
Exploring Constructions of Compact NIZKs from Various
Assumptions

Shuichi Katsumata1,2, Ryo Nishimaki3, Shota Yamada1, Takashi Yamakawa3

1National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2The University of Tokyo, Tokyo, Japan
3NTT Secure Platform Laboratories, Tokyo, Japan

{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

May 13, 2020

Abstract

A non-interactive zero-knowledge (NIZK) protocol allows a prover to non-interactively convince a verifier of the
truth of the statement without leaking any other information. In this study, we explore shorter NIZK proofs for all NP
languages. Our primary interest is NIZK proofs from falsifiable pairing/pairing-free group-based assumptions. Thus
far, NIZKs in the common reference string model (CRS-NIZKs) for NP based on falsifiable pairing-based assumptions
all require a proof size at least as large asO(|C|κ), where C is a circuit computing the NP relation and κ is the security
parameter. This holds true even for the weaker designated-verifier NIZKs (DV-NIZKs). Notably, constructing a (CRS,
DV)-NIZK with proof size achieving an additive-overhead O(|C|) + poly(κ), rather than a multiplicative-overhead
|C| · poly(κ), based on any falsifiable pairing-based assumptions is an open problem.

In this work, we present various techniques for constructing NIZKs with compact proofs, i.e., proofs smaller than
O(|C|) + poly(κ), and make progress regarding the above situation. Our result is summarized below.

• We construct CRS-NIZK for all NP with proof size |C|+ poly(κ) from a (non-static) falsifiable Diffie-Hellman
(DH) type assumption over pairing groups. This is the first CRS-NIZK to achieve a compact proof without
relying on either lattice-based assumptions or non-falsifiable assumptions. Moreover, a variant of our CRS-NIZK
satisfies universal composability (UC) in the erasure-free adaptive setting. Although it is limited to NP relations
in NC1, the proof size is |w| · poly(κ) where w is the witness, and in particular, it matches the state-of-the-art
UC-NIZK proposed by Cohen, shelat, and Wichs (CRYPTO’19) based on lattices.

• We construct (multi-theorem) DV-NIZKs for NP with proof size |C| + poly(κ) from the computational DH
assumption over pairing-free groups. This is the first DV-NIZK that achieves a compact proof from a standard
DH type assumption. Moreover, if we further assume the NP relation to be computable in NC1 and assume
hardness of a (non-static) falsifiable DH type assumption over pairing-free groups, the proof size can be made as
small as |w|+ poly(κ).

Another related but independent issue is that all (CRS, DV)-NIZKs require the running time of the prover to be at
least |C| · poly(κ). Considering that there exists NIZKs with efficient verifiers whose running time is strictly smaller
than |C|, it is an interesting problem whether we can construct prover-efficient NIZKs. To this end, we construct
prover-efficient CRS-NIZKs for NP with compact proof through a generic construction using laconic functional
evaluation schemes (Quach, Wee, and Wichs (FOCS’18)). This is the first NIZK in any model where the running time
of the prover is strictly smaller than the time it takes to compute the circuit C computing the NP relation.

Finally, perhaps of an independent interest, we formalize the notion of homomorphic equivocal commitments, which
we use as building blocks to obtain the first result, and show how to construct them from pairing-based assumptions.

1

1 Introduction
1.1 Background
Zero-knowledge (ZK) protocols, introduced by Goldwasser, Micali, and Rackoff [GMR89], allow a prover to convince a
verifier of the truth of a statement without leaking any knowledge other than the fact that the statement is indeed true. A
practically useful and theoretically alluring feature for a ZK protocol to have is non-interactiveness, where a prover
simply outputs a single message (called a proof) and convinces the verifier of the truth of the statement. Unfortunately,
it is known that non-interactive ZK (NIZK) for non-trivial languages do not exist in the plain model where there is no
trusted setup [GO94]. However, Blum, Feldman, and Micali [BFM88] showed how to construct a NIZK in a setting
where the prover and verifier have access to a shared common reference string (as known as CRS-NIZK). Since then,
NIZKs have been used as a ubiquitous building block for cryptography ranging from the early chosen-ciphertext secure
public key encryption schemes [NY90, DDN00, Sah99], advanced signature schemes [Cv91, RST01, BMW03], and
multi-party computation [GMW87].
Compact NIZK. One of the important research topics for NIZK is making the proof size as small as possible. So
far, CRS-NIZK for all of NP in the standard model is known to exist from (doubly-enhanced) trapdoor permutation
[FLS99, BY96, Gol04], pairing [Gro10a, Gro10b, Lip12, GOS12, GS12, GGPR13], indistinguishability obfuscation
(iO) [SW14, BP15, BPW16, CL18], or correlation intractable hash function [KRR17, CCRR18, CCH+19]. Among
these, CRS-NIZKs that have proof size independent of the size of the circuit C computing the NP relation are limited
to those based on either a knowledge assumption [Gro10b, Lip12, GGPR13] or iO [SW14]. There also exist generic
conversions from standard CRS-NIZKs to CRS-NIZKs with proof size independent of |C|. However, they rely on
fully homomorphic encryption (FHE) [Gen09, GGI+15] or homomorphic trapdoor functions (HTDF) [CsW19] whose
existence is only implied from lattice-based assumptions. Put differently, the classical CRS-NIZKs based on trapdoor
permutations or (falsifiable [Nao03, GW11]) pairing-based assumptions all require a large proof size that is polynomially
related to the circuit size |C|. Notably, even the most well-known Groth-Ostrovsky-Sahai NIZK (GOS-NIZK) [GOS12]
based on the decisional linear or subgroup decision assumptions over pairing groups requires the proof size to be as
large as O(|C|κ), where κ is the security parameter. In fact, the CRS-NIZK with the shortest proof that does not rely
on any of the above strong tools is the NIZK of Groth [Gro10a] based on the security of Naccache-Stern public key
encryption scheme [NS98] which achieves proof size |C| ·polylog(κ). Therefore, it remains an interesting open problem
to construct CRS-NIZKs with proof size smaller than the current state-of-the-art while avoiding to rely on strong tools
such as knowledge assumptions, iO, FHE, and HTDF. Specifically, in this paper, one of the primary interest is to obtain
a CRS-NIZK with proof size achieving an additive-overhead O(|C|) + poly(κ), rather than a multiplicative-overhead
|C| · poly(κ) (or |C| · polylog(κ)), based on any falsifiable pairing-based assumptions. Hereafter, we call such NIZKs
with proof size O(|C|) + poly(κ) as NIZKs with compact proofs for simplicity.
Designated Verifier NIZKs and Compact Proofs. A relaxation of CRS-NIZKs called the designated verifier NIZKs
(DV-NIZKs) [PsV06, DFN06] retain most of the useful properties of CRS-NIZKs and in some applications can be
used as a substitute for CRS-NIZKs. The main difference between CRS and DV-NIZKs is that the latter limits the
proof to only be verifiable by a designated party in possession of a verification key; the proof can still be generated by
anybody as in CRS-NIZKs. Due to this extra secret information possessed by the verifier, DV-NIZKs suffer from the
so-called verifier rejection attack. Specifically, a prover may learn partial information of the secret verification key
and break soundness if the verifier uses the same verification key for verifying multiple statements. In this paper, our
primary interest is multi-theorem DV-NIZKs (also known as reusable or unbounded-soundness DV-NIZKs) where the
verification key can be reused for multiple statements without compromising soundness. Surprisingly, most DV-NIZKs
[PsV06, DFN06, VV09, CG15, Lip17, CC18] (that are not a simple downgrade of CRS-NIZKs) are known to either
suffer from the verifier rejection attack or to be limited to specific NP languages. It was not until recently that the
first multi-theorem DV-NIZK for all NP languages was (concurrently and independently) shown by Couteau and
Hofheinz [CH19], Katsumata et al. [KNYY19], and Quach et al. [QRW19]. They proposed a tweak to the classical
Feige-Lapidot-Shamir (FLS) NIZK protocol [FLS99] and showed for the first time how to construct DV-NIZKs from
the computational Diffie-Hellman (CDH) assumption over pairing-free groups; an assumption which is not yet known
to imply CRS-NIZKs. However, one drawback of their DV-NIZK is that the CRS size and proof size are huge, i.e.,
poly(κ, |C|). This is due to the fact that the FLS NIZK, which they base their construction on, is highly specific to the

2

NP-complete Hamiltonicity problem. It is unclear if we can make their scheme compact since all other (CRS-)NIZKs
following the footsteps of FLS NIZK such as [Kil94, KP98, Gro10a] suffer from the same problem of having large
CRS and proof size. Therefore, it is unclear whether such a weak assumption as CDH over pairing-free groups can
be used to construct a DV-NIZK with compact proofs. In fact, constructing DV-NIZKs with compact proof from any
pairing/pairing-free group assumptions remains open.
Prover-Efficient NIZKs. Continuing the line of NIZKs with compact proofs, it is very natural and appealing to consider
NIZKs that enjoy efficient provers, i.e., the running time of the prover is small. We say the prover is efficient if its
running time is strictly smaller than the time it takes to compute C(x,w) for statement x and witness w, where recall C
was the circuit computing the NP relation. As an example, we can imagine a case where a user (acting as a prover)
is given some sort of credential w as a witness by a trusted authority and is required to prove in zero-knowledge the
fact that it possesses a valid credential to make some action. More concretely, in group signatures [BMW03] a trusted
authority will provide users with a credential which allows them to sign anonymously on behalf of the group. In such a
case, it would be appealing if the user could generate a proof without requiring to invest computational time-dependent
of |C|, since if zero-knowledge was not required, the prover could have simply output the credential w in the clear and
completely outsourced the computation of C(x,w) to the verifier. Since the authority is providing a valid credential w
to the user, in principle, the user should never need to compute C(x,w) to check whether w is valid.

As far as our knowledge goes, all NIZKs, regardless of CRS or DV, have a prover with running time at least
|C| · poly(κ) which is much larger than the time it takes to simply compute the circuit C. We emphasize that solutions to
the counterpart notion of efficient verifiers are well known and studied. Specifically, NIZKs with compact proofs with the
additional property of having efficient verifiers are known as ZK-succinct non-interactive arguments (ZK-SNARGs) or
ZK-succinct non-interactive arguments of knowledge (ZK-SNARKs).1 They have been the subject of extensive research,
e.g., [Gro10a, Lip12, BCCT12, GGPR13, Lip13, DFGK14, PHGR16, Gro16], where constructions are known to exist
either in the random oracle model or based on non-falsifiable assumptions. We also note that it would be impossible to
construct a NIZK where both the prover and the verifier are efficient since the circuit C representing the NP relation
must be computed by at least one of the parties to check the validity of the witness w. Therefore, it is an interesting
question of whether there exists an opposite flavor of the current NIZKs where we have an efficient prover instead of an
efficient verifier.

1.2 Our Contribution
In this paper, we provide new constructions of CRS-NIZK and DV-NIZK with compact proofs. The former is instantiated
on a pairing group and the latter on a paring-free group. The tools and techniques which we use for our CRS-NIZK can
be slightly modified to construct universally composable NIZK (UC-NIZK) [GOS12] with compact proofs over pairing
groups. Finally, we provide a generic construction of a CRS-NIZK with an efficient prover using as a building block the
recently proposed laconic functional evaluation (LFE) scheme of Quach, Wee, and Wichs [QWW18]. We summarize
our results below and refer to Table 1, 2, and 3 for a comparison between prior works. We note that we only include
multi-theorem NIZKs supporting all of NP based on falsifiable assumptions in the table.

1. We construct CRS-NIZKs for NP with compact proof from a (non-static) assumption over pairing groups,
namely, the (n,m)-computational Diffie-Hellman exponent and ratio (CDHER) assumption introduced by
[KNYY19].2 This is the first CRS-NIZK to achieve a compact proof without relying on either lattice-based
assumptions, knowledge assumptions, or indistinguishability obfuscation. The proof size has an additive-overhead
|C|+ poly(κ), rather than a multiplicative-overhead |C| · poly(κ), where C is the circuit that computes the NP
relation (See Table 1). Moreover, if we assume the NP relation to be computable in NC1, we can make the proof
size as small as |w|+ poly(κ), where w is the witness. This matches the proof size of the CRS-NIZK of Gentry
et al. [GGI+15] based on fully-homomorphic encryption.

2. We construct UC-NIZKs for NP relations in NC1 with compact proof from the (n,m)-CDHER assumption.
Although it is limited to NP relations in NC1, it matches the smallest proof size among all the UC-NIZKs secure

1We note that in ZK-SNARG/SNARK, it is conventional to require an efficient verifier to have running time that is only poly-logarithmic dependent
of |C|, rather than being just strictly smaller than |C|.

2Strictly speaking, we also need to assume the CDH assumption in a subgroup of Z∗
p for a prime p. See Remark 4.8 for details.

3

against adaptive corruptions in the erasure-free setting (See Table 2). The proof size is small as |w| · poly(κ), and
in particular, matches the recent UC-NIZK of Cohen, shelat, and Wichs [CsW19] based on lattice-assumptions.
Here, note that for NC1 circuits, the dependence on the depth d they have can be ignored, since asymptotically d
is smaller than κ.

3. We construct (multi-theorem) DV-NIZKs for NP with compact proof from the CDH assumption over pairing-free
groups.3 This is the first DV-NIZK that achieves a compact proof from a weak and static Diffie-Hellman type
assumption such as CDH. Specifically, similarly to the above CRS-NIZK, the proof size of our DV-NIZK is
|C|+ poly(κ), whereas all previous DV-NIZKs had proof size poly(|C|, κ) (See Table 3). Moreover, if we further
assume the NP relation to be computable in NC1 and assume the hardness of the parameterized `-computational
Diffie-Hellman inversion (CDHI) assumption over pairing-free groups [MSK02, CF18], we can make the proof
size as small as |w|+ poly(κ).

4. Finally, we construct prover-efficient CRS-NIZKs for NP through a generic construction using LFE schemes
[QWW18]. This is the first NIZK in any model (e.g., CRS, DV) where the running time of the prover is strictly
smaller than the time it takes to compute the circuit C computing the NP relation. Using any non-prover-efficient
CRS-NIZK, we generically construct a CRS-NIZK where the running time of the prover (and the proof size) is
poly(κ, |x|, |w|, d), independent of the circuit size |C|, by instantiating the LFE scheme by the sub-exponential
security of the learning with errors (LWE) assumption with sub-exponential modulus-to-noise ratio, where x is
the statement and d is the depth of C. Moreover, if we use as building block a CRS-NIZK whose prover running
time is smaller than |C| · poly(κ) (e.g., [GOS12]), the running time and proof size can be made as small as
Õ(|x|+ |w|) · poly(κ, d) by instantiating the LFE scheme by the adaptive LWE assumption with sub-exponential
modulus-to-noise ratio introduced in [QWW18].

Along the way of obtaining our first and second results, we formalize a new tool called homomorphic equivocal
commitments (HEC)4, which may be of independent interest. An HEC is a commitment with two additional properties
called equivocality and homomorphism. The equivocality enables one to generate a commitment that can be opened
to any message by using a master secret key. The homomorphism for a circuit family C = {C : X → Z} informally
requires that one can commit to a message x ∈ X , where its commitment com can be further publicly modified to a
commitment comC on the message C(x) ∈ Z for any circuit C ∈ C. Here, a decommitment for comC can be computed
by the knowledge of the message x, decommitment of com, and the circuit C. To the knowledgeable readers, we note
that HEC is a strictly weaker primitive compared to homomorphic trapdoor functions [GVW15]. Previously, an HEC
supporting the family of all polynomial-sized circuits were only (implicitly) known from lattice-based assumptions
[GVW15]. Apart from their construction, known (implicit) constructions of HEC only support linear functions [Ped92]
or group operations on a pairing group [AFG+16]. In this paper, we provide the first instantiation of HEC supporting
NC1 based on any pairing-based assumptions, namely, the (n,m)-CDHER assumption introduced in [KNYY19]. The
construction is inspired by the recent construction of compact homomorphic signatures of Katsumata et al. [KNYY19].
The proposed HEC enjoys a particular form of compactness which is especially useful for generically converting
CRS-NIZKs with non-compact proofs to CRS-NIZKs with compact proofs. Concretely, for any polynomially-sized
circuit C, the evaluated commitment comC and its decommitment of our HEC are of size poly(κ) independent of
|C|, and one can verify the validity of the decommitment in time poly(κ) independent of |C|. Somewhat surprisingly,
we also construct another instantiation of HEC supporting NC1 based on the CDH assumption over pairing groups.
Although this HEC does not enjoy compactness, and hence cannot be used for our compact CRS-NIZK conversion, we
believe it to be an interesting primitive on its own since we achieve homomorphic computations in NC1 from such a
weak assumption as CDH.

1.3 Technical Overview
Our results can be broken up into three parts. The first two results concerning CRS and UC-NIZKs with short proof are
obtained through a generic conversion from NIZKs with non-compact proofs to NIZKs with compact proofs using

3The pairing-free group should be a subgroup of Z∗
p for a prime p.

4 This primitive was already informally mentioned in [GVW15] and we do not take credit for proposing the concept of HEC. We note that Abe et
al. [AFG+16] also introduced a similar primitive with the name homomorphic trapdoor commitments.

4

Table 1: Comparison of CRS-NIZKs for NP.
Reference Soundness ZK CRS size Proof size Assumption Misc

[FLS99] stat. comp. poly(κ, |C|) poly(κ, |C|) trapdoor permutation†

[Gro10a] stat. comp. |C| · ktpm · polylog(κ) + poly(κ) |C| · ktpm · polylog(κ) + poly(κ) trapdoor permutation†
[Gro10a] stat. comp. |C| · polylog(κ) + poly(κ) |C| · polylog(κ) + poly(κ) Naccache-Stern PKE
[GOS12] perf. comp. poly(κ) O(|C|κ) DLIN/SD
[GOS12] comp. perf. poly(κ) O(|C|κ) DLIN/SD
[CHK07, Abu13] stat. comp. poly(κ, |C|) poly(κ, |C|) CDH pairing group
[GGI+15] stat. comp. poly(κ) |w|+ poly(κ) FHE and CRS-NIZK circular security
Section 4 comp. comp. poly(κ, |C|) |C|+ poly(κ) (n,m)-CDHER+CDH∗
Section 4 comp. comp. poly(κ, |C|, 2d) |w|+ poly(κ) (n,m)-CDHER+CDH∗ limited to NC1 relation

Section 7 stat./comp. comp. poly(κ, |x|, |w|, d) poly(κ, |x|, |w|, d) LFE and CRS-NIZK prover-efficient,
implied by sub-exp. LWE

Section 7 stat./comp. comp. (|x|+ |w|) · poly(κ, d) Õ(|x|+ |w|) · poly(κ, d) LFE and CRS-NIZK‡ prover-efficient,
implied by adaptive LWE

In column “Soundness” (resp. “ZK”), perf., stat., and comp. means perfect, statistical, and computational soundness (resp. zero-knowledge), respectively. In column “CRS size” and “Proof
size”, κ is the security parameter, |x|, |w| is the statement and witness size, |C| and d are the size and depth of the circuit computing the NP relation, and ktpm is the length of the domain
of the trapdoor permutation. In column “Assumption”, (n,m)-CDHER stands for the (parameterized) computational DH exponent and ratio assumption, LFE stands for laconic functional
evaluation, and sub-exp. LWE stands for sub-exponentially secure learning with errors (LWE).
∗ The CDH assumption should hold in a subgroup of Z∗p for a prime p.
† If the domain of the permutation is not {0, 1}n, we further assume they are doubly enhanced [Gol04].
‡We additionally require a mild assumption that the prover run time is linear in the size of the circuit computing the NP relation.

Table 2: Comparison of UC-NIZKs for NP.

Reference Security
(erasure-free) CRS size Proof size Assumption Misc

[GOS12] adaptive (X) poly(κ) O(|C|κ) DLIN/SD
[GGI+15] adaptive (7) poly(κ) |w|+ poly(κ) FHE and UC-NIZK circular security
[CsW19] adaptive (X) poly(κ, d) |w| · poly(κ, d) HTDF and UC-NIZK
Section 5 adaptive (X) poly(κ, |C|, 2d) |w| · poly(κ) (n,m)-CDHER and UC-NIZK limited to NC1 relation

In column “CRS size” and “Proof size”, κ is the security parameter, |w| is the witness size, |C| and d are the size and depth of circuit
computing theNP relation. In column “Assumption”, DLIN stands for the decisional linear assumption, SD stands for the subgroup decision
assumption, HTDF stands for homomorphic trapdoor functions, and (n,m)-CDHER stands for the (parameterized) computational DH
exponent and ratio assumption.

Table 3: Comparison of DV-NIZKs for NP.
Reference Soundness ZK CRS size Proof size Verification key size Assumption Misc

[CH19, KNYY19, QRW19] stat. comp. poly(κ, |C|) poly(κ, |C|) poly(κ, |C|) CDH pairing-free group
Section 6 stat. comp. poly(κ) |C|+ poly(κ) poly(κ) CDH∗ pairing-free group

Section 6 comp. comp. 2d · poly(κ) |w|+ poly(κ) poly(κ) `-CDHI∗ pairing-free group,
limited to NC1 relation

In column “Soundness” (resp. “ZK”), stat. and comp. means statistical and computational soundness (resp. zero-knowledge), respectively. In the columns
concerning sizes, κ is the security parameter, |w| is the witness-size, |C| and d are the size and depth of the circuit computing the NP relation. In column
“Assumption”, `-CDHI stands for the `-computational Diffie-Hellman inversion assumption.
∗ The CDH assumptions should hold in a subgroup of Z∗p for a prime p.

homomorphic equivocal commitments (HEC); a primitive which we formalize and provide instantiations in this work.
The third result concerning DV-NIZKs with short proof size based on pairing-free groups, that is, CDH and `-CDHI,
are obtained by extending the recent result of Katsumata et al. [KNYY19] which constructs the first NIZKs in the
preprocessing model (PP-NIZKs) with short proof size from pairing-free groups. As explained later, PP-NIZK is a
strictly weaker primitive compared to DV-NIZK. Finally, the fourth result concerning prover-efficient NIZK is obtained
by a generic construction based on the recently developed laconic function evaluation scheme of Quach et al. [QWW18].
In the following, we explain these approaches in more detail.

5

1.3.1 Generic Construction of Compact (CRS, UC)-NIZK from HEC

Here, we explain our construction of compact CRS-NIZK. Our starting point is the recent result by Katsumata et
al. [KNYY19], who constructed a designated prover NIZK (DP-NIZK) with compact proof, where DP-NIZK is an
analogue of DV-NIZK where the prover requires secret information to generate proofs and anybody can publicly verify
the proofs. Since the construction of Katsumata et al. is an instantiation of the generic conversion from homomorphic
signature to DP-NIZK proposed by Kim and Wu [KW18a], we first briefly review Kim and Wu’s conversion. Recall
that in homomorphic signature, a signature σ on a message m ∈ {0, 1}` generated by a secret key sk, can be
homomorphically evaluated to a signature σ on C(m) for a circuit C : {0, 1}` → {0, 1}. Anybody can verify the
validity of the signature by using a public verification key vk and the circuit C. As for the security requirements, we
need that given a verification key vk and a signature σ on m, it is computationally hard to forge a signature σ∗ on z
such that z 6= C(m) (unforgeability) and an honestly evaluated signature σ on z does not reveal information about
m beyond the fact that it was derived from a signature on m such that C(m) = z (context-hiding). Furthermore, as
an efficiency requirement, we need that the size of σ is independent of the size of the circuit C. In Kim and Wu’s
construction of DP-NIZK, the prover is given a signature σ on a secret key k of a secret key encryption (SKE) scheme
as the secret proving key. When the designated prover proves that x is in some language L that is specified by a relation
R, it generates an encryption ct of the witness w such that (x,w) ∈ R and homomorphically evaluates the signature
σ with respect to a circuit that computes fx,ct, where fx,ct is a function that takes as input k′ and outputs whether
(x, SKE.Dec(k′, ct)) ∈ R. The proof for DP-NIZK is then set as ct and the homomorphically evaluated signature σ.
The verifier prepares the function fx,ct from ct and x, and simply checks σ is a correct signature on 1 with respect
to the evaluated function fx,ct. The soundness of the protocol follows from the unforgeability of the homomorphic
signature since fx,ct(k′) = 0 for any k′ when x is not in the language induced by the relation R. Furthermore, the
zero-knowledge property of the protocol follows from the security of SKE and the context-hiding property of the
homomorphic signature. Katsumata et al. [KNYY19] gave a new homomorphic signature scheme with short evaluated
signature σ that supports the function class of NC1 circuits based on a newly introduced (non-static) pairing-based
assumption called the (n,m)-computational Diffie-Hellman exponent and ratio (CDHER) assumption. Plugging this
homomorphic signature into the Kim-Wu conversion, they obtained the first compact DP-NIZK for all NP based on any
pairing-based assumptions.5

The aim of our work is to modify the Kim-Wu conversion and remove the necessity of the prover keeping secret
information to generate a proof so that we can convert the compact DP-NIZK of Katsumata et al. into a compact
CRS-NIZK. The main reason why their construction cannot be used as a CRS-NIZK is because the prover cannot
generate the signature σ on the fly without knowing the signing key sk of the homomorphic signature. To this end, our
first idea is to let the prover choose vk, sk, and k on its own. This would allow the prover to generate a proof as in
the designated prover setting since it can generate the signature σ on k on its own by using the signing key sk. The
proof for the CRS-NIZK will then consist of the verification key vk and a proof of the DP-NIZK. Unfortunately, there
are multiple of problems with this naive approach. The first problem is that the size of the verification key vk used
in Katsumata et al. [KNYY19] is polynomially dependent on the size of the circuit that computes the relation to be
proven, and thus, this ruins the compactness property of the original DP-NIZK proof. The second problem is that we
can no longer invoke the unforgeability of the homomorphic signature to prove soundness since unforgeability holds
against adversaries who only has access to a verification key vk and a signature σ. Indeed, in the specific case of
Katsumata et al.’s homomorphic signature scheme, an adversary will be able to completely break the soundness of the
resulting scheme if it is further given the signing key sk. Therefore, to resolve these problems, we make use of the
special structure that the homomorphic signature scheme of Katsumata et al. has and abstract it to a primitive which we
call homomorphic equivocal commitments (HEC).

Our key observation is that in the Katsumata et al.’s homomorphic signature scheme, the reverse direction of the
signing procedure is possible without the knowledge of the secret signing key sk if we are allowed to program part of the
verification key vk. Namely, the verification key vk can be divided into two parts vk0 and vk1 where the size of vk1
is compact (i.e., independent of the size of the circuit), and for a fixed vk0 and k, one can sample a signature σ and
efficiently compute the remaining part of the verification key vk1 without knowledge of the secret signing key sk so that

5 Note that any NP relation can be converted to an NP relation in NC1 by expanding the witness size as large as the circuit computing the original
NP relation. Notably, a homomorphic signature scheme supporting the function class of NC1 circuits is sufficient for constructing DP-NIZK for all of
NP.

6

σ is a valid signature on k with respect to the entire verification key vk = (vk0, vk1). We then modify our above idea
using this reverse direction of computation. Namely, we put the non-compact part of the verification key vk0 in the
common reference string. The prover first choose k, σ on its own and then computes the remaining compact part of the
verification key vk1 from them so that σ is a valid signature on k with respect to the verification key vk. Notably, the
prover no longer requires knowledge of the secret signing key sk, and thus, the prover can generate a proof publicly. The
resulting proof is the same as in the case for the above naive construction except that we now only append vk1 to the
underlying DP-NIZK proof, rather than vk0 and vk1. The first problem of having a large proof size we encountered in
our above attempt is now resolved since we moved the non-compact part of the verification key vk0 to the common
reference string and the proof now only contains the compact vk1 and the compact proof of the underlying DP-NIZK. At
first glance, the second problem of losing soundness seems to be resolved as well, as the prover is choosing the signature
σ without knowledge of the underlying secret signing key sk. However, we encounter a new problem. Namely, once
again, we cannot directly use the unforgeability of the homomorphic signature to prove soundness, since this time
the part of the verification key vk1 that the adversary appends to the underlying DP-NIZK proof may be maliciously
chosen in a way that deviates from the security setting of the homomorphic signature. However, luckily, the proof for
unforgeability provided by Katsumata et al. can be adapted without much change to the setting where vk1 follows an
arbitrary distribution since their proof does not depend on the specific distribution which vk1 is chosen from. In this
work, to capture this special security requirement as well as the syntactic structure that we require for the homomorphic
signature, we introduce a new primitive that we call homomorphic equivocal commitment (HEC) and instantiate it by
mimicking the homomorphic signature scheme of Katsumata et al. [KNYY19]. Roughly speaking, in our formulation,
we regard vk1 as a commitment of a message k with respect to a randomness σ.

While the above explanation conveys our main idea, we need some more modification to obtain our final construction.
In the above construction, an honest prover outputs a “commitment” vk1 of a secret key k. However, a malicious prover
may choose the commitment that does not correspond to any secret key. In this case, we can no longer argue soundness.
To avoid the problem, we rely on a non-compact NIZK to prove the well-formedness of the commitment. Since the size
of the circuit for checking the well-formedness is independent of the size of the circuit for computing the relation to be
proven, this does not harm the compactness of the proof. We finally remark that the construction we explained so far is
still slightly different from the one we give in Section 4.2. There, we change the scheme so that the prover provides the
proof of knowledge of σ instead of sending σ as part of the proof in the clear. While our scheme is secure without this
change, this makes it easier to extend our construction to the UC-secure setting in Section 5.

The proof size of the resulting CRS-NIZK is |C|+ poly(κ) since our HEC only supports NC1 and thus we have to
expand the witness to the concatenation of all values corresponding to each wire of the circuit verifying the relation to
make the verification of the relation be done in NC1. On the other hand, if the relation can be verified in NC1 from the
beginning, then the expansion is not needed and the proof size is as small as |w|+ poly(κ).

Interestingly, our CRS-NIZK can also be seen as a variant of the UC-NIZK recently proposed by Cohen, shelat,
and Wichs [CsW19]. The differences from their scheme are (1) an HTDF is replaced with an HEC, (2) a witness is
encrypted by SKE of which key is committed by a HEC instead of the witness itself, and (3) one-time signatures are
omitted. If we are to construct a UC-NIZK in the adaptive non-erasure setting as is done in [CsW19], the modifications
(2) and (3) are no longer applicable, but (1) is still applicable. Based on this observation, we obtain a UC-NIZK for NC1

in the adaptive non-erasure setting with a similar proof size to that of [CsW19] based on a HEC instead of a HTDF.
A caveat of our construction is that the scheme only supports NP languages verifiable in NC1 whereas their scheme
supports all of NP (verifiable by a polynomial-size circuit). On the other hand, our abstraction as HEC instead of HTDF
enables us to instantiate the scheme based on a pairing assumption instead of lattices. In particular, it seems difficult to
construct HTDF based on a pairing assumption.

1.3.2 Compact DV-NIZKs based on Pairing-Free Groups

Here, we explain our constructions of compact DV-NIZKs. Actually, we give a generic compiler to convert any
non-compact DV-NIZK to a compact one additionally assuming the existence of PKE and NC1-decryptable SKE with
additive ciphertext overhead. In this overview, we discuss a specific instantiation based on the CDH assumption in
pairing-free groups.

The starting point of our constructions is the recent construction of compact NIZKs in the preprocessing model (PP-

7

NIZKs) by Katsumata et al. [KNYY19] based on inner-product functional encryptions (IPFE) [ABDP15].6 PP-NIZK
is a relaxation of (CRS, DV, DP)-NIZK where both the prover and the verifier are given proving and verification keys,
respectively, which should be hidden from each other. Katsumata et al. first constructed a context-hiding homomorphic
MAC for arithmetic circuits by adding the context-hiding property to the non-context-hiding homomorphic MAC of
Catalano and Fiore [CF18] by using an IPFE. They then plugged the context-hiding homomorphic MAC into the generic
conversion by Kim and Wu [KW18a] to obtain PP-NIZKs.7 Recall that in the PP-NIZK construction of Kim and Wu, a
prover key consists of an SKE key k and a signature σ on k, and a verification key consists of a verification key vk of
a homomorphic MAC scheme. The reason why their scheme is PP-NIZK and not DV-NIZK is that a prover has to
obtain a signature σ on k which should be generated by a trusted third party who has the corresponding signing key sk.8
Similarly to the case of our CRS-NIZK explained in the previous section, we observe the following fact. If one can
choose σ and vk in the reverse order, that is, if one can first choose the signature σ, and then define vk so that σ is a
valid signature on k, then we could modify the scheme to be a DV-NIZK by letting the prover choose k and σ on its
own. Below, we observe that the homomorphic MAC of Katsumata et al. [KNYY19] indeed has this property. To
explain this, we first recall the structure of their homomorphic MAC.

