.HS, if SE2.NMR(K,C2,
H) 6= ⊥ then it parses as a pair (M,N) ∈ SE2.MS×SE2.NS satisfying SE2.Dec(K,C2, H) = M and

12



Game Gauth1
SE1

procedure New

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc(i,N,M,H)

C1 ← SE1.Enc(Ki, N,M,H)

S ← S ∪ {(i,N,C1, H)} ; Return C1

procedure Vf(i,N,C1, H)

M ← SE1.Dec(Ki, N,C1, H)

If (M 6= ⊥) ∧ ((i,N,C1, H) /∈ S) then

win← true

Return (M = ⊥)

procedure Fin

Return win

Game Gauth2
SE2

procedure New

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc(i,N,M,H)

C2 ← SE2.Enc(Ki, N,M,H)

S ← S ∪ {(i, C2, H)} ; Return C2

procedure Vf(i, C2, H)

M ← SE2.Dec(Ki, C2, H)

If (M 6= ⊥) ∧ ((i, C2, H) /∈ S) then

win← true

Return (M = ⊥)

procedure Fin

Return win

Figure 4: Games defining authenticity of NBE1 scheme SE1 (left) and NBE2 scheme SE2 (right).

SE2.Enc(K,N,M,H) = C2. Most of our transforms from NBE1 scheme to NBE2 schemes yield
nonce-recovering NBE2 schemes.

4 Some general results

We give a few general results that we will use.

Priv+Auth implies AE. Early definitions of authenticated encryption gave separate privacy and
authenticity requirements [13]. Above, in the style of [51], a single game captures a joint privacy-
and-authenticity requirement. Bose, Hoang and Tessaro (BHT) [22] showed that, for basic-secure
AE1, separate, privacy-alone and authenticity alone conditions imply the joint condition. Here
we extend this to both advanced security and AE2. This is useful because (1) It can be easier to
establish the simpler, separate requirements than the joint one, and (2) Proven bounds can differ
for privacy and authenticity, which is not visible if one only gives results for the joint notion.

Proceeding, the definition for privacy alone is already present, obtained above by restricting to
adversaries in the classes AE1[Aae1

priv] (for NBE1) or AE2[Aae2
priv] (for NBE2). To define authenticity-

alone, consider the games Gauth1
SE1 and Gauth2

SE2 in Fig. 4, where SE1 is a NBE1 scheme and SE2 is
an NBE2 scheme. The auth1-advantage of adversary A is Advauth1

SE1 (A) = Pr[Gauth1
SE1 (A)]. The

auth2-advantage of adversary A is Advauth2
SE2 (A) = Pr[Gauth2

SE2 (A)].

As for AE, different notions of security are captured by considering different classes of adver-
saries. For x ∈ {auth1, auth2} we define:

• Ax
u-n is the class of adversaries whose Enc queries never repeat a user-nonce pair.

• Adversaries in Ax
u-nmh ⊇ Ax

u-n are allowed to re-use a user-nonce pair across Enc queries as
long as they never repeat an entire query.

• Adversaries in Ax
r-n pick the nonces in their Enc queries uniformly and independently at random

from the nonce space of the scheme. This is defined in more detail in Appendix A.

• Ax
ord is the class of adversaries that are orderly. An adversary is orderly if two conditions hold.

First, it makes its Vf queries after all its Enc queries. (That is, once it has made a Vf query,

13



it does not make any more Enc queries.) Second, the Vf queries are non-adaptive, meaning a
Vf query does not depend on the answer to a prior Vf query. (But the Vf queries can depend
on answers to the prior Enc queries). Intuitively, think of an orderly adversary as first making
a bunch of Enc queries, and then a bunch of Vf queries in parallel.

The following theorem says that AE-security decomposes into privacy plus authenticity. The
statement covers AE1 and AE2 (via the choice of X) and basic and advanced (via the choice of y)
security, so that the single statement encompasses four results.

BHT [22] give and prove this result for basic AE1 secure NBE1. Our bound is slightly better
than theirs, dropping an added term, and we generalize to AE2 and advanced security. As with
BHT [22], the theorem allows us to restrict attention to orderly authenticity adversaries, which
later makes proving authenticity simpler. The proof is in Appendix B.

Theorem 4.1 Let X ∈ {1, 2} and y ∈ {n, nmh}. Let SE be a NBEX scheme. Let A ∈ AaeX
u-y be an

adversary. Then, we can construct adversaries B ∈ AaeX
priv ∩ AaeX

u-y and C ∈ AauthX
ord ∩ AauthX

u-y such
that:

AdvaeX
SE (A) ≤ AdvaeX

SE (B) + AdvauthX
SE (C) .

Adversary B preserves the resources of A. Adversary C is orderly. Additionally, it preserves query
resources to New,Enc, its queries to Vf are those that A makes to Dec, and it preserves running
time.

From single- to multi-user security. The usual hybrid argument can be used to show that
single-user security implies multi-user security up to a factor qn degradation in advantage where qn
is the number of users, meaning the number of New queries of the adversary. As much as possible
we will not rely on this but rather treat multi-user security directly, so as to avoid the degradation
in the bound, but in some cases it will be easier to treat single-user security and take the hit in the
bound. Accordingly we state the result here. We omit the proof since it is standard.

Theorem 4.2 Let X ∈ {1, 2} and y ∈ {n, nmh}. Let SE be a NBEX scheme. Let A ∈ AaeX
u-y be an

adversary making qn calls to its New oracle and qe, qd calls per user to its Enc and Dec oracles,
respectively. Then, we can construct adversary A ∈ AaeX

1 ∩AaeX
u-y such that:

AdvaeX
SE (A) ≤ qn ·AdvaeX

SE (B) .

Adversary B makes 1 query to its New oracle and qe, qd queries to its Enc,Dec oracles, respec-
tively.

Security under random nonces. The following says that AE2[Aae2
u-n]-security (resp. AE1[Aae1

u-n])
implies AE1[Aae1

r-n ]-security (resp. AE1[Aae1
r-n ]) with a degradation in advantage corresponding to the

probability that a nonce repeats for some user. We will refer to this later. We omit the (obvious)
proof.

Theorem 4.3 Let X ∈ {1, 2}. Let SE be a NBEX scheme. Let Arn ∈ AaeX
r-n be an adversary making

qn calls to its New oracle and qe calls per user to its Enc oracle. Then, we can construct adversary
Aun ∈ AaeX

u-n such that

AdvaeX
SE (Arn) ≤ AdvaeX

SE (Aun) +
qnqe(qe − 1)

2SE.nl
.

Adversary Aun preserves the resources of Arn.

14



Saying Aun preserves the resources of Arn means that the number of queries to all oracles are the
same for both, as is the running time.

5 Usage of NBE1: The Transmit-Nonce transform

With AE1-secure NBE1, the nonce is needed for decryption. But how does the decryptor get it?
This is a question about usage not addressed in the formalism. The understanding, however, is
that the nonce can be communicated in the clear, with the core ciphertext. One might argue this
is fine because, in the AE1-formalism, the adversary picks the nonce, so seeing the nonce again in
the ciphertext cannot give the adversary an advantage.

We have discussed in the introduction why this fails to model cases where the nonce is chosen
by the user, and why, at least in general, nonce transmission may violate message privacy. But
the claim, so far, was informal. The reason was that transmitting the nonce represents a usage of
NBE1 and we had no definitions to capture this. With AE2-secure NBE2, that gap is filled and we
are in a position to formalize the claim of usage insecurity.

Some readers may see this is unnecessary, belaboring an obvious point. Indeed, the intuition
is clear enough. But formalizing it serves also as an introduction to exercising our framework.
We capture the usage in question as an NBE2 scheme SETN = TN[SE1] built from a given NBE1
scheme SE1 by what we call the transmit-nonce transform TN. We detail the (rather obvious)
claim that SETN fails to meet AE2-security, and discuss how it will also fail to meet other, weaker
privacy goals.

The TN transform. Our TN (Transmit Nonce) transform takes an NBE1 scheme SE1 and
returns the NBE2 scheme SETN = TN[SE1], that, as the name suggests, transmits the nonce
in the clear, meaning the SETN ciphertext is the nonce together with the SE1 core ciphertext.
In more detail, encryption algorithm SETN.Enc(K,N,M,H) lets C1 ← SE1.Enc(K,N,M,H) and
returns ciphertext C2 ← (N,C1). Decryption algorithm SETN.Dec(K,C2, H) parses C2 as a pair
(N,C1) with N ∈ SE1.NS —we write this as (N,C1) ← C2— returning ⊥ if the parsing fails,
and else returning M ← SE1.Dec(K,N,C1, H). NBE2 scheme SETN has the same key space,
message space and header space as SE1, and we define its ciphertext space via SETN.CS(`n, `m, `h)
= SE1.NS×{0, 1}SE1.ccl(`n,`m,`h) for all `n, `m, `h ≥ 0. Usage of SE1 in which the nonce is sent in the
clear (along with the core ciphertext) can now be formally modeled by asking what formal security
notions for NBE2 schemes are met by SETN = TN[SE1].

Insecurity of TN[SE1]. Let SE1 be any NBE1 scheme. It might, like GCM, be AE1[Aae1
u-n]-

secure, or it might even be AE1[Aae1
u-nmh]-secure. Regardless, we claim that NBE2 scheme SETN =

TN[SE1] fails to be AE2[Aae2
priv ∩Aae2

u-n]-secure, meaning fails to provide privacy even for adversaries
that do not reuse a nonce. This is quite obvious, since the adversary can test whether the nonce
in its Enc query matches the one returned in the ciphertext. In detail:

Adversary ANew,Enc

Init
Pick some (N,M,H) ∈ SE1.NS× SE1.MS× SE1.HS with |N | ≥ 1
New // Initialize one user
(N∗, C1)←$ Enc(1, N,M,H) // Ciphertext returned is a pair
If (N∗ = N) then b′ ← 1 else b′ ← 0
Fin(b′)

15



This adversary has advantage Advae2
SETN

(A) ≥ 1−1/2 = 1/2, so represents a violation of AE2[Aae2
priv∩

Aae2
u-n]-security.

Discussion. The attack above may be difficult to reconcile with SE1 being AE1[Aae1
u-n]-secure, the

question being that, in the AE1 game, the adversary picks the nonce, and thus already knows it,
so why should seeing it again in the ciphertext give the adversary extra information? The answer
is that in usage the adversary does not know the nonce a priori and seeing may provide additional
information. This is not modeled in AE1 but is modeled in AE2. To be clear, the above violation
of AE2 security does not contradict the assumed AE1-security of SE1.

One might (correctly) argue that AE2 is a strong requirement so failing it does not represent a
concerning violation of security, but it is clear that SETN will fail to meet even much weaker notions
of privacy for NBE2 schemes that one could formalize in natural ways, such as message recovery
security or semantic security. (The nonce could be message dependent, in the extreme equal to the
message.) One might also suggest that the losses of privacy occur for pathological choices of nonces,
and nonce transmission is just fine if the nonce is a random number or counter, to which there are
two responses. (1) The pitch and promise of AE1[Aae1

u-n]-secure NBE1 is that any (non-repeating)
nonce is fine. For example RBBK [55] says “The entity that encrypts chooses a new nonce for every
message with the only restriction that no nonce is used twice,” and RFC 5116 says “Applications
SHOULD use the nonce formation method defined in Section 3.2, and MAY use any other method
that meets the uniqueness requirement.” It is important to know (both to prevent misuse and for
our understanding) that in usage of NBE1, security requires more than just uniqueness of nonces;
one must be concerned with how they are conveyed to the receiver. (2) A counter nonce can lead
to loss of user privacy, for example revealing identity information, that is resolved by moving to
AE2[Aae2

u-n]-secure NBE2, which is nonce hiding.

Privacy violations of the type discussed here, and captured by TN, occur only when the nonce
is transmitted in the clear. They do not arise in TLS, where the nonce is not transmitted. (It is a
counter that is held, and locally updated, by both sender and receiver.)

6 Basic transforms

We have explained that AE2-secure NBE2 offers valuable security and usability benefits over current
encryption. So we now turn to achieving it. We follow the development path of NBE1, first, in this
section, targeting basic AE2-security —no user reuses a nonce, which in our framework corresponds
to adversaries in the class Aae2

u-n— and then, in Section 7, targeting advanced AE2-security —misuse
resistance, where nonce-reuse is allowed, which in our framework corresponds to adversaries in the
class Aae2

u-nmh.

Significant effort has gone into the design and analysis of basic-AE1-secure NBE1 schemes. We
want to leverage rather than discard this. Accordingly, rather than from-scratch designs, we seek
transforms of basic-AE1-secure NBE1 schemes into basic-AE2-secure NBE2 ones. This section
gives three transforms that are simple and efficient and minimize quantitative security loss.

6.1 Preliminaries

We assume for simplicity that the NBE1 schemes provided as input to our transforms have nonces
of a fixed length, meaning that SE1.NS = {0, 1}SE1.nl. This holds for most real-world AE1-secure
NBE1 schemes. All our transforms can be adapted to allow variable-length nonces.

Core ciphertexts in practical NBE1 schemes tend to be no shorter than a certain minimal
value, for example 96 bits for typical usage of GCM with AES [26]. We refer to this value as

16



the minimal core-ciphertext length of the scheme SE1, formally defining SE1.mccl = minN,M,H

{SE1.ccl(|N |, |M |, |H|)} where the minimum is over all (N,M,H) ∈ SE1.NS × SE1.MS × SE1.HS.
This is relevant because some of our transforms need SE1.mccl to be non-trivial to provide security.