In their homomorphic MAC scheme, a verification key vk (which is also a signing key) consists of s $← Z∗p, r $← Z`p
and a decryption key of an IPFE corresponding to the vector (s, ..., sD) ∈ ZDp where p is a sufficiently large prime, ` is
the message length, and D is the degree of the arithmetic circuits supported by the homomorphic MAC scheme.9 A
signature on k is defined to be σ := (r− k) · s−1 mod p. From the form of σ, we can see that for any fixed k and s,
one can set σ and r in the reverse order, that is, one can first pick σ and then set r := k + σ · s mod p.

Going back to the construction of NIZK, this structure enables us to get close to DV-NIZK. Namely, a prover can
now choose k and σ by itself, and it no longer needs any proving key generated by a trusted third party. However, there
is an important problem still remaining on how the verifier gets to know r = k + σ · s mod p, which is required for
verification. Recall that r was part of the private verification key of the PP-NIZK of Kim and Wu. If s is given to a
prover, then we cannot rely on unforgeability of the homomorphic MAC to prove soundness, and if the prover sends k
and σ in the clear, then we cannot rely on the security of SKE to prove zero-knowledge. Therefore the prover has to
transmit r = k + σ · s mod p to the verifier without knowing s nor revealing k and σ to the verifier. We observe
that this task can be done by using IPFE. Namely, we give a secret key corresponding to the vector (1, s) of IPFE to
the verifier as a part of his verification key, and a prover encrypts vectors (ki, σi) for each i ∈ [`] where ki and σi are
the i-th entry of k and σ, respectively, and sends the ciphertexts as a part of the proof. Then a verifier can obtain
r = k + σ · s mod p by simply decrypting the IPFE ciphertexts with his decryption key.

Though the above idea seems to work at first glance, there is a problem that was also addressed in [KNYY19].
Namely, since a standard security notion of IPFE does not consider a malicious encryptor, an adversary may generate
a malformed ciphertext whose decryption result is perfectly under his control, which breaks soundness. To prevent
such an attack, Katsumata et al. [KNYY19] required a property called an extractability for an IPFE, which means that
one can extract a corresponding message from any possibly malformed ciphertext if it does not decrypt to ⊥. They
then showed that the DDH-based IPFE scheme of Agrawal, Libert, and Stehlé [ALS16] can be used as an extractable
IPFE. However, unfortunately, we will not be able to simply plug in the extractable IPFE of Agrawal et al. into our
DV-NIZK. This is because the IPFE of Agrawal et al. embeds the message into the exponent of a group element, and
forces one to compute the discrete logarithm to decrypt. Therefore, unless we can be sure that the exponent will be
small, the IPFE of Agrawal et al. is difficult to use. Here, the reason why the PP-NIZK of Katsumata et al. [KNYY19]
did not face any issue with this somewhat awkward decryption algorithm was because the verification algorithm only
consisted of checking whether the decryption result is equal to a certain value, which could be tested in the exponent,
using the verification key (s, r). However, in our case, the verifier must first decrypt r using the IPFE secret key
corresponding to the vector (1, s) to recover r, and only then it can run the internal verification algorithm of [KNYY19]

6Actually, their construction is based on a variant of IPFE called IPFE on exponent (expIPFE). We note that their construction works with standard
IPFE. They used the notion of expIPFE instead of IPFE for making it possible to instantiate the scheme based on the DDH-based scheme by Agrawal,
Libert, and Stehlé [ALS16].

7Kim and Wu [KW18a] showed that if one uses their generic conversion on homomorphic MACs instead of homomorphic signatures, it would
result in PP-NIZKs instead of DP-NIZKs.

8In a homomorphic MAC, we can let sk := vk since both are kept private.
9We remark that we cannot include the master secret key of IPFE in vk since the context-hiding property should hold even against the verifier who

sees vk.

8

using the pair (s, r). Notably, the verifier would have to solve the discrete logarithm for a random value in Zp to recover
the piece r of the verification key used in the PP-NIZK of Katsumata et al. However, obviously, there is no way to
compute this efficiently. Therefore, in this work, we must take a different approach. Concretely, instead of relying on
the extractability of IPFE, we require a prover to provide a proof that he has honestly generated ciphertexts by using
another (non-compact) DV-NIZK. Here, since the validity check of IPFE ciphertexts can be done with computational
complexity independent of the size of the language the prover really wants to prove, we can use a non-compact DV-NIZK
for this part while keeping the whole proof size compact. In summary, we can convert the PP-NIZK of [KNYY19]
to a DV-NIZK by adding ` IPFE ciphertexts along with their validity proof whose sizes are poly(κ). Since the proof
size of the PP-NIZK of [KNYY19] is |C|+ poly(κ), the proof size of the resulting DV-NIZK is also |C|+ poly(κ).
Moreover, we note that single-key secure IPFE suffices for the above construction of DV-NIZK. Since single-key secure
functional encryption for all polynomial-sized functions exist under the existence of PKE [GVW12] and DV-NIZK for
all of NP exists under the CDH assumption on a pairing-free group [CH19, KNYY19, QRW19], we can instantiate the
above DV-NIZK based on the CDH assumption on a pairing-free group.10 Finally, we note that by using the idea of the
compact homomorphic MAC based on the `-CDHI assumption by Catalano and Fiore [CF18], we can further reduce
the proof size to be |w|+ poly(κ) in the case when the language to be proven is computable in NC1.

1.3.3 Generic Construction of Prover-Efficient NIZK from LFE

To achieve prover-efficient NIZKs, we use laconic function evaluation (LFE) recently introduced by Quach, Wee, and
Wichs [QWW18]. LFE schemes are defined for a class of circuits C. We can generate a short digest of circuit C ∈ C
from a CRS and the circuit C. Anybody can then generate a ciphertext ct of a messagem from the CRS, the digest, and
m. Finally, anybody can decrypt the ciphertext to C(m) using the ciphertext ct and the circuit C. Here, the security of
LFE imposes that the ciphertext ct leaks no additional information other than the value C(m). The attractive feature of
LFE is that the size of the CRS, digest, ciphertext ct, and the running time of the encryption algorithm are all strictly
smaller than the size of the circuits in C.

Our design idea is to impose the computation of the circuit C computing the NP-relation on the verifier by using
LFE. Specifically, we put a digest of C (and a CRS of LFE) in the CRS of our NIZK. The prover then computes an LFE
ciphertext of message (x,w) where x is a statement and w is its witness using the digest of C. A verifier can check
the validity of the statement by decrypting the ciphertext with C. By the security of LFE, the verifier obtains nothing
beyond C(x,w), hence, zero-knowledge of our NIZK follows naturally. Furthermore, by the efficiency property of
LFE, the running time of the prover is smaller than the size of C. However, this basic idea is not yet sufficient. This is
because a cheating prover may not honestly compute an LFE ciphertext of the message (x,w) and may possibly break
soundness of our NIZK. To overcome this issue, a prover must generate not only an LFE ciphertext of (x,w) but also a
NIZK proof to prove that the prover honestly generated the LFE ciphertext of (x,w) with the CRS of LFE and the digest
of C. We point out that this additional NIZK proof does not harm prover efficiency since the additional statement which
the prover must prove is independent of the size of the circuit C owing to the feature of LFE. In particular, we can check
the validity of the ciphertext by computing the encryption circuit of LFE whose size is independent of the size of C.

Using any non-prover-efficient NIZK for NP as building block and instantiating the LFE scheme by the sub-
exponential security of LWE assumption with sub-exponential modulus-to-noise ratio, we obtain a prover-efficient
CRS-NIZK for NP whose prover running time is poly(κ, |x|, |w|, d), where d is the depth of the circuit C computing
the NP relation. In particular, the prover running time is independent of |C|. In fact, we can further reduce the prover
running time to be as small as Õ(|x|+ |w|) · poly(κ, d) where the dependence of the statement x and witness w size is
only quasi-linear if we further use the following two assumptions (1) the prover running time of the underlying NIZK is
linear in the size of the circuit that computes the NP relation, that is, |C| · poly(κ) (2) a natural variant of the above
LWE assumption introduced by Quach et al. [QWW18], called the adaptive LWE assumption. Note that the assumption
we make on the underlying NIZK is not that strong, and in particular, we can use the NIZK of Groth, Ostrovsky, and
Sahai [GOS12].

10One may wonder why we only need CDH though [KNYY19] assumed DDH. Recall that the DDH in their construction comes from the necessity
of an extractable expIPFE. We show that this can be replaced with any IPFE and DV-NIZK both of which exist under the CDH assumption based on
the same idea as explained above.

9

1.4 Related Works
Other than CRS and DV-NIZKs, which have been the main interest of this paper, there are other variants of NIZKs.
One is PP-NIZK and the other is DP-NIZK as we briefly mentioned in Section 1.3. Similarly to DV-NIZKs, due to
the extra secret information shared by the prover and/or verifier, the soundness (resp. zero-knowledge) property of
(PP, DP)-NIZKs may be compromised after verifying (resp. proving) multiple statements. In fact most of the PP or
DP-NIZKs [DMP90, KMO90, LS91, Dam93, CD04, IKOS09] are known only to be secure for bounded statements.
The first multi-theorem PP and DP-NIZKs (that are not a trivial downgrade of CRS-NIZKs) where given by Kim and
Wu [KW18a] who proposed a generic construction of them via homomorphic MACs and homomorphic signatures,
respectively. Since homomorphic signatures were implied by lattice-based assumptions [GVW15], this implied the first
DP-NIZKs based on lattices. Subsequently, Katsumata et al. [KNYY19] constructed a homomorphic signature based
on the CDHER assumption and a homomorphic MAC based on the DDH assumption over pairing-free groups, and
thus constructed DP and PP-NIZKs relative to those assumptions. One attractive feature of the NIZKs of Kim and Wu
[KW18a] and Katsumata et al. [KNYY19] is that the proof size are compact: the DP-NIZK of [KW18a] has proof
size |w|+ poly(κ, d) and the (PP, DP)-NIZK of [KNYY19] have proof size |C|+ poly(κ), where d is the depth of the
circuit C computing the NP relation.

2 Preliminaries
Notations. For a distribution or random variable X , we write x $← X to denote the operation of sampling a random
x according to X . For a set S, we write s $← S to denote the operation of sampling a random s from the uniform
distribution over S. For random variables X and Y , X

stat
≈ Y means that X and Y are statistically indistinguishable.

For a probabilistice algorithm A, y $← A(x) means that A is run on input x and outputs y, and y := A(x; r) means that
A is run on input x with input r and outputs y. For an algorithm A that takes as input x and randomness r, “y ∈ A(x)"
means Prr[y′ = y : y′ ← A(x; r)] > 0.

2.1 Symmetric Key Encryption
Here, we define symmetric key encryption (SKE). In our definition, we explicitly introduce a setup algorithm that
generates a public parameter. If we just think about an SKE scheme alone, then such a setup algorithm is redundant
since we can think of a public parameter as part of a secret key. On the other hand, we need an SKE scheme with a short
secret key size (among other properties) in the construction of our compact NIZK. For achieving such a short secret key,
we explicitly introduce the setup algorithm so that a secret key need not include values that can be made public. We also
note that we only require one-time security instead of CPA-security.

Let {Mκ}κ∈N be a family of message space. In the following, we occasionally drop the subscript and simply write
M when the meaning is clear.

Definition 2.1 (Symmetric Key Encryption). A symmetric key encryption (SKE) scheme ΠSKE for message spaceM
consists of PPT algorithms (SKE.Setup,SKE.KeyGen,SKE.Enc,SKE.Dec).

SKE.Setup(1κ)→ ppSKE: The setup algorithm takes as input the security parameter 1κ and outputs a public parameter
ppSKE.

SKE.KeyGen(ppSKE)→ KSKE: The key generation algorithm takes as input a public parameter ppSKE and outputs a
secret key KSKE.

SKE.Enc(ppSKE,KSKE,M)→ ct: The encryption algorithm takes as input a public parameter ppSKE, a secret key
KSKE, and a message M ∈M and outputs a ciphertext ct.

SKE.Dec(ppSKE,KSKE, ct)→ M or ⊥: The decryption algorithm takes as input a public parameter ppSKE, a secret
key KSKE, and a ciphertext ct and outputs a message M ∈M or a special symbol ⊥ indicating decryption failure.

10

Correctness. For all κ ∈ N, M ∈ M, ppSKE ∈ SKE.Setup(1κ), and KSKE ∈ SKE.KeyGen(ppSKE), we have
SKE.Dec(ppSKE,KSKE,SKE.Enc(ppSKE,KSKE,M)) = M.

One-Time Security. For all PPT adversaries A and (M0,M1) ∈M2, if we run ppSKE
$← SKE.Setup(1κ), KSKE

$←
SKE.KeyGen(ppSKE), and ctb

$← SKE.Enc(ppSKE,KSKE,Mb) for b ∈ {0, 1}, then we have

|Pr[A(ppSKE,M0) = 1]− Pr[A(ppSKE,M1) = 1]| = negl(κ).

For our construction of NIZKs in the following sections, we require an SKE scheme whose ciphertext overhead (i.e.,
|ct| − |m|) and secret key length are poly(κ) and whose decryption algorithm can be represented as a circuit in NC1.
Such an SKE exists under the CDH assumption in a subgroup of Z∗p as show in the following lemma.

Lemma 2.2. If the CDH assumption holds in a subgroup of Z∗p, then for anym = poly(κ), there exists a one-time secure
SKE scheme with message space {0, 1}m, ciphertext overhead poly(κ)11 , and secret key length poly(κ) (independently
ofm) whose decryption algorithm can be represented as a circuit in NC1.

Remark 2.3. In a previous work by Katsumata et al. [KNYY19], they also used an NC1-decryptable SKE scheme as
a building block to construct compact PP/DP NIZKs. However, their requirements for SKE are different from ours:
They require CPA security, which is stronger than the one-time security, but did not require the secret key length to be
independent on the message length.

Proof (of Lemma 2.2). First, we describe an SKE scheme that satisfies the requirements except for the NC1 decryption,
and then we explain how to modify the scheme to achieve the NC1 decryption if the scheme is instantiated in a subgroup
of Z∗p. Let G be a cyclic group with a prime order q = poly(κ) in which the CDH assumption holds and ` be the
representation length of an element of G. For Z ∈ G and s ∈ {0, 1}`, GLs(X) denotes the Goldreich-Levin hardcore
bit [GL89] with the seed s, i.e., GLs(Z) :=

⊕
si · 〈Z〉i where si and 〈Z〉i denote the i-th bit of s and the representation

of Z, respectively.

SKE.Setup(1κ): This algorithm picks s $← {0, 1}`, g $← G, and xi
$← Zq for i ∈ [m], computesXi := gxi for i ∈ [m],

and outputs ppSKE := (s, g,X1, ..., Xm).

SKE.KeyGen(ppSKE): This algorithm picks r $← Zq and outputs KSKE := r.

SKE.Enc(ppSKE,KSKE,M): This algorithm parses (s, g,X1, ..., Xm) ← ppSKE and r ← KSKE, computes cti :=
Mi ⊕ GLs(Xr

i) for i ∈ [m] where Mi is the i-th bit of M, and outputs ct := (ct1, ..., ctm).

SKE.Dec(ppSKE,KSKE, ct): This algorithm parses (s, g,X1, ..., Xn) ← ppSKE, r ← KSKE, and (ct1, ..., ctm) ← ct,
computes Mi := cti ⊕ GLs(Xr

i) for i ∈ [m], and outputs M := M1‖...‖Mm.

It is clear that the ciphertext overhead and secret key length of the above scheme are poly(κ) independently of m.
It is also easy to prove the one-time security of the above construction under the CDH assumption by using the
Goldreich-Levin theorem [GL89]. On the other hand, the decryption of the above scheme cannot be be done in NC1

since it has to compute exponentiations. Here, we rely on a technique used for implementing the Naor-Reingold PRF
[NR04] in NC1. They showed that an exponentiation can be reduced to a multiple product by a certain preprocessing.
Specifically, before computing Zr for Z ∈ G and r ∈ Zq, if we compute Z,Z2, Z22

, ..., Z2blog qc in a preprocessing
phase, then we can compute gr by multiplying some of the pre-computed group elements which is chosen according
to the binary decomposition of r. Moreover, it is known that multiplication of many elements of Z∗p can be done in
NC1 [BCH86]. Thus, an exponentiation in a subgroup of Z∗p can be done in NC1 with preprocessing. We note that
this preprocessing only increases the public parameter size in the above construction of SKE and does not affect the
ciphertext overhead and secret key length. Thus, we can achieve NC1 decryption without losing other properties if we
instantiate the above scheme in a subgroup of Z∗p.

11 In fact, the SKE scheme achieves a ciphertext length that equals the message length. However, any SKE scheme with a fixed-polynomial additive
ciphertext overhead and secret key length suffice for our work.

11

2.2 Public Key Encryption
Let {Mκ}κ∈N be a family of message space. In the following, we occasionally drop the subscript and simply writeM
when the meaning is clear.

Definition 2.4 (Public Key Encryption). A public key encryption (PKE) scheme ΠPKE for message spaceM consists
of PPT algorithms (PKE.KeyGen,PKE.Enc,PKE.Dec).

PKE.KeyGen(1κ)→ (pk, sk): The key generation algorithm takes as input the security parameter 1κ and outputs
public key pk and a secret key sk.

PKE.Enc(pk,M)→ ct: The encryption algorithm takes as input a secret key KSKE and a message M ∈M and outputs
a ciphertext ct.

PKE.Dec(sk, ct)→ M or ⊥: The decryption algorithm takes as input a secret key sk and a ciphertext ct and outputs a
message M ∈M or a special symbol ⊥ indicating decryption failure.

Correctness. For allκ ∈ N,M ∈M, and (pk, sk) ∈ PKE.KeyGen(1κ), we havePKE.Dec(sk,PKE.Enc(pk,M)) = M.

CPA-Security. For all κ ∈ N and all PPT adversaries A = (A0,A1), if we run (pk, sk) $← PKE.KeyGen(1κ),
(M0,M1, st) $← A0(pk), coin $← {0, 1}, ct∗ $← PKE.Enc(pk,Mcoin), and coin′ $← A1(st, ct∗), then we have

|2 · Pr[coin′ = coin]− 1/2| = negl(κ).

2.3 One-Time Signature
Let {Mκ}κ∈N be a family of message space. In the following, we occasionally drop the subscript and simply writeM
when the meaning is clear.

Definition 2.5 (One-time Signature). A one-time signature (OTS) scheme ΠOTS for message spaceM consists of PPT
algorithms (OTS.KeyGen,OTS.Sign,OTS.Verify).

OTS.KeyGen(1κ)→ (vk, sigk): The key generation algorithm takes as input the security parameter 1κ and outputs a
verification key vk and a signing key sigk.

OTS.Sign(sigk,M)→ σ: The signing algorithm takes as input a signing key sigk and a message M ∈M and outputs
a signature σ.

OTS.Verify(vk,M, σ)→ > or ⊥: The decryption algorithm takes as input a verification key vk, a message M and a
signature σ and outputs > to indicate acceptance of the signature and ⊥ otherwise.

Correctness. For all κ ∈ N, M ∈ M, (vk, sigk) ∈ OTS.KeyGen(1κ), and σ ∈ OTS.Sign(sigk,M), we have
OTS.Verify(vk,M, σ) = >.

Strong One-Time Unforgeability. For all κ ∈ N and all PPT adversaries A = (A1,A2),we have

Pr

 OTS.Verify(vk,M∗, σ∗) = >
(M, σ) 6= (M∗, σ∗)

∣∣∣∣∣∣∣∣∣
(vk, sigk) $← OTS.KeyGen(1κ)

(M, st) $← A1(vk),
σ

$← OTS.Sign(sigk,M)
(M∗, σ∗) $← A2(st, σ)

 ≤ negl(κ).

12

2.4 Non-Interactive Zero-Knowledge Proofs (and Arguments)
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation. For (x,w) ∈ R, we call x as the
statement and w as the witness. Let L be the corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}. Below, we
define a non-interactive zero-knowledge proofs for NP languages. As we discuss briefly below, the following syntax
also captures the designated-verifier setting.

Definition 2.6 (NIZK Proofs). A non-interactive zero-knowledge (NIZK) proof ΠNIZK for the relation R consists of
PPT algorithms (Setup,Prove,Verify).

Setup(1κ)→ (crs, kV): The setup algorithm takes as input the security parameter 1κ and outputs a common reference
string crs and a verification key kV.

Prove(crs, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x, and a
witness w and outputs a proof π.

Verify(crs, kV, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common reference string, a verification key
kV, a statement x, and a proof π and outputs > to indicate acceptance of the proof and ⊥ otherwise.

A NIZK proof ΠNIZK must satisfy the following requirements for all κ ∈ N, where the probabilities are taken over the
random choice of the algorithms.

Completeness. For all pairs (x,w) ∈ R, if we run (crs, kV) $← Setup(1κ), then we have

Pr[π $← Prove(crs, x, w) : Verify(crs, kV, x, π) = >] = 1.

Soundness. For all (possibly inefficient) adversaries A, if we run (crs, kV) $← Setup(1κ), then we have

Pr[(x, π) $← AVerify(crs,kV,·,·)(1κ, crs) : x 6∈ L ∧ Verify(crs, kV, x, π) = >] = negl(κ).

Here, in case soundness only holds for computationally bounded adversaries A, we say it is a NIZK argument.

Zero-Knowledge. For all PPT adversaries A, there exists a PPT simulator S = (S1,S2) such that if we run
(crs, kV) $← Setup(1κ) and (crs, k̄V, τ̄) $← S1(1κ), then we have∣∣∣Pr[AO0(crs,·,·)(1κ, crs, kV) = 1]− Pr[AO1(c̄rs,k̄V,τ̄ ,·,·)(1κ, crs, k̄V) = 1]

∣∣∣ = negl(κ),

where O0(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and ⊥ otherwise, and O1(crs, k̄V, τ̄ , x, w) outputs
S2(crs, k̄V, τ̄ , x) if (x,w) ∈ R and ⊥ otherwise.

Remark 2.7 (On the verifier key kV). In case kV = ⊥ in the above syntax, i.e., the proof can be verified publicly, we refer
to it as CRS-NIZKs. For notational simplicity, we omit kV from the algorithm when we consider CRS-NIZKs. In case,
kV 6= ⊥ and the verification key must be kept private, we call it designated verifier NIZKs (DV-NIZKs) [PsV06, DFN06].
The above definition captures the so-called multi-theorem DV-NIZK where soundness is guaranteed even if an adversary
can access to the verification oracle and zero-knowledge is guaranteed even after the prover observes an arbitrary number
of proofs. Note that CRS-NIZKs by definition satisfies the multi-theorem soundness since verification can be done
publicly.

The above definition does not directly capture any efficiency requirements on NIZKs. Our main goal of this paper is
to obtain efficient NIZKs in the following respect:
Efficiency. Throughout the paper, when we discuss proof sizes and efficiency of NIZKs, |x| and |w| denotes the sizes
of a statement and a witness, respectively, C denotes the circuit that computes the relation (i.e., C(x,w) = 1 if and
only if (x,w) ∈ R), and |C| denotes the size of C (i.e., the number of gates of C).12 We want to ensure that

12Though there are many circuits that compute the same relation, we assume a corresponding circuit that computes the relation is implicitly fixed
whenever we consider a relation.

13

the NIZK is compact, that is, the size of the proof π should be as small. In particular, we aim |π| to have at least an
additive-overhead |C|+ poly(κ), rather than a multiplicative-overhead |C| · poly(κ); all pairing-based NIZKs based
on falsifiable assumptions have multiplicative overhead. Moreover, in some cases we may also want the prover to be
efficient, meaning that its running time is small as possible, and in particular, we want the running time to be at least
smaller than the time to compute C, i.e., relationR.

2.5 Computational Diffie-Hellman Assumption
Let GGen be a PPT algorithm that on input 1κ returns a description G = (G, p, g) where G is a cyclic group of prime
order p and g is the generator of G. Then the computational Diffie-Hellman assumption is defined as follows.

Definition 2.8 (Computational Diffie-Hellman Assumption).We say that the computational Diffie-Hellman (CDH)
assumption holds relative to GGen in group G if for all PPT adversaries A,

Pr
[
G = (G, p, g) $← GGen(1κ), α, β $← Zp : gαβ ← A(1κ,G, gα, gβ)

]
≤ negl(κ).

Moreover, let BGGen be a PPT algorithm that on input 1κ returns a description G = (G,GT , p, g, e(·, ·)) of symmetric
pairing groups where G and GT are cyclic groups of prime order p, g is the generator of G, and e : G×G→ GT is an
efficiently computable (non-degenerate) bilinear map. Then the CDH assumption relative to BGGen is defined similarly.

2.6 Laconic Function Evaluation
We define here laconic function evaluation proposed by [QWW18] with a slightly simplified presentation. Let
Ck,d = {C : {0, 1}k → {0, 1}} be a circuit class consisting of circuits with depth at most d. We typically omit the
subscript from C for simplicity.

Definition 2.9 (Laconic Function Evaluation). A laconic function evaluation (LFE) scheme for a class of circuits C
consists of PPT algorithms (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec).

LFE.crsGen(1κ, 1k, 1d)→ crs : The common random string generator algorithm takes as input the security param-
eter 1κ, the input length 1k and bound on the depth 1d of the circuits in C, and outputs a common random
string crs.

LFE.Compress(crs, C)→ digestC : The deterministic compression algorithm takes as input the common random string
crs and a circuit C ∈ C and outputs a digest digestC .

LFE.Enc(crs, digestC , x)→ ct : The encryption algorithm takes as input the common random string crs, a digest
digestC and a message x ∈ {0, 1}k, and outputs a ciphertext ct.

LFE.Dec(crs, C, ct)→ y : The decryption algorithm takes as input the common random string crs, a circuit C and a
ciphertext ct, and outputs a message y.

An LFE scheme must satisfy the following requirements.

Correctness. For all κ ∈ N, k, d ∈ poly(κ), C ∈ C and x ∈ {0, 1}k, if we run crs $← LFE.crsGen(1κ, 1k, 1d),
digestC = LFE.Compress(crs, C), ct $← LFE.Enc(crs, digestC , x), and y $← LFE.Dec(crs, C, ct), then we have
Pr[C(x) = y] = 1, where the probability is taken over the randomness of all the algorithms.

(Adaptive) Security. There exists a PPT simulator LFE.Sim such that for all (stateful) PPT adversary A, we have∣∣∣Pr
[
ExpReal

LFE,A(1κ) = 1
]
− Pr

[
ExpIdeal

LFE,A(1κ) = 1
]∣∣∣ ≤ negl(κ),

where the two experiments ExpReal
LFE,A and ExpIdeal

LFE,A are defined in Figure 1. Note that the adaptive security holds under
the same digest digestC even if A is given many ciphertexts cti of many messages xi where each xi may arbitrarily

14

ExpReal
LFE,A ExpIdeal

LFE,A

1. (1k, 1d) $← A(1κ) 1. (1k, 1d) $← A(1κ)
2. crs $← LFE.crsGen(1κ, params) 2. crs $← LFE.crsGen(1κ, params)
3. (x∗, C) $← A(crs) : C ∈ Ck,d 3. (x∗, C) $← A(crs) : C ∈ Ck,d
4. digestC = LFE.Compress(crs, C) 4. digestC = LFE.Compress(crs, C)
5. ct $← LFE.Enc(crs, digestC , x∗) 5. ct $← LFE.Sim(crs, C, digestC , C(x∗))
6. Output A(ct) 6. Output A(ct)

Figure 1: Security Experiment for LFE.

depend on the ciphertexts it has received because the simulator is given a honestly generated crs. This was observed by
Quach et al [QWW18]. We call this version multi-challenge adaptive security in this paper.

Efficiency. We say the LFE is laconic if the size of crs, digestC , and ct, and the run-time of LFE.Enc is strictly smaller
than the circuit size |C|.

Quach et al. [QWW18] showed how to construct LFE based on the sub-exponential security of the learning with errors
(LWE) assumption or the adaptive LWE assumption. We put definitions of these assumptions in Appendix A since we
only use LFE in a black-box manner, and do not care about the underlying assumptions.

Lemma 2.10. Under the sub-exponential security of the LWE assumption with subexponential modulus-to-noise ratio,
there exists an adaptive LFE for circuit class Ck,d where the crs size is poly(κ, k, d), the digestC size is poly(κ),
the ciphertext ct size and the running time of the encryption algorithm is poly(κ, k, d), and the running time of the
compression and decryption algorithm is Õ(|C|) · poly(κ, k, d).
Moreover, under the adaptive LWE assumption with subexponential modulus-to-noise ratio, there exists an adaptive
LFE where the crs size is k · poly(κ, d), the digestC size is poly(κ), the ciphertext ct size and the running time of
the encryption algorithm is Õ(k) · poly(κ, d), and the running time of the compression and decryption algorithm is
Õ(|C|) · poly(κ, d).

3 Homomorphic Equivocal Commitment
3.1 Definition
We introduce a new primitive which we call homomorphic equivocal commitment (HEC), which can be seen as a relaxed
variant of HTDF defined by Gorbunov et al. [GVW15]. (See Appendix D for the construction of HEC from HTDF.) A
HEC schemewithmessage spaceX , randomness spaceR, and a randomness distributionDR overR for a circuit classC =
{C : X → Z} consists of PPT algorithms (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify).

HEC.Setup(1κ): The setup algorithm takes as input the security parameter 1κ and outputs a public parameter pp, an
evaluation key ek, and a master secret key msk.

HEC.Commit(pp,x;R): The commit algorithm takes as input a public parameter pp and a message x ∈ X along with
a randomness R ∈ R, and outputs a commitment com. When we omit R to denote HEC.Commit(pp,x), we
mean that R is chosen according to the distribution DR.

HEC.Open(msk, (x, R),x′): The open algorithm takes as input a master secret key msk, a message x ∈ X , a
randomness R ∈ R, and a fake message x′ ∈ X , and outputs a fake randomness R′ ∈ R.

HEC.Evalin(ek, C,x, R) : The inner evaluation algorithm takes as input an evaluation key ek, a circuit C ∈ C, a
message x ∈ X , and a randomness R ∈ R, and outputs a proof π.

HEC.Evalout(ek, C, com): The outer evaluation algorithm is a deterministic algorithm that takes as input an evaluation
key ek, a circuit C ∈ C, and a commitment com, and outputs an evaluated commitment comeval.

15

HEC.Verify(pp, comeval, z, π): The verification algorithm takes as input a public parameter pp, an evaluated commitment
comeval, a message z ∈ Z , and a proof π, and outputs > if the proof is valid and ⊥ otherwise.

Evaluation Correctness. For allκ ∈ Z, (pp, ek,msk) $← HEC.Setup(1κ),x ∈ X ,R ∈ R, com := HEC.Commit(pp,x;R),
C ∈ C, π $← HEC.Evalin(msk, C,x, R), and comeval := HEC.Evalout(ek, C, com), we have

Pr[HEC.Verify(pp, comeval, C(x), π) = >] = 1.

Distributional Equivalence of Open. We have

{(pp, ek,msk,x, R, com)} stat
≈ {(pp, ek,msk,x, R′, com′)}

where (pp, ek,msk) $← HEC.Setup(1κ), (x,x) ∈ X 2 are arbitrary random variables that may depend on (pp, ek,msk),
R

$← DR, com := HEC.Commit(pp,x;R),R $← DR, com′ := HEC.Commit(pp,x;R), andR′ $← HEC.Open(msk, (x, R),x).

Computational Binding for Evaluated Commitment. For all PPT adversary A,

Pr

 HEC.Verify(pp, comeval, z
∗, π∗) = >
z∗ 6= C(x)

∣∣∣∣∣∣∣∣
(pp, ek,msk) $← HEC.Setup(1κ),

(x, R, C, z∗, π∗) $← A(pp, ek),
com := HEC.Commit(pp,x;R)

comeval := HEC.Evalout(ek, C, com)

 ≤ negl(κ).

Efficient Committing. There exists a polynomial poly such that for all (pp, ek,msk) $← HEC.Setup(1κ), x ∈ X ,
R ∈ R, the running time of com := HEC.Commit(pp,x;R) is bounded by |x| · poly(κ).
Efficient Verification (optional). There exists a polynomial poly such that for all (pp, ek,msk) $← HEC.Setup(1κ),
x ∈ X ,R ∈ R, com := HEC.Commit(pp,x;R),C ∈ C,π $← HEC.Evalin(ek, C,x, R), comeval := HEC.Evalout(ek, C,
com), and z ∈ Z , we have |π| ≤ poly(κ) and |comeval| ≤ poly(κ) and the running time of HEC.Verify(pp, comeval, z, π)
is at most poly(κ). We remark that poly does not depend on C.

Context-Hiding (optional). There exists a PPT simulator HEC.ProofSim such that for all κ ∈ N, (pp, ek,msk) $←
HEC.Setup(1κ), x ∈ X , C ∈ C, R ∈ R, and com := HEC.Commit(pp,x;R), we have

{π $← HEC.Evalin(ek, C,x, R))} stat
≈ {π′ $← HEC.ProofSim(msk, com, C, C(x)))}

where the probability is only over the randomness used by the algorithms HEC.Evalin and HEC.ProofSim.

Remark 3.1. We can generically convert any HEC scheme to a context-hiding one by using any statistical CRS-NIZK
scheme. Namely, instead of directly using π as an output of the inner evaluation algorithm, it outputs a NIZK proof for
the statement that there exists π that passes the verification.

Remark 3.2. The following properties immediately follow from the distributional equivalence of open.
Equivocality. We have

Pr[HEC.Commit(pp,x;R) 6= HEC.Commit(pp,x;R)] = negl(κ)

where (pp, ek,msk) $← HEC.Setup(1κ), (x,x) ∈ X 2 are arbitrary random variables that may depend on (pp, ek,msk),
R

$← DR, and R
$← HEC.Open(msk, (x, R),x).

Hiding. We have

{pp, ek, com $← HEC.Commit(pp,x)} stat
≈ {pp, ek, com′ $← HEC.Commit(pp,x′)},

where (pp, ek,msk) $← HEC.Setup(1κ) and (x,x′) ∈ X 2 are arbitrary random variables that may depend on
(pp, ek,msk). We say that a scheme is computationally hiding if the above two distributions are computationally
indistinguishable.

16

Remark 3.3. If we require neither efficient verification nor context-hiding, then there is a trivial construction of HEC
based on any equivocal commitment. Namely, we can just set comeval := C‖com and π := (x, R). The verification
algorithm can verify them by checking if com is a commitment of x with randomness R and z = C(x) holds. On the
other hand, if we require either of efficient verification or context hiding, then there does not seem to be such a trivial
solution.13 This is reminiscent of the similar situation for fully homomorphic encryption where a scheme without
compactness nor function privacy is trivial to construct but a scheme with either of them is non-trivial [Gen09].

3.2 Construction of HEC with Efficient Verification from CDHER Assumption
Here we give a construction of HEC scheme with efficient verification based on the (n,m)-CDHER assumption. The
construction and security proof of this HEC scheme is similar to those of homomorphic signature scheme by Katsumata
et al. [KNYY19]. Though our HEC scheme can be obtained by a slight syntactic adaptation of their homomorphic
signature scheme, we give the full description and security proof for completeness. We note that many parts in this
section are taken verbatim from their paper.

Preparation: Bilinear Maps and Monotone Span Programs.
Before providing the concrete construction, we first prepare the hardness assumption and tools that will be used

throughout this section.
Let BGGen be a PPT algorithm that on input 1κ returns a description G = (G,GT , p, g, e(·, ·)) of symmetric pairing

groups where G and GT are cyclic groups of prime order p, g is the generator of G, and e : G × G → GT is an
efficiently computable (non-degenerate) bilinear map.

Definition 3.4 ((n,m)-Computational Diffie-Hellman Exponent and Ratio Assumption). [KNYY19] Let BGGen be
a group generator and n := n(κ) = poly(κ),m := m(κ) = poly(κ). We say that the (n,m)-decisional Diffie-Hellman
exponent and ratio (CDHER) assumption holds with respect to BGGen, if for all PPT adversaries A, we have

Pr
[
A(G, g,Ψ)→ e(g, g)sa

m+1
]

= negl(κ)

where G = (G,GT , p, g, e(·, ·))
$← BGGen(1λ), g $← G, s, a, b1, . . . , bn, c1, . . . cn

$← Z∗p, and

Φ :=



{
ga

j
}
j∈[m]

, {gci}i∈[n] ,
{
ga

j/bi
}
i∈[n],j∈[2m]
j 6=m+1

,
{
ga

m+1ci′/bici
}
i,i′∈[n],i6=i′

,

{gaci}i∈[n] ,
{
ga

j/bici
}
i∈[n],j∈[2m+1]

,
{
ga

jci′/bi
}
i,i′∈[n],j∈[m]

,

gs,
{
gsbi

}
i∈[n] ,

{
gsa

m+1bi/bi′ci′
}
i,i′∈[n],i6=i′

,
{
gsa

jbi/bi′
}
i,i′∈[n],j∈[m]

i 6=i′

 .

Katsumata et al. showed that the CDHER assumption holds in the generic group model introduced by Shoup [Sho97].
We define a slightly simplified version of (monotone) span programs below.

Definition 3.5 (Monotone Span Program). A (monotone) span program for universe [n] is a matrix M, where M is
an n×m matrix over Zp. Given y = (y1, . . . , yn) ∈ {0, 1}n, we say that

y satisfies M iff 1 ∈ span 〈MI〉 .

Here 1 = (1, 0, . . . , 0) ∈ Z1×m
p is a row vector; MI denotes the matrix obtained by removing the j-th row of M for j

such that j 6∈ I for I := {i ∈ [n] | yi = 0}14; and span refers to Zp-linear span of row vectors.

13As remarked in Remark 3.1, we can convert the trivial construction to a context-hiding one additionally assuming a statistical CRS-NIZK for all
of NP. Though this is less interesting than schemes with efficient verification, we do not consider it a “trivial solution” since the existence of a
statistical CRS-NIZK is an additional assumption to an equivocal commitment.

14We note that our definition of I here is somewhat non-standard. Usually, we define I as I := {i ∈ [n] | yi = 1}. This change is introduced
because it slightly simplifies our presentation and is not essential.

17

That is, y satisfies M iff there exist coefficients {wi ∈ Zp}i∈I such that∑
i∈I

wiMi = 1,

where Mi denotes the i-th row vector of M. Observe that the coefficients {wi ∈ Zp}i∈I can be computed in time
polynomial in the size of M via Gaussian elimination.

Note that we adopt a slightly non-standard definition of the monotone span program, in that we do not allow the
program to read the same input bit multiple times. This is for the sake of the brevity and this limitation can be removed
by blowing up the matrices as well as inputs by a polynomial factor.

The following lemma is taken from [GPSW06a].

Lemma 3.6 ([GPSW06a, Proposition 1]). If a vector y ∈ {0, 1}n does not satisfy a (monotone) span program
M ∈ Zn×mp , then there exists an efficiently computable vector d = (d1, . . . , dm) ∈ Zmp such that MId> = 0 and
d1 = −1, where I := {i ∈ [n] | yi = 0}.

It is well known that NC1 circuits can be represented as a polynomial-sized Boolean formulae. Furthermore, any
polynomial-sized Boolean formulae can be converted into an equivalent monotone span program (See e.g., Appendix G
of [LW11]). The span program we obtain is the standard one where the same input bit is read multiple times, but this
can be converted into one with one-time read as we noted above. Combining them, we have the following lemma, which
allows us to use (monotone) span programs as NC1 circuits instead.

Lemma 3.7. Let d = d(κ), ` = `(κ), and s = s(κ) be integers. There exist integer parameters n = n(d, `, s) and
m = m(d, `, s) and deterministic algorithms EncInp and EncCir with the following properties.

- EncInp(x)→ y ∈ {0, 1}n, where x ∈ {0, 1}`.

- EncCir(C)→M ∈ {−1, 0, 1}n×m, where C : {0, 1}` → {0, 1} is a circuit with depth and size bounded by d
and s, respectively.

We have that y satisfies the span program M over Zp if and only ifC(x) = 0 for any prime modulus p > 3. We also have
that the running time of EncCir is poly(`, s, 2d). In particular, if C is a polynomial-sized circuit with logarithmic depth
(i.e., if the circuit is in NC1), EncCir runs in polynomial time. In particular, we have n = poly(κ) andm = poly(κ) in
this case. Furthermore, for x ∈ {0, 1}`, we have

EncInp(x) = (¬x1)η‖xη1‖ · · · ‖(¬x`)η‖x
η
` ∈ {0, 1}

n,

for some integer η such that n = 2`η. In the above, xi denotes the i-th bit of x and xηi is the η-times repetition of the bit
xi.

Description of the Function Class. Let d(κ) = O(log κ), ` = poly(κ), and s = poly(κ). The circuit class dealt with
by our HEC scheme is denoted as CNC1 = {CNC1

κ,d,`,s}κ∈N, where CNC
1

κ,d,`,s is a set of circuits whose input lengths are `, and
depths and sizes are bounded by d and s, respectively. We also define a circuit class C̃NC1 = {C̃NC1

κ,d,`,s}κ∈N associated
with CNC1 as

C̃NC
1

κ,d,`,s = {C̃z(·) = (C(·) ?= z) | ∀z ∈ {0, 1},∀C ∈ CNC
1

κ,d,`,s}.

More specifically, C̃NC1

κ,d,`,s is a set of circuits with input length ` such that a circuit C̃z ∈ C̃NC
1

κ,d,`,s on input x ∈ {0, 1}`

outputs 1 if and only if circuit C ∈ CNC1

κ,d,`,s outputs z on input x. Since (z ?= z′) for z, z′ ∈ {0, 1} can be expressed
by a constant-size circuit, every circuit in C̃NC1

κ,d,`,s have input length `, and the depths and sizes are bounded by
d+O(1) and s+O(1), respectively. Then, by Lemma 3.7, there exist n(κ) = poly(κ) andm(κ) = poly(κ) such that
EncInp(x) ∈ {0, 1}n for any x ∈ {0, 1}` and EncCir(C) ∈ {−1, 0, 1}n×m for any C ∈ C̃NC1

κ,d,`,s. Furthermore, all of
these values can be computed in time poly(κ). In the following, since we fix κ, d, `, and s in the construction, we drop
the subscript and denote CNC1

κ,d,`,s, C̃NC
1

κ,d,`,s as CNC
1
, C̃NC1 for notational convenience.

18

Construction. OurHECschemeΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify)
with message space {0, 1}` and randomness space Zp (on which the distribution DR is defined to be the uniform
distribution) for the function class CNC1 is described below.

HEC.Setup(1κ): On input the security parameter 1κ, sample the group description G = (G,GT , p, g, e(·, ·))
$←

BGGen(1κ). Then, sample a← Zp, and bi, ci ← Z∗p for i ∈ [n] and outputs

ek :=


{
ga

j
}
j∈[m]

, {gci}i∈[n] ,
{
ga

j/bi
}
i∈[n],j∈[2m]
j 6=m+1

,
{
ga

m+1ci′/bici
}
i,i′∈[n],i6=i′

,

{gaci}i∈[n] ,
{
ga

j/bici
}
i∈[n],j∈[2m+1]

,
{
ga

jci′/bi
}
i,i′∈[n],j∈[m]

 , (1)

pp :=


Vi,β :=

∏
j∈[(2i+β−2)η+1,(2i+β−1)η]

ga
m+1/bjcj


i∈[`],β∈{0,1}

 ,

and
msk :=

(
a, {bi, ci}i∈[n]

)
.

HEC.Commit(pp,x;R): On input x ∈ {0, 1}` and a randomness R ∈ Zp, compute and output

com := gR ·
∏
i∈[`]

Vi,xi .

We note that we have com = g
R+
∑

i∈[n]
yi·(am+1/bici) for y = EncInp(x), since we have

∑
i∈[`]

 ∑
j∈[(2i+xi−2)η+1,(2i+xi−1)η]

am+1/bjcj


=
∑
i∈[`]

 ∑
j∈[(2i−2)η+1,(2i−1)η]

(¬xi) · (am+1/bjcj) +
∑

j∈[(2i−1)η+1,2iη]

xi · (am+1/bjcj)


=
∑
i∈[n]

yi · (am+1/bici),

where the last equation follows from the definition of y (See Lemma 3.7).

Remark 3.8. Note that we could have set pp = ∅ since pp can be efficiently computed from ek. However, if we do so, we
can no longer have efficient committing property, since the computation of com would require time linear in n rather
than `. To ensure efficient committing property, we precompute some of the elements that are required and put them
into pp.

HEC.Open(msk, (x, R),x′): Parse
(
a, {bi, ci}i∈[n]

)
← msk, run EncInp(x) = y ∈ {0, 1}n and EncInp(x′) = y′ ∈

{0, 1}n, compute
R′ := R+

∑
i∈[n]

(yi − y′i) ·
(
am+1/bici

)
and output R′.

HEC.Evalin(ek, C,x, R) : Compute z = C(x) ∈ {0, 1} and construct the circuit C̃z ∈ C̃NC
1 . Here, we have C̃z(x) = 1

by the definition. Then, run EncInp(x) = y ∈ {0, 1}n and EncCir(C̃z) = M ∈ Zn×mp . By Lemma 3.7, y does
not satisfy the span program M since C̃z(x) = 1. Then find a vector d = (d1, . . . , dm) ∈ Zmp such that d1 = −1

19

and 〈Mi,d〉 = 0 for all i ∈ [n] satisfying yi = 0, where Mi is the i-th row of M. Note that such a vector exists
and can be found efficiently due to Lemma 3.6. Then pick r̃ $← Zp and compute

K1 = gr̃ ·
∏
j∈[m]

(
ga

m+1−j
)dj
·
∏
i∈[n]

(gci)−〈Mi,d〉 and (2)

K2 = (ga)r̃ ·
∏

j∈[2,m]

(ga
m+2−j

)dj ·
∏
i∈[n]

(gaci)−〈Mi,d〉 . (3)

Note that the above terms can be efficiently computed as linear combinations of the group elements in the
evaluation key ek. Then compute

L1 := KR
1 ·

∏
i∈[n]

(
ga

m+1/bici
)yi
·

∏
i∈[n],j∈[m]

(
ga

j/bi
)Mi,j

r̃

,

L2 :=
∏

i∈[n],j∈[m]

(
ga

2m+2−j/bici
)djyi

·
∏

i,i′∈[n],j∈[m]

(
ga

jci′/bi
)−〈Mi′ ,d〉Mi,j

,

L3 :=
∏

i,i′∈[n]
i6=i′

(
ga

m+1ci′/bici
)−〈Mi′ ,d〉yi

·
∏

i∈[n],j,j′∈[m],
j 6=j′

(
ga

m+1−j′+j/bi
)Mi,jdj′

, and

K3 := L1 · L2 · L3 (4)

Note that all of them can be efficiently computed as linear combinations of the group elements in the evaluation
key ek. Finally, output π = (K1,K2,K3).

HEC.Evalout(ek, C, com): Construct the circuit C̃z ∈ C̃NC
1 and run EncCir(C̃z) = Mz ∈ Zn×mp for z ∈ {0, 1}. Then

compute e(g, g)am+1 = e(ga, gam) and

Wz := com ·
∏

i∈[n],j∈[m]

(
ga

j/bi
)Mz,i,j

for z ∈ {0, 1}, whereMz,i,j is the (i, j)-th entry of Mz . Finally output comeval = (e(g, g)am+1
,W0,W1).

HEC.Verify(pp, comeval, z, π): Parse comeval = (e(g, g)am+1
,W0,W1) and π = (K1,K2,K3). Then, check the

following conditions:

e (K1, Wz)
?= e(K3, g), e(g,K2) · e(ga,K1)−1 ?= e(g, g)a

m+1
.

If the above equations hold, output >. Otherwise output ⊥.

Context Hiding. Before proving the correctness, we prove that the scheme satisfies context-hiding since this is useful
for proving the correctness.

Theorem 3.9. ΠHEC satisfies context-hiding.

Proof. This proof is almost entirely taken from the proof of context hiding of homomorphic signatures by Katsumata et
al. [KNYY19] except syntactical adaptation to fit in the HEC setting. We include the proof for completeness.

To show the context-hiding property, we first construct the simulator HEC.ProofSim as follows:

HEC.ProofSim(msk, com, C, z) : On input a circuit C ∈ CNC1 and a message z ∈ {0, 1}, it first constructs the circuit
C̃z ∈ C̃NC

1 associated to circuit C. Then, it computes EncCir(C̃z) = M ∈ Zn×mp . It then picks r $← Zp and
computes

K1 := gr, K2 := ga
m+1
· (ga)r, K3 :=

com ·
∏

i∈[n],j∈[m]

(
ga

j/bi
)Mi,j

r

(5)

20

and outputs π = (K1,K2,K3).

We now proceed to show that this simulator HEC.Sim satisfies the required conditions. Let x ∈ {0, 1}` be an arbitrary
input such that C̃z(x) = 1, let yi ∈ {0, 1} be the i-th bit of y = EncInp(x), and let d ∈ Zmp be as defined in HEC.Evalin.
Let r̃ ∈ Zp be the unique element such that we have

r = r̃ +
∑
j∈[m]

dja
m+1−j −

∑
i∈[n]

〈Mi,d〉ci

where Mi is the i-th row of M, and rewrite K1, K2, and K3 output by the simulator by using r̃. We note that r̃ is
uniform over Zp if r is uniform over Zp. Therefore what is left is to prove thatK1,K2, andK3 are written by the form
of Eq. (2), (3), and (4) by using r̃. First, it is clear thatK1 is written by the form of Eq. (2) by the definition of r̃. Next,
K2 can be written by the form of (3) since we have

loggK2 = am+1 + ar

= am+1 + a

r̃ +
∑
j∈[m]

dja
m+1−j −

∑
i∈[n]

〈Mi,d〉ci


= r̃a+

∑
j∈[2,m]

dja
m+2−j −

∑
i∈[n]

〈Mi,d〉aci,

where the last equation follows from d1 = −1. Note that the term am+1 cancels out here.
We need some more work forK3. We have

loggK3 = r

R+
∑
i∈[n]

yia
m+1/bici +

∑
i∈[n],j∈[m]

Mi,ja
j/bi



=

r̃ +
∑
j∈[m]

dja
m+1−j −

∑
i∈[n]

〈Mi,d〉ci︸ ︷︷ ︸
:=Φ1

 ·
R+

∑
i∈[n]

yia
m+1/bici +

∑
i∈[n],j∈[m]

Mi,ja
j/bi︸ ︷︷ ︸

:=Φ2


= R(r̃ + Φ1) + r̃Φ2 + Φ1Φ2

= Rr + r̃Φ2︸ ︷︷ ︸
:=Φ3

+Φ1Φ2

We can observe that gΦ3 = L1. We next expand Φ1Φ2 and show that gΦ1Φ2 = L2L3, which concludes the proof.
Before doing so, we define

Φ1,1 :=
∑
j∈[m]

dja
m+1−j , Φ1,2 := −

∑
i∈[n]

〈Mi,d〉ci,

Φ2,1 :=
∑
i∈[n]

yia
m+1/bici, Φ2,2 :=

∑
i∈[n],j∈[m]

Mi,ja
j/bi.

It is readily seen that Φi = Φi,1 + Φi,2 for i = 1, 2 and thus Φ1Φ2 = Φ1,1Φ2,1 + Φ1,1Φ2,2 + Φ1,2Φ2,1 + Φ1,2Φ2,2.
We have

Φ1,1Φ2,1 + Φ1,2Φ2,2 =
∑

i∈[n],j∈[m]

djyi
(
a2m+2−j/bici

)
−

∑
i,i′∈[n],j∈[m]

〈Mi′ ,d〉Mi,j

(
ajci′/bi

)
,

Φ1,2Φ2,1 =

− ∑
i′∈[n]

〈Mi′ ,d〉ci′

∑
i∈[n]

yia
m+1/bici


21

= −
∑

i,i′∈[n]
i 6=i′

〈Mi′ ,d〉yi
(
am+1ci′/bici

)
−
∑
i∈[n]

〈Mi,d〉yi
(
am+1/bi

)

and

Φ1,1Φ2,2 =

 ∑
j′∈[m]

dj′a
m+1−j′

 ·
 ∑
i∈[n],j∈[m]

Mi,ja
j/bi


=

∑
i∈[n],j,j′∈[m],

j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
+

∑
i∈[n],j∈[m]

Mi,jdj
(
am+1/bi

)

=
∑

i∈[n],j,j′∈[m],
j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
+
∑
i∈[n]

〈Mi,d〉
(
am+1/bi

)

=
∑

i∈[n],j,j′∈[m],
j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
+
∑
i∈[n]

〈Mi,d〉yi
(
am+1/bi

)
,

where in the last equation we used yi ∈ {0, 1} and 〈Mi,d〉 = 0 if yi = 0. These imply that

Φ1,2Φ2,1 + Φ1,1Φ2,2 = −
∑

i,i′∈[n]
i 6=i′

〈Mi′ ,d〉yi
(
am+1ci′/bici

)
+

∑
i∈[n],j,j′∈[m],

j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
,

where the terms of the formam+1/bi all cancel out here. We can see that gΦ1,1Φ2,1+Φ1,2Φ2,2 = L2 and gΦ1,2Φ2,1+Φ1,1Φ2,2 =
L3, which imply gΦ1Φ2 = L2L3. This concludes the proof of the theorem.

Correctness.

Theorem 3.10. ΠHEC satisfies correctness.

Proof. As seen in Theorem 3.9, for any x ∈ {0, 1}` and C, if we generate (pp, ek,msk) $← HEC.Setup(1κ),
com $← HEC(pp,x;R) where R $← Zp, and π

$← HEC.Evalin(ek, C,x, R), then π = (K1,K2,K3) can be written by
the form as below:

K1 := gr, K2 := ga
m+1
· (ga)r, K3 :=

com ·
∏

i∈[n],j∈[m]

(
ga

j/bi
)Mi,j

r

(6)

where z = C(x), M := EncCir(C̃z), and Mi,j is the (i, j)-th entry of M. Then it is straightforward to verify that
π = (K1,K2,K3) satisfies the equations checked by HEC.Verify.

Distributional equivalence of open.

Theorem 3.11. ΠHEC satisfies distributional equivalence of open.

Proof. Let (pp, ek,msk) $← HEC.Setup(1κ) and x,x ∈ {0, 1}` be arbitrary (that may depend on (pp, ek,msk)).
Suppose that we generate com $← HEC.Commit(pp,x) where we use a uniform randomness R $← Zp. Then it is
clear that com = g

R+
∑

i∈[n]
yi·(am+1/bici) is uniformly distributed over G where y := EncInp(x). On the other hand,

if we pick R to generate com′ := HEC.Commit(pp,x;R), then com′ = g
R+
∑

i∈[n]
yi·(am+1/bici) is also uniformly

distributed on G where y := EncInp(x). Moreover, if we generate R′ $← HEC.Open(msk, (x, R),x), then we have
R′ = R +

∑
i∈[n](yi − yi) ·

(
am+1/bici

)
and gR

′+
∑

i∈[n]
yi·(am+1/bici) = g

R+
∑

i∈[n]
yi·(am+1/bici) = com′, since

22

R′ ∈ Zp is the unique element that satisfies this equation if we fix (pp, ek,msk), x, and com′. Thus we can conclude
that we have

{(pp, ek,msk,x, R, com)} stat
≈ {(pp, ek,msk,x, R′, com′)}

Computational binding for evaluated commitments.

Theorem 3.12. If the (n,m)-CDHER assumption holds, then ΠHEC satisfies computational binding for evaluated
commitments.

Proof. This proof is almost entirely taken from the proof of unforgeability of the HS scheme by Katsumata et al.
[KNYY19] except syntactical adaptation to fit in the HEC setting. We include the proof for completeness.

Suppose that a PPT adversary A breaks the computational binding for evaluated commitments of ΠHEC. Then we
construct a PPT algorithm B that breaks the (n,m)-CDHER assumption.
B is given the problem instance Ψ of the (n,m)-CDHER problem. It sets pp and ek by using the corresponding

part of Ψ, and gives pp to A. Then A outputs (x, R, C, z∗, π∗). B aborts and outputs ⊥ if A did not win the game.
Otherwise, B parses the proof as π∗ = (K∗1 ,K∗2 ,K∗3), constructs the circuit C̃z∗ ∈ C̃NC

1 from C and z∗, and computes
M∗ $← EncCir(C̃z∗). Since the proof passes the verification, we have

e (K∗1 , Wz∗)−1 = e(K∗3 , g), e(g,K∗2) · e(ga,K∗1)−1 = e(g, g)a
m+1

where

Wz∗ = com ·
∏

i∈[n],j∈[m]

(
ga

j/bi
)M∗i,j

, com = g
R+
∑

i∈[n]
yi·(am+1/bici)

.

Then if we let R̃ := R+
∑
i∈[n] yi ·

(
am+1/bici

)
mod p and r∗ := loggK∗1 , then we have

K∗1 := gr
∗
, K∗2 := ga

m+1
· (ga)r

∗
, K∗3 :=

gR̃ · ∏
i∈[n],j∈[m]

(
ga

j/bi
)M∗i,jr∗

, (7)

whereM∗i,j is the (i, j)-th entry of M∗.
We then extract the answer for the CDHER problem from it. Let us define I := {i ∈ [n] : yi = 0}. We first observe

that we can compute (gR̃)sbi for i ∈ I because we have

(gR̃)sbi =

gR · ∏
i′∈[n]

(
ga

m+1/bi′ci′
)yi′sbi

=
(
gsbi

)R · ∏
i′∈[n]\{i}

(
gsa

m+1bi/bi′ci′
)yi′

,

where the second equality above follows from yi = 0. We then define

s∗i :=
∑
j∈[m]

M∗i,jsa
j−1

for j ∈ [m]. We then define Gi for i ∈ [n] as follows:

Gi := (ga)−s
∗
i ·

gR̃ · ∏
i′∈[n],j∈[m]

(
ga

j/bi′
)M∗

i′,j

sbi

=
∏
j∈[m]

(
gsa

j
)−M∗i,j

·
(
gR̃
)sbi
·

∏
i′∈[n],j∈[m]

(
gsa

jbi/bi′
)M∗

i′,j

23

= (gR̃)sbi ·
∏

i′∈[n]\{i},j∈[m]

(
gsa

jbi/bi′
)M∗

i′,j
,

where the terms {gsaj} all cancel out in the third equality. We can observe that Gi for i ∈ I can be efficiently computed
as a linear combination of the terms in the problem instance of the CDHER. We therefore can compute

e(K∗1 , Gi) · e(K∗3 , gsbi)−1 = e(g, g)−r
∗as∗i

for i ∈ I . Next, since A succeeds in breaking the binding property, we must have C(x) 6= z∗. Specifically, we have
C̃z∗(x) = 0. By Lemma 3.7, this implies that y satisfies the span program M∗. Hence, by Definition 3.5, there exists
an efficiently computable coefficients {w∗i }i∈I such that

∑
i∈I w

∗
i M∗

i = 1. We observe that

∑
i∈I

w∗i s
∗
i =

∑
i∈I

w∗i

∑
j∈[m]

M∗i,jsa
j−1

 =
(∑
i∈I

w∗i M∗
i

)
· (s, sa, . . . , sam−1)> = s

holds for such {w∗i }i∈I . B then computes

e(K∗2 , gs) ·
∏
i∈I

(
e(g, g)−r

∗as∗i

)w∗i
= e(g, g)sa

m+1
· e(g, g)sar

∗
· e(g, g)−r

∗a
∑

i∈I
w∗i s

∗
i

= e(g, g)sa
m+1

,

where gs is taken from the problem instance. Finally, B outputs e(g, g)sam+1 as the answer to the (n,m)-CDHER
problem.

Efficiency of Committing. Since com is computed by a product of ` = |x| group elements, it is clear that the running
time HEC.Commit is bounded by |x| · poly(κ).
Efficiency of Verification. It is easy to see that the sizes of π and comeval are poly(κ) since they consist of constant
number of group elements, and HEC.Verify runs in time poly(κ) since it just verifies two pairing equations.

3.3 Construction of HEC without Efficient Verification from CDH
Preparations. To describe our HEC scheme from the CDH assumption, we use the following notation.

For a group element g ∈ G and vectors v = (v1, . . . , vm)> and w = (w1, . . . , wm)>, gv denotes a vector of group
elements (gv1 , . . . , gvm)> and v � w denotes a vector (v1w1, . . . , vmwm)>. Given gv and w, one can efficiently
compute gv�w and gv>w. Similarly, given gv and gw, one can efficiently compute e(g, g)v�w and gv+w = gv · gw,
where “·" denotes component-wise multiplication inG. One can also efficiently compute gMv given gv and M ∈ Zn×mp .

The following lemma will be useful when describing and analyzing our construction of HEC for NC1 circuits from
the CDH assumption.

Lemma 3.13. Let us define GPSWKeyGen as follows.

- GPSWKeyGen(gγ , gu,M) : It takes as input gγ ∈ G, gu ∈ Gn, and M ∈ Zn×mp . It then picks s $← Zm−1
p and

t $← Znp and outputs
~K =

(
~K0 = gM(γs)+t�u, ~K1 = gt

)
∈ Gn ×Gn.

Then, there exists a PPT algorithm GPSWSim that takes as input gα, gβ ∈ G, r ∈ Znp , y ∈ {0, 1}n, and M ∈ Zn×mp

and outputs ~K ∈ Gn ×Gn with the following property:
For all α, β ∈ Zp, r ∈ Znp , y ∈ {0, 1}n, and M ∈ Zn×mp such that y does not satisfy M (when seeing the latter as

a span program), the following distributions are equivalent:

{ ~K ← GPSWKeyGen(gαβ , gu,M)} ≈ { ~K ← GPSWSim(gα, gβ , r,y,M)},

24

where u is defined as

u = r + α · y.

Here, y ∈ {0, 1}n is regarded as a (column) vector in Znp . Furthermore, there exists an efficient deterministic algorithm
GPSWKeyCheck that takes as input gu ∈ Gn, e(g, g)γ ∈ GT , M ∈ Zn×mp , and ~K ∈ Gn × Gn and outputs > if
~K ∈ GPSWKeyGen(gγ , gu,M) and otherwise ⊥.

Remark 3.14. The lemma extracts the essential components of the selectively-secure ABE scheme of [GPSW06b]. At
a high level, GPSWKeyGen corresponds to the “real" key generation algorithm and GPSWSim corresponds to the
“simulated" key generation algorithm. Informally, y is the challenge attribute chosen by the adversary at the outset
of the selective security game and the reduction algorithm runs GPSWSim instead of GPSWKeyGen to answer the
key generation query. One additional algorithm that is not present in the GPSW-ABE scheme is the GPSWKeyCheck
algorithm. This algorithm checks consistency of the simulated key output by GPSWSim and is crucial for verification
of proofs later on in the HEC construction.

Proof. We first prove the statement about GPSWSim. We define GPSWSim as follows.

GPSWSim(gα, gβ , r,y,M): It first computes a vector v ∈ Zm−1
p such that MI (1

v) = 0 for I := {i ∈ [n] | yi = 0}.
Such a vector exists because y does not satisfy M by Lemma 3.6. Furthermore, it can be efficiently computed.
For such v, we have M (1

v) = y�w for some w ∈ Znp . It then samples t̃ $← Znp and s̃ $← Zm−1
p and outputs

~K0 = gM(0
s̃)+t̃�r · (gα)t̃�y · (gβ)−w�ũ, ~K1 = gt̃ · (gβ)−w.

We claim that if we set s = αβv + s̃, t = t̃− βw, and u = r + αy, we have

~K0 = gM(αβs)+t�u, ~K1 = gt.

It is easy to check that ~K1 = gt. We have

M (αβs) + t� u = M
(

αβ
αβv+s̃

)
+ (t̃− βw)� (r + αy)

= αβM (1
v) + M (0

s̃) + (t̃− βw)� (r + αy)
= αβy�w + M (0

s̃) + t̃� r + αt̃� y− βw� r− αβw� y
=
(
M (0

s̃) + t̃� r
)

+ α ·
(
t̃� y

)
− β · (w� r) .

We therefore have ~K0 = gM(αβs)+t�u as well. Furthermore, s and t are distributed uniformly at random over Zm−1
p

and Znp respectively. Therefore, output distribution of GPSWKeyGen(gαβ , gu,M) and GPSWSim(gα, gβ , r,y,M)
are the same as required.

We then prove the statement about GPSWKeyCheck. We define GPSWKeyCheck as follows.

GPSWKeyCheck(gu, e(g, g)γ ,M, ~K): It first checks ~K ∈ Gn × Gn and outputs ⊥ otherwise. If it holds, it parses
~K → (~K0 = gk, ~K1 = gt), where k and t are vectors in Znp that are not known to the algorithm. It then computes

e(g, g)k′ := e(g, g)k · e(g, g)−t�u · e(g, g)−M(γ0),

where the first term in the right-hand side can be computed from gk, the second term can be computed from gt

and gu, and the third term can be computed from e(g, g)γ and M. Let M−1 ∈ Zn×(m−1)
p be the matrix obtained

by removing the first column of M. If the columns of M−1 spans Znp , it outputs >. Otherwise, it computes
M⊥
−1 ∈ Zn×n′p such that the columns of M⊥

−1 span the space {v ∈ Znp : v>M−1 = 0}. It then checks

e(g, g)(M⊥−1)>k′ = e(g, g)0

and outputs > if it holds. Otherwise, it outputs ⊥.

25

We then prove that GPSWKeyCheck(gu, e(g, g)γ ,M, ~K) outputs > if and only if ~K ∈ GPSWKeyGen(gγ , gu,M).
We first prove the “if" direction. If ~K ∈ GPSWKeyGen(gγ , gu,M), we have k = M (γs) + t � u for some

s ∈ Zm−1
p and t ∈ Znp . Therefore, k′ = M (0

s) = M−1s and thus (M⊥
−1)>k′ = (M⊥

−1)>M−1s = 0. Therefore, the
output of GPSWKeyCheck is >.