All transforms here use two keys, meaning the key for the constructed NBE2 scheme SE2 is a
pair consisting of a key for a PRF and a key for SE1. An implementation can, starting from a single
overlying key, derive these sub-keys and store them, so that neither key size nor computational cost
increase. This is well understood and is done as part of OCB, GCM and many other designs.

The ciphertext overhead is the bandwidth cost of the transform. We now discuss how to measure
it. In the NBE2 scheme SE2 constructed by any of our transforms from an NBE1 scheme SE1, the
ciphertext space is the set of strings of some length, SE2.CS(`n, `m, `h) = {0, 1}SE2.cl(`n,`m,`h). Since
NBE1 decryption gets the nonce for free while NBE2 decryption must, effectively, communicate it
via the ciphertext, the “fair” definition of the ciphertext overhead of the transform is the maximum,
over all possible choices of `n, `m, `h, of

SE2.cl(`n, `m, `h)− SE2.ccl(`n, `m, `h)− SE1.nl .

Another way to put it is that the ciphertext overhead is how much longer ciphertexts are in SE2
than in TN[SE1]. All our transforms have ciphertext overhead zero, meaning are optimal in terms
of bandwidth usage.

6.2 The HN1 transform

The idea of our first transform is that a piece of the core ciphertext may be used as a nonce under
which to encrypt the actual nonce. Let SE1 be an NBE1 scheme and F a function family with
F.ol = SE1.nl, so that outputs of F.Ev can be used to mask nonces for SE1. Assume SE1.mccl ≥ F.il,
so that an F.il-bit prefix of a core ciphertext can be used as an input to F.Ev. Invertibility of
F is not required, so it can, but need not, be a blockcipher. Our HN1 transform defines NBE2
scheme SEHN1 = HN1[SE1,F] whose encryption and decryption algorithms are shown in Figure 5.
A key (KF,K1) for SEHN1 is a pair consisting of a key KF for F and a key K1 for SE1, so that
the key space is SEHN1.KS = {0, 1}F.kl × SE1.KS. The message, header and nonce spaces are
unchanged. The parsing Y ‖C1 ← C2 in the second line of the decryption algorithm SEHN1 is such
that |Y | = SE1.nl. The ciphertext overhead is zero. The computational overhead is one call to F.Ev
for each of encryption or decryption.

Theorem 6.1 below says that if the starting NBE1 scheme SE1 is basic-AE1-secure and F is
a PRF then the NBE2 scheme SEHN1 returned by the transform is basic-AE2-secure. We show
authenticity and privacy separately —taking advantage of Theorem 4.1 to obtain joint security—
not just for simplicity, but because the bounds and assumptions under which security can be
established are different. Authenticity of SEHN1 reduces tightly to that of SE1 and does not require
PRF-security of F, as indicated by Equation (1). PRF-security of F is only required for privacy,
where there is also an added term in the bound, as indicated by Equation (2). The proof of the
following is in Appendix C.

Theorem 6.1 Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given adversary A2 ∈ Aauth2
u-n

we construct adversary A1 ∈ Aauth1
u-n such that

Advauth2
SEHN1

(A2) ≤ Advauth1
SE1 (A1) . (1)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈ Aae2
u-n ∩ Aae2

priv, making qn
queries to its New oracle and qe queries per user to its Enc oracle, we construct adversaries A1 ∈

17



SEHN1.Enc((KF,K1), N,M,H)

C1 ← SE1.Enc(K1, N,M,H)

x← C1[1..F.il] ; P ← F.Ev(KF, x)

Y ← P⊕N ; C2 ← Y ‖C1

Return C2

SEHN1.Dec((KF,K1), C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il] ; P ← F.Ev(KF, x)

N ← P⊕Y ; M ← SE1.Dec(K1, N,C1, H)

Return M

SEHN2.Enc((KE,K1), N,M,H)

C1 ← SE1.Enc(K1, N,M,H)

(x, y)← Spl.Ev(`, C1)

C2,1 ← E.Ev(KE, N‖x)

C2 ← C2,1‖y ; Return C2

SEHN2.Dec((KE,K1), C2, H)

If (|C2| < E.bl) then return ⊥
N‖x← E.In(KE, C2[1..E.bl])

y ← C2[(E.bl + 1)..|C2|] ; C1 ← Spl.In(x, y)

M ← SE1.Dec(K1, N,C1, H) ; Return M

SEHN3.Enc((KF,K1), N,M,H)

N1 ← F.Ev(KF, N)

C1 ← SE1.Enc(K1, N1,M,H)

C2 ← N1‖C1 ; Return C2

SEHN3.Dec((KF,K1), C2, H)

If (|C2| < F.ol) then return ⊥
N1‖C1 ← C2 ; M ← SE1.Dec(K1, N1, C1, H)

Return M

HN1[SE1,F] HN2[SE1, `,E,Spl] HN3[SE1,F]

Figure 5: At the top are the encryption and decryption algorithms of the NBE2 schemes constructed
by our basic transforms. From top to bottom: SEHN1 = HN1[SE1,F], SEHN2 = HN2[SE1, `,E, Spl]
and SEHN3 = HN3[SE1,F]. On the bottom are diagrams illustrating the encryption algorithms of
the constructed schemes.

Aae1
u-n ∩Aae1

priv and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qnqe(qe − 1)

2F.il+1
. (2)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

6.3 The HN2 transform

Splitting. This transform employs ciphertext stealing [46] to get zero ciphertext overhead. There
are many choices with regard to how to implement stealing, for example whether one steals from
the first part of the core ciphertext or the last, and implementations may have different preferences.

18



Accordingly, we do not pin down a choice but instead parameterize the transform by a splitting
algorithm responsible for splitting a given string X (the core ciphertext) into segments x (the
stolen part, of a prescribed length `) and y (the rest). Formally, splitting scheme Spl specifies
a deterministic algorithm Spl.Ev that takes an integer ` ≥ 0 and a string X with |X| ≥ `, and
returns a pair of strings (x, y)← Spl.Ev(`,X) with |x| = `. If (x, y) ∈ Im(Spl.Ev(|x|, ·)) —the image
of a function was defined in Section 2— then X ← Spl.In(x, y) recovers the unique X such that
Spl.Ev(|x|, X) = (x, y), and otherwise returns X = ⊥.

This isn’t enough because for security we want that if X is random then so are x, y. A simple
way to ensure this is to require that the split sets x to some bit positions of X and y to the
rest, with the choice of positions depending only on |X|. Formally, we require that there is a
(deterministic) function Spl.St that given integers `, n with n ≥ ` ≥ 0 returns a starting index
s = Spl.St(`, n) in the range 1 ≤ s ≤ n − ` + 1, and Spl.Ev(`,X) returns x = X[s..(s + ` − 1)]
and y = X[1..(s − 1)]‖X[(s + `)..|X|] for s = Spl.St(`, |X|). The most common choices are that
Spl.St(`, n) = 1, so that x = X[1..`] is the `-bit prefix of X and y = X[(` + 1)..|X|] is the rest
(corresponding to stealing from the first part of X), or Spl.St(`, n) = n − ` + 1, so that x =
X[(|X| − ` + 1)..|X|] is the `-bit suffix of X and y = X[1..(|X| − `)] is the rest (corresponding to
stealing from the last part of X), but other choices are possible. Notice that now, assuming it is
given inputs of the right lengths, as it will in our usage, Spl.In will not return ⊥.

The HN2 transform. The starting idea of this transform is that our NBE2 scheme can encrypt
under the given NBE1 scheme and then also include in the ciphertext an enciphering, under a
blockcipher E, of the nonce. We enhance this to encipher, along with the nonce, ` bits stolen from
the core ciphertext. The stealing has two dividends. First, nonces are often shorter than the block
length of E —for example SE1.nl = 96 and E.bl = 128 for AES-GCM and OCB [55, 40]— so in the
absence of stealing, the nonce would be padded before enciphering, leading to ciphertext overhead.
Second, while we show here (Theorem 6.2) that the scheme preserves basic security regardless of
the amount ` stolen, we show later (Theorem 7.2) that it preserves even advanced security if ` is
non-trivial (128 bits or more). We now proceed to the full description.

Let SE1 be an NBE1 scheme, Spl a splitting scheme and ` ≥ 0 the prescribed length of the
stolen segment of the core ciphertext. We assume the minimal core-ciphertext length of SE1 satisfies
SE1.mccl ≥ `, which ensures that core ciphertexts are long enough to allow the desired splitting. Let
E be a blockcipher with block length E.bl = SE1.nl + `. Our HN2 transform defines NBE2 scheme
SEHN2 = HN2[SE1, `,E, Spl] whose encryption and decryption algorithms are shown in Figure 5.
The parsing in the second line of the decryption algorithm SEHN2 is such that |N | = SE1.nl. A key
(KE,K1) for SEHN2 is a pair consisting of a keyKE for E and a keyK1 for SE1, so that the key space is
SEHN2.KS = {0, 1}E.kl×SE1.KS. The nonce, message and header spaces are unchanged. The length
of ciphertext C2 is E.bl + |C1| − ` = |C1| + SE1.nl, so the ciphertext space is SEHN2.CS(`n, `m, `h)
= {0, 1}SE1.nl+SE1.ccl(`n,`m,`h). The ciphertext overhead is zero. The computational overhead is an
extra blockcipher call for encryption and a blockcipher inverse for decryption.

A typical instantiation for basic security is E = AES, so that E.bl = 128. Nonces would have
length SE1.nl = 96. We then set ` = 32 and Spl.St(`, n) = 1 for all n. This means SE1.mccl must
be at least 32, which is true for all real-world schemes we know. This reduction in the required
value of SE1.mccl for security is a benefit that HN2 offers over HN1. Recall the latter needs
F.il ≥ SE1.mccl, and hence by Theorem 6.1 needs SE1.mccl ≥ 128, for the same security that HN2
can offer with SE1.mccl ≥ 32.

Theorem 6.2 below says that if the starting NBE1 scheme SE1 is basic-AE1-secure and E is a
PRF, then the NBE2 scheme SEHN2 returned by the transform is basic-AE2-secure. (This holds
regardless of the value of `.) We establish authenticity and privacy separately to showcase the

19



difference in assumptions. Thus authenticity, as per Equation (3) does not require security of the
blockcipher E and reduces tightly to the authenticity of SE1. For privacy, which relies on PRF
security of E, Equation (4) shows that the reduction is tight, the added term of Equation (2) no
longer present. This better bound is another benefit of HN2 over HN1. The proof of the following
is in Appendix D.

Theorem 6.2 Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as above. Then, given adversary A2 ∈
Aauth2

u-n we construct adversary A1 ∈ Aauth1
u-n such that

Advauth2
SEHN2

(A2) ≤ Advauth1
SE1 (A1) . (3)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈ Aae2
u-n ∩ Aae2

priv, making
qn queries to its New oracle and qe queries per user to its Enc oracle, we construct adversaries
A1 ∈ Aae1

u-n ∩Aae1
priv and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) . (4)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

6.4 The HN3 transform

Our third transform uses what we call nonce-based nonce-derivation, in which encryption is per-
formed under SE1 using as nonce the result N1 = F(KF, N) of a PRF F on the actual nonce N .
The idea comes from SIV [56] but differences include that: (1) SIV constructs an AE1-secure NBE1
scheme while we construct an AE2-secure NBE2 scheme. (2) SIV decryption needs to have the
original nonce. (3) Our synthetic nonce N1 is a function only of the actual nonce while the one in
SIV is also a function of the message and header.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function family with
F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1. Invertibility of F is not
required, so it can, but need not, be a blockcipher. Our HN3 transform defines NBE2 scheme
SEHN3 = HN3[SE1,F] whose encryption and decryption algorithms are shown in Figure 5. A key
(KF,K1) for SEHN3 is a pair consisting of a key KF for F and a key K1 for SE1, so that the key
space is SEHN3.KS = {0, 1}F.kl × SE1.KS. The message and header spaces are unchanged, and the
nonce space is SEHN3.NS = {0, 1}F.il, meaning inputs to F are nonces for SE2. The parsing in the
second line of the decryption algorithm SEHN3 of Figure 5 is such that |N1| = SE1.nl. Note that
the decryption algorithm does not use F or KF.

As with HN1 and HN2, the HN3 transform has zero ciphertext overhead. The computational
overhead for encryption is one invocation of F. Advantages emerge with decryption, where there
is now no computational overhead. Indeed decryption in SEHN3 is effectively the same as in SE1.
In particular, in the typical case that F is a blockcipher on which SE1 is itself based, decryption
(unlike with HN2) no longer needs to implement its inverse, which can be a benefit in hardware
and for reducing code size.

The assumed PRF security of F means that the nonce N1 provided to SE1.Enc is effectively
random. This makes it simple and natural, in proving security, to assume SE1 is AE1[Aae1

r-n ]-secure
(recall this is AE1-security for the class of adversaries that pick the nonce at random). Theorem 6.3
below accordingly says that if the starting NBE1 scheme SE1 is AE1[Aae1

r-n ]-secure and F is a PRF
then the NBE2 scheme SEHN1 returned by the transform is basic-AE2-secure. The gap to the
assumed basic-AE1-security of SE1 is bridged by applying Theorem 4.3. The proof of the following
is in Appendix E.