We then prove the “only if" direction. If the output of GPSWKeyCheck is >, we have (M⊥
−1)>k′ = 0. Thus,

there exists s ∈ Zm−1
p such that k′ = M−1s = M (0

s). Then, we have k = t � u + M (γ0) + k′ = t � u + M (γs).
Therefore, we can conclude ~K = (gk, gt) ∈ GPSWKeyGen(gγ , gu,M). This completes the proof of the lemma.

Construction.
In this section, we provide a construction of context-hiding HEC for NC1 circuits without efficient verification

from the CDH assumption. Let us define CNC1 = {CNC1

κ,d,`,s}κ∈N and C̃NC1 = {C̃NC1

κ,d,`,s}κ∈N as in Section 3.2. The
circuit class dealt with by our scheme here is exactly the same as that in Section 3.2, i.e., CNC1 . Our HEC scheme
Π′HEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify) with message space {0, 1}`
and randomness space Znp (on which the distribution DR is defined to be the uniform distribution) for the function class
CNC1 is described below.

HEC.Setup(1κ): On input the security parameter 1κ in unary representation, sample the group description G =
(G,GT , p, g, e(·, ·))

$← BGGen(1κ). Then sample α, β ← Z∗p and output

pp = ek =
(
gα, gβ

)
and msk =

(
α, β

)
.

For notational simplicity, we assume the group description G is implicitly included in pp, ek, and msk.

HEC.Commit(pp,x = (x1, · · · , x`);R): On input x ∈ {0, 1}` and randomness R = r ∈ Znp , run EncInp(x) = y ∈
{0, 1}n, compute

com = gr+α·y,

and output com.

HEC.Open(msk, (x, R),x′): Parse msk→
(
α, β

)
andR = r ∈ Znp , run EncInp(x) = y ∈ {0, 1}n and EncInp(x′) =

y′ ∈ {0, 1}n, compute
r′ := r + α · (y− y′)

and output R′ := r′.

HEC.Evalin(ek, C,x, R): Compute z = C(x) ∈ {0, 1} and construct the circuit C̃z ∈ C̃NC
1 . Here, we have C̃z(x) = 1

by the construction. Then, run EncInp(x) = y ∈ {0, 1}n and EncCir(C̃z) = M ∈ Zn×mp . By Lemma 3.7, y
does not satisfy the span program M since C̃z(x) = 1. Then, parse R = r ∈ Znp and run

~K
$← GPSWSim(gα, gβ , r,y,M)

using gα, gβ included in the public parameter pp. Finally, output π := ~K.

HEC.Evalout(ek, C, com): Output comeval := (C, com).

HEC.Verify(pp, comeval, z, π): Parse comeval → (C, com) and π = ~K, and construct the circuit C̃z ∈ C̃NC
1 . Then, run

EncCir(C̃z) = M ∈ Zn×mp and check the following condition:

GPSWKeyCheck(com, e(gα, gβ),M, ~K) = >.

If it holds output >, otherwise output ⊥.

Correctness.

26

Theorem 3.15. Π′HEC satisfies correctness.

Proof. For any (pp, ek,msk) $← HEC.Setup(1κ), x ∈ {0, 1}`, R = r ∈ Znp , com := HEC.Commit(pp,x;R),
C ∈ CNC1 , π = ~K

$← HEC.Evalin(pp, C,x, R), we have ~K ∈ GPSWKeyGen(gαβ , com,M) by Lemma 3.13 where
M = EncCir(C̃C(x)). Then we have GPSWKeyCheck(com, e(gα, gβ),M, ~K) = > again by Lemma 3.13. Thus
HEC.Verify(pp, comeval = (C, com), C(x), π) always returns >.

Distributional Equivalence of Open.

Theorem 3.16. Π′HEC satisfies distributional equivalence of open.

Proof. Let (pp, ek,msk) $← HEC.Setup(1κ) and x,x ∈ {0, 1}` be arbitrary (that may depend on (pp,msk)). Suppose
that we generate com $← HEC.Commit(pp,x) where we use a uniform randomness R := r $← Znp . Then it is
clear that com = gr+α·y is uniformly distributed over Gn where y := EncInp(x). On the other hand, if we pick
R := r $← Znp to generate com′ := HEC.Commit(pp,x;R), then com′ = gr+α·y is also uniformly distributed
on Gn where y := EncInp(x). Moreover, if we generate R′ := r′ $← HEC.Open(msk, (x, R),x), then we have
r′ = r + α · (y− y) and gr′+α·y = gr+α·y = com′. Since r′ ∈ Znp is the unique element that satisfies this equation if
we fix (pp, ek,msk), x and com′. Thus we can conclude that we have

{(pp, ek,msk,x, R, com)} stat
≈ {(pp, ek,msk,x, R′, com′)}

as desired.

Context-Hiding.

Theorem 3.17. Π′HEC satisfies context-hiding.

Proof. To show the context-hiding property, we first construct the proof simulator HEC.ProofSim as follows:

HEC.ProofSim(msk, com, C, z) : On input a master secret key msk = (α, β), a commitment com ∈ Znp , a circuit
C ∈ CNC1 , and a message z ∈ {0, 1}, it first constructs the circuit C̃z ∈ C̃NC

1 associated to circuit C. Then, it
computes EncCir(C̃z) = M ∈ Zn×mp . Using msk, it then computes gαβ . Finally, it runs

~K
$← GPSWKeyGen(gαβ , com,M) (8)

and outputs π = ~K.

We now proceed to show that this simulator HEC.ProofSim satisfies the required conditions. Let us fix pp, ek, msk, x,
com, and C. By construction, the proof output by HEC.Evalin(ek, C,x, R = r) is

~K
$← GPSWSim(gα, gβ , r,y,M). (9)

Furthermore, by the way we convert the circuit C to C̃z where z = C(x), y = EncInp(x) does not sat-
isfy the span program M. Finally, we observe that the output distributions of HEC.ProofSim for fixed com is
GPSWKeyGen(gαβ , com,M). Therefore, by Lemma 3.13, we have that the output distributions of HEC.ProofSim and
HEC.Evalin are exactly the same. This concludes the proof of the theorem.

Computational binding for evaluated commitments.

Theorem 3.18. If the CDH assumption holds, then Π′HEC satisfies computational binding for evaluated commitments.

27

Proof. To prove the theorem, it suffices to show that there exists a PPT algorithm B that solves the CDH problem with
non-negligible probability assuming a PPT adversary A against the computational binding for evaluated commitments
of Π′HEC with non-negligible advantage ε. We give the description of B in the following.

The reduction algorithm B is given (1κ,G, gα, gβ) as the problem instance of the CDH problem. Then, B runs A
on input pp := (gα, gβ) to obtain (x, R = r, C, z∗, π∗ = ~K∗). B aborts and outputs ⊥ if A did not win the game.
Otherwise B constructs the circuit C̃z∗ ∈ C̃NC

1 , and computes M∗ $← EncCir(C̃z∗) and y := EncInp(x). We note
that we have GPSWKeyCheck(com, e(gα, gβ),M∗, ~K∗) = > where com = gr+α·y since A wins the game. By
Lemma 3.13, this implies that there exist s∗ ∈ Zm−1

p and t∗ ∈ Znp such that

~K∗ =
(
~K∗0 = g

M∗
(γ

s∗
)

+t∗�u
, ~K∗1 = gt∗

)
∈ Gn ×Gn,

where γ = αβ and u = r + αy. Then we can rewrite

~K∗0 = g
M∗
(γ

s∗
)

+t∗�u = g
M∗
(γ

s∗
)

+t∗�r+α·t∗�y
.

Since B knows r, B can compute gt∗�r using ~K∗1 = gt∗ . Therefore, from ~K, B can compute

g
M∗
(γ

s∗
)

+α·t∗�y
. (10)

By denoting M∗
I as the matrix obtained by removing the j-th row of M∗ for j such that the j-th coefficient of y is equal

to 1, we can extract the following from Eq. (10):

g
M∗I
(γ

s∗
)
.

Next, since A succeeds in breaking the binding, we must have C(x) 6= z∗. Specifically, we have C̃z∗(x) = 0. By
Lemma 3.7, this implies that y satisfies the span program M∗. Hence, by Definition 3.5, there exists an efficiently
computable row vector w∗ such that w∗M∗

I = 1. Therefore, B can retrieve gγ by computing

g
w∗M∗I

(γ
s∗
)

= g
1
(γ

s∗
)

= gγ .

Finally, B outputs gγ as its answer to the CDH problem.
It can be seen that the simulation by B is perfect. Furthermore, as we have seen, B can extract the solution to the

CDH problem whenever A wins the game. This concludes the proof of the theorem.

4 Compact CRS-NIZK from HEC
Here, we give a construction of a compact CRS-NIZK scheme based on any non-compact CRS-NIZK scheme and HEC
with efficient verification. If we instantiate the construction with the HEC given in Section 3.2, then the proof size of the
resulting CRS-NIZK scheme is |C|+ poly(κ). Moreover, if the relation supported by the scheme is verifiable in NC1,
then the proof size is |w|+ poly(κ).

4.1 Extractable CRS-NIZK
First, we define extractability for CRS-NIZK, which is needed for our construction of compact CRS-NIZK scheme. We
note that the extractability defined here is a mild property, and we can convert any CRS-NIZK scheme to the one with
extractability if we additionally assume the existence of PKE as shown in Lemma 4.1.

An extractable CRS-NIZK is a CRS-NIZK with an additional deterministic algorithm Extract which takes as input
a randomness rSetup used in Setup and a proof π, and outputs a witness w that satisfies the following.

28

Extractability. For all PPT adversary A, we have

Pr

 Verify(crs, x, π) = >
(x,w) /∈ R

∣∣∣∣∣∣∣
crs $← Setup(1κ)
(x, π) $← A(crs)

w
$← Extract(rSetup, π)

 ≤ negl(κ).

where rSetup is the randomness used in Setup to generate crs.
The following lemma is easy to prove.

Lemma 4.1. If there exist CRS-NIZK for all of NP and a CPA-secure PKE scheme, then there exists CRS-NIZK for all
of NP with extractability.

Proof. Let R be any relation, ΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a CPA secure PKE scheme, and
ΠCRSNIZK = (Setup,Prove,Verify) be CRS-NIZK for the language L̃ corresponding to the relation R̃ defined below:

((x, pk, ct), (w, rEnc)) ∈ R̃ ⇐⇒ (x,w) ∈ R ∧ ct = PKE.Enc(pk, w; rEnc).

Then we construct an extractable CRS-NIZK Π′CRSNIZK = (Setup′,Prove′,Verify′) as follows.

Setup′(1κ; rSetup′ = (rSetup, rKeyGen)): This algorithmgenerates crs := Setup(1κ; rSetup) and (pk, sk) := PKE.KeyGen
(1κ; rKeyGen), and outputs a common reference string crs′ := (crs, pk).

Prove′(crs′, x, w) : This algorithm aborts if (x,w) /∈ R. Otherwise it parses (crs, pk)← crs′, picks rEnc uniformly from
the randomness space of ΠPKE, generates ct := PKE.Enc(pk, w; rEnc) and π

$← Prove((x, pk, ct), (w, rEnc)),
and outputs π′ := (π, ct).

Verify′(crs′, x, π): This algorithm parses (crs, pk)← crs′ and (π, ct)← π′, and outputs> if Prove((x, pk, ct), π) = >
and outputs ⊥ otherwise.

The correctness of Π′CRSNIZK easily follows from correctness of ΠCRSNIZK and ΠPKE. We describe the extractor Extract
as follows:

Extract(r′Setup = (rSetup, rKeyGen), π′ = (π, ct)): It generates (pk, sk) := PKE.KeyGen(1κ; rKeyGen) and outputsw :=
PKE.Dec(sk, ct).

We prove that this extractor works correctly. Suppose that we have Verify′(crs, x, π′) = > and (x,w) /∈ R where
crs′ = (crs, pk) $← Setup(1κ), (x, π′ = (π, ct)) $← A(crs) and w $← Extract(rSetup, π). In this case, ct is not a valid
encryption of any w′ such that (x,w′) ∈ R under the public key pk, and thus (x, pk, ct) /∈ R̃. This happens with
negligible probability by the soundness of ΠCRSNIZK. Thus Π′CRSNIZK satisfies the extractability. It is easy to see that the
extractability implies computational soundness.

Finally, we prove that Π′CRSNIZK satisfies zero-knowledge. Let S = (S1,S2) be a simulator for zero-knowledge
property of ΠCRSNIZK. Then we construct a simulator S ′ = (S ′1,S ′2) for Π′CRSNIZK as follows.

S ′1(1κ): It generates (crs, τ) $← S1(1κ) and (pk, sk) := PKE.KeyGen(1κ) and outputs crs′ = (crs, pk) and τ ′ = τ .

S ′2(crs′ = (crs, pk), τ ′ = τ, x): It computes ct $← PKE.Enc(pk, 0|w|) and π $← S2(crs, τ, (x, pk, ct)), and outputs
π′ = (π, ct).

It is easy to prove that proofs generated by the above simulator is computationally indistinguishable if ΠCRSNIZK satisfies
zero-knowledge w.r.t. S and ΠPKE is CPA-secure.

29

4.2 Construction of Compact CRS-NIZK
Before describing the construction, we prepare some building blocks and notations.

• LetL be anNP language defined by a relationR ⊆ {0, 1}∗×{0, 1}∗. Letn(κ) andm(κ) be any fixed polynomials.
Let C be a circuit that computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R.

• Let ΠSKE = (SKE.Setup,SKE.KeyGen,SKE.Enc,SKE.Dec) be a one-time secure symmetric key encryption
(SKE) scheme with message space {0, 1}m, ciphertext space CT , and secret key space {0, 1}`. We assume that
cihpertext overhead and the key length ` are poly(κ) independently ofm and the decryption algorithm can be
computed in NC1. As shown in Lemma 2.2, such an SKE scheme exists under the CDH assumption in a subgroup
of Z∗p for a prime p.

In the following, for x ∈ {0, 1}n and ct ∈ CT , we define the function

fx,ppSKE,ct(K) := C(x, SKE.Dec(ppSKE,K, ct)).

• Let ΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify) be a HEC scheme
with the message space that contains {0, 1}` and randomness spaceR on which a distribution DR is defined. We
need the HEC scheme to support a function class containing {fx,ppSKE,ct}x∈{0,1}n,ppSKE∈SKE.Setup(1κ),ct∈CT .

• Let ΠCRSNIZK = (Setup,Prove,Verify) be an extractable CRS-NIZK for the language corresponding to the
relation R̃ defined below:
((pp, com, comeval), (K,R, πHEC)) ∈ R̃ if and only if the followings are satisfied:

1. K ∈ {0, 1}`,
2. HEC.Commit(pp,K;R) = com,
3. HEC.Verify(pp, comeval, 1, πHEC) = >.

We note that extractable CRS-NIZK for all of NP exists assuming (non-extractable) CRS-NIZK for all of NP and
CPA secure PKE as shown in Lemma 4.1.

The CRS-NIZK Π′CRSNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithmgenerates crs $← Setup(1κ), ppSKE
$← SKE.Setup(1κ), and (pp, ek,msk), $← HEC.Setup(1κ).

It outputs a common reference string crs′ = (crs, ppSKE, pp, ek).

Prove′(crs′, x, w): This algorithm aborts if R(x,w) = 0. Otherwise it parses (crs, ppSKE, pp, ek) ← crs′, picks
K

$← SKE.KeyGen(ppSKE) and R
$← DR, computes ct $← SKE.Enc(ppSKE,K,w), generates com :=

HEC.Commit(pp,K;R),πHEC
$← HEC.Evalin(ek, fx,ppSKE,ct,K,R), comeval := HEC.Evalout(ek, fx,ppSKE,ct, com),

and πNIZK
$← Prove(crs, (pp, com, comeval), (K,R, πHEC)), and outputs a proof π′ := (ct, com, πNIZK).

Verify′(crs′, x, π′): This algorithm parses (crs, ppSKE, pp, ek)← crs′ and (ct, com, πNIZK)← π′, computes comeval :=
HEC.Evalout(ek, fx,ppSKE,ct, com), and outputs > if Verify(crs, (pp, com, comeval), πNIZK) = >, and outputs ⊥
otherwise.

Correctness. Suppose that (ct, com, πNIZK) is an honestly generated proof on (x,w) ∈ R. Then we have ct $←
SKE.Enc(ppSKE,K,w) and com = HEC.Commit(pp,K;R) with some K and R. By the correctness of ΠSKE, we
have fx,ppSKE,ct(K) = 1, and by the correctness of ΠHEC, we have HEC.Verify(pp, comeval, 1, πHEC) = > where we
generate comeval := HEC.Evalout(ek, fx,ppSKE,ct, com) and πHEC

$← HEC.Evalin(ek, fx,ppSKE,ct,K,R). Since we have
((pp, com, comeval), (K,R, πHEC)) ∈ R̃, if we generate πNIZK

$← Prove(crs, (pp, com, comeval), (K,R, πHEC)), then
we have Verify(crs, (pp, com, comeval), πNIZK) = > by the correctness of ΠCRSNIZK.
Security. The security of NIZK′ is stated as follows.

30

Theorem 4.2 (Soundness.). If ΠCRSNIZK satisfies extractability and HEC satisfies computational binding for evaluated
commitment, then Π′CRSNIZK satisfies computational soundness.

Proof. Suppose that there is a PPT adversary A that breaks soundness. Then we construct a PPT adversary B that
breaks the computational binding for evaluated commitment of HEC as follows.

B(pp, ek): It generates crs $← Setup(1κ; rSetup) and ppSKE
$← SKE.Setup(1κ) and runs A(crs′) to obtain (x∗, π′∗ =

(ct, com, πNIZK))where crs′ := (crs, ppSKE, pp, ek). Then it computes comeval := HEC.Evalout(ek, fx∗,ppSKE,ct, com),
and (K,R, πHEC) $← Extract(rSetup, πNIZK), and outputs (K,R, fx∗,ppSKE,ct, com, 1, πHEC).

This completes the description of B. In the following, we show that B breaks the computational binding for evaluated
commitments of HEC. Since we assume A breaks the soundness of Π′CRSNIZK,

Pr[x∗ /∈ L ∧ Verify(crs, (pp, com, comeval), πNIZK) = >]

is non-negligible. On the other hand, by the extractability of ΠCRSNIZK,

Pr[Verify(crs, (pp, com, comeval), πNIZK) = > ∧ ((pp, com, comeval), (K,R, πHEC)) /∈ R̃]

is negligible. Therefore

Pr[x∗ /∈ L ∧ Verify(crs, (pp, com, comeval), πNIZK) = > ∧ ((pp, com, comeval), (K,R, πHEC)) ∈ R̃]

is non-negligible. Suppose that this event happens. Since we have x∗ /∈ L, we have fx∗,ppSKE,ct(K ′) = 0 for
all K ′ ∈ {0, 1}`. On the other hand, ((pp, com, comeval), (K,R, πHEC)) ∈ R̃ implies K ∈ {0, 1}` ∧ com :=
HEC.Commit(pp,K;R) ∧ HEC.Verify(pp, comeval, 1, πHEC) = >. This means that B succeeds in breaking the
computational binding for evaluated commitment of HEC.

Theorem 4.3 (Zero-knowledge.). If ΠCRSNIZK satisfies zero-knowledge, HEC is computationally hiding,15 and SKE is
one-time secure, then Π′CRSNIZK satisfies zero-knowledge.

Proof. Let (S1,S2) be the simulator for ΠCRSNIZK. We describe the simulator (S ′1,S ′2) for Π′CRSNIZK below.

S ′1(1κ): It generates (crs, τ) $← S1(1κ), ppSKE
$← SKE.Setup(1κ), and (pp, ek,msk) $← HEC.Setup(1κ) and outputs

crs′ := (crs, ppSKE, pp, ek) and τ ′ := τ .

S ′2(crs′ = (crs, pp), τ ′ = τ, x): It picks K $← SKE.KeyGen(ppSKE), computes ct $← SKE.Enc(K, 0m), com $←
HEC.Commit(pp, 0`), comeval

$← HEC.Evalout(pp, fx,ppSKE,ct, com), andπNIZK
$← S2(crs, τ, (pp, com, comeval)),

and outputs π′ := (ct, com, πNIZK).

This completes the description of the simulator. We prove that proofs simulated by the above simulator are computationally
indistinguishable from the honestly generated proofs. To prove this, we consider the following sequence of games
between a PPT adversary A and a challenger.

Game0: In this game, proofs are generated honestly. Namely,

1. The challenger generates crs $← Setup(1κ), ppSKE
$← SKE.Setup(1κ), and (pp, ek,msk), $← HEC.Setup(1κ)

and gives crs′ := (crs, ppSKE, pp, ek) to A.
2. A is given (1κ, crs′), and allowed to query O(crs, ·, ·), which works as follows. When A queries

(x,w), if (x,w) /∈ R, then the oracle returns ⊥. Otherwise, it picks K $← SKE.KeyGen(ppSKE)
and R $← DR, computes ct := SKE.Enc(ppSKE,K,w), generates com := HEC.Commit(pp,K;R),
πHEC

$← HEC.Evalin(ek, fx,ppSKE,ct,K,R), comeval
$← HEC.Evalout(ek, fx,ppSKE,ct, com), and πNIZK

$←
Prove(crs, (pp, com, comeval), (K,R, πHEC)), and returns a proof π′ := (ct, com, πNIZK).

15Recall that the computational hiding (or even statistical hiding) follows from the distributional equivalence of open.

31

3. Finally, A returns a bit β.

Game1: This game is identical to the previous game except that crs and πNIZK are generated differently. Namely,
the challenger generates (crs, τ) $← S1(1κ) at the beginning of the game, and πNIZK is generated as πNIZK

$←
S2(crs, τ, (pp, com, comeval)) for each oracle query.

Game2: This game is identical to the previous game except that com is generated as com $← HEC.Commit(pp, 0`) for
each oracle query.

Game3: This game is identical to the previous game except that ct is generated as ct $← SKE.Enc(ppSKE,K, 0m).

Let Ti be the event thatA returns 1 in Gamei for i = 0, 1, 2, 3. It is easy to see that proofs are generated by S ′ = (S ′1,S ′2)
in Game3. Thus we have to prove that |Pr[T0]− Pr[T3]| is negligible. The following lemmas are straightforward to
prove.

Lemma 4.4. If ΠCRSNIZK satisfies the computational zero-knowledge w.r.t. the simulator S , then |Pr[T0]− Pr[T1]| =
negl(κ).

Proof. We observe that every proof πNIZK given to A is created for a correct statement in both games. Therefore, the
indistinguishability of the games can be reduced to the zero-knowledge property of ΠCRSNIZK.

Lemma 4.5. If HEC satisfies the computational hiding property, then |Pr[T1]− Pr[T2]| = negl(κ).

Proof. Because of the change we introduced in Game1, the randomness R used to generate com is not used anywhere
else in both games. Therefore, the indistinguishability of these games can be reduced to the hiding property of HEC.

Lemma 4.6. If SKE is one-time secure, then |Pr[T2]− Pr[T3]| = negl(κ).

Proof. Because of the change we introduced in Game2, the secret keyK of SKE that is used to generate ct is not used
anywhere else in both games. Moreover, a fresh secret keyK is sampled for each query and each secret keyK is used
only once. Therefore, the indistinguishability of these games can be reduced to the one-time security of SKE.

This completes the proof of Theorem 4.3.

4.3 Instantiations
Here, we discuss that by appropriately instantiating ΠCRSNIZK, we can achieve compact proof size. In particular, we
consider instantiating the HEC scheme with our construction in Section 3.2. Since our HEC scheme only supports NC1

circuits, we have to ensure that fx,ppSKE,ct is computable in NC1. For ensuring this, we use the fact that any efficiently
verifiable relation can be verified in NC1 at the cost of making the witness size as large as the size of a circuit that
verifies the relation (e.g., [GGH+16]). This is done by considering all values corresponding to all gates when computing
the circuit on input (x,w) to be the new witness. In addition, we use an SKE scheme whose decryption circuit is in
NC1 with additive ciphertext overhead (i.e., the ciphertext length is the message length plus poly(κ)) and the key size
` = poly(κ), which exists under the CDH assumption in a subgroup of Z∗p as shown in Lemma 2.2. Then fx,ppSKE,ct

is computable in NC1 for every x, ppSKE, and ct. In this case, we have that |ct| ≤ |C|+ poly(κ). In order to bound
the length of the proof π′, we also bound |com| and |πNIZK|. By the efficient committing property of HEC, |com| and
the size of the circuit computing HEC.Commit is bounded by |K| · poly(κ) ≤ poly(κ). Furthermore, by the efficient
verification property of HEC, the size of the circuit computing HEC.Verify is bounded by poly(κ). Therefore, the size
of the circuit computing R̃ is bounded by poly(κ), which implies that |πNIZK| is bounded by poly(κ) as well (even if
ΠCRSNIZK is non-compact). To sum up, we have that the proof size of ΠCRSNIZK is |C|+ poly(κ). Moreover, if we only
consider a relation computable in NC1 in the first place, then we need not expand the witness, and the proof size can be
further reduced to be |w|+ poly(κ). Finally, we remark that (non-compact) CRS-NIZK for all of NP exists under the
CDH assumption on a pairing group [CHK07, Abu13], which in particular holds under the CDHER assumption. In
summary, we obtain the following corollary.

32

Corollary 4.7. If the CDHER assumption holds in a pairing group and the CDH assumption holds in a subgroup of Z∗p
for a prime p, then there exists CRS-NIZK for all of NP with proof size |C|+ poly(κ). Moreover, if the corresponding
relation is computable in NC1, then the proof size is |w|+ poly(κ).

Remark 4.8. Though the CDHER assumption implies the CDH assumption in a pairing group, it is not clear if we can
construct an SKE scheme with required properties in a pairing group. In more detail, for constructing such an SKE
scheme, we need to assume the CDH assumption in a group in which a multiple product can be computed in NC1. (See
Section 2.1 for details.) While that is known to be possible in a subgroup of Z∗p [BCH86], we are unaware of a similar
result for a pairing group. Thus, we assume the CDH assumption in a subgroup of Z∗p as an additional assumption.

Variant with Sublinear Proof Size. Katsumata et al. [KNYY19] showed that their DP-NIZK achieves sublinear
proof size i.e., |w|+ |C|/ log κ+ poly(κ) if C is a leveled circuit [BGI16] whose gates are divided into L levels, and
all incoming wires to a gate of level i + 1 come from gates of level i. Exactly the same idea can be applied to our
CRS-NIZK to achieve sublinear proof size. More detailed explanation can be found in Appendix C. Namely, we obtain
the following corollary:

Corollary 4.9. If the CDHER assumption holds in a pairing group and the CDH assumption holds in a subgroup of
Z∗p for a prime p, then there exists CRS-NIZK for all NP languages whose corresponding relation is computable by a
leveled circuit with proof size |w|+ |C|/ log κ+ poly(κ).

5 Compact UC-NIZK for NC1 from HEC
5.1 UC Framework
Here, we briefly recall the UC framework. We refer to [Can01] for the full descriptions. The following description is
partially based on [KW18b, Appendix. A]. Readers familiar with the UC framework can safely skip this section.

The UC framework. The UC-security is formalized by indistinguishability of real and ideal worlds. In the real world,
parties P1, ..., PN execute a protocol Π, and an adversary A may corrupt some of them. We say that A is adaptive if it
adaptively decides which party to corrupt. In the ideal world, dummy parties P̃1, ..., P̃N execute an ideal functionality
F , and a simulator S may corrupt some of them. In addition to (dummy) parties and an adversary/simulator, we
consider another entity Z which tries to distinguish these two worlds. In the real (resp. ideal) world, an environment Z ,
which takes the security parameter 1κ and an auxiliary input z as input, can arbitrarily interact with A (resp. S), and it
can also feed any input to any uncorrupted party (resp. dummy party) to let it honestly run the protocol Π (resp. the
ideal functionality) on the input and report the output to Z . Finally, Z outputs a bit as its guess of in which world it
is. We denote the output distribution of Z with auxiliary input z in the real world by REALΠ,A,Z(1κ, z), and denote
the ensemble {REALΠ,A,Z(1κ, z)}κ∈N,z∈{0,1}∗ by REALΠ,A,Z Similarly, we denote the output distribution of Z with
auxiliary input z in the ideal world by IDEALF,S,Z(1κ, z), and denote the ensemble {IDEALF,S,Z(1κ, z)}κ∈N,z∈{0,1}∗
by IDEALF,S,Z .

Definition 5.1. Let X = {X(1κ, z)}κ∈N,z∈{0,1}∗ and Y = {Y (1κ, z)}κ∈N,z∈{0,1}∗ be two distribution ensembles over
{0, 1}. We say that X and Y are indistinguishable (denoted by X ≈ Y) if for any c, d ∈ N, there exists κ0 ∈ N such
that we have |Pr[X(1κ, z) = 1]− Pr[Y (1κ, z) = 1]| < κ−c for all κ > κ0 and all z ∈ {0, 1}≤κd .

Definition 5.2. We say that Π UC-realizes F if for all PPT adversaries A, there exists a PPT simulator S such that for
all PPT environment Z 16, we have REALΠ,A,Z ≈ IDEALF,S,Z .

Hybrid models. We often construct a protocol in a setting where (multiple copies of) an ideal functionality F is
available for each party. We call such a model F -hybrid model. Definition 5.2 can be extended to define the notion of a
protocol Π securely realizing a functionality G in the F-hybrid model.

16Strictly speaking, Z is limited to be a balanced one, which roughly means that Z should not give too much inputs to the adversary compared to
inputs given to the other parties. See [Can00] for more details.

33

Ideal Functionality FDcrs
FDcrs proceeds as follows, running with parties P1, ..., PN and an adversary S , and parametrized by a distribution D.

• Upon receiving a message (init, sid) from party Pi, do:

1. If there is no value (sid, crs) recorded, then sample crs $← D and record it.
2. Send (sid, crs) as a public delayed output to Pi.a

a“Public delayed output” means that the value is first sent to S, and then sent to Pi after the permission by S. See [Can01] for details.

Figure 2: The common reference string functionality

Ideal Functionality FRNIZK
FRNIZK proceeds as follows, running with parties P1, ..., PN and an adversary S, and parametrized by a relationR.

Proof: On input (prove, sid, x, w) from a party Pi, ignore if (x,w) /∈ R. Send (prove, Pi, sid, x) to S and wait for
(proof, sid, π). Upon receiving the answer store (sid, x, π) and send (proof, sid, π) to Pi.

Verification: On input (verify, sid, x, π) from a party Pj check whether (sid, x, π) is stored. If not send
(verify, Pj , sid, x, π) to S and wait for an answer (witness, w). Upon receiving the answer, check whether
(x,w) ∈ R and in that case, store (sid, x, π). If (sid, x, π) has been stored return (verification, sid, x, π,>)
to Pj , else return (verification, sid, x, π,⊥) to Pj .

Figure 3: The NIZK functionality

Compositions and universal composition theorem. For a protocol ρ in the F-hybrid model, and a protocol Π that
realizes F (in the standard model), we can naturally define a composed protocol ρΠ in the standard model, in which
calls for F by ρ are responded by Π instead of F . Canetti [Can01] proved the following universal composition theorem.

Theorem 5.3 ([Can01]). If ρ UC-realizes G in the F-hybrid model and Π UC-realizes F , then ρΠ UC-realizes G.

Remark 5.4 (Static/Adaptive Security and Erasure). In some works of the UC-security, one considers a weaker security
called the static security, which only considers adversaries that declare which party to corrupt at the beginning of the
experiment. Also, one often considers the adaptive UC-security in the setting where parties can securely erase their
internal state information so that an adversary that later corrupts the party cannot see the erased information. In this
paper, we consider the strongest UC-security against adaptive adversaries without assuming secure erasures.

5.2 Ideal Functionalities.
Here, we recall ideal functionalities of CRS and NIZK. The ideal functionality of CRS denoted by FDcrs is given in
Figure 2, and that of NIZK denoted by FRNIZK is given in Figure 3. The descriptions here are taken verbatim from
[CsW19]. The ideal functionality FRNIZK captures correctness, soundness, and zero-knowledge as roughly explained
below:

• Correctness is captured since all proofs generated by FRNIZK are stored and thus accepted.

• Soundness is captured since if a proof π on a statement x that has not been generated by FRNIZK passes the
verification, then S should succeed in extracting a valid witness w for the statement x, which is possible only
when x ∈ L where L = {x|∃w s.t. (x,w) ∈ R}.

• Zero-knowledge is captured since S generates a proof π without knowing a witness w.

34

Protocol ΠUCNIZK

• Common reference string: a public parameter pp and an evaluation key ek generated as (pp, ek,msk) $←
HEC.Setup(1κ).

• Upon receiving (prove, sid, x, w), a party proceeds as follows:

1. Choose R $← DR.
2. Compute com := HEC.Commit(pp, w;R).
3. Compute πHEC := HEC.Evalin(ek, Cx, w,R).
4. Compute comeval := HEC.Evalout(ek, Cx, com).