20



SEHN4.Enc((KF,K1), N,M,H)

N1 ← F.Ev(KF, (N,M,H))

C1 ← SE1.Enc(K1, N1, N‖M,H)

C2 ← N1‖C1

Return C2

SEHN4.Dec((KF,K1), C2, H)

If (|C2| < F.ol) then return ⊥
N1‖C1 ← C2 ; X ← SE1.Dec(K1, N1, C1, H)

If (X = ⊥) then return ⊥
N‖M ← X ; T ← F.Ev(KF, (N,M,H))

If (T = N1) then return M else return ⊥

SEHN5.Enc(KTE, N,M,H)

C2 ← TE.Ev(KTE, H, 0
`z‖N‖M)

Return C2

SEHN5.Dec(KTE, C2, H)

X ← TE.In(KTE, H,C2)

If X[1..`z] 6= 0`z then return ⊥
N‖M ← X[(`z + 1)..|X|] ; Return M

HN4[SE1, `,F] HN5[TE, `, `z]

Figure 6: At the top are encryption and decryption algorithms of the NBE2 schemes constructed
by our advanced transforms. From top to bottom: SEHN4 = HN4[SE1, `,F] and SEHN5 =
HN5[TE, `, `z]. On the bottom are diagrams illustrating the encryption algorithms of the con-
structed schemes.

Theorem 6.3 Let SEHN3 = HN3[SE1,F] be obtained as above. Then, given adversary A2 ∈ Aae2
u-n,

making qn queries to its New oracle and qe queries per user to its Enc oracle, we construct
adversaries A1 ∈ Aae1

r-n and B such that

Advae2
SEHN3

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) . (5)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

7 Advanced transforms

We now turn to achieving AE2-security in the nonce-misuse setting, which we formalized as
AE2[Aae2

u-nmh]-security. We discuss various transforms for this purpose.

7.1 Advanced security of HN1

We showed in Theorem 6.1 that HN1 preserves basic security. It turns out that it also preserves
advanced security. Theorem 7.1 below says that if the starting NBE1 scheme SE1 is advanced-AE1-

21



secure and F is a PRF then the NBE2 scheme SEHN1 returned by the transform is advanced-AE2-
secure. The change in the statement compared to Theorem 6.1 is only with regard to the adversary
classes changing from unique nonce (basic security) to unique nonce-message-header (advanced
security). Again, Equation (6) tightly reduces authenticity of SEHN1 to that of SE1 and makes no
security assumptions on F, while the privacy claim of Equation (7) relies on PRF-security of F.
The proof is in Appendix C.

Theorem 7.1 Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given adversary A2 ∈
Aauth2

u-nmh we construct adversary A1 ∈ Aauth1
u-nmh such that

Advauth2
SEHN1

(A2) ≤ Advauth1
SE1 (A1) . (6)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈ Aae2
u-nmh ∩ Aae2

priv, making
qn queries to its New oracle and qe queries per user to its Enc oracle, we construct adversaries
A1 ∈ Aae1

u-nmh ∩Aae1
priv and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qnqe(qe − 1)

2F.il+1
. (7)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

7.2 Advanced security of HN2

We showed in Theorem 6.2 that HN2 preserves basic security regardless of the amount ` of stolen
core-ciphertext, even ` = 0. For small `, however, HN2 can leak information about the nonce in the
advanced (misuse resistance) setting, so that the resulting scheme does not provide AE2[Aae2

u-nmh]-
security.

To see how HN2 can reveal information about the nonce, consider the case that ` = 0. Now
if two different message-header pairs are encrypted with the same nonce, then the first part of the
ciphertext is the same, leading to an Aae2

u-nmh-adversary with advantage 1− 2−E.bl. The advantage
of this attack however decreases (exponentially) as ` increases. The following theorem says that
once ` is non-trivial (say, 128 bits or more), the transform actually preserves advanced security as
well. The proof is in Appendix F.

Theorem 7.2 Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as above. Then, given adversary A2 ∈
Aauth2

u-nmh we construct adversary A1 ∈ Aauth1
u-nmh such that

Advauth2
SEHN2

(A2) ≤ Advauth1
SE1 (A1) . (8)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈ Aae2
u-nmh ∩ Aae2

priv, making
qn queries to its New oracle and qe queries per user to its Enc oracle, we construct adversaries
A1 ∈ Aae1

u-nmh ∩Aae1
priv and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) +
qnqe(qe − 1)

2`+1
. (9)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

The above-sketched attack for the ` = 0 case can be extended to an attack (adversary) that
for arbitrary ` achieves an advantage of about qnq

2
e · 2−`, showing the bound of Theorem 7.2 is

essentially tight. The idea is that the adversary can win when the ` stolen bits are the same

22



across two ciphertexts encrypted to the same user. This extends an attack of [57] on Meyer-Matyas
ciphertext stealing.

The result of Theorem 7.2, however, is not ideal, because security would need ` = 128, which
requires SE1.mccl ≥ 128 (not always true) and also, assuming 96-bit nonces, would require that
the blockcipher E have block length 128+96=224, which precludes AES. We now give further
transforms that do better.

7.3 The HN4 transform

The HN3 transform clearly does not provide advanced-AE2-security because, if a nonce is repeated,
the resulting ciphertexts have the same synthetic nonce, and hence the same first parts, which an
adversary can notice. The starting idea for HN4 is to obtain the synthetic nonce N1 by applying
the PRF F, not just to the actual nonce N as in HN3, but, as in SIV [56], to (N,M,H). If we now
encrypt with N1 under an NBE1 scheme SE1, we can indeed show that AE2[Aae2

u-nmh]-security is
achieved, assuming SE1 is AE1[Aae1

u-nmh]-secure. The latter assumption, however, is not satisfactory
here because AE1[Aae1

u-nmh]-security (typically achieved via SIV itself) already requires two passes
through the entire input, so our computation of N1 adds another entire pass, resulting in significant
(non-constant) computational overhead. To avoid this we ask whether it would be enough for SE1
to provide only privacy, meaning be AE1[Aae1

r-n ∩Aae1
priv]-secure, because this can be achieved in one

pass. Indeed, this is what SIV assumes, but the difficulty is that SIV decryption makes crucial use
of the original nonce N to provide authenticity, recomputing it and checking that it matches the
one in the ciphertext. But to be nonce hiding, we cannot transmit N . We resolve this by including
N as part of the message encrypted under SE1.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function family with
F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1, and also with SE1.NS ×
SE1.MS × SE1.HS ⊆ F.D, meaning triples (N,M,H) can be used as inputs to F. Let ` ≥ 1 be
an integer prescribing the nonce length of the constructed scheme. Our HN4 transform defines
NBE2 scheme SEHN4 = HN4[SE1, `,F] whose encryption and decryption algorithms are shown
in Figure 6. A key (KF,K1) for SEHN4 is a pair consisting of a key KF for F and a key K1 for
SE1, so that the key space is SEHN4.KS = {0, 1}F.kl × SE1.KS. The message and header spaces
are unchanged, and the nonce space is SEHN4.NS = {0, 1}`. The parsing in the second line of the
decryption algorithm SEHN4 of Figure 5 is such that |N1| = SE1.nl. The ciphertext overhead is zero,
and if SE1 is a standard one-pass privacy only scheme like counter-mode, then the computational
overhead is constant.

Security, as with SIV, requires that SE1 satisfies tidiness [49]. Formally, for all K,N,C1, H,
if SE1.Dec(K,N,C1, H) = M 6= ⊥ then SE1.Enc(K,N,M,H) = C1. Our assumption on SE1 is
AE1[Aae1

r-n ∩ Aae1
priv]-security. (Privacy only, and again, for convenience, for random nonces.) By

Theorem 4.3 this is implied by AE1[Aae1
u-n ∩Aae1

priv]-security. Assuming additionally that F is a PRF,

the following says that HN4[SE1, `,F] is AE2[Aae2
u-nmh]-secure.

As we have often done before, we consider privacy and authenticity separately to show that the
assumptions required, and bounds obtained, differ. Namely, assuming F is a PRF (1) privacy of
SEHN4 = HN4[SE1, `,F] is inherited from that of SE1 with a tight reduction and (2) authenticity
of SEHN4 assumes only the tidiness (not privacy) of SE1. The proof is in Appendix G.

Theorem 7.3 Let SEHN4 = HN4[SE1, `,F] be obtained as above, and assume SE1 satisfies tidiness.
Then, given adversary A2 ∈ Aae2

u-nmh ∩ Aae2
priv making qn queries to its New oracle and qe queries

per user to its Enc oracle, we construct adversaries A1 ∈ Aae1
r-n ∩Aae1

priv and B1 such that

Advae2
SE2(A2) ≤ Advprf

F (B1) + Advae1
SE1(A1) . (10)

23



Game Gprf
TE

procedure Init

b←$ {0, 1}

procedure New

v ← v + 1

If b = 1 then

Kv←$ {0, 1}TE.kl
For all T ∈ TE.TS do

fv,T ← TE.Ev(Kv, T, ·)
Else For all T ∈ TE.TS do

fv,T ←$ LFUNC

procedure Fn(i, T,X)

Return fi,T (X)

procedure Fin(b′)

Return (b = b′)

Game Gprp-cca
TE

procedure Init

b←$ {0, 1}

procedure New

v ← v + 1

If b = 1 then

Kv←$ {0, 1}TE.kl
For all T ∈ TE.TS do

πv,T ← TE.Ev(Kv, T, ·)
Else For all T ∈ TE.TS do

πv,T ←$ LPERM

procedure Fn(i, T,X)

Return πv,T (X)

procedure Fn−1(i, T, Y )

Return π−1i,T (Y )

procedure Fin(b′)

Return (b = b′)

Figure 7: Game defining (multi-user) PRF security for tweakable cipher TE (left) and game defining
(multi-user) PRP-CCA security for TE (right).

Adversary A1 preserves the resources of A2 up to increasing the lengths of messages in Enc queries
by `. Adversary B1 makes qn queries to its New oracle, and qe queries to its Fn oracle per user,
and its running time is about that of A2. Also, given adversary A2 ∈ Aauth2

u-nmh making qn queries to
its New oracle, qe queries per user to its Enc oracle and qv queries per user to its Vf oracle, we
construct adversary B2 such that

Advauth2
SE2 (A2) ≤ Advprf

F (B2) +
qnqv

2SE1.nl
. (11)

Adversary B2 makes qn queries to its New oracle, and qe + qv queries per user to its Fn oracle,
and its running time is about that of A2.

7.4 The HN5 transform

Our final transform HN5 is different. It does not start from an NBE1 scheme but rather from
a (arbitrary-input-length) tweakable cipher, extending the encode-then-encipher paradigm [16] to
provide advanced-AE2-security. Instantiation via a fast tweakable cipher like AEZ [33] results in
correspondingly fast advanced-AE2-secure NBE2.

We encipher the nonce, message and some redundancy, using the header as the tweak. The
change from [33] is to move the nonce from tweak to an input so as to hide it, which we will show
is enough to confer AE2-security.

Tweakable ciphers. These are the basic tool for this transform, so we recall definitions. A
tweakable cipher TE [42, 33] specifies a deterministic evaluation algorithm TE.Ev : {0, 1}TE.kl ×
TE.TS × {0, 1}∗ → {0, 1}∗ and a deterministic inversion algorithm TE.In : {0, 1}TE.kl × TE.TS ×
{0, 1}∗ → {0, 1}∗. Here, TE.kl is the key length and TE.TS is the tweak space. We require

24



that for all K ∈ {0, 1}TE.kl, T ∈ TE.TS and X ∈ {0, 1}∗ we have |TE.Ev(K,T,X)| = |X| and
TE.In(K,T,TE.Ev(K,T,X)) = X.

We define (multi-user) PRF security for tweakable cipher TE via the game Gprf
TE(A) in Fig. 7.

Here LFUNC is the set of all length-preserving functions f : {0, 1}∗ → {0, 1}∗. It is required that
any Fn(i, T,X) query of the adversary A satisfies i ≤ v, T ∈ TE.TS and X ∈ {0, 1}∗. The

(multi-user) PRF advantage of A is Advprf
TE(A) = 2 Pr[Gprf

TE(A)]− 1
We define (multi-user) PRP-CCA security [42] for tweakable cipher TE via the game Gprp-cca

TE (A)
in Fig. 7. Here LPERM is the set of all length-preserving bijections π : {0, 1}∗ → {0, 1}∗. (Note that
for any such π and any n, restricting π to {0, 1}n yields a permutation on {0, 1}n.) It is required that
any Fn(i, T,X) or Fn−1(i, T, Y ) query of adversary A satisfies i ≤ v, T ∈ TE.TS and X,Y ∈ {0, 1}∗.
The (multi-user) PRP-CCA advantage of A is Advprp-cca

TE (A) = 2 Pr[Gprp-cca
TE (A)]− 1.

The HN5 transform. Proceeding to the details, let TE be a tweakable cipher as defined in
Section 2. Let ` ≥ 1 be an integer prescribing the nonce length of the constructed scheme. Let
`z ≥ 0 be the number of bits of redundancy we introduce to provide authenticity [16]. Our transform
defines NBE2 scheme SEHN5 = HN5[TE, `, `z] whose encryption and decryption algorithms are
shown in Figure 6. The key space of SEHN5 is the key space of TE. The message space is {0, 1}∗.
The header space SEHN5.HS is set to the tweak space TE.TS of TE. The nonce space is SEHN5.NS =
{0, 1}`. The length of ciphertext SEHN5.Enc(K,N,M,H) is `z+|N |+|M |, so SEHN5.CS(`n, `m, `h) =
{0, 1}`z+`+`m . Ciphertext overhead, in this case, is not relative to an underlying NBE1 scheme,
since there isn’t any, but we see that ciphertexts are longer than message plus nonce by just `z bits,
which is effectively optimal [33].