5. Generate (vk, sigk) $← OTS.KeyGen(1κ).

6. Send (prove, sid, (pp, com, comeval, vk), (w,R, πHEC)) to FR̃NIZK.
7. Wait for the answer (proof, sid, (pp, com, comeval, vk), πNIZK).

8. Compute σ $← OTS.Sign(sigk, (x, com, πNIZK, vk)).
9. Return (proof, sid, x, (com, πNIZK, vk, σ)).

• Upon receiving (prove, sid, x, π), a party proceeds as follows:

1. Parse π as (com, πNIZK, vk, σ).
2. Verify that OTS.Verify(vk, (x, com, πNIZK, vk), σ) = >. If not return (verification, sid, x, π,⊥).
3. Compute comeval := HEC.Evalout(ek, Cx, com).

4. Send (verify, sid, (pp, com, comeval, vk), πNIZK) to FR̃NIZK.
5. Wait for the answer (verification, sid, (pp, com, comeval, vk), πNIZK, b).
6. Return (verification, sid, x, π, b).

Figure 4: Adaptively secure UC-NIZK protocol

35

5.3 Construction
Here, we give our construction of adaptive UC-NIZK scheme. The construction is very similar to UC-NIZK scheme
from HTDF by Cohen et al. [CsW19]. The construction can also be seen as a variant of the CRS-NIZK scheme given
in Section 4 with the following two modifications:

• The proving algorithm directly commit to the witness w by HEC instead of committing to the SKE key K by
which the witness w is encrypted. Though this increases the proof size (i.e., from |w|+ poly(κ) to |w| · poly(κ)),
this is needed for achieving the adaptive security.

• A verification key and a signature by a OTS scheme are added as a part of a proof. Accordingly, the relation
proven by the underlying non-compact NIZK scheme is augmented to include a OTS verification key vk into a
statement. Roughly speaking, this is to add “non-malleability” for the scheme.

In the following, we describe our UC-NIZK scheme in more details. LetR be any relation over {0, 1}n × {0, 1}m.
For each x ∈ {0, 1}n, Cx denotes a circuit that takes w ∈ {0, 1}m as input, and returns 1 if (x,w) ∈ R and 0 otherwise.
We construct a UC-NIZK protocol in the (FR̃NIZK,FDHEC

crs)-hybrid model based on the following building blocks where
R̃ and DHEC are defined below:

• A HEC scheme HEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify) with
the message space {0, 1}m and randomness spaceR on which the randomness distribution DR is defined that
supports a function class that contains {Cx}x∈{0,1}n .

• A strongly unforgeable OTS scheme OTS = (OTS.KeyGen,OTS.Sign,OTS.Verify).

• The relation R̃ is defined as follows:
((pp, com, comeval, vk), (w,R, πHEC)) ∈ R̃ if and only if the followings are satisfied:

1. HEC.Commit(pp, w;R) = com,
2. HEC.Verify(pp, comeval, 1, πHEC) = >.

• The distribution DHEC is the distribution of pp and ek where (pp, ek,msk) $← HEC.Setup(1κ).

Our UC-NIZK scheme ΠUCNIZK in the (FR̃NIZK,FDHEC
crs)-hybrid model is described in Figure 4. Here, we remark that

we describe the scheme as if there is a common reference string available for every party. Strictly speaking, we should
implement it by using the ideal functionality FDHEC

crs (i.e., each party accesses to FDHEC
crs whenever it needs the common

reference string). For notational simplicity, we omit this, and just think that a common reference string is chosen at the
beginning of the protocol execution and published for every party.
Security.

Theorem 5.5. If ΠHEC satisfies distributional equivalence of open and computational binding for evaluated commitments,
then ΠUCNIZK UC-realizes FRNIZK in the (FR̃NIZK,FDHEC

crs)-hybrid model tolerating adaptive, malicious adversaries.

Proof. The proof is basically identical to the security proof for UC-NIZK based on HTDF by Cohen et al. [CsW19]
except that HTDF is replaced with HEC. Let A be any PPT adaptive adversary. What we have to do is to construct a
simulator that interacts with dummy parties P̃1, ..., P̃N and the ideal functionality FRNIZK such that no environment Z
can distinguish the simulated execution from the real execution of A that interacts with real parties P1, ..., PN who
run the real protocol ΠUCNIZK. Following [CsW19], we first consider a simulator SReal that perfectly simulates the real
execution by using an extended capabilities that it can know inputs to the ideal functionality FRNIZK and control the output
of it. (Note that this is not allowed in the ideal world. We consider the execution of SReal just as a mental experiment.)
Then we gradually modify the simulator without letting the environment notice it with a non-negligible advantage, and
finally present a legitimate simulator SSim in the ideal world. We consider the following sequence of simulators.

SReal: As noted above, SReal can know inputs to the ideal functionality FRNIZK and control the output of it. The simulator
SReal along with dummy parties P̃1, ..., P̃N perfectly simulates the execution between A and P1, ...PN who run
ΠUCNIZK by using these capabilities. Specifically, it works as follows:

36

• To simulate the common reference string, SReal first generates (pp, ek,msk) $← HEC.Setup(1κ) and sets pp
as a common reference string used throughout the execution.

• When SReal receives (prove, Pi, sid, x) from the ideal functionality FRNIZK, it must be the case that honest
P̃i has sent (prove, sid, x, w) to FRNIZK such that (x,w) ∈ R. By using the capability to see the input
(prove, sid, x, w), SReal honestly runs the proving algorithm of ΠUCNIZK on input (prove, sid, x, w) to
generate a proof π, and returns π to FRNIZK.

• When SReal receives (verify, Pj , sid, x, π) from the ideal functionality FRNIZK, it must be the case that P̃j has
sent (prove, sid, x, π) to FRNIZK and π is not a proof that has been generated by the ideal functionality FRNIZK.
SReal honestly runs the protocol ΠUCNIZK on input (verify, sid, x, π) to generate (verification, sid, x, π, b),
and instructs FRNIZK to return (verification, sid, x, π, b) to P̃j by using the capability to control the output of
FRNIZK. Note that SReal does not give a witness w to FRNIZK. This is not needed since SReal has the capability
to control the behavior of FRNIZK.

• To simulate the interaction between A and Z , SReal just internally simulates A, and forwards all communi-
cations between A and Z . Whenever A corrupts a party Pi, SReal corrupts the corresponding dummy party
P̃i, and simulate the communication between A and Pi. We note that since all proofs output by FRNIZK are
actually generated by SReal, it knows all internal coins Pi is supposed to know. Therefore it can perfectly
simulate internal states of corrupted parties that are needed for simulating the communication between A
and Pi.

Lemma 5.6. If ΠHEC and ΠOTS are correct, then we have REALΠUCNIZK,A,Z ≈ IDEALFRNIZK,SReal,Z .

Proof. The only difference between the real execution of A interacting with P1, ..., PN and the execution of SReal
interacting with P̃1, ..., P̃N from the view of Z is that in the latter, a proof generated through FRNIZK are always accepted
by FRNIZK (i.e., it returns (verification, ?, ?, ?,>)) without checking the validity of the proofs by using the actual
verification protocol of ΠUCNIZK. On the other hand, it is easy to see that an honestly generated proof is accepted with
probability 1 in ΠUCNIZK by the correctness of ΠHEC and ΠOTS and the functionality of FR̃NIZK. Therefore these two
distributions are perfectly indistinguishable.

SExt: This simulatorworks similarly toSReal except theway of simulating verificationwhen it receives (verify, Pj , sid, x, π)
from the ideal functionality FRNIZK. Unlike SReal, SExt does not use the power of controlling the behavior of
FRNIZK, and returns some (witness, w) whenever (verify, Pj , sid, x, π) is sent from FRNIZK as supposed to do
in the description of FRNIZK as follows: Upon receiving (verify, Pj , sid, x, π), SExt honestly runs ΠUCNIZK
on input (verify, sid, x, π) to obtain (verification, sid, x, π, b). If b = ⊥, then it returns (witness,⊥) to
FRNIZK. Otherwise, it parses π = (com, πNIZK, vk, σ), computes comeval := HEC.Evalout(ek, Cx, com), gives
(verification, sid, (pp, com, comeval, vk), πNIZK) toA, and waits for the response (witness, (w,R, πHEC)) fromA.
Then SExt returns (witness, w) to FRNIZK.

Lemma 5.7. If ΠOTS is strongly unforgeable and ΠHEC satisfies the computational binding for evaluated commitment,
then we have IDEALFRNIZK,SReal,Z ≈ IDEALFRNIZK,SExt,Z .

Proof. The differences between the executions of SReal and SExt occurs only when an honest party sends (verify, sid, x, π)
such that (proof, sid, x, π) has not been generated through FRNIZK, π is a valid proof for the statement x, and (x,w) /∈ R
where w is the first component of the witness extracted from πNIZK by A. We prove that this happens with negligible
probability. If (proof, sid, x, π = (com, πNIZK, vk, σ)) has not been generated through FRNIZK, there are the following
two possible cases:

1. No proof of the form (proof, sid, ?, (com, πNIZK, vk, ?)) has been generated through FRNIZK.

2. A proof (proof, sid, x′, (com, πNIZK, vk, σ′)) such that (x′, σ′) 6= (x, σ) has been generated through FRNIZK.

In the second case, σ is a valid signature on the message (x, com, πNIZK, vk) with negligible probability due to
the strong one-time security of ΠOTS, and thus π is not a valid proof for the statement x. Since we are in-
terested in the case that π is a valid proof for the statement x, we consider the first case in the following.

37

If π = (com, πNIZK, vk, σ) is a valid proof for the statement x, then πNIZK is a valid proof for the statement
(pp, com, comeval, vk) by the construction of ΠUCNIZK where comeval = HEC.Evalout(ek, Cx, com). On the other hand,
a proof (proof, sid, (pp, com, comeval, vk), πNIZK) has never been generated throughFR̃NIZK since this happens only when
a proof of the form (proof, sid, ?, (com, πNIZK, vk, ?)) is generated through FRNIZK. This means that A must succeed
in extracting (w,R, πHEC) such that ((pp, com, vk), (w,R, πHEC)) ∈ R̃ by the definition of ideal functionality FR̃NIZK.
Especially, we have com = HEC.Commit(pp, w;R). Then we have (x,w) ∈ R except a negligible probability since
otherwise we succeed in breaking the computational binding of ΠHEC by outputting (w,R,Cx, 1, πHEC). (Remark that
we have Cx(w) = 0 if (x,w) ∈ R.) In summary, the difference between executions of these two simulators occur with
negligible probability.

SSim: This simulator works similarly to SExt except the way of simulating a proof when it receives (prove, sid, x) from
the ideal functionality FRNIZK and the way of simulating internal coins of corrupted parties.

• When it receives (prove, Pi, sid, x), it picks R $← DR, computes com := HEC.Commit(pp, 0m;R) and
comeval := HEC.Evalout(ek, Cx, com), generates (vk, sigk) $← OTS.KeyGen(1κ), and sends (prove, sid, (pp,
com, comeval, vk)) to A, which returns (proof, sid, (pp, com, comeval, vk), πNIZK). Then it computes
σ

$← OTS.Sign(sigk, (x, com, πNIZK, vk)) and returns (proof, sid, x, (com, πNIZK, vk, σ)) to FRNIZK. SSim
stores all randomness used in the above simulation (i.e., R and other randomness R′ used in OTS.KeyGen
and OTS.Sign) along with the corresponding party Pi, session ID sid, the statement x, and the proof
π = (com, πNIZK, vk, σ).

• When the adversary A corrupts a party Pi, it corrupts P̃i who has generated k proofs π1, ..., πk. Then
it knows from the internal state of P̃j that πj was generated on an input (xj , wj) for each j ∈ [k]. For
each j ∈ [k], SSim does the following: It first looks for the corresponding randomness (Rj , R′j) used
for simulating πj where Rj stands for the randomness used in HEC.Commit and R′j stands for all the
randomness used in the other parts (i.e., OTS.KeyGen and OTS.Sign) of the simulation of πj . It parses
πj = (comj , πNIZK,j , vkj , σj), computes Rj := HEC.Open(msk, (0m, Rj), wj), and uses (Rj , R′j) as a
randomness used for generating πj on the input (prove, sid, xj , wj) in the simulation of the interaction
between the corrupted party Pj and the adversary A. (Since all internal information owned by Pj is
randomness used in the generations of proofs, this suffices for the simulation.)

Lemma5.8. IfΠHEC satisfies the distributional equivalence of open, then we have IDEALFRNIZK,SExt,Z ≈ IDEALFRNIZK,SSim,Z .

Proof. The only differences between simulations by SExt and SSim are the way of simulating a commitment com and its
underlying randomnessR in each simulated proof. Namely, in the former, we generates com = HEC.Commit(pp, w;R)
with a randomly chosen R $← DR whereas in the latter, we first generates com = HEC.Commit(pp, 0m;R) with
a randomly chosen R $← DR, and then later computes R := HEC.Open(msk, (0, R), w) when the corresponding
w is revealed. The distributional equivalence of open property of HEC exactly says that the joint distribution of
(pp,msk, w,R, com) is statistically close in these two situations even when w may arbitrarily depend on (pp,msk).
Therefore Z has negligible advantage to distinguish these two simulations.

By combining the above lemmas, we have REALΠUCNIZK,A,Z ≈ IDEALFRNIZK,SSim,Z . Here, we notice that SSim no
longer uses any extended capability, and it is a legitimate simulator in the ideal world. This concludes the proof of
Theorem 5.5

5.4 Instantiations
Here, we discuss a possible instantiation for ΠUCNIZK. First, we recall the result by Groth, Ostrovsky, and Sahai (called
GOS proof) [GOS12]. In the following, U denotes a uniform distribution over the set of all bit strings of a certain length.

Lemma 5.9 ([GOS12]). If the DLIN assumption holds in a bilinear group, then for any efficiently verifiable relation R̃,
there exists a NIZK scheme that UC-realizes FR̃NIZK in the FUcrs-hybrid model. The proof size of the scheme is linear in
the size of circuit that verifies the relation R̃.

38

Then by combining Theorem 5.5 and Lemma 5.9, we obtain the following corollary.

Corollary 5.10. If the DLIN assumption holds in a bilinear group and HEC scheme that supports a function class
containing verification of a relation R exists, then there exists a NIZK scheme that UC-realizes FRNIZK in the
(FDHEC

crs ,FUcrs)-hybrid model tolerating an adaptive, malicious adversary.

We instantiate the scheme with the HEC for NC1 with efficient verification based on the CDHER assumption given
in Section 3.2. In this case, since the running time of HEC.Commit and HEC.Verify are poly(κ), which are independent
of the size of a circuit to be evaluated, the relation R̃, which is supported by the underlying non-compact UC-NIZK, can
be verified by a circuit of size |w| · poly(κ), which is independent of the complexity ofR. Since the proof size of GOS
proof is linear in the circuit size to verify the relation, the proof size of the resulting UC-NIZK scheme is |w| · poly(κ).
On the other hand, since the HEC scheme only supports NC1, we have to restrict a class of relations to be verifiable in
NC1. In summary we obtain the following corollary.

Corollary 5.11. If the DLIN assumption and the CDHER assumption hold in a bilinear group, then for any relation
R that is computable in NC1, there exists a NIZK scheme with proof size |w| · poly(κ) that UC-realizes FRNIZK in the
(FDHEC

crs ,FUcrs)-hybrid model tolerating an adaptive, malicious adversary.

We note that though it is generally possible to modify any relation to one verifiable in NC1 (e.g., see [GGH+16]),
this is done at the cost of making the witness size as large as the size of a circuit that verifies the relation, which is not
useful in our setting. Namely, if we apply this technique in our setting, then the proof size of the resulting UC-NIZK is
|C| · poly(κ), which is asymptotically no better than the GOS proof.

6 Compact DV-NIZK
6.1 Preliminaries
Here, we prepare some definitions and lemmas that are needed to present our DV-NIZK.
Functional Encryption for Inner-Product. Here, we define functional encryption for inner-product (IPFE). An IPFE
scheme over Zp consists of PPT algorithms (Setup,KeyGen,Enc,Dec).

Setup(1κ, 1d)→ (pp,msk): The setup algorithm takes as inputs the security parameter 1κ and the dimension 1d, and
outputs a public parameter pp and a master secret key msk.

KeyGen(msk,y)→ sk: The key generation algorithm takes as inputs a master secret key msk and a vector y =
(y1, ..., yd) ∈ Zdp, and outputs a secret key sk. Without loss of generality, we assume that sk always contains y.

Enc(pp,x)→ ct: The encryption algorithm takes as inputs a public parameter pp and a vector x = (x1, ..., xd) ∈ Zdp ,
and outputs a ciphertext ct.

Dec(pp, sk, ct)→ z: The decryption algorithm takes as inputs a public parameter pp, a secret key sk, and a ciphertext
ct, and outputs z ∈ Zp.

Correctness. For all κ, d ∈ N, (pp,msk) ∈ Setup(1κ, 1d), vectors x ∈ Zdp and y ∈ Zdp, secret keys sk ∈
KeyGen(msk,y), and ciphertexts ct ∈ Enc(pp,x), we have

Dec(pp, ct, sk) = 〈x,y〉 mod p.

Security. For an adversary A, we consider the following experiment between a challenger and an adversary A.

1. A is given 1κ and outputs 1d.

2. The challenger generates (pp,msk) $← Setup(1κ, 1d).

3. A is given pp. It is allowed to make arbitrary number of key generation queries. When it makes a key query y, the
challenger generates sk $← KeyGen(msk,y) and returns sk to A. At some point, A output vectors x(0) and x(1).

39

4. The challenger randomly picks coin $← {0, 1}, generates ct $← Enc(pp,x(coin)).

5. A is given ct, and allowed to make arbitrary number of key generation queries again. Finally, A outputs coin′.
We say that A wins if coin′ = coin.

We say thatA is adaptively admissible if for all key queries y made byA and vectors x(0) and x(1) output byA, we have
〈x(0),y〉 = 〈x(1),y〉 mod p. We say that ΠIPFE is adaptively secure if for all adaptively admissible adversaries A,
the probability |Pr[A wins]− 1/2| is negligible. We say that ΠIPFE is adaptively single-key secure if for all adaptively
admissible adversaries A that makes at most one key query, the probability |Pr[A wins]− 1/2| is negligible.

Remark 6.1. (On Multi-Challenge Security.) We also consider the multi-challenge security where an adversary can query
multiple challenge vectors x(0)

i and x(1)
i for each i = 1, ..., Q, and the challenger returns Enc(pp,x(coin)

i) for each i. We
can reduce the multi-challenge security to the single-challenge security defined above by a standard hybrid argument.

Master Decryption of IPFE. Here, we define an additional algorithm for IPFE called the master decryption algorithm
denoted by MasterDec. This algorithm is given a master secret key and a ciphertext as input, and outputs the
corresponding message to the ciphertext. We note that we only require the algorithm to correctly work if the given
ciphertext is valid (i.e., the ciphertext is in the range of the encryption algorithm). This is a very weak requirement, and
indeed we can implement MasterDec by just combining KeyGen and Dec as follows:

MasterDec(msk, ct): For all i ∈ [d], it generates ski
$← KeyGen(msk, ei) where ei is the vector whose i-th entry is 1

and all other entries are 0, and computes xi
$← Dec(ski, ct). Then it outputs x := (x1, ..., xd).

Then we have the following: For all κ, d ∈ N, (pp,msk) ∈ Setup(1κ, 1d), vectors x ∈ Zdp, we have

MasterDec(msk,Enc(pp,x)) = x.

Remark 6.2. One may think that the concept of master decryption is similar to the extractability defined for IPFE on
exponent in [KNYY19]. However, the important difference is that the master decryption algorithm is only required to
work for valid ciphertexts whereas the extraction in [KNYY19] is required to work even for malformed ciphertexts.
Therefore master decryption is much weaker property than the extraction, and indeed this is possible for any IPFE
scheme as shown above.

Useful lemmas. Here, we recall some lemmas which are implicit or explicit in [KNYY19]. The proof of Lemma 6.3 is
given in Appendix B for completeness.

Lemma 6.3. (Implicit in [KNYY19]) Let C be a boolean circuit that computes a relationR on {0, 1}n × {0, 1}m, i.e.,
for (x,w) ∈ {0, 1}n × {0, 1}m, we have C(x,w) = 1 if and only if (x,w) ∈ R, and p be an integer larger than |C|.
Then there exists a deterministic algorithm ExpC,x and an arithmetic circuit C̃ on Zp with degree at most 3 such that
we have

• |ExpC,x(w)| = |C(x, ·)| for all w ∈ {0, 1}m.

• If C(x,w) = 1, then we have C̃(x,ExpC,x(w)) = 1 mod p.

• For any x ∈ {0, 1}n, if there does not exist w ∈ {0, 1}m such that C(x,w) = 1, then there does not exist
w′ ∈ {0, 1}|C(x,·)| such that C̃(x,w′) = 1 mod p

Lemma 6.4. ([KNYY19]) There exists a deterministic polynomial-time algorithm Coefficient that satisfies the following:
for any p ∈ N, arithmetic circuit f over Zp of degree D, x = (x1, ..., x`) ∈ Z`p and σ = (σ1, ..., σ`) ∈ Z`p,
Coefficient(1D, p, f,x,σ) outputs (c1, ..., cD) ∈ ZDp such that

f(σ1Z + x1, ..., σ`Z + x`) = f(x1, ..., x`) +
D∑
j=1

cjZ
j mod p. (11)

where Z is an indeterminate.

40

6.2 Construction
Here, we give a generic construction of compact DV-NIZK. Namely, we construct DV-NIZK with the proof size
|C| + poly(κ) from any (non-compact) DV-NIZK, SKE scheme whose decryption circuit is in NC1 with additive
ciphertext overhead and secret key length poly(κ), and PKE scheme. First, we prepare notations and the building blocks.

• LetL be anNP language defined by a relationR ⊆ {0, 1}∗×{0, 1}∗. Letn(κ) andm(κ) be any fixed polynomials.
Let C be a circuit that computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R. Let ExpC,x and C̃ be as defined in Lemma 6.3.

• Let ΠIPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) be an adaptively single-key secure IPFE scheme
with a prime modulus p > |C|. Such an IPFE scheme can be constructed from any PKE scheme [GVW12].

• Let ΠSKE = (SKE.Setup,SKE.KeyGen,SKE.Enc,SKE.Dec) be a one-time secure symmetric key encryption
scheme with a message space {0, 1}|C|, a ciphertext space CT , and a key space {0, 1}`. We assume that the
ciphertext overhead and the key length ` are poly(κ) and the decryption algorithm can be computed in NC1.
Especially, the decryption circuit can be expressed by an arithmetic circuit over Zp of degree poly(κ). As shown
in Lemma 2.2, such an SKE scheme exists under the CDH assumption in a subgroup of Z∗p for a prime p.

• Forx ∈ {0, 1}n, ppSKE ∈ SKE.Setup(1κ), and ct ∈ CT , we define the function fx,ppSKE,ct(K) := C̃(x, SKE.Dec(ppSKE,K, ct)).
Let D be the maximal degree of fx,ppSKE,ct (as a multivariate polynomial). Since C̃’s degree is at most 3 and
SKE.Dec(ppSKE, ·, ct)’s degree is poly(κ), we have D = poly(κ) (which especially does not depend on |C|).

• Let ΠDVNIZK = (Setup,Prove,Verify) be DV-NIZK for the language corresponding to the relation R̃ defined
below: (

(ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE),
(
{(Ki, σi, Ri)}i∈[`], (c1, ..., cD, R′)

))
∈ R̃

if and only if the following conditions are satisfied:

1. For all i ∈ [`],Ki ∈ {0, 1},
2. For all i ∈ [`], IPFE.Enc(ppIPFE, (Ki, σi);Ri) = ctiIPFE,
3. IPFE.Enc(pp′IPFE, (c1, ..., cD);R′) = ct′IPFE.

The DV-NIZK Π′DVNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm picks s $← Z∗p and generates (crs, kV) $← Setup(1κ), ppSKE
$← SKE.Setup(1κ),

(ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), (pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D), skIPFE
$← IPFE.KeyGen(mskIPFE, (1, s)),

and sk′IPFE
$← IPFE.KeyGen(msk′IPFE, (s, ..., sD)). It outputs a common reference string crs′ := (crs, ppSKE, ppIPFE, pp′IPFE)

and a verifier key k′V := (kV, s, skIPFE, sk′IPFE).

Prove′(crs′, x, w): This algorithm aborts if (x,w) /∈ R. Otherwise it parses (crs, ppSKE, ppIPFE, pp′IPFE)← crs′, picks
K

$← SKE.KeyGen(ppSKE) and σi
$← Zp for i ∈ [`], and generates ctSKE

$← SKE.Enc(ppSKE,K,ExpC,x(w))
and (c1, ..., cD)← Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)). Then it generates ctiIPFE :=
IPFE.Enc(ppIPFE, (Ki, σi);Ri) for i ∈ [`] (where Ri is the randomness used by the encryption algorithm),
ct′IPFE := IPFE.Enc(pp′IPFE, (c1, ..., cD);R′) (where R′ is the randomness used by the encryption algorithm),
and π $← Prove(crs, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), ({(Ki, σi, Ri)}i∈[`], (c1, ..., cD, R′))) and outputs a
proof π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE).

Verify′(crs′, k′V, x, π′): This algorithm parses (crs, ppSKE, ppIPFE, pp′IPFE) ← crs′, (kV, s, skIPFE, sk′IPFE) ← k′V, and
(π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE) ← π′, computes ri

$← IPFE.Dec(ppIPFE, ctiIPFE, skIPFE) for i ∈ [`] and t $←
IPFE.Dec(pp′IPFE, ct′IPFE, sk′IPFE), and outputs> ifwe haveVerify(crs, kV, kV(ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) =
> and

fx,ppSKE,ctSKE(r1, ..., r`) = 1 + t mod p,

and outputs ⊥ otherwise.

41

Correctness. Suppose that (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE) is an honestly generated proof on (x,w) ∈ R. Then it is
clear that we have Verify(crs, kV, kV, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = > by the way of generating the proof
and the correctness of ΠDVNIZK. By the way of generating ({ctiIPFE}i∈[`], ct′IPFE) and correctness of ΠIPFE, we have
ri = Ki + σis mod p for i ∈ [`] and t =

∑
j∈[D] cjs

j where ri and t are generated as in the verification. Since we
have fx,ppSKE,ctSKE(K1 + σ1Z, ...,K` + σ`Z) = 1 +

∑
j∈[D] cjZ

j for an indeterminate Z by the correctness of ΠSKE
and Lemma 6.4, we have fx,ppSKE,ctSKE(r1, ..., r`) = 1 + t by substituting s for Z.
Proof Size. First, we remark that the relation R̃ can be verified by a circuit whose size is a fixed polynomial in
(κ, `, log p,D) that does not depend on |C|. Moreover, we have |ExpC,x(w)| = |C(x, ·)| ≤ |C| for all w ∈ {0, 1}m
by Lemma 6.3. Then we have |π| = poly(κ, `, log p,D), |ctSKE| = |C(x, ·)| + poly(κ), |ctiIPFE| = poly(κ, log p),
and |ct′IPFE| = poly(κ, log p,D). By setting ` = poly(κ) and p = 2O(κ) and remarking that D = poly(κ), we have
|π′| = |C(x, ·)|+ poly(κ) ≤ |C|+ poly(κ).
Security. The security of our scheme Π′DVNIZK is stated as follows. The proofs are similar to the security proof for
PP-NIZK by Katsumata et al. [KNYY19].

Theorem 6.5 (Soundness.). If ΠDVNIZK satisfies statistical (resp. computational) soundness and p = κω(1), then
Π′DVNIZK satisfies statistical (resp. computational) soundness.

Proof. We prove the case of the statistical soundness. The case of the computational soundness can be proven similarly.
Suppose that there is an unbounded-time adversary A that breaks soundness. We consider the following sequence of
games.

Game0: This game is the original experiment that defines the soundness. Specifically, the game is described as follows.

1. The challenger picks s $← Z∗p, generates (crs, kV) $← Setup(1κ), ppSKE
$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $←

IPFE.Setup(1κ, 12), (pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D), skIPFE
$← IPFE.KeyGen(mskIPFE, (1, s)),

and sk′IPFE
$← IPFE.KeyGen(msk′IPFE, (s, ..., sD)), sets crs′ := (crs, ppSKE, ppIPFE, pp′IPFE) and k′V :=

(kV, s, skIPFE, sk′IPFE), and gives crs′ to A.
2. A canmake arbitrary number of verification queries. WhenA queries (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE)),

the challenger returnsVerify′(crs′, k′V, x, π′). More specifically, the challenger computes ri
$← IPFE.Dec(ppIPFE,

ctiIPFE, skIPFE) for i ∈ [`] and t $← IPFE.Dec(pp′IPFE, ct′IPFE, sk′IPFE), and outputs> ifwe haveVerify(crs, kV, (ppIPFE,
{ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = > and fx,ppSKE,ctSKE(r1, ..., r`) = 1 + t mod p, and outputs ⊥ other-
wise.

3. Finally, A outputs (x∗, π∗). We say that A wins if x∗ /∈ L and Verify(crs′, k′V, x∗, π∗) = >.

Game1: This game is the same as the previous game except that the verification oracle Verify′(crs′, k′V, ·, ·) is modified
to the following alternative oracle denoted by Verify′1(·, ·). The oracle Verify′1(·, ·) does the following:

• Given a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE)).
• If Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = ⊥, returns⊥. Otherwise, proceeds to the next
step.

• It computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`] and (c1, ..., cD) := MasterDec(msk′IPFE, ct′IPFE),
where MasterDec is the master decryption algorithm for ΠIPFE as defined in Section 6.1. If K =
(K1, ...,K`) /∈ {0, 1}`, returns ⊥. Otherwise, proceeds to the next step.

• If we have
fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = 1 +

∑
j∈[D]

cjs
j mod p,

outputs > and returns ⊥ otherwise.

We note that the winning condition of A is also modified to use Verify′1(·, ·) instead of Verify′(crs, kV, ·, ·).

42

Game2: This game is the same as the previous game except that the oracle Verify′1 is replaced with Verify′2 described in
the following. The main differences from Verify′1 are highlighted by red underlines. The oracle Verify′2(·, ·) does
the following:

• Given a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE)).
• If Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = ⊥, returns⊥. Otherwise, proceeds to the next
step.

• It computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`] and (c1, ..., cD) := MasterDec(msk′IPFE, ct′IPFE).
IfK = (K1, ...,K`) /∈ {0, 1}`, returns ⊥. Otherwise, proceeds to the next step.

• It computes (ĉ1, ..., ĉD)← Coefficient(1D, p, fx,ppSKE,ctSKE , (K1, ...,K`), (σ1, ..., σ`)).
• If we have

D∑
j=1

(cj − ĉj)sj + 1− fx,ppSKE,ctSKE(K1, ...,K`) = 0 mod p,

it outputs > and returns ⊥ otherwise.

We note that the winning condition of A is also modified to use Verify′2 instead of Verify′1.

Game3: This game is the same as the previous game except that the oracle Verify′2 is replaced with an alternative
oracle Verify′3 described below. The main differences from Verify′2 are highlighted by red underlines. The oracle
Verify′3(·, ·) does the following:

• Given a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE)).
• If Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = ⊥, then returns ⊥. Otherwise, proceeds to
the next step.

• It computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`] and (c1, ..., cD) := MasterDec(msk′IPFE, ct′IPFE).
IfK = (K1, ...,K`) /∈ {0, 1}`, returns ⊥. Otherwise, proceeds to the next step.

• It computes (ĉ1, ..., ĉD)← Coefficient(1D, p, fx,ppSKE,ctSKE , (K1, ...,K`), (σ1, ..., σ`)).
• If we have fx,ppSKE,ctSKE(K1, ...,K`) = 1 and (c1, ..., cD) = (ĉ1, ..., ĉD), it outputs >, and returns ⊥ other-
wise.

We note that the winning condition of A is also modified to use Verify′3 instead of Verify′2.

This completes the description of games. We denote the event that A wins in Gamek by Tk for k = 0, ..., 3. We prove
the following lemmas.

Lemma 6.6. If ΠDVNIZK satisfies statistical soundness, then we have |Pr[T0]− Pr[T1]| ≤ negl(κ).

Proof. Let F be the event that A ever makes a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE)) to the verification oracle
such thatVerify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = > and ((ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), ({(Ki, σi,

Ri)}i∈[`], (c1, ..., cD, R′))) /∈ R̃. It is easy to see that Pr[F] is negligible if ΠDVNIZK satisfies statistical soundness.
If we have Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), π) = > and F does not happen, then each ciphertext
ctiIPFE is a valid encryption of some (Ki, σi) ∈ {0, 1} × Zp and ct′IPFE is a valid encryption of some (c1, ..., cD) ∈ ZDp .
Then if we let (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`], (c1, ..., cD) := MasterDec(msk′IPFE, ct′IPFE),
ri

$← IPFE.Dec(ppIPFE, ctiIPFE, skIPFE) for i ∈ [`], and t $← IPFE.Dec(pp′IPFE, ct′IPFE, sk′IPFE), then we have K =
(K1, ...,K`) ∈ {0, 1}`, ri = Ki + σis mod p for i ∈ [`] and t =

∑
j∈[D] cjs

j mod p, and the conditions

fx,ppSKE,ctSKE(r1, ..., r`) = 1 + t mod p,

and
fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = 1 +

∑
j∈[D]

cjs
j mod p

are equivalent. Therefore we have |Pr[T0]− Pr[T1]| ≤ Pr[F], and the lemma is proven.

43

Lemma 6.7. Pr[T1] = Pr[T2].

Proof. Game1 and Game2 are identical from A’s view since the responses from the verification oracle never differ as
seen below: By the definition of Coefficient, we have

fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = fx,ppSKE,ctSKE(K1, ...,K`) +
∑
j∈[D]

ĉjs
j mod p.

Therefore the equation

fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = 1 +
∑
j∈[D]

cjs
j mod p

is equivalent to
D∑
j=1

(cj − ĉj)sj + 1− fx,ppSKE,ctSKE(K1, ...,K`) = 0 mod p.

Lemma 6.8. |Pr[T2]− Pr[T3]| ≤ (Q+1)D
p−1 where Q denotes the number of verification queries.

Proof. Here, we regard the final output (x∗, π′∗) of A as the (Q+ 1)-th query for notational convenience. We consider
hybrids Hk for k = 0, 1, ..., Q+ 1, which is the same as Game2 except that Verify′3 is used until A’s k-th query and
Verify′2 is used for the rest of the queries. Let T′k be the event that A wins in Hk. It is clear that H0 is Game2 and
HQ+1 is Game3. Thus what we have to prove is that we have |Pr[T′k]− Pr[T′k+1]| ≤ D

p−1 for k = 0, ..., Q. Let Badk
be the event that A’s k-th query causes the difference between Hk and Hk+1, i.e., fx,ppSKE,ctSKE(K1, ...,K`) 6= 1 or
(c1, ..., cD) 6= (ĉ1, ..., ĉD) and

∑D
j=1(cj − ĉj)sj + 1 − fx,ppSKE,ctSKE(K1, ...,K`) mod p = 0. Since Hk and Hk+1

are completely the same games as long as Badk+1 does not occur, we have |Pr[T′k] − Pr[T′k+1]| ≤ Pr[Badk+1]. If
fx,ppSKE,ctSKE(K1, ...,K`) 6= 1 or (c1, ..., cD) 6= (ĉ1, ..., ĉD), then

∑D
j=1(cj − ĉj)sj + 1 − fx,ppSKE,ctSKE(K1, ...,K`)

is a non-zero polynomial in s of degree at most D, which has at most D roots. Moreover, in Hk and Hk+1, no
information of s is used before A makes its k + 1-th query since s is not used at all until this point. This means that s
is uniformly distributed on Z∗p from the view of A. Therefore regardless of A’s k + 1-th query, the probability that∑D
j=1(cj − ĉj)sj + 1− fx,ppSKE,ctSKE(K1, ...,K`) = 0 mod p is at most D

p−1 .

Lemma 6.9. Pr[T3] = 0.

Proof. A has no chance to win Game3 since if x∗ /∈ L, fx,ppSKE,ctSKE never outputs 1 on any inputK ∈ {0, 1}` for any
ctSKE ∈ CT .

This completes the proof of Theorem 6.5.

Theorem 6.10 (Zero-knowledge). If SKE is one-time secure, ΠIPFE is adaptively single-key secure, and ΠDVNIZK
satisfies zero-knowledge, then Π′DVNIZK satisfies zero-knowledge.

Proof. Let (S1,S2) be the simulator for ΠDVNIZK. We describe the simulator (S1,S2) for Π′DVNIZK below.

S ′1(1κ): It picks s $← Z∗p and generates ppSKE
$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12),

(pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D), skIPFE
$← IPFE.KeyGen(mskIPFE, (1, s)), sk′IPFE

$← IPFE.KeyGen(msk′IPFE, (s, ..., sD)),
and (crs, k̄V, τ̄) $← S1(1κ), and outputs (crs′ := (crs, ppSKE, ppIPFE, pp′IPFE), k̄′V := (k̄V, s, skIPFE, sk′IPFE), τ̄ ′ =
τ̄ .

S ′2(crs′ = (crs, ppIPFE, pp′IPFE), k̄′V = (k̄V, s, skIPFE, sk′IPFE), τ̄ ′ = τ̄ , x): It picks ri
$← Zp for i ∈ [`] and K

$←
SKE.KeyGen(ppSKE), computes ctSKE

$← SKE.Enc(ppSKE,K, 0|C(x,·)|), t := fx,ppSKE,ctSKE(r1, ..., r`) − 1
mod p, ctiIPFE

$← IPFE.Enc(ppIPFE, (ri, 0)) for i ∈ [`], ct′IPFE
$← IPFE.Enc(pp′IPFE, (t · s−1, 0, ..., 0)), and π $←

S2(crs, k̄V, τ̄ , (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE)) and outputs a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE).

44

This completes the description of the simulator. We prove that proofs simulated by the above simulator are computationally
indistinguishable from the honestly generated proofs. To prove this, we consider the following sequence of games
between a PPT adversary A and a challenger.

Game0: In this game, proofs are generated honestly. Namely,

1. The challenger picks s $← Z∗p and generates (crs, kV) $← Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.
Setup(1κ, 12), (pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D), skIPFE

$← IPFE.KeyGen(mskIPFE, (1, s)), and
sk′IPFE

$← IPFE.KeyGen(msk′IPFE, (s, ..., sD)). It defines a common reference string crs′ := (crs, ppSKE, ppIPFE, pp′IPFE)
and a verifier key k′V := (kV, s, skIPFE, sk′IPFE).

2. A is given (1κ, crs′, k′V), and allowed to query O(crs, ·, ·), which works as follows. When A queries
(x,w), if (x,w) /∈ R, then the oracle returns ⊥. Otherwise, it picks K $← SKE.KeyGen(ppSKE)
and σi

$← Zp for i ∈ [`], and generates ctSKE
$← SKE.Enc(ppSKE,K,ExpC,x(w)), (c1, ..., cD) ←

Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)), ctiIPFE
$← IPFE.Enc(ppIPFE, (Ki, σi);Ri)

for i ∈ [`] (whereRi is the randomness used by the encryption algorithm), ct′IPFE
$← IPFE.Enc(pp′IPFE, (c1, ..., cD);R′)

(whereR′ is the randomness used by the encryption algorithm), andπ $← Prove(crs, ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE),
({(Ki, σi, Ri)}i∈[`], (c1, ..., cD, R′))) and returns a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE).

3. Finally, A returns a bit β.

Game1: This game is the same as the previous game except that crs, kV, and π are generated differently. Namely,
the challenger generates (crs, kV, τ) $← S1(1κ) at the beginning of the game, and π is generated as π $←
S2(crs, kV, τ, ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE)) for each oracle query.

Game2: This game is the same as the previous game except that {ctIPFE}i∈[`] is generated differently when responding
to each query. Namely, the oracle computes ri := Ki + σis mod p and ctiIPFE

$← IPFE.Enc(ppIPFE, (ri, 0)) for
i ∈ [`].

Game3: This game is the same as the previous game except that ct′IPFE is generated differently when responding to each
query. Namely, the oracle computes t := fx,ppSKE,ctSKE(r1, ..., r`)−1 mod p and ct′IPFE

$← IPFE.Enc(pp′IPFE, (t ·
s−1, 0, ..., 0)). We note that in this game, (c1, ..., cD) is need not be computed since it is not used for generating
ct′IPFE.

Game4: This game is the same as the previous game except that ri is randomly chosen from Zp for i ∈ [`] in each query.

Game5: This game is the same as the previous game except that ctSKE is generated as ctSKE
$← SKE.Enc(ppSKE,K, 0|C(x,·)|).

Let Ti be the event that A returns 1 in Gamei for i ∈ {0, 1, 2, 3, 4, 5}. It is easy to see that proofs are generated by
S ′ = (S ′1,S ′2) in Game5. Thus we have to prove that |Pr[T0]− Pr[T5]| is negligible. We prove this by the following
lemmas.

Lemma 6.11. If ΠDVNIZK satisfies zero-knowledge w.r.t. the simulator S, then |Pr[T0]− Pr[T1]| = negl(κ).

Proof. We assume that |Pr[T0] − Pr[T1]| is non-negligible, and construct a PPT adversary B that breaks the
zero-knowledge of ΠDVNIZK. The description of B is given below.

BO(·,·)(crs, kV): It picks s $← Z∗p and generates ppSKE
$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12),

(pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D), skIPFE
$← IPFE.KeyGen(mskIPFE, (1, s)), and sk′IPFE

$← IPFE.KeyGen(msk′IPFE,
(s, ..., sD)). It defines a common reference string crs′ := (crs, ppSKE, ppIPFE, pp′IPFE) and a verifier key
k′V := (kV, s, skIPFE, sk′IPFE), and runs AO′(·,·)(crs′, k′V) where B simulates O′(·, ·) as follows. When A
makes a query (x,w) to O′(·), B picksK $← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈ [`], generates ctSKE
$←

SKE.Enc(ppSKE,K,ExpC,x(w)), (c1, ..., cD)← Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)),

45

ctiIPFE
$← IPFE.Enc(ppIPFE, (Ki, σi);Ri) for i ∈ [`] (where Ri is the randomness used by the encryption algo-

rithm), and ct′IPFE
$← IPFE.Enc(pp′IPFE, (c1, ..., cD);R′) (where R′ is the randomness used by the encryption

algorithm), and queries (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE), ({(Ki, σi, Ri)}i∈[`], (c1, ..., cD, R′))) to O(·, ·)
to obtain π (if ⊥ is returned, then B returns ⊥ to A as a response by O′(·, ·)). Then it returns a proof
π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE).

This completes the description of B. It is easy to see that if O generates proofs honestly, then B perfectly simulates
Game0, and ifO generates proofs by using the simulator, then B perfectly simulates Game1. Therefore ifA distinguishes
these two games with non-negligible probability, then B succeeds in distinguishing these two cases, which means it
breaks the zero-knowledge.

Lemma 6.12. If IPFE is adaptively single-key secure, then |Pr[T1]− Pr[T2]| = negl(κ).
Proof. Suppose that |Pr[T1]− Pr[T2]| is non-negligible. We construct an adversary B that breaks the multi-challenge
adaptive single-key security of ΠIPFE as follows.

B(1κ): It declares the dimension 12 and obtains a public parameter ppIPFE for ΠIPFE with dimension 2. It
picks s $← Z∗p, queries a vector (1, s) to its key generation oracle to obtain skIPFE. Then it generates
(crs, kV, τ) $← S1(1κ), ppSKE

$← SKE.Setup(1κ), (pp′IPFE,msk′IPFE) $← IPFE.Setup(1κ, 1D), and sk′IPFE
$←

IPFE.KeyGen(msk′IPFE, (s, ..., sD)). It sets a common reference string crs′ := (crs, ppSKE, ppIPFE, pp′IPFE) and a
verifier key k′V := (kV, s, skIPFE, sk′IPFE), and gives (1κ, crs′, k′V) to A as input. When A makes a query (x,w),
B returns ⊥ if (x,w) /∈ R. Otherwise it picks K $← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈ [`], computes
ri := Ki + σis mod p for i ∈ [`], and generates ctSKE

$← SKE.Enc(ppSKE,K,ExpC,x(w)), (c1, ..., cD) ←
Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)), and ct′IPFE

$← IPFE.Enc(pp′IPFE, (c1, ..., cD)).
Then B queries pairs of vectors x(0)

i := (Ki, σi) and x(1)
i := (ri, 0) for i ∈ [`] to its challenge oracle to

obtain ciphertexts {ctiIPFE}i∈[`]. Then it generates π
$← S2(crs, kV, τ, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE)), and

returns a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE) to A. Finally, when A outputs a bit coin′, B′ also outputs
coin′.

This completes the construction of B. First, we remark that B is a valid adversary against the multi-challenge adaptive
single-key security of ΠIPFE since we have (Ki, σi) · (1, s)T = (ri, 0) · (1, s)T mod p for i ∈ [`]. It is easy to see
that B perfectly simulates Game1 to A if the coin picked by the IPFE challenger is 0 and it perfectly simulates Game2
otherwise. Therefore we have |Pr[T2]− Pr[T1]| ≤ negl(κ) if ΠIPFE satisfies the multi-challenge adaptive single-key
security, which follows from the single-challenge version of it as remarked in Remark 6.1.

Lemma 6.13. If IPFE is adaptively single-key secure, then |Pr[T2]− Pr[T3]| = negl(κ).
Proof. Suppose that |Pr[T2]− Pr[T3]| is non-negligible. We construct an adversary B that breaks the multi-challenge
adaptive single-key security of ΠIPFE as follows.

B(1κ): First, it declares the dimension D to obtain a public parameter pp′IPFE for ΠIPFE with dimension D.
Then it picks s $← Z∗p and queries (s, ..., sD) to its key generation oracle to obtain a key sk′IPFE. Then it
generates (crs, kV, τ) $← S1(1κ), ppSKE

$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), and
skIPFE

$← IPFE.KeyGen(mskIPFE, (1, s)). It sets a common reference string crs′ := (crs, ppSKE, ppIPFE, pp′IPFE)
and a verifier key k′V := (kV, s, skIPFE, sk′IPFE), and gives (1κ, crs′, k′V) to A as input. When A makes a query
(x,w), B returns ⊥ if (x,w) /∈ R. Otherwise it picksK $← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈ [`], com-
putes ri := Ki+σis mod p for i ∈ [`] and t := fx,ppSKE,ctSKE(r1, ..., r`)−1 mod p, and generates (c1, ..., cD)←
Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)), ctSKE

$← SKE.Enc(ppSKE,K,ExpC,x(w)),
and ctiIPFE

$← IPFE.Enc(ppIPFE, (ri, 0)) for i ∈ [`]. Then it queries vectors x(0) := (c1, ..., cD) and
x(1) := (t · s−1, 0, ..., 0) to its challenge oracle to obtain a ciphertext ct′IPFE. Then it generates π $←
S2(crs, kV, τ, (ppIPFE, {ctiIPFE}i∈[`], pp′IPFE, ct′IPFE)) and returns a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`], ct′IPFE) to
A. Finally, when A outputs a bit coin′, B′ also outputs coin′.

46

This completes the description of B. First, we show that B is a valid adversary against the multi-challenge adaptive
single-key security of ΠIPFE. In the simulation of each query, by the way of generating (c1, ..., cD), we have

fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = fx,ppSKE,ctSKE(K1, ...,K`) +
D∑
j=1

cjs
j mod p

by Lemma 6.4. Moreover, when the query is not returned by⊥, we have (x,w) ∈ R and thus fx,ppSKE,ctSKE(K1, ...,K`) =
1 mod p since we have ctSKE = SKE.Enc(ppSKE,K,Expx,C(w)). Since we have t = fx,ppSKE,ctSKE(r1, ..., r`)− 1 =
f(K1 + σ1s, ...,K` + σ`s)− 1 by the definition, we have (c1, ..., cD) · (s, ..., sD)T = (t · s−1, 0, ..., 0) · (s, ..., sD)T
mod p. Therefore B is a valid adversary against the multi-challenge adaptive single-key security of ΠIPFE.

It is easy to see that B perfectly simulates Game2 if the coin picked by the IPFE challenger is 0 and it perfectly
simulates Game2 otherwise. Therefore we have |Pr[T2]− Pr[T3]]| ≤ negl(κ) if ΠIPFE satisfies the multi-challenge
adaptive single-key security, which follows from the single-challenge version of it as remarked in Remark 6.1.

Lemma 6.14. Pr[T3] = Pr[T4].

Proof. First, we observe that in the simulation of each proof, σi is used only for generating ri as ri := Ki +
σis mod p in Game3. (Remark that the computation of (c1, ..., cD) ← Coefficient(1D, p, fx,ppSKE,ctSKE ,K =
(K1, ...,K`), (σ1, ..., σ`)) is no longer needed due to the modification made in Game3.) Since we have s ∈ Z∗p,
σis is uniformly distributed on Zp, and thus ri is distributed uniformly on Zp independently ofKi or any other values
whose partial information may be given to A. Thus these two games are completely identical from the view of A.

Lemma 6.15. If SKE is one-time secure, then |Pr[T4]− Pr[T5]| = negl(κ).

Proof. Since the only part in Game4 whereK is used is the generation of ctSKE. Moreover, whenever an adversary makes
a query, the challenger picks a freshK to generate ctSKE. Therefore it is straightforward to reduce the indistinguishability
between these two games to the one-time security of SKE.

This completes the proof of Theorem 6.10.

Remark 6.16. (On variants in other models) By essentially the same construction as the case of DV-NIZK, we can
generically construct PP-NIZK with compact proof size (i.e., |C|+ poly(κ)) from any PP-NIZK additionally assuming
the existence of an SKE scheme with the same properties as those required in the above construction. We note that in this
case, we need not assume PKE since we can use adaptively-secure single-key secret-key IPFE, which can be constructed
from any one-way function [GVW12]. On the other hand, the construction does not work in the CRS and DP settings
since it is essential that the randomly chosen s ∈ Z∗p is hidden from the adversary in the proof of the soundness.

Instantiation. The above construction can be instantiated based on the CDH assumption in a subgroup of Z∗p due to the
following reasons:

• An adaptively single-key secure IPFE scheme exists under any PKE scheme [GVW12], and there exists a PKE
scheme based on the CDH assumption (in any pairing-free group).

• An NC1 decryptable one-time secure SKE scheme whose ciphertext overhead and secret key length are poly(κ)
independently of the message length exists under the CDH assumption in a subgroup of Z∗p as shown in Lemma 2.2.

• DV-NIZK for all of NP exists under the CDH assumption (in any pairing-free group) [CH19, KNYY19, QRW19].

Therefore we obtain the following corollary.

Corollary 6.17. If the CDH assumption holds in a subgroup of Z∗p, then there exists DV-NIZK for all of NP with proof
size |C|+ poly(κ).

47

Variant with Sublinear Proof Size. Similarly to the case of CRS-NIZK as discussed in Section 4.3, we can make the
proof size of the above DV-NIZK sublinear in |C| if C is a leveled circuit. More detailed explanation can be found in
Appendix C. Namely, we obtain the following corollary:

Corollary 6.18. If the CDH assumption holds in a subgroup of Z∗p, then there exists DV-NIZK for all NP languages
whose corresponding relation is computable by a leveled circuit with proof size |w|+ |C|/ log κ+ poly(κ).

6.3 DV- NIZK for NC1 with Shorter Proof from CDHI Assumption
Here, we give a variant of the DV-NIZK in Section 6.2 with shorter proof size |w|+ poly(κ) that supports NC1 relations
based on the `-computational Diffie-Hellman inversion (`-CDHI) assumption on pairing-free group. The differences
from the construction in the previous section are that we directly encrypt w by SKE instead of “expanding” it and we
use the group-based trick inspired by [CF18] instead of the D-dimensional IPFE to reduce the proof size.

`-CDHI assumption. Here, we recall the `-CDHI assumption.

Definition 6.19 (`-Computational Diffie-Hellman Inversion Assumption [MSK02, CF18]).We say that the `-
Computational Diffie-Hellman inversion (`-CDHI) assumption holds relative to GGen if for all PPT adversaries
A,

Pr
[
G = (G, p, g) $← GGen(1κ), s $← Zp : gs

−1
← A(1κ,G, gs, ..., gs

`

)
]
≤ negl(κ).

Construction. We prepare notations for the building blocks.

• LetL be anNP language defined by a relationR ⊆ {0, 1}∗×{0, 1}∗. Letn(κ) andm(κ) be any fixed polynomials.
Let C be a circuit that computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R. We assume that C(x, ·) can be computed in NC1.

• Let ΠIPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) be an adaptively single-key secure IPFE scheme
with a modulus p. Such an IPFE scheme can be constructed from any PKE scheme [GVW12].

• Let ΠSKE = (SKE.Setup,SKE.KeyGen,SKE.Enc,SKE.Dec) be a one-time secure symmetric key encryption
scheme with a message space {0, 1}m, a ciphertext space CT , and a key space {0, 1}`. We assume that ciphertext
overhead and the key length ` are independent of the message length m and the decryption algorithm can be
computed in NC1. Especially, the decryption circuit can be expressed by an arithmetic circuit over Zp of degree
poly(κ). As shown in Lemma 2.2, such an SKE scheme exists under the CDH assumption in a subgroup of Z∗p
for a prime p.

• Forx ∈ {0, 1}n, ppSKE ∈ SKE.Setup(1κ), and ct ∈ CT , we define the function fx,ppSKE,ct(K) := C(x, SKE.Dec(ppSKE,K, ct)).
Let D be the maximal degree of fx,ppSKE,ct (as a multivariate polynomial). Since C(x, ·)’s degree is poly(κ) and
SKE.Dec(ppSKE, ·, ct)’s degree is poly(κ), we have D = poly(κ) (which may depend on |C|).

• Let G be a cyclic group of a prime order p on which (D − 1)-CDHI assumption holds.17

• Let ΠDVNIZK = (Setup,Prove,Verify) be DV-NIZK for the language corresponding to the relation R̃ defined
below:
((ppIPFE, {ctiIPFE}i∈[`]), {(Ki, σi, Ri)}i∈[`]) ∈ R̃ if and only if the following conditions are satisfied:

1. For all i ∈ [`],Ki ∈ {0, 1},
2. For all i ∈ [`], IPFE.Enc(ppIPFE, (Ki, σi);Ri) = ctiIPFE.

The DV-NIZK Π′DVNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

17Precisely speaking, the (D − 1)-CDHI assumption was defined for a group generator. We describe our construction as if it was defined for a
fixed group G for notational simplicity.

48

Setup′(1κ): This algorithm picks s $← Z∗p and g
$← G, computes hj := gs

j for j ∈ [D] and generates (crs, kV) $←
Setup(1κ), ppSKE

$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12) and skIPFE
$← IPFE.KeyGen(mskIPFE,

(1, s)) for i ∈ [`]. It outputs a common reference string crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]) and a verifier key
k′V := (kV, s, {skIPFE}i∈[`], g).

Prove′(crs′, x, w): This algorithm aborts if (x,w) /∈ R. Otherwise it parses (crs, ppSKE, ppIPFE, {hj}j∈[D])← crs′,
picks K $← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈ [`], and generates ctSKE
$← SKE.Enc(ppSKE,K,w)

and (c1, ..., cD)← Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)). Then it generates ctiIPFE :=
IPFE.Enc(ppIPFE, (Ki, σi);Ri) for i ∈ [`] (where Ri is the randomness used by the encryption algorithm),
π

$← Prove(crs, (ppIPFE, {ctiIPFE}i∈[`]), {(Ki, σi, Ri)}i∈[`]), and Λ :=
∏D
j=1 h

cj
j and outputs a proof π′ :=

(π, ctSKE, {ctiIPFE}i∈[`],Λ).

Verify′(crs′, k′V, x, π′): This algorithm parses (crs, ppSKE, ppIPFE, {hj}j∈[D]) ← crs′, (kV, s, {skIPFE}i∈[`], g) ← k′V,
and (π, ctSKE, {ctiIPFE}i∈[`],Λ) ← π′, computes ri

$← IPFE.Dec(ppIPFE, ctiIPFE, skIPFE) for i ∈ [`] and t :=
fx,ppSKE,ctSKE(r1, ..., r`)−1 mod p, and outputs> if we have Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = > and
gt = Λ, and outputs ⊥ otherwise.

Correctness. Suppose that (π, ctSKE, {ctiIPFE}i∈[`],Λ) is an honestly generated proof on (x,w) ∈ R. Then it is clear
that we have Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = > by the way of generating the proof and the correctness
of ΠDVNIZK. By the way of generating ({ctiIPFE}i∈[`],Λ) and correctness of ΠIPFE, we have ri = Ki + σis mod p

for i ∈ [`] and Λ = g

∑
j∈[D]

cjs
j

. Since we have fx,ppSKE,ctSKE(K1 + σ1Z, ...,K` + σ`Z) = 1 +
∑
j∈[D] cjZ

j for an
indeterminate Z by the correctness of ΠSKE and Lemma 6.4, we have gfx,ppSKE,ctSKE (r1,...,r`)−1 = Λ by substituting s for
Z.
Proof Size. First, we remark that the relation R̃ can be verified by a circuit whose size is a fixed polynomial in (κ, `, log p)
that does not depend on |C|. Then we have |π| = poly(κ, `, log p), |ctSKE| = |w|+ poly(κ), |ctiIPFE| = poly(κ, log p).
By setting ` = poly(κ), p = 2O(κ), we have |π′| = |w|+ poly(κ).
Security. The security of our scheme Π′DVNIZK is stated as follows. The proofs are similar to the security proof for
DV-NIZK given in Section 6.2.

Theorem 6.20 (Soundness.). If ΠDVNIZK satisfies computational soundness and (D− 1)-CDHI assumption holds in G,
then Π′DVNIZK satisfies computational soundness.

Proof. Suppose that there is a PPT adversary A that breaks soundness. We consider the following sequence of games.

Game0: This game is the original experiment that defines the soundness. Specifically, the game is described as follows.

1. The challenger picks s $← Z∗p and g
$← G, computeshj := gs

j for j ∈ [D], generates (crs, kV) $← Setup(1κ),
ppSKE

$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), and skIPFE
$← IPFE.KeyGen(mskIPFE, (1, s)),

sets crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]) and k′V := (kV, s, {skIPFE}i∈[`], g), and gives crs′ to A.
2. A can make arbitrary number of verification queries. WhenA queries (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`],Λ)),

the challenger returnsVerify′(crs′, k′V, x, π′). More specifically, the challenger computes ri
$← IPFE.Dec(ppIPFE,

ctiIPFE, skIPFE) for i ∈ [`] and u := fx,ppSKE,ctSKE(r1, ..., r`) − 1 mod p, and outputs > if we have
Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = > and gt = Λ, and outputs ⊥ otherwise.

3. Finally, A outputs (x∗, π′∗). We say that A wins if x∗ /∈ L and Verify(crs′, k′V, x∗, π′
∗) = >.

Game1: This game is the same as the previous game except that the verification oracle Verify′(crs′, k′V, ·, ·) is modified
to the following alternative oracle denoted by Verify′1(·, ·). The oracle Verify′1(·, ·) does the following:

• Given a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`],Λ)).
• If Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = ⊥, returns ⊥. Otherwise, proceeds to the next step.

49

• It computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`], where MasterDec is the master decryption
algorithm for ΠIPFE as defined in Section 6.1. If K = (K1, ...,K`) /∈ {0, 1}`, returns ⊥. Otherwise,
proceeds to the next step.

• It computes t := fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) − 1 mod p. If we have gt = Λ, outputs > and
returns ⊥ otherwise.

We note that the winning condition of A is also modified to use Verify′1(·, ·) instead of Verify′(crs′, k′V, ·, ·).

Game2: This game is the same as the previous game except that the oracle Verify′1 is replaced with Verify′2 described in
the following. The main differences from Verify′1 are highlighted by red underlines. The oracle Verify′2(·, ·) does
the following:

• Given a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`],Λ)).
• If Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = ⊥, returns ⊥. Otherwise, proceeds to the next step.

• It computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`]. If K = (K1, ...,K`) /∈ {0, 1}`, returns
⊥. Otherwise, proceeds to the next step.

• It computes (ĉ1, ..., ĉD)← Coefficient(1D, p, fx,ppSKE,ctSKE , (K1, ...,K`), (σ1, ..., σ`)).
If we have

∏D
j=1 h

ĉj
j · gfx,ppSKE,ctSKE (K1,...,K`)−1 = Λ, outputs > and returns ⊥ otherwise.

We note that the winning condition of A is also modified to use Verify′2 instead of Verify′1.

Game3: This game is the same as the previous game except that the oracle Verify′2 is replaced with an alternative
oracle Verify′3 described below. The main differences from Verify′2 are highlighted by red underlines. The oracle
Verify′3(·, ·) does the following:

• Given a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`],Λ)).
• If Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = ⊥, returns ⊥. Otherwise, proceeds to the next step.

• It computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`]. If K = (K1, ...,K`) /∈ {0, 1}`, returns
⊥. Otherwise, proceeds to the next step.

• It computes (ĉ1, ..., ĉD)← Coefficient(1D, p, fx,ppSKE,ctSKE , (K1, ...,K`), (σ1, ..., σ`)).
If we have fx,ppSKE,ctSKE(K1, ...,K`) = 1 mod p and

∏D
j=1 h

ĉj
j = Λ, it outputs > and returns ⊥ otherwise.

We note that the winning condition of A is also modified to use Verify′3 instead of Verify′2.

This completes the description of games. We denote the event that A wins in Gamek by Tk for k = 0, ..., 3. We prove
the following lemmas.

Lemma 6.21. If ΠDVNIZK satisfies computational soundness, then we have |Pr[T0]− Pr[T1]| ≤ negl(κ).

Proof. Let F be the event thatA ever makes a query (x, π′ = (π, ctSKE, {ctiIPFE}i∈[`],Λ)) to the verification oracle such
that Verify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) = > and

(
(ppIPFE, {ctiIPFE}i∈[`]), {(Ki, σi, Ri)}i∈[`]

)
/∈ R̃. It is easy to

see thatPr[F] is negligible ifΠDVNIZK satisfies computational soundness. Ifwe haveVerify(crs, kV, (ppIPFE, {ctiIPFE}i∈[`]), π) =
> and F does not happen, each ciphertext ctiIPFE is a valid encryption of some (Ki, σi) ∈ {0, 1} × Zp. Then if
we let (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) and ri

$← IPFE.Dec(ppIPFE, ctiIPFE, skIPFE) for i ∈ [`], then we have
K = (K1, ...,K`) ∈ {0, 1}` and ri = Ki + σis mod p for i ∈ [`], and thus we have fx,ppSKE,ctSKE(r1, ..., r`) =
fx,ppSKE,ctSKE(K1 + σ`s, ...,K` + σ`s). Therefore we have |Pr[T0]− Pr[T1]| ≤ Pr[F], and the lemma is proven.

Lemma 6.22. Pr[T1] = Pr[T2].

50

Proof. Game1 and Game2 are identical from A’s view since the responses from the verification oracle never differ as
seen below: By the definition of Coefficient, we have

fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = fx,ppSKE,ctSKE(K1, ...,K`) +
∑
j∈[D]

ĉjs
j mod p.

Therefore the equation
gfx,ppSKE,ctSKE (K1+σ1s,...,K`+σ`s)−1 = Λ

is equivalent to
D∏
j=1

h
ĉj
j · g

fx,ppSKE,ctSKE (K1,...,K`)−1 = Λ

Lemma 6.23. If the (D − 1)-CDHI assumption holds, then |Pr[T2]− Pr[T3]| ≤ negl(κ).

Proof. Here, we regard the final output (x∗, π′∗) of A as the (Q+ 1)-th query for notational convenience. We consider
hybrids Hk for k = 0, 1, ..., Q+ 1, which is the same as Game2 except that Verify′3 is used until A’s k-th query and
Verify′2 is used for the rest of the queries. Let T′k be the event that A wins in Hk. It is clear that H0 is Game2 and
HQ+1 is Game3. Thus what we have to prove is that we have |Pr[T′k] − Pr[T′k+1]| ≤ negl(κ) for k = 0, ..., Q. It
is easy to see that Hk and Hk+1 differ only when we have fx,ppSKE,ctSKE(K1, ...,K`) = 0 and

∏D
j=1 h

ĉj
j · g−1 = Λ in

the simulation of the verification oracle for A’s (k + 1)-th query. If we denote this event by Badk+1, then we have
|Pr[T′k]− Pr[T′k+1]| ≤ Pr[Badk+1]. We prove that Pr[Badk+1] is negligible assuming (D − 1)-CDHI assumption.
Suppose that Pr[Badk+1] is non-negligible. Then we construct an adversaryB that breaks the (D−1)-CDHI assumption
as follows.

B(g̃, g̃s, ..., g̃sD−1): Given a problem instance (g̃, g̃s, ..., g̃sD−1), it sets hj := g̃s
j−1 for j ∈ [D] (which implic-

itly defines g := g̃s
−1), generates (crs, kV) $← Setup(1κ), ppSKE

$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $←
IPFE.Setup(1κ, 12), and skIPFE

$← IPFE.KeyGen(mskIPFE, (1, s)), sets crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]),
and gives crs′ toA. B simulates the verification oracleVerify3(·, ·) untilAmakes its (k+1)-th query. (We note that
this can be done without knowing g = g̃s

−1 since Verify′3 does not use g.) Let (x, π = (π, ctSKE, {ctiIPFE}i∈[`],Λ))
be the A’s (k + 1)-th query. Then B computes (Ki, σi) := MasterDec(mskIPFE, ctiIPFE) for i ∈ [`] and
(ĉ1, ..., ĉD)← Coefficient(1D, p, fx,ppSKE,ctSKE , (K1, ...,K`), (σ1, ..., σ`)), and outputs

∏D
j=1 h

ĉj
j · Λ−1.