With this transform, it is helpful to establish privacy and authenticity separately because the
security notions required to tightly bound them differ. The privacy of SEHN5 reduces to the PRF
security of TE while its authenticity depends on TE being an PRP-CCA secure tweakable cipher
and `z being sufficiently large. The following theorem captures this formally. The proof in is
Appendix H.

Theorem 7.4 Let SEHN5 = HN5[TE, `, `z] be obtained as above. Then, given adversary A2 ∈
Aae2

u-nmh ∩Aae2
priv, making qn queries to its New oracle and qe queries per user to its Enc oracle, we

construct adversary B1 such that

Advae2
SEHN5

(A) ≤ Advprf
TE(B1) . (12)

Adversary B makes qn queries to its New oracle and qe queries per user to its Fn oracle, and its
running time is about that of A. Also, given adversary A2 ∈ Aauth2

u-nmh making qn queries to its New
oracle and qe, qv queries per user to its Enc,Vf oracles respectively, with qe + qv ≤ 2`+`z−1, we
construct adversary B2 such that

Advauth2
SEHN5

(A2) ≤ Advprp-cca
TE (B2) +

2qnqd
2`z

. (13)

Adversary B2 makes qn queries to its New oracle and qe, qv queries per user to its Fn,Fn−1 oracles
respectively, and its running time is about that of A2.

8 Dedicated transform for GCM

We have shown that our generic transforms allow us to immunize NBE1 schemes with low over-
head. We now present a transform specific to the GCM NBE1 scheme which is used in TLS. Our
transform takes advantage of the underlying structure of GCM to further minimize overhead. We
also minimize changes to the scheme so that existing hardware and software can easily adapt.

25



Padding function. Let π : {0, 1}n → {0, 1}n be a function. (In the scheme it will be E.Ev(K, ·) for
a blockcipher E.) We want to run it in counter mode, defining a function Padπs,t that takes a nonce
N ∈ {0, 1}∗ of length at most n to return a string (the pad) of length t, with t not necessarily a
multiple of n. Integer s ≥ 0 is the starting point. Recall that if i is an integer then as per Section 2,
〈i〉m is the m-bit representation of i mod 2m. Now we can define:

Padπs,t(N)

L← bt/nc ; e← t− nL ; X ← ε
For i = 0, . . . , L− 1 do X ← X ‖ π(N‖〈s+ i〉n−|N |)
X ← X ‖ π(N‖〈s+ L〉n−|N |)[1..e]
Return X

The CAU1 transform. Following [18], we generalize GCM via a transform CAU1. (We add
the “1” to indicate that it is an NBE1 scheme.) Let E be a blockcipher. Let H be a function family
with H.D = {0, 1}∗ × {0, 1}∗ and H.ol = H.kl = E.bl. Let 1 ≤ ` < E.bl be an integer indicating
the nonce-length. We associate to these the NBE1 scheme SE1 = CAU1[E,H, `] whose encryption
and decryption algorithms are shown at the top of Fig. 8. The key K is a key for E, meaning
SE1.KS = {0, 1}E.kl. The header space is SE1.HS = {0, 1}∗. The message space SE1.MS is the set of
strings of length at most E.bl ·(2E.bl−`−2). The nonce space is SE1.NS = {0, 1}`. In the pseudocode
of Fig. 8, the parsing τ‖C∗1 ← C1 is such that |τ | = E.bl, and if parsing fails it is understood that
the algorithm returns ⊥.

AES-GCM, as proposed by McGrew and Viega [45] and standardized by NIST [26], is obtained
by setting E = AES (so E.bl = 128), H = GHASH and ` = 96. It is widely used in practice and proven
to provide basic AE1-security (i.e. AE1[Aae2

u-n]-security). SE1 has a fixed-length nonce, reflecting
the standardized version of GCM, but a variant with variable-length nonces can be obtained by
pre-processing the nonce, as discussed in [45, 36].

Our CAU2 transform. To provide nonce hiding security, we exploit a feature of NBE1 scheme
SE1 = CAU1[E,H, `], namely that the nonce can be obtained from the authentication tag τ . In
particular, if τ‖C∗1 ← SE1.Enc(K,N,M,H) and KH = E.Ev(K, 0E.bl) then the nonce N can be
recovered as the first ` bits of

y = E.In(K, τ ⊕H.Ev(KH, (C
∗
1 , H))) .

Therefore, in our NBE2 variant SE2 = CAU2[E,H, `], we don’t explicitly communicate the nonce
but rather have the receiver use the tag to compute y as above, rejecting if the last E.bl − `
bits of y are not 〈1〉E.bl−` and otherwise setting N to the first ` bits of y. This can be seen as
exploiting the “parsimoniousness” of TN[SE1] [15]. Unfortunately, merely doing this results in a
loss of authenticity because the decryption procedure will succeed for any given ciphertext with
probability 2−E.bl+`, since this is the probability that some nonce with suffix 〈1〉E.bl−` is recovered.
This would be unacceptable in GCM since an adversary would be able to forge valid ciphertexts
with probability 2−32. So in order to retain security, we add redundancy to the message before
encrypting, specifically prepending it with 0`. Decryption will check that the message returned by
SE1.Dec indeed starts with such a string of 0s. We expect that decryption with a “wrong” nonce
leads to a ciphertext that lacks the redundancy. A similar technique is used by ADL [4] in their
scheme, GCM-RUP, but for a slightly different variant of GCM.

More formally, let E,H, ` be as for CAU1 above. Our transform CAU2 defines an NBE2
scheme SE2 = CAU2[E,H, `] whose encryption and decryption algorithms are shown at the bottom
of Fig. 8. The key, header and nonce spaces are the same as for SE1 = CAU1[E,H, `]. To allow

26



SE1.Enc(K,N,M,H)

P ← Pad
E.Ev(K,·)
2,|M | (N)

C∗1 ←M ⊕P
KH ← E.Ev(K, 0E.bl)

h← H.Ev(KH, (C
∗
1 , H))

τ ← h⊕E.Ev(K,N‖〈1〉E.bl−`)
C1 ← τ‖C∗1 ; Return C1

SE1.Dec(K,N,C1, H)

τ‖C∗1 ← C1 ; P ← Pad
E.Ev(K,·)
2,|C∗

1 |
(N)

M ← C∗1 ⊕P
KH ← E.Ev(K, 0E.bl)

h← H.Ev(KH, (C
∗
1 , H))

τ ′ ← h⊕E.Ev(K,N‖〈1〉E.bl−`)
If (τ = τ ′) then return M else return ⊥

SE2.Enc(K,N,M,H)

C2 ← SE1.Enc(K,N, 0`‖M,H)

Return C2

SE2.Dec(K,C2, H)

τ‖C∗1 ← C2

KH ← E.Ev(K, 0E.bl) ; h← H.Ev(KH, (C
∗
1 , H))

y ← E.In(K, τ ⊕h) ; N‖w ← y

P ← Pad
E.Ev(K,·)
2,|C∗

1 |
(N) ; M∗ ← C∗1 ⊕P ; x‖M ←M∗

If ((x = 0`) and (w = 〈1〉E.bl−`)) then return M

Else return ⊥

Figure 8: Encryption and decryption algorithms of NBE1 scheme SE1 = CAU1[E,H, `] and NBE2
scheme SE2 = CAU2[E,H, `]. SE2’s encryption algorithm uses that of SE1 as a subroutine.

room for the redundancy, the maximum message length is reduced by ` bits, so the message space
is the set of all strings of length at most E.bl · (2E.bl−` − 2) − `. In the pseudocode of Fig. 8, the
parsing N‖w ← y is such that |N | = ` and |w| = E.bl − `. The parsing x‖M ← M∗ is such that
|x| = `, and if parsing fails it is understood that the algorithm returns ⊥.

Of course an AE2-secure CAU2[E,H, `] scheme could be obtained from CAU1[E,H, `] via our
basic transforms of Section 6, but CAU2[E,H, `] has the following advantages over these schemes.
It does not change the key, adding no new key materiel. For encryption the code of CAU1[E,H, `]
can be invoked in a blackbox way, so existing (often extensively optimized) implementations may
be reused and existing hardware and software can more easily adapt. Decryption, however, requires
more extensive implementation changes.

In the following, we establish basic AE2 security of CAU2[E,H, `] assuming PRF-security of E
and AXU-security of H. This result improves on the one claimed in the preliminary version of our
paper [14], which had needed the stronger assumption that E is a strong PRP. (Meaning, a PRP
when the adversary can query both the function and its inverse.) Theorem 4.1 allows us to consider
privacy and authenticity separately. As Theorem 8.1 below indicates, privacy is trivially inherited
from CAU1[E,H, `]. The proof for authenticity, namely that of Theorem 8.2, is more invasive and
non-trivial.

Privacy of CAU2[E,H, `]. For privacy of a scheme, only the encryption algorithm is relevant;
how decryption is performed makes no difference. Now, as Figure 8 indicates, the encryption
algorithm of SE2 = CAU2[E,H, `] simply runs that of SE1 = CAU1[E,H, `] with 0` prepended to
the message. As a result, privacy of SE2 follows directly from that of SE1:

Theorem 8.1 Let SE1 = CAU1[E,H, `] and SE2 = CAU2[E,H, `] be obtained as above. Then,

27



Game Gaxu
H

procedure Init

L←$ {0, 1}H.kl

procedure Fin((x1, y1), (x2, y2), z)

h1 ← H.Ev(L, (x1, y1)) ; h2 ← H.Ev(L, (x2, y2))
Return ( (h1⊕h2 = z) and ((x1, y1) 6= (x2, y2)) )

Figure 9: Game defining AXU security for function family H.

given adversary A2 ∈ Aae2
priv ∩Aae2

u-n we construct A1 ∈ Aae1
priv ∩Aae1

u-n such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) .

Adversary A1 preserves the resources of A2 up to an increase of ` in the lengths of any messages
queried to Enc.

Proof of Theorem 8.1: When A2 makes a query (i,N,M,H) to its encryption oracle, A1

queries (i,N, 0`‖M,H) to its encryption oracle and returns the result to A2. Since these are
privacy adversaries, there are no decryption queries to consider. When A2 makes its query to its
Fin oracle, adversary A1 makes the same query to its own Fin oracle.

This allows us to conclude privacy of SE2 = CAU2[E,H, `] based on known proofs and bounds for
SE1 = CAU1[E,H, `] from prior work [45, 36, 18, 43, 35]. In particular this allows SE2 to inherit
the high-quality bounds shown for SE1 shown by Hoang, Tessaro and Thiruvengadam [35].

AXU security. The authenticity of SE2 = CAU2[E,H, `] assumes axu security of H. We will
define a weaker, computational version of the usually information-theoretic definition of [41, 39, 2,
18], and show that this suffices, which makes our results stronger.

Let H be a function family with H.D = {0, 1}∗ × {0, 1}∗. Consider game Gaxu
H of Figure 9,

and let C be an adversary, that we call an axu-adversary, playing this game. Note that the key
L chosen in Init is not returned to the adversary. The adversary has no oracles. To win, it must
find, and submit to Fin, a pair (x1, y1), (x2, y2) of distinct messages, together with the value z of
the xor of H.Ev(L, ·) on these messages. We let Advaxu

H (C) = Pr[Gaxu
H (C)] be the probability that

the adversary wins.

The advantage of C will depend on the lengths of the inputs in its Fin query. These are
accordingly quantified in Theorem 8.2. The computational element of this AXU treatment is that
Theorem 8.2 constructs an adversary C with bounded (and specified) resources.

The AXU family GHASH underlying GCM fits in our framework, so our results apply to it. But,
unlike prior results, ours apply to other families as well. For example, we could set H to be a PRF
or a collision-resistant hash function like SHA256, choices whose security is only computational.

Authenticity of CAU2[E,H, `]. We exploit our general results to reduce to as simple a case as
possible. (Better bounds may be possible by direct approaches.) First, Theorem 4.2 allows us to
restrict attention to a single user. Now, still with a single user, Theorem 4.1 allows us to bound
the auth2 advantage for adversaries that are orderly. Finally, a trivial hybrid argument says that,
for orderly adversaries, we can assume just one Vf query. Thus, below, the given adversary A2

against SE2 = CAU2[E,H, `] is assumed to be orderly, to make one New query (single user) and
to make one Vf query. The proof, which is the most non-trivial in this paper, is in Appendix I.

28



Theorem 8.2 Let SE2 = CAU2[E,H, `] be obtained as above. Then, given adversary A2 ∈
Aauth2

u-n ∩ Aauth2
ord making one query to its New oracle, qe queries to its Enc oracle and one query

to its Vf oracle, we construct adversaries B,C such that

Advauth2
SE2 (A2) ≤ 2 ·Advprf

E (B) + qe ·Advaxu
H (C) +

1

2`
.

Let σ be the total number of blocks across the messages queried by A2 to Enc. Let m be the
maximum, over all these queries, of the length of the message plus the length of the header in the
query. Let m′ be the length of the ciphertext plus the length of the header in the Vf query. Then
adversary B makes σ + qe queries to its Fn oracle and its running time is about that of A2. The
messages submitted by C to Fin have lengths at most max(m + E.bl,m′) and the running time of
C is about that of A2.

The natural approach to this proof is to begin by switching E.Ev(K, ·) to a random permutation.
This would need us to assume prp-cca (strong prp) security because the inverse function is computed
in Vf. Instead our proof delays the switch, staying with E.Ev(K, ·) and exploiting its being a
permutation to move to a game in which Vf does not need to compute the inverse E.In(K, ·). Once
this is done, we can switch E.Ev(K, ·) to a random function and rely only on the PRF assumption.
Then, another game sequences is used to reduce to the assumed axu-security of H.

A bound on the auth2-advantage of an adversary that makes multiple New and Vf queries can
be obtained, as noted above, by combining our general results with Theorem 8.2. An interesting
open question is to directly analyze such an adversary and obtain a bound better than ours on its
auth2-advantage.

9 A real-world perspective

In addition to bridging the gap between theory and usage, our framework allows us to formalize
weaknesses of real-world schemes which communicate nonces in the clear.

First, it allows us to formalize an intuitive fact: pathologically chosen nonces cannot be com-
municated in the clear. It may seem obvious that message or key-dependent nonces violate security
but such pathological nonce choices have occurred in the wild. For instance, CakePHP, a web
framework, used the key as the nonce [1] when encrypting data. The use of a hash of a message
has also been proposed, and subsequently argued as insecure, in an Internet forum [50].

Second, it disallows metadata leakage through the nonce. Implicit nonces with a device specific
field, such as those recommended in RFC 5116 [44] enable an adversary to distinguish between
different user sessions. Even the “standard” nonce choices are not safe against these adversaries. A
counter will allow an adversary distinguish between sessions with high traffic and low traffic, and
a randomly chosen nonce can detect devices with poor entropy (RSA public keys were used to a
similar end by HDWH [32]).

10 Acknowledgements

We thank the anonymous reviewers (of the many conferences to which this paper was submitted
before finally being accepted at Crypto 2019) for their feedback and suggestions.

29



References

[1] CakePHP: Using the IV as the key. http://www.cryptofails.com/post/70059594911/

cakephp-using-the-iv-as-the-key. Accessed: 2019-02-12. 29

[2] F. Abed, S. R. Fluhrer, C. Forler, E. List, S. Lucks, D. A. McGrew, and J. Wenzel. Pipelineable
on-line encryption. In C. Cid and C. Rechberger, editors, FSE 2014, volume 8540 of LNCS,
pages 205–223. Springer, Heidelberg, Mar. 2015. 28

[3] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How to securely
release unverified plaintext in authenticated encryption. In P. Sarkar and T. Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 105–125. Springer, Heidelberg, Dec.
2014. 7

[4] T. Ashur, O. Dunkelman, and A. Luykx. Boosting authenticated encryption robustness with
minimal modifications. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume
10403 of LNCS, pages 3–33. Springer, Heidelberg, Aug. 2017. 7, 26

[5] J. Aumasson, S. Babbage, D. Bernstein, C. Cid, J. Daemen, O. Dunkelman, K. Gaj,
S. Gueron, P. Junod, A. Langley, D. McGrew, K. Paterson, B. Preneel, C. Rechberger,
V. Rijmen, M. Robshaw, P. Sarkar, P. Schaumont, A. Shamir, and I. Verbauwhede. CHAE:
Challenges in authenticated encryption. ECRYPT-CSA D1.1, Revision 1.05, March 2017.
https://chae.cr.yp.to/whitepaper.html. 3

[6] M. Barbosa and P. Farshim. Indifferentiable authenticated encryption. In H. Shacham and
A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 187–220. Springer,
Heidelberg, Aug. 2018. 7

[7] G. Barwell, D. P. Martin, E. Oswald, and M. Stam. Authenticated encryption in the face of
protocol and side channel leakage. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 693–723. Springer, Heidelberg, Dec. 2017. 7

[8] G. Barwell, D. Page, and M. Stam. Rogue decryption failures: Reconciling AE robustness
notions. In J. Groth, editor, 15th IMA International Conference on Cryptography and Coding,
volume 9496 of LNCS, pages 94–111. Springer, Heidelberg, Dec. 2015. 7

[9] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security
proofs and improvements. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 259–274. Springer, Heidelberg, May 2000. 8

[10] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade
construction and its concrete security. In 37th FOCS, pages 514–523. IEEE Computer Society
Press, Oct. 1996. 9

[11] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In 38th FOCS, pages 394–403. IEEE Computer Society Press, Oct. 1997. 2

[12] M. Bellare and S. Keelveedhi. Authenticated and misuse-resistant encryption of key-dependent
data. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 610–629. Springer,
Heidelberg, Aug. 2011. 7

30

http://www.cryptofails.com/post/70059594911/cakephp-using-the-iv-as-the-key
http://www.cryptofails.com/post/70059594911/cakephp-using-the-iv-as-the-key
https://chae.cr.yp.to/whitepaper.html


[13] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545. Springer, Heidelberg, Dec. 2000. 2, 11, 13

[14] M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD revisited. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 235–265.
Springer, Heidelberg, Aug. 2019. 6, 27

[15] M. Bellare and P. Rogaway. On the construction of variable-input-length ciphers. In L. R.
Knudsen, editor, FSE’99, volume 1636 of LNCS, pages 231–244. Springer, Heidelberg, Mar.
1999. 26

[16] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient cryptography. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 317–330. Springer, Heidelberg, Dec. 2000. 2, 6, 24, 25

[17] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006. 8, 35, 38, 42, 46

[18] M. Bellare and B. Tackmann. The multi-user security of authenticated encryption: AES-GCM
in TLS 1.3. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 247–276. Springer, Heidelberg, Aug. 2016. 7, 11, 26, 28

[19] D. Bernstein. CAESAR call for submissions, final (2014.01.27), 2014. 2, 5

[20] D. J. Bernstein. Re: secret message numbers. Message in Google group on cryptographic
competitions, October 2013. https://groups.google.com/d/msg/crypto-competitions/

n5ECGwYr6Vk/bsEfPWqSAU4J. 3, 7

[21] F. Berti, C. Guo, O. Pereira, T. Peters, and F.-X. Standaert. Tedt, a leakage-resilient aead
mode for high (physical) security applications. Cryptology ePrint Archive, Report 2019/137,
2019. https://eprint.iacr.org/2019/137. 7

[22] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key
derivation, and better bounds. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 468–499. Springer, Heidelberg, Apr. / May 2018. 4, 5,
6, 7, 11, 13, 14

[23] CAESAR Committee. Cryptographic competitions: Caesar call for submissions, final
(2014.01.27). https://competitions.cr.yp.to/caesar-call.html. Accessed: 2018-07-23.
7

[24] A. Connolly, P. Farshim, and G. Fuchsbauer. Security of symmetric primitives against key-
correlated attacks. IACR Transactions on Symmetric Cryptology, pages 193–230, 2019. 7

[25] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking: From invisible
salamanders to encryptment. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 155–186. Springer, Heidelberg, Aug. 2018. 7

[26] M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, November 2007. 2, 6, 16, 26

31

https://groups.google.com/d/msg/crypto-competitions/n5ECGwYr6Vk/bsEfPWqSAU4J
https://groups.google.com/d/msg/crypto-competitions/n5ECGwYr6Vk/bsEfPWqSAU4J
https://eprint.iacr.org/2019/137
https://competitions.cr.yp.to/caesar-call.html


[27] P. Farshim, C. Orlandi, and R. Roşie. Security of symmetric primitives under incorrect usage
of keys. IACR Trans. Symm. Cryptol., 2017(1):449–473, 2017. 7

[28] E. Fleischmann, C. Forler, and S. Lucks. McOE: A family of almost foolproof on-line authen-
ticated encryption schemes. In A. Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages
196–215. Springer, Heidelberg, Mar. 2012. 7

[29] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 66–97. Springer, Heidelberg, Aug. 2017. 7, 12

[30] S. Gueron, A. Langley, and Y. Lindell. AES-GCM-SIV: Specification and analysis. Cryptology
ePrint Archive, Report 2017/168, 2017. http://eprint.iacr.org/2017/168. 5, 6, 7

[31] S. Gueron and Y. Lindell. GCM-SIV: Full nonce misuse-resistant authenticated encryption at
under one cycle per byte. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages
109–119. ACM Press, Oct. 2015. 5, 6

[32] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your ps and qs:
Detection of widespread weak keys in network devices. In USENIX Security Symposium,
volume 8, page 1, 2012. 29

[33] V. T. Hoang, T. Krovetz, and P. Rogaway. Robust authenticated-encryption AEZ and the
problem that it solves. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 15–44. Springer, Heidelberg, Apr. 2015. 6, 24, 25

[34] V. T. Hoang, R. Reyhanitabar, P. Rogaway, and D. Vizár. Online authenticated-encryption
and its nonce-reuse misuse-resistance. In R. Gennaro and M. J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 493–517. Springer, Heidelberg, Aug.
2015. 7

[35] V. T. Hoang, S. Tessaro, and A. Thiruvengadam. The multi-user security of GCM, revisited:
Tight bounds for nonce randomization. In D. Lie, M. Mannan, M. Backes, and X. Wang,
editors, ACM CCS 2018, pages 1429–1440. ACM Press, Oct. 2018. 5, 7, 28

[36] T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 31–49.
Springer, Heidelberg, Aug. 2012. 5, 7, 26, 28

[37] A. Joux. Authentication failures in NIST version of GCM, 2006. Comments submitted
to NIST modes of operation process, https://csrc.nist.gov/csrc/media/projects/

block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_

comments.pdf. 6

[38] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation.
In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299. Springer, Heidelberg,
Apr. 2001. 2

[39] H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor, CRYPTO’94,
volume 839 of LNCS, pages 129–139. Springer, Heidelberg, Aug. 1994. 28

32

http://eprint.iacr.org/2017/168
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf


[40] T. Krovetz and P. Rogaway. The software performance of authenticated-encryption modes. In
A. Joux, editor, FSE 2011, volume 6733 of LNCS, pages 306–327. Springer, Heidelberg, Feb.
2011. 2, 5, 19

[41] K. Kurosawa and T. Iwata. TMAC: Two-key CBC MAC. In M. Joye, editor, CT-RSA 2003,
volume 2612 of LNCS, pages 33–49. Springer, Heidelberg, Apr. 2003. 28

[42] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. Journal of Cryptology,
24(3):588–613, July 2011. 24, 25

[43] A. Luykx, B. Mennink, and K. G. Paterson. Analyzing multi-key security degradation. In
T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages
575–605. Springer, Heidelberg, Dec. 2017. 7, 28

[44] D. McGrew. An interface and algorithms for authenticated encryption. IETF Network Working
Group, RFC 5116, January 2008. 2, 3, 29

[45] D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (GCM)
of operation. In A. Canteaut and K. Viswanathan, editors, INDOCRYPT 2004, volume 3348
of LNCS, pages 343–355. Springer, Heidelberg, Dec. 2004. 2, 5, 6, 7, 26, 28

[46] C. H. Meyer and S. M. Matyas. CRYPTOGRAPHY: A new dimension in computer data
security: A guide for the design and implementation of secure systems. Wiley, 1982. 18

[47] K. Minematsu. Authenticated encryption with small stretch (or, how to accelerate AERO). In
J. K. Liu and R. Steinfeld, editors, ACISP 16, Part II, volume 9723 of LNCS, pages 347–362.
Springer, Heidelberg, July 2016. 7

[48] C. Namprempre, P. Rogaway, and T. Shrimpton. AE5 security notions: Definitions implicit
in the CAESAR call. Cryptology ePrint Archive, Report 2013/242, 2013. http://eprint.

iacr.org/2013/242. 7

[49] C. Namprempre, P. Rogaway, and T. Shrimpton. Reconsidering generic composition. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274.
Springer, Heidelberg, May 2014. 5, 6, 23

[50] Reddit. Hash of message as nonce?, 2015. https://redd.it/3c504m. 29

[51] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS
2002, pages 98–107. ACM Press, Nov. 2002. 2, 3, 9, 11, 13

[52] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB
and PMAC. In P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 16–31.
Springer, Heidelberg, Dec. 2004. 2

[53] P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and W. Meier, editors,
FSE 2004, volume 3017 of LNCS, pages 348–359. Springer, Heidelberg, Feb. 2004. 2, 9,
11

[54] P. Rogaway. The evolution of authenticated encryption. Real World Cryptography Workshop,
Stanford, January 2013. https://crypto.stanford.edu/RealWorldCrypto/slides/phil.

pdf. 3

33

http://eprint.iacr.org/2013/242
http://eprint.iacr.org/2013/242
https://redd.it/3c504m
https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf


Adversary ANew,Enc,Dec

A
New,Enc∗,Dec

Adversary BNew,Enc,Vf

B
New,Enc∗,Vf

procedure Enc∗(i,M,H)

N ←$ SE.NS

C ← Enc(i,N,M,H)

Return (N,C)

Figure 10: Formalizing random-nonce adversaries.