This completes the description of B. It is easy to see that B perfectly simulates Hk and Hk+1 until A makes its
(k+ 1)-th query. If Badk+1 happens, then we have

∏D
j=1 h

ĉj
j · g−1 = Λ, and thus we have

∏D
j=1 h

ĉj
j ·Λ−1 = g = ĝs

−1 .
This means that B succeeds in breaking the (D − 1)-CDHI assumption. Therefore Pr[Badk+1] ≤ negl(κ) under the
(D − 1)-CDHI assumption.

Lemma 6.24. Pr[T3] = 0.

Proof. A has no chance to win Game3 since if x∗ /∈ L, fx,ppSKE,ctSKE never outputs 1 on any inputK ∈ {0, 1}` for any
ctSKE ∈ CT .

This completes the proof of Theorem 6.20.

Theorem 6.25 (Zero-knowledge). If SKE is CPA secure, ΠIPFE is adaptively single-key secure, and ΠDVNIZK satisfies
zero-knowledge, then Π′DVNIZK satisfies zero-knowledge.

Proof. Let (S1,S2) be the simulator for ΠDVNIZK. We describe the simulator (S1,S2) for Π′DVNIZK below.

S ′1(1κ): It picks s $← Z∗p and g $← G, computes hj := gs
j for j ∈ [D], and generates ppSKE

$← SKE.Setup(1κ),
(ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), and skIPFE

$← IPFE.KeyGen(mskIPFE, (1, s)), and (crs, k̄V, τ̄) $←
S1(1κ), and outputs (crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]), k̄′V := (k̄V, s, {skIPFE}i∈[`]), τ̄ ′ := τ̄).

51

S ′2(crs′ = (crs, ppIPFE, {hj}j∈[D]), k̄′V = (k̄V, s, {skIPFE}i∈[`]), τ̄ ′ = τ̄ , x): It picks ri
$← Zp for i ∈ [`] and K $←

SKE.KeyGen(ppSKE), computes ctSKE
$← SKE.Enc(ppSKE,K, 0m), t := fx,ppSKE,ctSKE(r1, ..., r`) − 1 mod p,

ctiIPFE
$← IPFE.Enc(ppIPFE, (ri, 0)) for i ∈ [`], Λ := gt, and π $← S2(crs, k̄V, τ̄ , (ppIPFE, {ctiIPFE}i∈[`])) and

outputs a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`],Λ).

This completes the description of the simulator. We prove that proofs simulated by the above simulator are computationally
indistinguishable from the honestly generated proofs. To prove this, we consider the following sequence of games
between a PPT adversary A and a challenger.

Game0: In this game, proofs are generated honestly. Namely,

1. The challenger picks s $← Z∗p and g
$← G, computes hj := gs

j for j ∈ [D], and generates (crs, kV) $←
Setup(1κ), ppSKE

$← SKE.Setup(1κ), (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), and skIPFE
$← IPFE.KeyGen

(mskIPFE, (1, s)). It defines a common reference string crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]) and a verifier
key k′V := (kV, s, {skIPFE}i∈[`]).

2. A is given (1κ, crs′, k′V), and allowed to queryO(crs, ·, ·), which works as follows. WhenA queries (x,w), if
(x,w) /∈ R, then the oracle returns⊥. Otherwise, it picksK $← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈
[`], and generates ctSKE

$← SKE.Enc(ppSKE,K,w), (c1, ..., cD) ← Coefficient(1D, p, fx,ppSKE,ctSKE ,K =
(K1, ...,K`), (σ1, ..., σ`)), ctiIPFE

$← IPFE.Enc(ppIPFE, (Ki, σi);Ri) for i ∈ [`] (whereRi is the randomness
used by the encryption algorithm), π $← Prove(crs, (ppIPFE, {ctiIPFE}i∈[`]), {(Ki, σi, Ri)}i∈[`]), computes
Λ :=

∏D
j=1 h

cj
j , and returns a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`],Λ).

3. Finally, A returns a bit β.

Game1: This game is the same as the previous game except that crs, kV, and π are generated differently. Namely,
the challenger generates (crs, kV, τ) $← S1(1κ) at the beginning of the game, and π is generated as π $←
S2(crs, kV, τ, (ppIPFE, {ctiIPFE}i∈[`])) for each oracle query.

Game2: This game is the same as the previous game except that {ctIPFE}i∈[`] is generated differently when responding
to each query. Namely, the oracle computes ri := Ki + σis mod p and ctiIPFE

$← IPFE.Enc(ppIPFE, (ri, 0)) for
i ∈ [`].

Game3: This game is the same as the previous game except that Λ is generated differently when responding to each
query. Namely, the oracle computes t := fx,ppSKE,ctSKE(r1, ..., r`)− 1 mod p, and sets Λ := gt. We note that in
this game, (c1, ..., cD) is need not be computed since it is not used for generating Λ.

Game4: This game is the same as the previous game except that ri is randomly chosen from Zp for i ∈ [`] in each query.

Game5: This game is the same as the previous game except that ctSKE is generated as ctSKE
$← SKE.Enc(K, 0m).

Let Ti be the event that A returns 1 in Gamei for i ∈ {0, 1, 2, 3, 4, 5}. It is easy to see the the way of generating proofs
in Game5 is identical to the one by S ′ = (S ′1,S ′2). Thus we have to prove that |Pr[T0] − Pr[T3]| is negligible. We
prove this by the following lemmas.

Lemma 6.26. If ΠDVNIZK satisfies zero-knowledge w.r.t. the simulator S, then |Pr[T0]− Pr[T1]| = negl(κ).

Proof. We assume that |Pr[T0] − Pr[T1]| is non-negligible, and construct a PPT adversary B that breaks the
zero-knowledge of ΠDVNIZK. The description of B is given below.

BO(·,·)(crs, kV): It picks s $← Z∗p and g
$← G, computes hj := gs

j for j ∈ [D], and generates ppSKE
$← SKE.Setup(1κ),

(ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 12), and skIPFE
$← IPFE.KeyGen(mskIPFE, (1, s)) for i ∈ [`]. It defines a

common reference string crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]) and a verifier key k′V := (kV, s, {skIPFE}i∈[`]).
and runsAO′(·,·)(crs′, k′V) where B simulatesO′(·, ·) as follows. WhenAmakes a query (x,w) toO′(·), B picks

52

K
$← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈ [`], generates ctSKE
$← SKE.Enc(ppSKE,K,w), (c1, ..., cD)←

Coefficient(1D, p, fx,ppSKE,ctSKE ,K = (K1, ...,K`), (σ1, ..., σ`)), and ctiIPFE
$← IPFE.Enc(ppIPFE, (Ki, σi);Ri)

for i ∈ [`] (where Ri is the randomness used by the encryption algorithm), computes Λ :=
∏D
j=1 h

cj
j , and queries

((ppIPFE, {ctiIPFE}i∈[`]), {(Ki, σi, Ri)}i∈[`]) to O(·, ·) to obtain π (if ⊥ is returned, then B returns ⊥ to A as a
response by O′(·, ·)). Then it returns a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`],Λ).

This completes the description of B. It is easy to see that if O generates proofs honestly, then B perfectly simulates
Game0, and ifO generates proofs by using the simulator, then B perfectly simulates Game1. Therefore ifA distinguishes
these two games with non-negligible probability, then B succeeds in distinguishing these two cases, which means it
breaks the zero-knowledge.

Lemma 6.27. If IPFE is adaptively single-key secure, then |Pr[T1]− Pr[T2]| = negl(κ).

Proof. Suppose that |Pr[T1] − Pr[T2]| is non-negligible. Then we construct an adversary B that breaks the multi-
challenge adaptive single-key security of ΠIPFE as follows.

B(1κ): It declares the dimension 12 and obtains a public parameter ppIPFE for ΠIPFE with dimension 2. It picks
s

$← Z∗p, queries a vector (1, s) to its key generation oracle to obtain skIPFE. Then it picks g $← G and
s

$← Z∗p, sets hj := gs
j for j ∈ [D], and generates (crs, kV, τ) $← S1(1κ) and ppSKE

$← SKE.Setup(1κ). It sets a
common reference string crs′ := (crs, ppSKE, ppIPFE, {hj}j∈[D]) and a verifier key k′V := (kV, s, {skIPFE}i∈[`], g),
and gives (1κ, crs′, k′V) to A as input. When A makes its k-th query (x,w), B returns ⊥ if (x,w) /∈ R.
Otherwise it picks K $← SKE.KeyGen(ppSKE) and σi

$← Zp for i ∈ [`], computes ri := Ki + σis mod p for
i ∈ [`], and generates ctSKE

$← SKE.Enc(ppSKE,K,w) and (c1, ..., cD)← Coefficient(1D, p, fx,ppSKE,ctSKE ,K =
(K1, ...,K`), (σ1, ..., σ`)). Then B queries pairs vectors x(0)

i := (Ki, σi) and x(1)
i := (ri, 0) to its challenge

oracle to obtain ciphertexts {ctiIPFE}i∈[`]. Then it generates π
$← S2(crs, kV, τ, (ppIPFE, {ctiIPFE}i∈[`])), computes

Λ :=
∏D
j=1 h

cj
j , and returns a proof π′ := (π, ctSKE, {ctiIPFE}i∈[`],Λ) to A. Finally, when A outputs a bit coin′,

B also outputs coin′.

This completes the construction of B. First, we remark that B is a valid adversary against the multi-challenge adaptive
single-key security of ΠIPFE since we have (Ki, σi) · (1, s)T = (ri, 0) · (1, s)T mod p. It is easy to see that B perfectly
simulates Game1 to A if the coin picked by the IPFE challenger is 0 and it perfectly simulates Game2 otherwise.
Therefore we have |Pr[T1] − Pr[T2]| ≤ negl(κ) if ΠIPFE satisfies the multi-challenge adaptive single-key security,
which follows from the single-challenge version of it as remarked in Remark 6.1.

Lemma 6.28. Pr[T2] = Pr[T3].

Proof. In a simulation for each query, by the way of generating (c1, ..., cD), we have

fx,ppSKE,ctSKE(K1 + σ1s, ...,K` + σ`s) = fx,ppSKE,ctSKE(K1, ...,K`) +
D∑
j=1

cjs
j mod p

by Lemma 6.4. Moreover, when the query is not returned by⊥, we have (x,w) ∈ R and thus fx,ppSKE,ctSKE(K1, ...,K`) =
1 mod p since we have ctSKE = SKE.Enc(ppSKE,K,w). Since we have t = fx,ppSKE,ctSKE(r1, ..., r`)− 1 = f(K1 +
σ1s, ...,K` + σ`s)− 1 by the definition, we have t =

∑D
j=1 cjs

j . Therefore we have
∏D
j=1 h

cj
j = gt, and thus Λ is

defined to be exactly the same value in Game2 and Game3.

Lemma 6.29. Pr[T3] = Pr[T4].

Proof. First, we observe that in a simulation of each proof, σi is used only for generating ri as ri := Ki +
σis mod p in Game3. (Remark that the computation of (c1, ..., cD) ← Coefficient(1D, p, fx,ppSKE,ctSKE ,K =
(K1, ...,K`), (σ1, ..., σ`)) is no longer needed due to the modification made in Game3.) Since we have s ∈ Z∗p,
σis is uniformly distributed on Zp, and thus ri is distributed uniformly on Zp independently ofKi or any other values
whose partial information may be given to A. Thus these two games are completely identical from the view of A.

53

Lemma 6.30. If SKE is one-time secure, then |Pr[T4]− Pr[T5]| = negl(κ).

Proof. Since the only part in Game4 where K is used is the generation of ctSKE. Moreover, whenever an adversary
makes a query, the challenger picks a fresh secret keyK to generate ctSKE. Therefore it is straightforward to reduce the
indistinguishability between these two games to the one-time security of SKE.

This completes the proof of Theorem 6.25.

Instantiation. The above construction can be instantiated based on the poly(κ)-CDHI assumption in a subgroup of
Z∗p since all building blocks except for the group G can be instantiated based on the CDH assumption in a subgroup
of Z∗p as seen in Section 6.2, and the CDH assumption holds under the 1-CDHI assumption. Therefore we obtain the
following corollary.

Corollary 6.31. If the poly(κ)-CDHI assumption holds in a subgroup of Z∗p for a prime p, then there exists DV-NIZK
for all NP languages whose corresponding relation is computable in NC1 with proof size |w|+ poly(κ).

Remark 6.32. Actually, the poly(κ)-CDHI assumption in any pairing-free group and the CDH assumption in a subgroup
of Z∗p suffice. We just assume the poly(κ)-CDHI assumption in a subgroup of Z∗p for simplicity.

7 CRS-NIZK with Efficient Prover From Laconic Function Evaluation
In this section, we present a NIZK proof system where a prover is efficient, that is, the running time of a prover is smaller
than the size of circuit that computes the relation. We use laconic function evaluation to achieve our NIZK proof system.

Before describing the construction, we prepare some building blocks and notations.

• LetL be anNP language defined by a relationR ⊆ {0, 1}∗×{0, 1}∗. Letn(κ) andm(κ) be any fixed polynomials.
Let C be a circuit that computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R

• Let LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) be a LFE scheme whose function class C is the
class of all circuits with params = (1k, 1d) consisting of the input size k and the depth d of the circuits and
contains {C} that computes the relationR for NP-complete language.

• Let ΠCRSNIZK = (Setup,Prove,Verify) be a CRS-NIZK for the language corresponding to the relation R̃ defined
below:

((x, lfe.crs, digestC , lfe.ct), (w, r)) ∈ R̃ ⇐⇒ LFE.Enc(lfe.crs, digestC , (x,w); r) = lfe.ct .

The CRS-NIZK Π′CRSNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm generates crs $← Setup(1κ) and lfe.crs $← LFE.crsGen(1κ, params). It generates
digestC := LFE.Compress(lfe.crs, C). It outputs a common reference string crs′ = (crs, lfe.crs, digestC).

Prove′(crs′, x, w): This algorithm aborts if R(x,w) = 0. Otherwise it parses (crs, lfe.crs, digestC) ← crs′, gen-
erates lfe.ct := LFE.Enc(lfe.crs, digestC , (x,w); r) where r is the randomness for LFE.Enc and πNIZK

$←
Prove(crs, (x, lfe.crs, digestC , lfe.ct), (w, r)). It outputs a proof π′ := (lfe.ct, πNIZK).

Verify′(crs′, x, π′): This algorithm parses (crs, lfe.crs, digestC) ← crs′, (lfe.ct, πNIZK) ← π′, and computes t :=
Verify(crs, (x, lfe.crs, digestC , lfe.ct), πNIZK). If t = ⊥ or 0 $← LFE.Dec(lfe.crs, C, lfe.ct), then outputs ⊥.
Otherwise, outputs >.

Completeness. By the completeness of ΠCRSNIZK, the proof πNIZK in an honestly generated proof π′ passes the
verification of ΠCRSNIZK. That is, it holds that Verify(crs, (x, lfe.crs, digestC , lfe.ct), πNIZK) = >. By the correctness
of LFE, it holds that 1 = C(x,w) $← LFE.Dec(lfe.crs, C, lfe.ct) with probability 1. Thus, the completeness follows.

54

Prover Efficiency. First, we remark that the relation R̃ can be verified by a circuit whose size is |LFE.Enc| since the
relation is about the validity of LFE ciphertexts. The running time of Prove′ is the sum of those of LFE.Enc and Prove.
We defer concrete efficiency analysis until Section 7.1 since the running time depends on instantiations of LFE.Enc and
Prove.

Security. Finally, we prove the security of Π′CRSNIZK.

Theorem 7.1 (Soundness). Π′CRSNIZK is computationally/statistically sound if ΠCRSNIZK is computationally/statistically
sound, respectively.

Proof of Theorem 7.1. In this proof, we focus on the computational soundness case. We can prove the statistical
soundness in a similar manner.

Suppose that there is a PPT adversary A that breaks soundness. Then we construct a PPT adversary B that breaks
the soundness of ΠCRSNIZK as follows.

B(1κ, crs): It generates lfe.crs $← LFE.crsGen(1κ, params) and digestC := LFE.Compress(lfe.crs, C), sets crs′ :=
(crs, lfe.crs, digestC), and runsA(1κ, crs′) to obtain (x∗, π′∗). Then, it parses π′∗ = (lfe.ct, πNIZK) and computes
y

$← LFE.Dec(lfe.crs, digestC , lfe.ct). If y = 1, then it outputs (x′ := (x∗, lfe.crs, digestC , lfe.ct), πNIZK). If
y = 0, outputs ⊥.

This completes the description of B. In the following, we show that B breaks the soundness of ΠCRSNIZK. Since we
assume A breaks the soundness of Π′CRSNIZK, we have x∗ /∈ L, Verify(crs, (x∗, lfe.crs, digestC , lfe.ct), πNIZK) = >,
and LFE.Dec(lfe.crs, digestC , lfe.ct) = 1 with non-negligible probability. In the following, we assume that this is the
case.

In this case, we prove that x′ = (x∗, lfe.crs, digestC , lfe.ct) /∈ L̃. Assume by contradiction that x′ ∈ L̃, that is, lfe.ct
is an encryption of (x∗, w∗) for somew∗ under some randomness r. Then by the condition that LFE.Dec(lfe.crs, digestC ,
lfe.ct) = 1, we have thatR(x∗, w∗) = 1, i.e., C(x∗, w∗) = 1, due to the correctness of LFE. However, the condition
R(x∗, w∗) = 1 contradicts x∗ /∈ L, so we must have x′ 6∈ L̃. Thus, B succeeds in breaking the soundness since x′ /∈ L̃
and Verify(crs, (x∗, lfe.crs, digestC , lfe.ct), πNIZK) = > holds.

Theorem 7.2 (Zero-Knowledge). Π′CRSNIZK is computational zero-knowledge if ΠCRSNIZK is zero-knowledge and LFE
is adaptively secure.

Proof of Theorem 7.2. Let (S1,S2) be the simulator for ΠCRSNIZK. We describe the simulator (S ′1,S ′2) for Π′CRSNIZK
below.

S ′1(1κ): It generates (crs, τ) $← S1(1κ), lfe.crs $← LFE.crsGen(1κ, params), anddigestC := LFE.Compress(lfe.crs, C).
It outputs crs′ := (crs, lfe.crs, digestC) and τ ′ := τ .

S ′2(crs′, τ ′ = τ, x): It parses (crs, lfe.crs, digestC) ← crs′, computes lfe.ct $← LFE.Sim(lfe.crs, C, digestC , 1) and
πNIZK

$← S2(crs, τ, (x, lfe.crs, digestC , lfe.ct)), and outputs π′ := (lfe.ct, πNIZK).

This completes the description of the simulator. We prove that proofs simulated by the above simulator are
computationally indistinguishable from the honestly generated proofs. To prove this, we consider the following sequence
of games between a PPT adversary A and a challenger.

Game0: In this game, proofs are generated honestly. Namely,

1. The challenger generates crs $← Setup(1κ), lfe.crs $← LFE.crsGen(1κ, params), anddigestC := LFE.Compress
(lfe.crs, C). It gives crs′ := (crs, lfe.crs, digestC) to A.

2. A is given (1κ, crs′), and allowed to query O(crs, ·, ·), which works as follows. When A queries (x,w), if
(x,w) /∈ R, then the oracle returns⊥. Otherwise, it computes lfe.ct $← LFE.Enc(lfe.crs, digestC , (x,w); r)
where r is the randomness and πNIZK

$← Prove(crs, (x, lfe.crs, digestC , lfe.ct), (w, r)). It returns a proof
π′ := (lfe.ct, πNIZK).

55

3. Finally, A returns a bit β.

Game1: This game is identical to the previous game except that crs and πNIZK are generated differently. Namely,
the challenger generates (crs, τ) $← S1(1κ) at the beginning of the game, and πNIZK is generated as πNIZK

$←
S2(crs, τ, x) for each oracle query.

Game2: This game is identical to the previous game except that lfe.ct is generated differently. Namely, the challenger
generates lfe.ct $← LFE.Sim(lfe.crs, C, digestC , 1).

Let Ti be the event thatA returns 1 in Gamei for i = 0, 1, 2. It is easy to see that proofs generated by S ′ = (S ′1,S ′2)
are the same as those in Game2. Thus we have to prove that |Pr[T0]− Pr[T2]| is negligible. The following lemmas are
straightforward to prove.

Lemma 7.3. If ΠCRSNIZK satisfies the computational zero-knowledge w.r.t. the simulator S , then |Pr[T0]− Pr[T1]| =
negl(κ).

Proof of Lemma 7.3. Suppose that there is a PPT adversaryA that distinguishes Game1 from Game0. Then we construct
a PPT adversary B that breaks the zero-knowledge of ΠCRSNIZK as follows.

B(1κ, crs): It generates lfe.crs $← LFE.crsGen(1κ, params) and digestC := LFE.Compress(lfe.crs, C), sets crs′ :=
(crs, lfe.crs, digestC), and runs A(1κ, crs′). When A sends (x,w) as a query, if R(x,w) = 0, then outputs
⊥. Otherwise, it computes lfe.ct $← LFE.Enc(lfe.crs, digestC , (x,w); r) where r is the randomness, sends
((x, lfe.crs, digestC , lfe.ct), (w, r)) to its oracle ONIZK, and receivers πNIZK. Finally, it returns (lfe.ct, πNIZK) to
A and outputs what A outputs.

This completes the description of B. In the following, we show that B breaks the zero-knowledge of ΠCRSNIZK. If B has
oracle access to ONIZK

0 (real proof), B perfectly simulates the oracle ONIZK′
0 (proofs of Π′CRSNIZK in Game0) since B

honestly generates lfe.ct by using w and r. If B has an oracle access to ONIZK
1 (simulated proof), B perfectly simulates

the oracleONIZK′
1 (proofs of Π′CRSNIZK in Game1) since B receives πNIZK

$← S2(crs, τ, x). Therefore, ifA distinguishes
two games, B also distinguishes real proofs from simulated proofs.

Lemma 7.4. If LFE is adaptively secure, |Pr[T1]− Pr[T2]| = negl(κ).

Proof of Lemma 7.4. In this proof, we use the multi-challenge adaptive security of LFE, which is implied by adaptive
security for a single-challenge as noted in Definition 2.9. Suppose that there is a PPT adversary A that distinguishes
Game2 from Game1. Then we construct a PPT adversary B that breaks the adaptive security of LFE as follows.

B(1κ): It generates parameters k, d for a circuit family that contains C, sends (1k, 1d) to the challenger, receives
lfe.crs, and computes digestC := LFE.Compress(crs, C) where C is the circuit that computes R. It runs
(crs, τ) $← S1(1κ) and sends crs′ := (crs, lfe.crs, digestC) toA. When B sends (x,w) as a query, ifR(x,w) = 0,
outputs ⊥. Otherwise, it sends ((x,w), C) to the challenger of LFE, receives lfe.ct, and runs πNIZK

$←
S2(crs, τ, (x, lfe.crs, digestC , lfe.ct)). It returns (lfe.ct, πNIZK) to A as an answer. Finally, it outputs what A
outputs.

This completes the description of B. In the following, we show that B breaks the adaptive security of LFE. If B is
given lfe.ct $← LFE.Enc(lfe.crs, digestC , x) (real LFE ciphertext), it is easy to see that B perfectly simulates the oracle
ONIZK′

1 (proofs of Π′CRSNIZK in Game1). If B is given lfe.ct $← LFE.Sim(lfe.crs, C, digestC , C(x,w)) (simulated LFE
ciphertext), B perfectly simulates the oracleONIZK′

2 (proofs of Π′CRSNIZK in Game2, that is, simulated proof of Π′CRSNIZK)
since B uses (x,w) such that R(x,w) = 1, that is, C(x,w) = 1. Therefore, if A distinguishes two games, B also
distinguishes the real experiment from the simulated experiment of LFE.

By Lemmata 7.3 and 7.4, we complete the proof of Theorem 7.2.

By the analysis of completeness and Theorems 7.1 and 7.2, Π′CRSNIZK is a secure NIZK proof system.

56

7.1 Instantiations
We can consider two cases since there are two instantiations of adaptively secure LFE.

1. (Under sub-exponential security of theLWEassumptionwith sub-exponentialmodulus-to-noise ratio): ByLemma2.10,
it holds that |lfe.crs| = poly(κ, |x|, |w|, d), |digestC | = poly(κ), |lfe.ct| = poly(κ, |x|, |w|, d), and the running
time of LFE.Enc is poly(κ, |x|, |w|, d) where d is the depth of C since the input length of C is |x|+ |w|. In this
case, we use a NIZK whose prover running time is poly(C̃, κ) where C̃ is a circuit that computes the relation R̃,
which holds for any NIZK. In this case, C̃ just runs LFE.Enc, so it takes |LFE.Enc|+ poly(|LFE.Enc|, κ) time to
generate πNIZK. Thus, the running time of the prover is poly(κ, |x|, |w|, d).

2. (Under the adaptive LWE assumption with sub-exponential modulus-to-noise ratio): By Lemma 2.10, it holds
that |lfe.crs| = (|x|+ |w|) · poly(κ, d), |digestC | = poly(κ), |lfe.ct| = Õ(|x|+ |w|) · poly(κ, d), and the running
time of LFE.Enc is Õ(|x|+ |w|) · poly(κ, d) where d is the depth of C since the input length of C is |x|+ |w|. In
this case, we use a NIZK whose prover running time is |C̃| · poly(κ). An example of such a NIZK is the NIZK by
Groth et al. [GOS12]. By using the efficiency of Groth et al. NIZK, it takes |LFE.Enc|+|LFE.Enc|·poly(κ) time to
generateπNIZK. Thus, the running time of the prover is Õ(|x|+|w|)·poly(κ, d)·poly(κ) = Õ(|x|+|w|)·poly(κ, d).

Therefore, we obtain the following two corollaries by using Lemmata 2.10 and 5.9.

Corollary 7.5. If a CRS-NIZK scheme for all of NP exists and the sub-exponentially secure LWE assumption with
sub-exponential modulus-to-noise ratio holds, then there exists a CRS-NIZK scheme for all of NP whose prover running
time is poly(κ, |x|, |w|, d).

Corollary 7.6. If the DLIN assumption in a bilinear group and the adaptive LWE assumption with sub-exponential
modulus-to-noise ratio hold, then there exists a CRS-NIZK scheme for all of NP whose prover running time is
Õ(|x|+ |w|)poly(κ, d).

Acknowledgement. We thank anonymous reviewers of Crypto 2019 for their helpful comments. The first and the
third authors were supported by JST CREST Grant Number JPMJCR19F6. The third author was supported by JSPS
KAKENHI Grant Number 16K16068.

References
[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption

schemes for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751.
Springer, Heidelberg, March / April 2015. (Cited on page 8.)

[Abu13] Hamza Abusalah. Generic instantiations of the hidden bits model for non-interactive zero-knowledge
proofs for NP, 2013. Master’s thesis, RWTH-Aachen University. (Cited on page 5, 32.)

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-
preserving signatures and commitments to group elements. Journal of Cryptology, 29(2):363–421, April
2016. (Cited on page 4.)

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016. (Cited on page 8.)

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In Shafi Goldwasser, editor, ITCS 2012,
pages 326–349. ACM, January 2012. (Cited on page 3.)

[BCH86] Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits for division and related
problems. SIAM Journal on Computing, 15(4):994–1003, 1986. (Cited on page 11, 33.)

57

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988. (Cited on page 2.)

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation under
DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 509–539. Springer, Heidelberg, August 2016. (Cited on page 33, 64.)

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer, Heidelberg, May 2003.
(Cited on page 2, 3.)

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistinguisha-
bility obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 401–427. Springer, Heidelberg, March 2015. (Cited on page 2.)

[BPW16] Nir Bitansky, Omer Paneth, andDanielWichs. Perfect structure on the edge of chaos - trapdoor permutations
from indistinguishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 474–502. Springer, Heidelberg, January 2016. (Cited on page 2.)

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge based on any
trapdoor permutation. Journal of Cryptology, 9(3):149–166, June 1996. (Cited on page 2.)

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067. (Cited on page 33.)

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001. (Cited on page 33, 34.)

[CC18] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive zero-knowledge proofs
of knowledge. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 193–221. Springer, Heidelberg, April / May 2018. (Cited on page 2.)

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019. (Cited on page 2.)

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation intractability
from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.
(Cited on page 2.)

[CD04] RonaldCramer and IvanDamgård. Secret-key zero-knowlegde and non-interactive verifiable exponentiation.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 223–237. Springer, Heidelberg, February
2004. (Cited on page 10.)

[CF18] Dario Catalano and Dario Fiore. Practical homomorphic message authenticators for arithmetic circuits.
Journal of Cryptology, 31(1):23–59, January 2018. (Cited on page 4, 8, 9, 48.)

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without random oracles.
In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 650–670. Springer, Heidelberg,
March / April 2015. (Cited on page 2.)

[CH19] Geoffroy Couteau and Dennis Hofheinz. Designated-verifier pseudorandom generators, and their
applications. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 562–592. Springer, Heidelberg, May 2019. (Cited on page 2, 5, 9, 47.)

58

http://eprint.iacr.org/2000/067

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. Journal of
Cryptology, 20(3):265–294, July 2007. (Cited on page 5, 32.)

[CL18] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 476–506. Springer,
Heidelberg, November 2018. (Cited on page 2.)

[CsW19] Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with sublinear communication
complexity. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume
11693 of LNCS, pages 30–60. Springer, Heidelberg, August 2019. (Cited on page 2, 4, 5, 7, 34, 36.)

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991. (Cited on page 2.)

[Dam93] Ivan Damgård. Non-interactive circuit based proofs and non-interactive perfect zero-knowledge with
proprocessing. In Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS, pages 341–355.
Springer, Heidelberg, May 1993. (Cited on page 10.)

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–
437, 2000. (Cited on page 2.)

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with
applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014. (Cited on page 3.)

[DFN06] Ivan Damgård, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from homomorphic
encryption. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 41–59.
Springer, Heidelberg, March 2006. (Cited on page 2, 13.)

[DMP90] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge with preprocess-
ing. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 269–282. Springer, Heidelberg,
August 1990. (Cited on page 10.)

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under general
assumptions. SIAM J. Comput., 29(1):1–28, 1999. (Cited on page 2, 5.)

[Gen09] Craig Gentry. A fully homomorphic encryption scheme, 2009. Ph.D. thesis, Stanford University. (Cited
on page 2, 17.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882–929,
2016. (Cited on page 32, 39.)

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith. Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. Journal of Cryptology,
28(4):820–843, October 2015. (Cited on page 2, 3, 5.)

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. (Cited on page 2, 3.)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM
STOC, pages 25–32. ACM Press, May 1989. (Cited on page 11.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989. (Cited on page 2.)

59

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM
Press, May 1987. (Cited on page 2.)

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal of
Cryptology, 7(1):1–32, December 1994. (Cited on page 2.)

[Gol04] Oded Goldreich. Foundations of cryptography: Volume 2, basic applications. 2004. (Cited on page 2, 5.)

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J.
ACM, 59(3):11:1–11:35, 2012. (Cited on page 2, 3, 4, 5, 9, 38, 57.)

[GPSW06a] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. IACR Cryptology ePrint Archive, 2006:309, 2006. Version
20061007:061901. (Cited on page 18.)

[GPSW06b] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In CCS, pages 89–98. ACM, 2006. (Cited on page 25.)

[Gro10a] Jens Groth. Short non-interactive zero-knowledge proofs. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 341–358. Springer, Heidelberg, December 2010. (Cited on page 2, 3, 5.)

[Gro10b] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010. (Cited
on page 2.)

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016. (Cited on page 3.)

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,
41(5):1193–1232, 2012. (Cited on page 2.)

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, August 2012. (Cited on page 9, 41, 47, 48.)

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477.
ACM Press, June 2015. (Cited on page 4, 10, 15, 66, 68, 70.)

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press,
June 2011. (Cited on page 2.)

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure
multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009. (Cited on page 10.)

[Kat17] Shuichi Katsumata. On the untapped potential of encoding predicates by arithmetic circuits and their
applications. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626
of LNCS, pages 95–125. Springer, Heidelberg, December 2017. (Cited on page 63.)

[Kil94] Joe Kilian. On the complexity of bounded-interaction and noninteractive zero-knowledge proofs. In 35th
FOCS, pages 466–477. IEEE Computer Society Press, November 1994. (Cited on page 3.)

[KMO90] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge proofs (extended
abstract). In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 545–546. Springer,
Heidelberg, August 1990. (Cited on page 10.)

60

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated verifier/prover
and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651. Springer, Heidelberg, May 2019.
(Cited on page 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 20, 23, 33, 40, 42, 47, 64, 68, 70.)

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for NP with general
assumptions. Journal of Cryptology, 11(1):1–27, January 1998. (Cited on page 3.)

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security of
Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 224–251. Springer, Heidelberg, August 2017. (Cited on page 2.)