[55] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, ACM CCS
2001, pages 196–205. ACM Press, Nov. 2001. 2, 5, 9, 16, 19

[56] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006. 3, 6, 11, 20, 23

[57] P. Rogaway, M. Wooding, and H. Zhang. The security of ciphertext stealing. In A. Canteaut,
editor, FSE 2012, volume 7549 of LNCS, pages 180–195. Springer, Heidelberg, Mar. 2012. 23

[58] S. Vaudenay and D. Vizár. Under pressure: Security of caesar candidates beyond their guaran-
tees. Cryptology ePrint Archive, Report 2017/1147, 2017. https://eprint.iacr.org/2017/
1147. 6

[59] H. Wu and B. Preneel. AEGIS: A fast authenticated encryption algorithm. In T. Lange,
K. Lauter, and P. Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 185–201. Springer,
Heidelberg, Aug. 2014. 5

A Adversary classes AaeX
r-n ,AauthX

r-n

In Section 3, we called an adversary A a random-nonce adversary if the nonces in its queries to Enc
are picked uniformly at random, from the (assumed finite) nonce space of the underlying scheme,
and independently of each other and anything else. (No restriction is placed on the nonces that
the adversary submits in Dec queries.) We had let AaeX

r-n , where X ∈ {1, 2}, be the class of such
adversaries for AEX.

When a particular adversary is specified (in pseudocode or otherwise) it is usually easy to tell
whether it is random-nonce, but the definition itself still remains somewhat informal. Here we
discuss how to bridge this gap.

Let A be an adversary attacking scheme SE, where the latter is an NBEX scheme. Then
A ∈ AaeX

r-n if there is another adversary A, called the core adversary, such that A is defined in terms
of A as shown in Figure 10. Random-nonce adversaries B ∈ AauthX

r-n can be analogously defined,
and the core adversaries B are shown in the same Figure.

As the Figure indicates, the core adversaries A,B are given Enc∗, which unlike Enc in GaeX
SE

or GauthX
SE , takes only i,M,H (no nonce) and returns both a nonce and a ciphertext. (The latter

means the random nonces are not “hidden” from A,B.) They access all other oracles in the same
way as A,B.

34

https://eprint.iacr.org/2017/1147
https://eprint.iacr.org/2017/1147


Games G0 , G1

procedure Init

b←$ {0, 1}
procedure New

v ← v + 1 ; Kv←$ {0, 1}SE.kl

procedure Enc(i,N,M,H)

If (b = 1) then C2 ← SE.Enc(Ki, N,M,H)
else C2←$ SE.CS(|N |, |M |, |H|)

Return C2

procedure Dec(i, C2, H)

M ← ⊥
If (b = 1) then
M∗ ← SE.Dec(Ki, C2, H)
If (M∗ 6= ⊥) then bad← true ; M ←M∗

Return M

procedure Fin(b′)

Return (b = b′)

Adversary BInit,New,Enc,Fin

AInit,New,Enc,Dec∗,Fin

procedure Dec∗(i, C2, H)

Return ⊥

Adversary CNew,Enc,Vf,Fin

AInit∗,New,Enc,Dec∗,Fin∗

procedure Init∗

Init ; S ← ∅

procedure Dec∗(i, C2, H)

S ← S ∪ {(i, C2, H)}
Return ⊥

procedure Fin∗

For all (i, C2, H) ∈ S do d← Vf(i, C2, H)

Fin

Figure 11: At the top are the games used in proving Theorem 4.1. On the bottom are the adversaries
used in proving Theorem 4.1.

B Proof of Theorem 4.1

Proof of Theorem 4.1: We give the proof for X=2, meaning for AE2. The proof for AE1 is
analogous.

We assume that A makes no trivial queries. So it does not query Dec(i, C2, H) if M[i, C2, H] is
already defined. In the y=n case, it does not repeat a nonce-user pair in an Enc query, and in the
y=nmh case, it does not repeat an Enc query. Games G0,G1 in Fig. 11 are identical-until-bad so
using the Fundamental Lemma of Game Playing [17] we have

AdvaeX
SE (A) = 2 Pr[G0(A)]− 1

35



Adversary ANew,Enc,Vf,Fin
1

ANew∗,Enc∗,Vf∗,Fin
2

procedure New∗

v ← v + 1 ; KF,v←$ {0, 1}F.kl ; New

procedure Enc∗(i,N,M,H)

C1 ← Enc(i,N,M,H) ; x← C1[1..F.il] ; Y ← N⊕F.Ev(KF,i, x) ; C2 ← Y ‖C1

Return C2

procedure Vf∗(i, C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il] ; N ← Y⊕F.Ev(KF,i, x) ; Return Vf(i,N,C1, H)

Figure 12: Adversary A1 used in proving Equation (14).

= 2 Pr[G1(A)]− 1 + 2(Pr[G0(A)]− Pr[G1(A)])

≤ 2 Pr[G1(A)]− 1 + 2 Pr[G1(A) sets bad] .

In Fig. 11, we specify adversary B such that

2 Pr[G1(A)]− 1 ≤ AdvaeX
SE (B) .

Adversary B, being a privacy adversary, makes no Dec queries, so we omit this oracle from the
list in its superscript. It simulates all queries of A directly, except for additionally returning ⊥ in
response to any Dec query made by A.

In game G1, flag bad can only be set if b = 1, so

Pr[G1(A) sets bad] =
1

2
· Pr[ G1(A) sets bad | b = 0 ] +

1

2
· Pr[ G1(A) sets bad | b = 1 ]

=
1

2
· Pr[ G1(A) sets bad | b = 1 ] .

In Fig. 11, we specify adversary C such that

Pr[ G1(A) sets bad | b = 1 ] ≤ AdvauthX
SE (C) .

Putting all this together concludes the proof.

C Proofs of Theorems 6.1 and 7.1

We prove the following which implies both theorems, Theorem 6.1 being the case y = n and
Theorem 7.1 being the case y = nmh. The techniques here are standard and explanations are
accordingly kept brief.

Lemma C.1 Let SEHN1 = HN1[SE1,F] be obtained as in Section 6. Let y ∈ {n, unm}. Then,
given adversary A2 ∈ Aauth2

u-y we construct adversary A1 ∈ Aauth1
u-y such that

Advauth2
SEHN1

(A2) ≤ Advauth1
SE1 (A1) . (14)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈ Aae2
u-y ∩ Aae2

priv, making qn
queries to its New oracle and qe queries per user to its Enc oracle, we construct adversaries A1 ∈

36



procedure Fin(b′) // For all games

Return (b′ = 1)

Games G0, G1

procedure New

v ← v + 1 ; K1,v←$ SE1.KS

KF,v←$ {0, 1}F.kl ; fv ← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol) // Game G1

procedure Enc(i,N,M,H)

C1 ← SE1.Enc(K1,i, N,M,H)

x← C1[1..F.il] ; P ← fi(x) ; Y ← P⊕N
C2 ← Y ‖C1 ; Return C2

Games G2, G3

procedure New

v ← v + 1

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol)

procedure Enc(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
x← C1[1..F.il] ; P ← fi(x) ; Y ← P⊕N
If (x ∈ Si) then bad← true ; Y ←$ {0, 1}F.ol
Si ← Si ∪ {x}
C2 ← Y ‖C1 ; Return C2

Adversary BInit,New,Fn,Fin

AInit,New∗,Enc∗,Fin
2

procedure New∗

v ← v + 1 ; K1,v←$ SE1.KS

New

procedure Enc∗(i,N,M,H)

C1 ← SE1.Enc(K1,i, N,M,H)

x← C1[1..F.il] ; P ← Fn(i, x) ; Y ← P⊕N
C2 ← Y ‖C1 ; Return C2

Adversary AInit,New,Enc,Fin
1

AInit,New∗,Enc∗,Fin
2

procedure New∗

v ← v + 1

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol)
New

procedure Enc∗(i,N,M,H)

C1←$ Enc(i,N,M,H)

x← C1[1..F.il] ; P ← fi(x) ; Y ← P⊕N
C2 ← Y ‖C1 ; Return C2

Figure 13: On the left are the games used in proof of Equation (15). Fin is common to all games.
On the right are the adversaries for the same proof.

Aae1
u-y ∩Aae1

priv and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qnqe(qe − 1)

2F.il+1
. (15)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

Proof: Adversary A1 for the authenticity claim is in Figure 12. Adversary A1’s simulation of Enc
queries is faithful. We need to check not only Equation (14) but also that A1 belongs to the claimed
class Aauth1

u-y . We claim that when a Vf query of A2 is winning (accepting and new) in its game, then
the corresponding Vf query of A1 is winning (accepting and new) in its game. This comes down to
the following. Fix KF and C1, let x = C1[1..F.il] and let Y, Y ′ ∈ {0, 1}F.ol. Let N = Y⊕F.Ev(KF, x)
and N ′ = Y ′⊕F.Ev(KF, x). Then Y = Y ′ iff N = N ′. Intuitively, with KF, C1 fixed, there is a
one-to-one correspondence between full ciphertexts Y ‖C1 and nonce, core-ciphertext pairs (N,C1)
where N = Y⊕F.Ev(KF, C1[1..F.il]).

For the proof of privacy, consider the games in Fig. 13. Oracle Dec is dropped, since the privacy
adversary makes no queries to it. Game G0 is the real game. Game G1 switches from F to random

37



Adversary ANew,Enc,Vf,Fin
1

ANew∗,Enc∗,Vf∗,Fin
2

procedure New∗

v ← v + 1 ; KE,v←$ {0, 1}E.kl ; New

procedure Enc∗(i,N,M,H)

C1 ← Enc(i,N,M,H) ; (x, y)← Spl.Ev(`, C1) ; C2,1 ← E.Ev(KE,i, N‖x)
C2 ← C2,1‖y ; Return C2

procedure Vf∗(i, C2, H)

If (|C2| < E.bl) then return ⊥
N‖x← E.In(KE,i, C2[1..E.bl]) ; y ← C2[(E.bl + 1)..|C2|] ; C1 ← Spl.In(x, y)
Return Vf(i,N,C1, H)

Figure 14: Adversary A1 used in proving Equations (3) and (8).

functions, which the adversary will not notice due to the assumed PRF security of F. Game G2

switches to random core ciphertexts, which the adversary will not notice due to the assumed privacy
of SE1. Game G3 switches to random full ciphertexts. Games G2,G3 differ only in the boxed code,
so that the adversary notices the switch only when two calls to Enc pick the same value of x. This
is exactly the probability that bad is set. Proceeding to the details, we have:

Advae2
SEHN1

(A2) = Pr[G0(A2)]− Pr[G3(A2)]

= (Pr[G0(A2)]− Pr[G1(A2)]) + (Pr[G1(A2)]− Pr[G2(A2)]) + (Pr[G2(A2)]− Pr[G3(A2)]) .

Let adversaries A1 and B be as in Fig. 13. For simplicity we show A1 as picking fv at random,
but for efficiency (meaning, to keep the running time to the same as that of A2) this must be
implemented via lazy sampling. Then:

Pr[G0(A2)]− Pr[G1(A2)] = Advprf
F (B) ,

Pr[G1(A2)]− Pr[G2(A2)] = Advae1
SE1(A1) ,

Pr[G2(A2)]− Pr[G3(A2)] ≤ Pr[G2(A2) sets bad]

≤ qnqe(qe − 1)

2F.il+1
.

The third inequality above used the Fundamental Lemma of Game Playing [17]. Putting the above
together yields Equation (15).

D Proof of Theorem 6.2

Proof: Adversary A1 for the authenticity claim of Equation (3) is in Figure 14.

For the proof of privacy, consider the games in Fig. 15. Oracle Dec is dropped, since the privacy
adversary makes no queries to it. Game G0 is the real game. Game G1 switches from E to random
functions, which the adversary will not notice due to the assumed PRF security of E. Game G2

switches to random core ciphertexts, which the adversary will not notice due to the assumed privacy
of SE1. Game G2 also has random full ciphertexts due to the uniqueness of nonces. Proceeding to

38



procedure Fin(b′) // For all games

Return (b′ = 1)

Games G0, G1

procedure New

v ← v + 1 ; K1,v←$ SE1.KS

KE,v←$ {0, 1}E.kl ; fv ← E.Ev(KE,v, ·) // Game G0

fv←$ FUNC({0, 1}E.bl, {0, 1}E.bl) // Game G1

procedure Enc(i,N,M,H)

C1 ← SE1.Enc(K1,i, N,M,H)

(x, y)← Spl.Ev(`, C1) ; C2,1 ← fi(N‖x)

C2 ← C2,1‖y ; Return C2

Game G2

procedure New

v ← v + 1

fv←$ FUNC({0, 1}E.bl, {0, 1}E.bl)

procedure Enc(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1) ; C2,1 ← fi(N‖x)

C2 ← C2,1‖y ; Return C2

Adversary BInit,New,Fn,Fin

AInit,New∗,Enc∗,Fin
2

procedure New∗

v ← v + 1 ; K1,v←$ SE1.KS

New

procedure Enc∗(i,N,M,H)

C1 ← SE1.Enc(K1,i, N,M,H)

(x, y)← Spl.Ev(`, C1) ; C2,1 ← Fn(i,N‖x)

C2 ← C2,1‖y ; Return C2

Adversary AInit,New,Enc,Fin
1

AInit,New∗,Enc∗,Fin
2

procedure New∗

v ← v + 1

fv←$ FUNC({0, 1}E.bl, {0, 1}E.bl)
New

procedure Enc∗(i,N,M,H)

C1←$ Enc(i,N,M,H)

(x, y)← Spl.Ev(`, C1) ; C2,1 ← fi(N‖x)

C2 ← C2,1‖y ; Return C2

Figure 15: On the left are the games used in proof of Equation (4). G0,G1 are also used in the
proof of Equation (9). Fin are common to all games. On the right are the adversaries for the same
two proofs.

the details, we have:

Advae2
SEHN2

(A2) = Pr[G0(A2)]− Pr[G2(A2)]

= (Pr[G0(A2)]− Pr[G1(A2)]) + (Pr[G1(A2)]− Pr[G2(A2)]) .

Let adversaries A1 and B be as in Fig. 15. For simplicity we show A1 as picking fv at random, but
for efficiency (meaning, to keep its running time the same as that of A2) this must be implemented
via lazy sampling. Then:

Pr[G0(A2)]− Pr[G1(A2)] = Advprf
E (B) ,

Pr[G1(A2)]− Pr[G2(A2)] = Advae1
SE1(A1) .

Putting the above together yields Equation (4).

E Proof of Theorem 6.3

Proof: We assume A2 does not make trivial queries, meaning it does not make query Dec(i, C2, H)
if it has previously received C2 in response to an Enc(i, ·, ·, H) query. Consider the games in Fig. 16.

39



procedure Fin(b′) // For all games

Return (b′ = 1)

Games G0, G1

procedure New

v ← v + 1 ; K1,v←$ SE1.KS

KF,v←$ {0, 1}F.kl ; fv ← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol) // Game G1

procedure Enc(i,N,M,H)

N1 ← fi(N) ; C1 ← SE1.Enc(K1,i, N1,M,H)

Return N1‖C1

procedure Dec(i, C2, H)

N1‖C1 ← C2 ; M ← SE1.Dec(K1,i, N1, C1, H)

Return M

Game G2

procedure New

v ← v + 1 ; K1,v←$ SE1.KS

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol)

procedure Enc(i,N,M,H)

N1 ← fi(N) ; C1←$ {0, 1}SE1.ccl(|N1|,|M |,|H|)

Return N1‖C1

procedure Dec(i, C2, H)

M ← ⊥ ; Return M

Adversary BInit,New,Fn,Fin

AInit,New∗,Enc∗,Dec∗,Fin
2

procedure New∗

v ← v + 1 ; K1,v←$ SE1.KS

New

procedure Enc∗(i,N,M,H)

N1 ← Fn(i,N)

C1 ← SE1.Enc(K1,i, N1,M,H)

Return N1‖C1

procedure Dec∗(i, C2, H)

N1‖C1 ← C2

M ← SE1.Dec(K1,i, N1, C1, H)

Return M

Adversary AInit,New,Enc,Dec,Fin
1

AInit,New∗,Enc∗,Dec∗,Fin
2

procedure New∗

v ← v + 1

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol)
New

procedure Enc∗(i,N,M,H)

N1 ← fi(N) ; C1←$ Enc(i,N1,M,H)

Return N1‖C1

procedure Dec∗(i, C2, H)

N1‖C1 ← C2 ; M ← Dec∗(i,N1, C1, H)

Return M

Figure 16: On the left are the games used in proof of Equation (5). Fin is common to all games.
On the right are the adversaries for the same proof.

Game G0 is the real game. Game G1 switches from F to random functions, which the adversary will
not notice due to the assumed PRF security of F. Game G2 switches to random core ciphertexts and
⊥ replies to Dec queries, which the adversary will not notice due to the assumed AE1[Aae1

r-n ]-security
of SE1. Game G2 also has random full ciphertexts due to the uniqueness of nonces. Proceeding to
the details, we have:

Advae2
SEHN3

(A2) = Pr[G0(A2)]− Pr[G2(A2)]

= (Pr[G0(A2)]− Pr[G1(A2)]) + (Pr[G1(A2)]− Pr[G2(A2)]) .

Let adversaries A1 and B be as in Fig. 16. For simplicity we show A1 as picking fv at random,
but for efficiency (meaning, to keep the running time to the same as that of A2) this must be
implemented via lazy sampling. Adversary A1 is in the class Aae1

r-n because the nonces it uses in its

40



Games G2, G3

procedure New

v ← v + 1 ; Sv ← ∅
fv←$ FUNC({0, 1}E.bl, {0, 1}E.bl)
procedure Enc(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1) ; C2,1 ← fi(N‖x)

If (x ∈ Si) then bad← true ; C2,1←$ {0, 1}`+|N |

Si ← Si ∪ {x} ; C2 ← C2,1‖y ; Return C2

procedure Fin(b′)

Return (b′ = 1)

Figure 17: Games G2,G3 used in proof of Equation (9).

Enc queries are results of fi on unique nonces, and are hence random and independent. Then:

Pr[G0(A2)]− Pr[G1(A2)] = Advprf
F (B) ,

Pr[G1(A2)]− Pr[G2(A2)] = Advae1
SE1(A1) .

Putting the above together yields Equation (5).

F Proof of Theorem 7.2

Proof: The proof of Theorem 7.2 is very similar to that of Theorem 6.2.

The adversary A1 used in proving Equation (8) is the same one depicted in Fig. 14. Note that if
A2 ∈ Aauth2

u-nmh then A1 ∈ Aauth1
u-nmh, meaning that A1 is in the desired adversary class.

For the proof of privacy, we will make use of games G0,G1 from the proof of Theorem 7.2 (Fig. 15),
but define the new games G2,G3 shown in Fig. 17). As before, G0 is the real game, while game
G1 switches from E to random functions, which the adversary will not notice due to the assumed
PRF security of E. Game G2 switches to random core ciphertexts, which the adversary will not
notice due to the assumed privacy of SE1. Since we can no longer assume that nonces are unique,
however, the full ciphertexts may not be random. They will be, however, if the x values do not
repeat, allowing us to switch to game G3 with a loss that is the probability of such a repeat.

Proceeding to the details, assume as usual that A2 does not make repeat or trivial queries. Then
we have

Advae2
SEHN2

(A2) = Pr[G0(A2)]− Pr[G3(A2)]

= (Pr[G0(A2)]− Pr[G1(A2)]) + (Pr[G1(A2)]− Pr[G2(A2)]) + (Pr[G2(A2)]− Pr[G3(A2)]) .

To conclude the proof of Equation (9), we have

Pr[G0(A2)]− Pr[G1(A2)] = Advprf
E (B) ,

Pr[G1(A2)]− Pr[G2(A2)] = Advae1
SE1(A1) ,

41



Games G0, G1,G2

procedure New

v ← v + 1 ; K1,v←$ SE1.KS

KF,v←$ {0, 1}F.kl ; fv ← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC(F.D, {0, 1}F.ol) // Games G1,G2

procedure Enc(i,N,M,H)

N1 ← fi((N,M,H))

C1 ← SE1.Enc(K1,i, N1, N‖M,H) // Games G0,G1

C1←$ {0, 1}SE1.ccl(|N1|,|N |+|M |,|H|) // Game G2

Return N1‖C1

procedure Fin(b′)

Return (b′ = 1)

Adversary BInit,New,Fn,Fin
1

AInit,New∗,Enc∗,Fin
2

procedure New∗

v ← v + 1 ; K1,v←$ SE1.KS ; New

procedure Enc∗(i,N,M,H)

N1 ← Fn(i, (N,M,H))

C1 ← SE1.Enc(K1,i, N1, N‖M,H)

Return N1‖C1

Adversary AInit,New,Enc,Fin
1

AInit,New∗,Enc∗,Fin
2

procedure New∗

v ← v + 1

fv←$ FUNC(F.D, {0, 1}F.ol) ; New

procedure Enc∗(i,N,M,H)

N1 ← fi((N,M,H))

C1←$ Enc(i,N‖N1,M,H) ; Return N1‖C1

Figure 18: On the left are the games used in proof of Equation (10). On the right are the adversaries
for the same proof. Note that F.D = SE1.NS × SE1.MS × SE1.HS, as required in th definition of
HN4 in Section 7.

Pr[G2(A2)]− Pr[G3(A2)] ≤ Pr[G3(A2) sets bad] (16)

≤ qnqe(qe − 1)

2`+1
.

Adversaries B,A1 for the first two equations above are those depicted in Fig. 15, and now A2 ∈
Aae2

u-nmh because A1 ∈ Aae1
u-nmh. As before, we assume A1 implements the fi via lazy sampling.

Games G2,G3 are identical-until-bad, so Equation (16) is by the Fundamental Lemma of Game
Playing [17].

G Proof of Theorem 7.3

Proof: For the proof of privacy, we will make use of the games G0,G1,G2 in Fig. 18. Game
G0 is the real game, game G1 switches to using random functions, which the adversary will not
notice due to the assumed PRF security of F, and game G2 switches to random core ciphertexts.
Adversaries B2, A1 are also depicted in Fig. 18. Adversary A2, being a privacy adversary, makes
no Dec queries, so we omit giving oracle Dec in the games as well as when it is run by other
adversaries. As usual, we assume that A1 implements fi using lazy sampling for efficiency. Because
we assumed the nonce-message-header triples provided to fi by A2 do not repeat, G2 has random
full ciphertexts and A1 ∈ Aae1

r-n . From here, we can derive Equation 10:

Advae2
SEHN4

(A2) = Pr[G0(A2)]− Pr[G2(A2)]

42



Games G0 , G1

procedure New

v ← v + 1 ; K1,v←$ SE1.KS

KF,v←$ {0, 1}F.kl ; fv ← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC({0, 1}F.il, {0, 1}F.ol) // Game G1

procedure Enc(i,N,M,H)

N1 ← fi((N,M,H))

C1 ← SE1.Enc(K1,i, N1, N‖M,H)

Return N1‖C1

procedure Vf(i, C2, H)

N1‖C1 ← C2 ; X ← SE1.Dec(K1,i, N1, C1, H)

If (X = ⊥) then return false

N‖M ← X ; T ← fi((N,M,H))

If (T = N1) then win← true

Return (T = N1)

procedure Fin

Return win

Adversary BInit,New,Fn,Fin
2

AInit,New∗,Enc∗,Vf∗,Fin∗

2

procedure New∗

v ← v + 1 ; K1,v←$ SE1.KS ; New

procedure Enc∗(i,N,M,H)

N1 ← Fn(i, (N,M,H))

C1 ← SE1.Enc(K1,i, N1, N‖M,H)

Return N1‖C1

procedure Vf∗(i, C2, H)

N1‖C1 ← C2

X ← SE1.Dec(K1,i, N1, C1, H)

If (X = ⊥) then return false

N‖M ← X ; T ← Fn(i, (N,M,H))

If (T = N1) then win← true

Return (T = N1)

procedure Fin∗

If win = true then b′ ← 1 else b′ ← 0

Fin(b′)

Figure 19: On the left are the games used in proof of Equation (11). On the right is the adversary
for the same proof.

= (Pr[G0(A2)]− Pr[G1(A2)]) + (Pr[G1(A2)]− Pr[G2(A2)])

= Advprf
F (B) + Advae1

SESE1
(A1) .

Now we proceed to the authenticity proof. As before, we assume that A2 does not make repeat or
trivial queries. Games G0,G1 and adversary B2 are depicted in Fig. 19. As before, the difference
is that G1 switches the fv functions to random. We have

Advauth2
SESEHN4

(A2) = Pr[G0(A2)]

= Pr[G1(A2)] + (Pr[G0(A2)]− Pr[G1(A2)]) .

To complete the proof, we claim that

Pr[G0(A2)]− Pr[G1(A2)] ≤ Advprf
F (B2)

Pr[G1(A2)] ≤
qnqv

2SE1.nl
. (17)

Equation (17) is due to the assumed tidiness of SE1, as follows. Suppose ⊥ 6= X = N‖M . Tidiness
plus the assumption that A2 makes no trivial queries say that (i,N,M,H) was not a prior query
to Enc, which means that T = N1 with probability at most 2−SE1.nl.

43



Adversary BInit,New,Fn,Fin
1

AInit,New,Enc∗,Fin

procedure Enc∗(i,N,M,H)

C2 ← Fn(i,H, 0`z‖N‖M)

Return C2

Adversary BInit,New,Fn,Fn−1,Fin
2

Init

ANew,Enc∗,Vf∗,Fin∗

2

procedure Enc∗(i,N,M,H)

C2 ← Fn(i,H, 0`z‖N‖M) ; Return C2

procedure Vf∗(i, C2, H)

X ← Fn−1(i,H,C2)

If (X[1..`z] 6= 0`z ) then return false

Else win← true ; Return true

procedure Fin∗

If (win = true) then b′ ← 1 else b′ ← 0

Fin(b′)

Figure 20: Adversaries used in the proof of Theorem 7.4.

H Proof of Theorem 7.4

Proof: Adversary B1 referred to in Equation (12) is in Fig. 20. Init,Fin and New are all un-
changed, and Enc is simulated as shown. Since A is a privacy adversary, we do not need to simulate
a decryption oracle.

Adversary B2 referred to in Equation (13) is also presented in Fig. 20. As before, we assume
A2 neither makes repeat encryption or verification queries, nor makes trivial verification queries,
meaning it does not make query Vf(i, C2, H) if it has previously received C2 in response to an
Enc(i, ·, ·, H) query and also |C2| ≥ `+ `z in any Vf(i, C2, H) query.

Let b be the challenge bit of game Gprp-cca
TE and let b′ be the bit that B2 queries to Gprp-cca

TE .Fin.
Then,

Advprp-cca
TE (B2) = Pr[ b′ = 1 | b = 1 ]− Pr[ b′ = 1 | b = 0 ] .

To complete the proof, we claim that

Pr[ b′ = 1 | b = 1 ] ≥ Advauth2
SEHN5

(A2) (18)

Pr[ b′ = 1 | b = 0 ] ≤ 2qnqv
2`z

. (19)

Note that b′ = 1 if and only if some query of A2 to Vf∗ returns true. If b = 1 then this happens
if A2 wins Gauth2

SEHN5
, justifying Equation (18). Now suppose b = 0. Consider a particular user i and

the j-th Vf query to that user. Let C2 be the ciphertext in that query and assume s queries to
Enc have been made to user i prior to this Vf query. Then the probability that this Vf query
sets win to true is at most

2|C2|−`z − s
2|C2| − (s+ j − 1)

≤ 2|C2|−`z

2|C2| − (qe + qv − 1)

=
1

2`z
· 1

1− (qe + qv − 1) · 2−|C2|
.

44



Games G0, G1 , G2, G3

procedure New

K←$ {0, 1}E.bl ; π ← E.Ev(K, ·) // Games G0,G1,G2

π←$ FUNC({0, 1}E.bl) // Game G3

L← π(0E.bl)

procedure Enc(1, N,M,H)

i← i+ 1 ; Ni ← N ; Mi ←M ; Hi ← H ; Pi ← Padπ2,`+|M |(N) ; M∗ ← 0`‖M ; C∗1,i ←M ⊕Pi
hi ← H.Ev(L, (C∗1,i, Hi)) ; pi ← π(Ni‖〈1〉E.bl−`) ; P ← P ∪ {pi} ; N ← N ∪ {Ni‖〈1〉E.bl−`}
τi ← hi⊕ pi ; Return τi‖C∗1,i

procedure Vf(1, C2, H) // Games G0, G1

τ‖C∗1 ← C2 ; h← H.Ev(L, (C∗1 , H)) ; p← τ ⊕h
If (p ∈ P) then bad← true ; p←$ {0, 1}E.bl \ P
y ← π−1(p) ; N‖w ← y ; P ← Padπ2,|C∗

1 |(N) ; M∗ ← C∗1 ⊕P ; x‖M ←M∗

win← (x = 0`) and (w = 〈1〉E.bl−`) ; Return false

procedure Vf(1, C2, H) // Games G2,G3

τ‖C∗1 ← C2 ; y←$ {0, 1}E.bl \ N ; N‖w ← y

P ← Padπ2,|C∗
1 |(N) ; M∗ ← C∗1 ⊕P ; x‖M ←M∗

win← (x = 0`) and (w = 〈1〉E.bl−`) ; Return false

procedure Fin

Return win

Figure 21: First set of games used in proof of Theorem 8.2. Next to procedure names, we indicate
the games to which they belong. Unannotated procedures belong to all games in the Figure.

But |C2| ≥ `+ `z for any ciphertext C2 in a Vf query, and we assumed qe+ qv ≤ 2`+`z−1, so, across
all queries, the probability that win is set to true is at most

qnqv
2`z
· 1

1− (qe + qv − 1) · 2−(`+`z)
≤ qnqv

2`z
· 1

1− 2(`+`z−1) · 2−(`+`z)

=
qnqv
2`z
· 1

1− 2−1
,

which yields Equation (19).

I Proof of Theorem 8.2

Proof: Consider the games of Figure 21. We claim that:

Advauth2
SE2 (A2) = Pr[G0(A2)] (20)

= Pr[G1(A2)] + (Pr[G0(A2)]− Pr[G1(A2)])

≤ Pr[G1(A2)] + Pr[G1(A2) sets bad] . (21)

Let us now explain games G0,G1 and justify the above. Adversary A2, by assumption, makes a
single query to its New oracle, initializing the single user under consideration. Our games pick,

45



for this user, a key K for E, and let L be the corresponding key for H. The adversary then makes
qe queries to Enc. Since all are directed at user 1, we hardwire 1 as the first input to the oracle,
and can think of the adversary queries as triples (N1,M1, H1), , . . . , (Nqe ,Mqe , Hqe). The games
compute replies correctly according to the encryption algorithm of the scheme. Its Enc queries
completed, the adversary makes its single Dec query, which we view as a pair (C2, H), hardwiring
the user number 1 in the oracle. What is returned to the adversary as response does not matter,
since the only further action of the adversary is its mandated call to Fin(), and accordingly all our
games return false in reply to the Dec query. But internally the games set the win flag, and its value
is what Fin() returns as the game output. We assume the adversary’s Dec query is non-trivial,
meaning (τ‖C∗1 , H) 6∈ { (τi‖C∗1,i, Hi) : 1 ≤ i ≤ qe }. Game G0 excludes the boxed code, and thus
sets win correctly, justifying Equation (20). We will get to the meaning of the boxed code later;
for now what matters is that, games G0,G1 being identical-until-bad, the Fundamental Lemma of
Game Playing [17] justifies Equation (21). This leaves us with two tasks: (1) to bound Pr[G1(A2)]
and (2) to bound Pr[G1(A2) sets bad].

We start with (1). Game G2 changes only procedure Vf, which, rather than setting y ← π−1(p),
picks y at random from {0, 1}E.bl \ N . We claim this does not change the probability of winning,
meaning

Pr[G1(A2)] = Pr[G2(A2)] . (22)

The justification of Equation (22) is that in game G1, the point p is chosen uniformly at random
from {0, 1}E.bl \ S, and π is a permutation, so y ← π−1(p) is distributed uniformly at random in
{0, 1}E.bl\N . Note that this claim does not rely on any security property of, or security assumption
about, the blockcipher E, but only on the fact that π = E.Ev(K, ·) is a permutation, which can be
regarded as fixed in this argument.

Game G3 switches π from E.Ev(K, ·) to a random function, the change being in procedure New
alone, and we have

Pr[G2(A2)] = Pr[G3(A2)] + (Pr[G2(A2)]− Pr[G3(A2)]) .

It is now easy to build a prf-adversary B0 such that

Pr[G2(A2)]− Pr[G3(A2)] ≤ Advprf
E (B0) .

The design of B0 is standard and we omit the details, but we note that the elimination of the
computation of π−1 was important to be able to rely only on prf security of E, rather than needing
to make the stronger assumption that E is prp-cca (also called strong prp) secure.

We are now in a position to exploit the 0` redundancy that our scheme adds to the message. We
claim that

Pr[G3] ≤
1

2`
. (23)

To justify Equation (23), we first claim that if game G3 returns true then N 6∈ {N1, . . . , Nqe}. If so
(we will justify this claim in a bit), π is being invoked on new points (ones to which it has not been
already applied in Enc queries) in the computation P ← Padπ2,|C∗

1 |
(N), yielding Equation (23).

Returning to the claim, assume game G3 returns true. Then it must be that w = 〈1〉E.bl−`. Assume
towards a contradiction that N = Ni for some i. Then y = N‖w = Ni‖〈1〉E.bl−`, putting y in N ,
but y was drawn from outside N , which is the desired contradiction establishing the claim.

46



Games G4, G5, G6

procedure New

K←$ {0, 1}E.bl ; π ← E.Ev(K, ·) // Games G4,G5

π←$ FUNC({0, 1}E.bl, {0, 1}E.bl) // Game G6

L← π(0E.bl)

procedure Enc(1, N,M,H)

i← i+ 1 ; Ni ← N ; Mi ←M ; Hi ← H ; Pi ← Padπ2,`+|M |(N) ; M∗ ← 0`‖M ; C∗1,i ←M ⊕Pi
hi ← H.Ev(L, (C∗1,i, Hi)) ; pi ← π(Ni‖〈1〉E.bl−`) ; P ← P ∪ {pi} ; τi ← hi⊕ pi ; Return τi‖C∗1,i
procedure Vf(1, C2, H)

τ‖C∗1 ← C2 ; h← H.Ev(L, (C∗1 , H)) ; p← τ ⊕h ; Return false

procedure Fin // Game G4

Return (p ∈ P)

procedure Fin // Games G5,G6

Return (∃ i : ( (h⊕hi = τ⊕τi) and (C∗1 , H) 6= (C∗1,i, Hi) ))

Game G7

procedure New

L←$ {0, 1}E.bl

procedure Enc(1, N,M,H)

i← i+ 1 ; Hi ← H ; C∗1,i←$ {0, 1}`+|M | ; τi←$ {0, 1}E.bl
Return τi‖C∗1,i
procedure Vf(1, C2, H)

τ‖C∗1 ← C2 ; h← H.Ev(L, (C∗1 , H)) ; Return false

procedure Fin

For j = 1, . . . , i do hi ← H.Ev(L, (C∗1,i, Hi))

Return (∃ i : ( (h⊕hi = τ⊕τi) and (C∗1 , H) 6= (C∗1,i, Hi) ))

Adversary CInit,Fin

Init

ANew∗,Enc∗,Vf∗,Fin∗

2

procedure New∗

Return

procedure Enc∗(1, N,M,H)

i← i+ 1 ; Hi ← H

C∗1,i←$ {0, 1}`+|M | ; τi←$ {0, 1}E.bl
Return τi‖C∗1,i
procedure Vf∗(1, C2, H)

τ‖C∗1 ← C2 ; Return false

procedure Fin∗

j←$ {1, . . . , qe}
Fin( (C∗1 , H), (C∗1,j , Hj) )

Figure 22: On the top are further games used in the proof of Theorem 8.2. Lines in code, or
procedure names, may be annotated with the names of games which include them, procedures
whose names are unannotated belonging to all games. On the bottom left is a final game and on
the bottom right is the axu-adversary.

Putting the above together, we have now shown that

Pr[G1(A2)] ≤ Advprf
E (B0) +

1

2`
. (24)

Next we give adversaries B1, C such that

Pr[G1(A2) sets bad] ≤ Advprf
E (B1) + qe ·Advaxu

H (C) . (25)

47



For this, consider the games of Figure 22. We claim

Pr[G1(A2) sets bad] = Pr[G4(A2)] (26)

= Pr[G5(A2)] . (27)

Game G4 results from moving the condition setting bad in G3 to Fin() and dropping unused code,
justifying Equation (26). To justify Equation (27), we show that if p 6∈ P then there exists i such
that (C∗1 , H) 6= (C∗1,i, Hi) but h⊕τ = hi⊕τi, meaning there is a (non-trivial) xor computed for
H.Ev(L, ·). That p ∈ P means there is some i such that p = pi. (This i need not be unique.)
So h⊕τ = hi⊕τi. Now assume towards a contradiction that (C∗1 , H) = (C∗1,i, Hi). Since h =
H.Ev(L, (C∗1 , H)) and hi = H.Ev(L, (C∗1,i, Hi)), we get h = hi. But we already had h⊕τ = hi⊕τi, so
we have τ = τi. This means (τ‖C∗1 , H) = (τi‖C∗1,i, Hi), which contradicts the assumption that the
Dec query of the adversary is non-trivial. This concludes the justification of Equation (27).

Game G6 switches π from E.Ev(K, ·) to a random function, the change being only in New, and we
have

Pr[G5(A2)] = Pr[G6(A2)] + (Pr[G5(A2)]− Pr[G6(A2)]) .

Now we can design adversary B1 such that

Pr[G5(A2)]− Pr[G6(A2)] ≤ Advprf
E (B1) . (28)

The design of B1 is standard and omitted. With π a random function in G6, the hash key L, and
the ciphertexts returned in G6 in response to Enc queries, are random, so game G7 directly picks
them that way. This allows it to delay computing the hashes to Fin(). We have

Pr[G6(A2)] = Pr[G7(A2)] .

The bottom right of Figure 22 shows our axu-adversary C. It runs A2, responding to Enc queries
with random strings, as per game G7. It returns, as its two messages, the hash-input for the Vf
query, and a random one of the qe hash-inputs for the Enc queries. We have

Advaxu
H (C) ≥ 1

qe
· Pr[G7(A2)] . (29)

Putting the above together we have Equation (25).

At this point we have shown

Advauth2
SE2 (A2) ≤ Advprf

E (B0) + Advprf
E (B1) + qe ·Advaxu

H (C) +
1

2`
. (30)

We merge B0, B1 into a single adversary B as follows. Let B pick c←$ {0, 1} and run Bc. Then

Advprf
E (B) =

1

2
·Advprf

E (B0) +
1

2
·Advprf

E (B1) . (31)

Putting together Equations (30) and (31) concludes the proof.

48


	Introduction
	Preliminaries
	Two frameworks for nonce-based encryption
	Some general results
	Usage of NBE1: The Transmit-Nonce transform
	Basic transforms
	Preliminaries
	The HN1 transform
	The HN2 transform
	The HN3 transform

	Advanced transforms
	Advanced security of HN1
	Advanced security of HN2
	The HN4 transform
	The HN5 transform

	Dedicated transform for GCM
	A real-world perspective
	Acknowledgements
	References
	Adversary classes Ar-naeX,Ar-nauthX
	Proof of Theorem 4.1
	Proofs of Theorems 6.1 and 7.1
	Proof of Theorem 6.2
	Proof of Theorem 6.3
	Proof of Theorem 7.2
	Proof of Theorem 7.3
	Proof of Theorem 7.4
	Proof of Theorem 8.2