[KW18a] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 733–765. Springer,
Heidelberg, August 2018. (Cited on page 6, 8, 10.)

[KW18b] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. Cryptology ePrint Archive,
Report 2018/272, 2018. https://eprint.iacr.org/2018/272. (Cited on page 33.)

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer,
Heidelberg, March 2012. (Cited on page 2, 3.)

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear
error-correcting codes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269
of LNCS, pages 41–60. Springer, Heidelberg, December 2013. (Cited on page 3.)

[Lip17] Helger Lipmaa. Optimally sound sigma protocols under DCRA. In Aggelos Kiayias, editor, FC 2017,
volume 10322 of LNCS, pages 182–203. Springer, Heidelberg, April 2017. (Cited on page 2.)

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In Alfred J.
Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 353–365. Springer,
Heidelberg, August 1991. (Cited on page 10.)

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 568–588. Springer, Heidelberg, May 2011.
(Cited on page 18.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718.
Springer, Heidelberg, April 2012. (Cited on page 63.)

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE Transactions,
E85-A(2):481–484, February 2002. (Cited on page 4, 48.)

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidelberg, August 2003. (Cited on
page 2.)

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. J.
ACM, 51(2):231–262, 2004. (Cited on page 11.)

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem based on higher residues. In Li Gong
and Michael K. Reiter, editors, ACM CCS 98, pages 59–66. ACM Press, November 1998. (Cited on
page 2.)

61

https://eprint.iacr.org/2018/272

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on page 2.)

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August
1992. (Cited on page 4.)

[PHGR16] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly practical verifiable
computation. Commun. ACM, 59(2):103–112, 2016. (Cited on page 3.)

[PsV06] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryption scheme
from any semantically secure one. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
271–289. Springer, Heidelberg, August 2006. (Cited on page 2, 13.)

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for all NP from
CDH. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS,
pages 593–621. Springer, Heidelberg, May 2019. (Cited on page 2, 5, 9, 47.)

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications. In Mikkel
Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer Society Press, October 2018. (Cited on
page 3, 4, 5, 9, 14, 15, 63.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009. (Cited on page 62.)

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg, December 2001. (Cited
on page 2.)

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999. (Cited on page 2.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997. (Cited on
page 17.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. (Cited on
page 2.)

[VV09] Carmine Ventre and Ivan Visconti. Co-sound zero-knowledge with public keys. In Bart Preneel, editor,
AFRICACRYPT 09, volume 5580 of LNCS, pages 287–304. Springer, Heidelberg, June 2009. (Cited on
page 2.)

A Learning with Errors
In this section, we review the definitions about learning with errors (LWE) assumptions.

Definition A.1 (B-bounded distribution). We say that a distribution χ over Z is B-bounded if Pr[χ ∈ [−B,B]] = 1.
Definition A.2 (LWE assumption [Reg09]). Let n = n(κ) and q = q(κ) be integer parameters and χ = χ(κ) a
distribution over Z. We say the LWE(n, q, χ) assumption holds if for any PPT adversary A, its advantage

AdvLWE
A (κ) :=

∣∣∣∣∣∣∣Pr

A(1κ,A, s>A+ e) = 1

∣∣∣∣∣∣∣
A

$← Zn×mq ,

s
$← Znq ,

e
$← χm

− Pr
[
A(1κ,A,u) = 1

∣∣∣∣∣ A $← Zn×mq ,

u
$← Zmq

]∣∣∣∣∣∣∣
is negligible in κ.

62

We assume that for any polynomial p = p(κ), there exists some polynomial n = n(κ), some q = q(κ) = 2poly(κ),
and some B = B(κ)-bounded distribution χ = χ(κ) such that q/B ≥ 2p (sub-exponential modulus-to-noise ratio) and
LWEn,q,χ assumption holds.

Definition A.3 (Gadget Matrix [MP12]). For any integer q ≥ 2, let g := (1, 2, . . . , 2dlog qe−1) ∈ Z1×dlog qe
q . The

gadget matrix is defined asG := g ⊗ In ∈ Zn×mq where n ∈ N,m := n dlog qe, and In is n× n identity matrix.

DefinitionA.4 (Adaptive LWEassumption [QWW18]). Letn = n(κ), q = q(κ), and k = k(κ) be integer parameters,
χ = χ(κ) a distribution over Z, andG ∈ Zn×mq the gadget matrix in Definition A.3. We definem := n dlog qe. For
any polynomialm′ = m′(κ), we define experiment ExpALWE

A (1κ, b) between an adversary A and challenger as follows.

1. The challenger chooses k random matricesAi
$← Zn×mq for i ≤ k, and sends them to A.

2. A chooses x ∈ {0, 1}k and sends it to the challenger.

3. The challenger chooses s $← Znq andAk+1
$← Zn×m′q and do the following:

• If b = 0, then computes bi := s>(Ai−xiG)+e>i where ei
$← χm for i ≤ k and bk+1 := s>Ak+1 +e>k+1

where ek+1
$← χm

′ .

• If b = 1, then chooses bi
$← Zmq for i ≤ k and bk+1

$← Zm′q .

4. Finally, the challenger sendsAk+1 and {bi}i≤k+1 to A and the experiment outputs whatever A outputs.

We say the ALWE(n, q, χ) assumption holds if for any polynomialm = m(κ) and any PPT adversary A, its advantage

AdvALWE
A (κ) :=

∣∣∣Pr
[
ExpALWE
A (1κ, 0) = 1

]
− Pr

[
ExpALWE
A (1κ, 1) = 1

]∣∣∣
is negligible in κ.

Quach et al. [QWW18] observed that the sub-exponentially secure LWE assumption implies the adaptive LWE
assumption (n, q, χ can depend on k). Although they did not give any concrete reduction, they conjectured that the
adaptive LWE assumption plausibly holds on its own (n, q, χ do not depend on k).

B Proof of Lemma 6.3
Proof. For simplicity, we assume that C(x, ·) consists of only NAND gates. (This is just for notational simplicity, and a
similar result can be obtained as long as each gate of C can be expressed as a degree 2 polynomial over Zp.) Now,
we fix (x,w) ∈ R ∩ {0, 1}n × {0, 1}m and a prime p > |C|. Let Gates denote the set of all gates of C(x, ·), and for
each gate g ∈ Gates of the circuit C(x, ·) let sg denote the output value of g when we evaluate C(x, ·) on the input w.
We let ExpC,x(w) := {sg}g∈Gates. Clearly, the size of ExpC,x(w) is |Gates|. For each gate g ∈ Gates, let Ag and Bg
denote the gates whose output wire is connected to the input wire of g. Then we have sg = 1− sAg · sBg mod p for
every gate g and sout = 1 mod p where out is the output gate of C(x, ·). Conversely, it is easy to see that there exists
w ∈ {0, 1}m such that C(x,w) = 1 if and only if there exists {sg}g∈Gates ∈ {0, 1}|Gates| such that sg = 1− sAg · sBg
mod p for every gate g and sout = 1 mod p, which is equivalent to∏

g∈Gates
(1− (1− sAg · sBg − sg)2) · (1− (1− sout)2) = 1 mod p. (12)

Here, we apply a similar trick to the one used by Katsumata [Kat17] to reduce the degree of the above equation. Namely,
we first remark that the above equation is satisfied if and only if all terms (1− sAg · sBg − sg) and (1− sout) are 0.
Also, remark that |Gates| ≤ |C| < p and all terms (1 − sAg · sBg − sg) and (1 − sout) are in {−1, 0, 1}, we have

63

∑
g∈Gates(1 − sAg · sBg − sg)2 + (1 − sout)2 < p, and thus this sum is equal to 0 modulo p if and only if all terms

(1− sAg · sBg − sg) and (1− sout) are 0. Therefore Equation (12) is equivalent to the condition that∑
g∈Gates

(1− sAg · sBg − sg)2 + (1− sout)2 = 0 mod p.

Then if we define
C̃(x, {sg}g∈Gates) := 1 +

∑
g∈Gates

(1− sAg · sBg − sg)2 + (1− sout)2,

then there exists {sg}g∈Gates ∈ {0, 1}|Gates| such that C̃(x, {sg}g∈Gates) = 1 if and only if there exists w ∈ {0, 1}m
such that C(x,w) = 1. Finally, we remark that we have s2 = s for any s ∈ {0, 1}, and thus the degree of C̃(x, ·) is at
most 3. This completes the proof.

C (CRS,DV)-NIZK for Leveled Relations with Sublinear Proof Size
Here, we give variants of our compact (CRS,DV)-NIZK whose proof size is sublinear in the size of the circuit that
computes the NP relation to prove. This construction only works for NP languages with “leveled” relation, which
is a relation that can be expressed by a leveled circuit, i.e., a circuit whose gates are divided into L levels, and all
incoming wires to a gate of level i+ 1 come from gates of level i. For this case, the proof size of the scheme becomes
|w|+ |C|/ log κ+ poly(κ). We note that the construction is basically same as the similar result for (DP,PP)-NIZK in
[KNYY19], and many parts of this section is taken verbatim from their paper. We include this section in this paper for
completeness.

C.1 Leveled Circuits and Relations.
First, we define leveled circuits and its “special” levels following [BGI16]. We say that a circuit is a leveled circuit of
depth D if its gates are partitioned into D + 1 levels, all input gates are of level 0, all output gates are of level D + 1,
and all incoming wires to a gate of level i + 1 come from gates of level i for each i ∈ [D]. The width at level i is
defined to be the number of gates of level i. For a leveled circuit C of depth D, we define a set SC ⊂ {0, ..., D + 1} of
“special” levels in the following manner. For each j ∈ {0, ..., bD/ log κc − 1}, SC contains one level i in the interval
[j log κ+ 1, ..., (j + 1) log κ] such that the width at level i is the minimum among the width at levels in this interval. (If
there exist multiple levels whose width are minimum, we choose the smallest level.) We say that i is a special level if
i ∈ SC . Let pre(i) denote the precedent special level of i, i.e., the maximal i′ < i such that i′ ∈ SC (if such i′ does not
exist, then we define pre(i) := 0) and LC denote the largest special level of C, i.e., the largest i such that i ∈ SC . It is
easy to see that the number of gates of a special level is at most |C|/ log κ since SC contains levels whose width are
the smallest in the corresponding interval of length log κ. For any gate g of a special level i ∈ SC , we can compute
the output value of g as a function of output values of gates of level pre(i). We denote this function by EvalfromPreg.
Since each special level is at most 2 log κ far apart from its precedent special level, EvalfromPreg can be expressed
as a circuit of depth at most 2 log κ. Similarly, we define a function EvalfromPreout to be a function that computes
the output value of C given output values gates of level LC as input. Similarly, EvalfromPreout can be expressed as a
circuit of depth at most 2 log κ.

An NP relation R ⊆ {0, 1}∗ × {0, 1}∗ is said to be a leveled relation if there exists a family {Cn,m : {0, 1}n ×
{0, 1}m → {0, 1}} of leveled circuits such that for x ∈ {0, 1}n and w ∈ {0, 1}m, we have Cn,m(x,w) = 1 if and only
if (x,w) ∈ R. In the following, we fix n andm, and omit the subscripts n andm from C for notational simplicity. For
x ∈ {0, 1}n, we let SGates[C(x, ·)] be the set of all gates ofC(x, ·) whose level is a special level. For a gate g ofC(x, ·),
we let sg be the output value of the gate g when C(x, ·) is evaluated on input w. We call w′ := (w, {sg}g∈SGates[C(x,·)])
an expanded witness of w w.r.t. x and C. It is easy to see that we have |w′| ≤ |w|+ |C|/ log κ since |SGates[C(x, ·)]|
is at most |C|/ log κ. Then we define an expanded circuit ExpCirC(x,·) for the expanded witness as follows.

ExpCirC(x,·)(w′): It parses (w, {sg}g∈SGates[C(x,·)]) ← w′. For all i ∈ SC , we denote the output values of gates
of level i (in a canonical order) by Si and we let S0 := w. For all gates g of a special level i ∈ SC , it

64

verifies if sg = EvalfromPreg(Spre(i)) holds, and returns 0 if this does not hold. If all check pass, it outputs
EvalfromPreout(SLC(x,·)).

It is easy to see that for any x ∈ {0, 1}n, there exists an expanded witness w′ such that ExpCirC(x,·)(w′) = 1 if and
only if there exists a witness w ∈ {0, 1}m such that C(x,w) = 1. We can implement ExpCirC(x,·) by a circuit of depth
at most 2 log κ+ log(|C|/ log κ+ 1). This can be seen by observing that ExpCirC(x,·) first computes EvalfromPreg for
at most |C|/ log κ different g and EvalfromPreout, each of which can be computed by a circuit of depth at most 2 log κ,
followed by taking the AND of them. Since the last AND is fan-in at most |C|/ log κ+ 1, this can be implemented by a
circuit of depth log(|C|/ log κ+ 1) and fan-in 2. Especially, if |C| = poly(κ), then there exists a constant c such that
ExpCirC(x,·) can be computed by a circuit of depth at most c log κ.

C.2 CRS-NIZK with Sublinear Proof Size.
For constructing CRS-NIZK with sublinear proof size, we instantiate the construction of CRS-NIZK given in Section 4.2
with the following setting.

• Let n(κ) and m(κ) be any fixed polynomials. Let L be an NP language defined by a leveled relation
R ⊆ {0, 1}∗×{0, 1}∗. Namely, there exists a leveled circuitC such that for all x ∈ {0, 1}n andw ∈ {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R. We assume that ExpCirC(x,·) as defined in the previous paragraph
can be computed by a circuit of depth at most c log κ for a constant c for all x ∈ {0, 1}n.

• Let ΠSKE = (SKE.Setup,SKE.KeyGen,SKE.Enc,SKE.Dec) be a one-time secure symmetric key encryption
(SKE) scheme with message space {0, 1}m, ciphertext space CT , and secret key space {0, 1}`. We assume that
cihpertext overhead and the key length ` are independent ofm and the decryption algorithm can be computed in
NC1. As shown in Lemma 2.2, such an SKE scheme exists under the CDH assumption in a subgroup of Z∗p for a
prime p.

• Forx ∈ {0, 1}n and ct ∈ CT , we define a function fx,ppSKE,ct(KSKE) := ExpCirC(x,·)(SKE.Dec(ppSKE,KSKE, ct)).
We note that the depth of fx,ppSKE,ct is O(log κ) for every x ∈ {0, 1}n and ct ∈ CT .

• Let ΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify) be a compact
HEC scheme that supports all circuits of depth O(log κ). Recall that “compact” means that the size of an
evaluated signature is poly(κ) that does not depend on the message length or the function to evaluate.

• Let ΠCRSNIZK = (Setup,Prove,Verify) be an extractable CRS-NIZK for the language corresponding to the
relation R̃ defined below:
((pp, com, comeval), (K,R, πHEC)) ∈ R̃ if and only if the followings are satisfied:

1. K ∈ {0, 1}`,
2. HEC.Commit(pp,K;R) = com,
3. HEC.Verify(pp, comeval, 1, πHEC) = >.

• In the proving algorithm, we set ct ← SKE.Enc(ppSKE,KSKE, w
′) instead of ct ← SKE.Enc(ppSKE,KSKE, w)

where w′ is the expanded witness of w w.r.t. x and C.

Since we simply changed the language to prove in the construction given in Section 4.2, the security can be proven
similarly based on the same assumption.
Proof Size. In the above construction, a proof consists of an encryption ct of the expanded witness w′, a commitment
com of an SKE key K ∈ {0, 1}`, and an NIZK proof πNIZK of ΠCRSNIZK. The size of expanded witness is at most
|w| + |C|/ log κ, and therefore the size of ct is at most |w| + |C|/ log κ + poly(κ). The sizes of com and πNIZK are
poly(κ) as analyzed in Section 4.3. In summary, the proof size of the above scheme is at most |w|+ |C|/ log κ+poly(κ).

65

C.3 DV-NIZK with Sublinear Proof Size.
For applying the similar idea in the DV setting, we first show a variant of Lemma 6.3.

Lemma C.1. Let C be a leveled circuit that computes a relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n ×
{0, 1}m, we have C(x,w) = 1 if and only if (x,w) ∈ R, and p be an integer larger than |C|. Then there exists a
deterministic algorithm Exp′C,x and an arithmetic circuit C̃ ′ on Zp with degree at most κ4 such that we have

• |Exp′C,x(w)| = |w|+ |C|/ log κ for all w ∈ {0, 1}m.

• If C(x,w) = 1, then we have C̃ ′(x,Exp′C,x(w)) = 1 mod p.

• For any x ∈ {0, 1}n, if there does not exist w ∈ {0, 1}m such that C(x,w) = 1, then there does not exist w′
such that C̃ ′(x,w′) = 1 mod p

Proof. We let Exp′C,x(w) be the expanded witness defined in the previous paragraph. As already shown, we have
|Exp′C,x(w)| = |w| + |C|/ log κ. By the definition, if we let Exp′C,x(w) = (w, {sg}g∈SGates), then C(x,w) can be
computed as ∏

g∈SGates
(1− (sg − EvalfromPreg(Spre(ig)))2) · (1− (1− EvalfromPreout(SLC(x,·)))

2)

where ig denotes g’s level. By using a similar trick to the one used in the proof of Lemma 6.3, the condition that
C(x,w) = 1 is equivalent to the condition that∑

g∈SGates
(sg − EvalfromPreg(Spre(ig)))2 + (1− EvalfromPreout(SLC(x,·)))

2 = 0 mod p.

Therefore if we define

C̃ ′(x,w′ = (w, {sg}g∈SGates)) := 1 +
∑

g∈SGates
(sg − EvalfromPreg(Spre(ig)))2 + (1− EvalfromPreout(SLC(x,·)))

2,

then it satisfies the condition required in the lemma. Since the degrees of EvalfromPreg EvalfromPreout are at most κ2

as they are implemented by a circuit of depth at most 2 log κ, the degree of C̃ ′(x, ·) is at most κ4 as required.

Then we instantiate the construction of DV-NIZK given in Section 6.2 with replacing ExpC,x and C̃ with Exp′C,x
and C̃ ′, respectively. Security can be proven similarly. The size of ctSKE = SKE.Enc(ppSKE,K,Exp′C,x(w)) is
|w| + |C|/ log κ + poly(κ). Moreover, we note that we still have D = poly(κ) since the degree of fx,ppSKE,ct(·) :=
C̃ ′(x,SKE.Dec(ppSKE, ·, ct)) is poly(κ) since the degree of C̃ ′ is at most κ4 as shown above. Therefore the sizes of all
other components of a proof still remain poly(κ). In summary, the total proof size is |w|+ |C|/ log κ+ poly(κ).

D HEC from Homomorphic Trapdoor Function
Here, we show that a homomorphic trapdoor function (HTDF) implies HEC. We note that this was already observed
by Gorbunov et al. [GVW15] though they did not give a formal definition of HEC. We include the construction for
completeness.

D.1 Definition of HTDF
A homomorphic trapdoor function (HTDF) with domain U on which a distributionDU is defined , range V , index spaceX
for a function classC = {C : X ` → X} consists of fivePPT algorithms (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout).

HTDF.KeyGen(1κ): The key generation algorithm takes as input the security parameter 1κ, and outputs a public key
pk and a secret key sk.

66

fpk,x(u) This is a polynomial-time computable polynomial function from U to V indexed by pk and x ∈ X .

Invsk,x(v) : The inversion algorithm is indexed by sk and x ∈ X , takes v ∈ V as input and outputs u ∈ U .

HTDF.Evalin(pk, C, (x1, u1), ..., (x`, u`)): The inner evaluation algorithm is a deterministic algorithm that takes a
public key pk, a circuit C ∈ C and (xi, ui) ∈ X × U for i ∈ [`] as input, and outputs u∗ ∈ U .

HTDF.Evalout(pk, C, v1, ..., v`): The outer evaluation algorithm is a deterministic algorithm that takes a public key
pk, a circuit C ∈ C and vi ∈ X × V for i ∈ [`] as input, and outputs v∗ ∈ V .

Correctness. For all κ ∈ N, (pk, sk) ∈ HTDF.KeyGen(1κ), x1, ..., x` ∈ X , and C ∈ C, we have

fpk,C(x1,...,x`)(HTDF.Evalin(C, (x1, u1), ..., (x`, u`))) = HTDF.Evalout(C, v1, ..., v`).

Distributional Equivalence of Inversion. We have

{pk, sk, x, u, v} stat
≈ {pk, sk, x, u′, v′}

where (pk, sk) $← HTDF.KeyGen, x is an arbitrary random variable that depends on (pk, sk), u $← DU , v := fpk,x(u),
v′

$← V , u′ $← Invsk,x(v′).

Claw-free. For all PPT adversary A, we have

Pr
[

fpk,x(u) = fpk,x′(u′)
u, u′ ∈ U , x, x′ ∈ X , x 6= x′

∣∣∣∣∣ (pk, sk) $← HTDF.KeyGen(1κ),
(u, u′, x, x′) $← A(pk)

]
≤ negl(κ).

D.2 HEC from HTDF
Here, we give a construction of HEC fromHTDF. Let ΠHTDF = (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout)
be HTDF with domain U on which a distribution DU is defined , range V , and index space X for a function class
C = {C : X ` → X} . Then we construct a HEC scheme ΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,
HEC.Evalin,HEC.Evalout,HEC.Verify) with the message space X `, randomness space U`, and a randomness distribu-
tion D`U over U` for a circuit class C = {C : X ` → X} as follows.

HEC.Setup(1κ) : Generate (pk, sk) $← HTDF.KeyGen(1κ) and outputs pp := pk, ek := pk, and msk := sk.

HEC.Commit(pp,x; u): Parse pp = pk, x = (x1, ..., x`) and u = (u1,, u`), and compute vi := fpk,xi(ui) for
i ∈ [`], and output com := (v1, ..., v`).

HEC.Open(msk, (x,u),x′): Parse msk = sk, x = (x1, ..., x`), u = (u1, ..., u`), and x′ = (x′1, ..., x′`), compute
vi := fpk,xi(ui) for i ∈ [`] and u′i

$← Invsk,x′
i
(vi), and outputs u := (u1, ..., u`).

HEC.Evalin(ek, C,x,u): Parse ek = pk,x = (x1, ..., x`), andu = (u1, ..., u`), computeu∗ $← HTDF.Evalin(C, (x1, u1),
..., (x`, u`)), and output π := u∗.

HEC.Evalout(ek, C, com): Parse ek = pk and com = (v1, ..., v`), compute v∗ $← HTDF.Evalout(C, v1, ..., v`), and
output comeval := v∗

HEC.Verify(pp, comeval, z, π): Parse pp = pk, comeval = v∗, and π = u∗, and outputs > if v∗ = fpk,z(u∗) holds and
outputs ⊥ otherwise.

Theorem D.1 (Correctness). If ΠHTDF satisfies correctness, then ΠHEC satisfies correctness.

Theorem D.2 (Distributional Equivalence of Open). If ΠHTDF satisfies the distributional equivalence of inversion,
then ΠHEC satisfies the distributional equivalence of open.

67

Proof. (sketch.) First, we remark that for any x ∈ X , if we generate (pk, sk) $← HTDF.KeyGen(1κ), picks u $← DU ,
and computes v := fpk,x(u), then v is almost uniformly distributed on V by the distributional equivalence of inversion
of ΠHTDF. Then it is straightforward to reduce the distributional equivalence of open of ΠHEC to the distributional
equivalence of inversion of ΠHTDF.

Theorem D.3 (Computational Binding for Evaluated Commitment). If ΠHTDF satisfies the claw-freeness, then
ΠHEC satisfies the computational binding for evaluated commitment.

Proof. (sketch.) Suppose that there exists a PPT adversary A that breaks the computational binding for evaluated
commitment of ΠHEC. Then we construct B that breaks the claw-freeness of ΠHTDF as follows.

B(pk): Run A(pk, pk) to obtain (x,u, C, z∗, u∗). Then it parses x = (x1, ..., x`) and u = (u1, ..., u`), computes
vi := fpk,xi(ui) for i ∈ [`], ũ∗ := HTDF.Evalin(pk, C, (x1, u1), ..., (xn, un)), and z̃∗ := C(x1, ..., x`), and
outputs (u∗, ũ∗, z∗, z̃∗).

This completes the description of B. If A succeeds in breaking the computational binding for evaluated commitment,
then we have fpk,z∗(u∗) = v∗ where v∗ := HTDF.Evalout(pk, C, v1, ..., v`) and z∗ 6= z̃∗. On the other hand, by the
correctness of ΠHTDF, we have fpk,z̃∗(ũ∗) = v∗. This means that B breaks the claw-freeness of ΠHTDF.

Remark D.4. (Efficiency of Committing and Verification.) The above construction satisfies the requirement of efficient
committing and verification since both committing and verification just involve computations of the function f .

E Homomorphic Signature from HEC
Here, we give a construction of homomorphic signature (HomSig) scheme from HEC. The construction is similar to the
scheme by Gorbunov, Vaikuntanathan, Wichs [GVW15] except that HTDF is replaced with HEC.

E.1 Definition
Here, we only define single-data HomSig for simplicity. The definition of multi-data version can be found in
[GVW15, KNYY19]. The following definition is taken from [KNYY19].

Syntax. Let {Xκ}κ∈N be a family of message spaces. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of
polynomial sized circuits with domain X `(κ)

κ and range Zκ. Let {ΣFreshκ}κ∈N and {ΣEvaledκ}κ∈N be families of
signature spaces, where each of them corresponds to the output space of fresh signatures and evaluated signatures,
respectively.

Definition E.1 (Homomorphic Signatures). A homomorphic signature (HomSig) scheme ΠHS with message space X
for the circuit class C is defined by the following five algorithms:

HS.KeyGen(1κ, 1`)→ (vk, sk): The key generation algorithm takes as input the security parameter 1κ and the message
length 1` and outputs a verification key vk and a signing key sk.

HS.Sign(sk,x = (x1, · · · , x`))→ σ: The signing algorithm takes as input a signing key sk and messages x ∈ X `,
and outputs a signature σ ∈ ΣFresh.

HS.Eval(vk, C,x,σ)→ σ: The signature-evaluation algorithm takes as input a verification key vk, a circuit C : X ` →
Z in C, messages x ∈ X `, and a signature σ ∈ ΣFresh and outputs an evaluated signature σ ∈ ΣEvaled.

HS.VerifyFresh(vk,x,σ)→ > or ⊥: The fresh verification algorithm takes as input a verification key vk, messages
x ∈ X `, and a signature σ ∈ ΣFresh, and outputs > if the signature is valid and outputs ⊥ otherwise.

HS.VerifyEvaled(vk, C, z, σ)→ > or ⊥: The evaluated verification algorithm takes as input the verification key vk, a
circuit C ∈ C, a message z ∈ Z , and a signature σ ∈ ΣEvaled, and outputs > if the signature is valid and outputs
⊥ otherwise.

68

Correctness. There are two types of correctness which a HomSig scheme must satisfy: signing correctness and
evaluation correctness. Formally, they are defined as follows:

Definition E.2 (Correctness).We say a homomorphic authentication scheme ΠHS is correct, if for all κ ∈ N,
` ∈ poly(κ), messages x = (x1, · · · , x`) ∈ X `, and (vk, sk) ∈ HS.KeyGen(1κ, 1`) the following two conditions hold:
(1) Signing Correctness: For all σ ∈ HS.Sign(sk,x) in ΣFresh, we have

Pr[HS.VerifyFresh(vk,x,σ) = >] = 1.

(2) Evaluation Correctness: For all circuits C ∈ C, signatures σ such that HS.VerifyFresh(vk,x,σ) = >, and
σ ∈ HS.Eval(C,x,σ) in ΣEvaled, we have

Pr[HS.VerifyEvaled(vk, C, C(x), σ) = >] = 1.

(Single-Shot) Unforgeability. We now define single-shot unforgeability for a HomSig scheme, where the adversary
must declare the challenge messages all at once. Below we assume that checking membership of C,ΣFresh,ΣEvaled can
be done efficiently. The security notion is defined formally by the following game between a challenger and an adversary
A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends 1` to the challenger. Then the
challenger generates a signing-verification key pair (vk, sk) $← HS.KeyGen(1κ, 1`) and gives vk to A.

Signing Query: The adversary A submits a set of messages x ∈ X ` to be signed. The challenger responds by creating
a signature σ $← HS.Sign(sk,x) and sends σ ∈ ΣFresh to A. Here, A can query a set of messages only once.

Forgery: Then the adversary A outputs a circuit C?, a message z? ∈ Z , and a signature σ? as the forgery. We say that
A wins the game if:

1. C? ∈ C and σ? ∈ ΣEvaled;
2. C?(x) 6= z?; and
3. HS.VerifyEvaled(vk, C, z?, σ?) = >.

The advantage of an adversary winning the above game is defined by Pr[A wins], where the probability is taken over
the randomness used by the challenger and the adversary.

Definition E.3 ((Single-Shot) Unforgeability). A homomorphic signature scheme ΠHS is said to satisfy (single-shot)
statistical unforgeability if for any (possibly inefficient) adversary A the advantage Pr[A wins] of the above game is
negligible. In case it only holds for adversaries that are computationally bounded, we say it satisfies computational
unforgeability.

We say ΠHS satisfies a weaker notion of selective (single-shot) unforgeability in case no adversary A that commits
to the challenge messages x before seeing the verification key vk can win the above game with more than negligible
probability.

Context-Hiding. We now define context-hiding for a HomSig scheme. This security notion roughly states that an
evaluated signature σC does not leak any information of the initial messages x other than the value C(x).

Definition E.4 (Statistical Context-Hiding). A homomorphic signature scheme ΠHS is statistically context-hiding if
for all κ ∈ N, ` ∈ poly(κ), there exists a PPT simulator HS.Sim such that, for any (vk, sk) ∈ HS.KeyGen(1κ, 1`),
C ∈ C, any pair (x, z) ∈ {(x, z) ∈ X ` ×Z | C(x) = z}, and σ ∈ HS.Sign(sk,x), we have

{σ $← HS.Eval(C,x,σ)} stat
≈ {σ $← HS.Sim(vk, sk, C, z)},

where the probability is only over the randomness used by the algorithms HS.Eval and HS.Sim.

69

E.2 Construction of Homomorphic Signatures from HEC
Let ΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,HEC.Verify) be a HEC scheme with
the message space X `, randomness space R, and a randomness distribution DR over R, for a circuit class C = {C :
X ` → Z}. Here, we assume 0 ∈ X for simplicity, but 0` ∈ X ` that appears in the following description can be
replaced with an arbitrary element in X `. Then our construction of single-data HomSig is provided as follows:

HS.KeyGen(1κ, 1`): On input the security parameter 1κ and themessage length1`, generate (HEC.pp,HEC.ek,HEC.msk) $←
HEC.Setup(1κ), pickR $← DR, compute com := HEC.Commit(HEC.pp, 0`;R), and outputspk := (HEC.pp,HEC.ek,
com) and sk := (HEC.msk, R).

HS.Sign(sk,x): On input sk = (HEC.msk, R) and x ∈ X `, compute R $← HEC.Open(HEC.msk, (0`, R),x), and
output σ = R.

HS.Eval(pk, C,x,σ): Parsepk = (HEC.pp,HEC.ek, com) andσ = R, computeπHEC
$← HEC.Evalin(HEC.ek, C,x, R),

and output σ = πHEC.

HS.VerifyFresh(pk,x,σ): Parsepk = (HEC.pp,HEC.ek, com) andσ = R, and checks if com = HEC.Commit(HEC.pp,x;R)
holds. If this holds output >, otherwise output ⊥.

HS.VerifyEvaled(pk, C, z, σ): Parsepk = (HEC.pp,HEC.ek, com) andσ = πHEC, computes comeval := HEC.Evalout(HEC.ek,
C, com), and checks if HEC.Verify(HEC.pp, comeval, z, πHEC) = > holds. If this holds output >, otherwise
output ⊥.

Correctness.

Theorem E.5 (Correctness). If ΠHEC satisfies correctness and the distributional equivalence for open, then ΠHS
satisfies the evaluation correctness and signing correctness.

Proof. The evaluation correctness immediately follows from the correctness ofHEC. The signing correctness immediately
follows from the equivocality of HEC, which in turn follows from the distributional equivalence for open.

Security. The following theorems are straightforward to prove.

Theorem E.6 (Unforgeability). If ΠHEC satisfies the binding for evaluated commitment, then ΠHS satisfies the selective
single-shot unforgeability.

Theorem E.7 (Context-hiding). If ΠHEC satisfies the context-hiding, then ΠHS satisfies the context-hiding.

Remark E.8. (Instantiations.) If we instantiate the scheme based on the HEC in Section 3.2, we obtain a compact
context-hiding HomSig scheme based on the CDHER assumption where “compact” means that the signature size does
not depend on the size of the circuit to evaluate. We note the resulting scheme is exactly the same as the HomSig scheme
given in [KNYY19]. If we instantiate the scheme based on the HEC in Section 3.3, then we obtain a non-compact
context-hiding HomSig scheme based on the CDH assumption.

Remark E.9. (Extension to multi-data scheme) By using the generic transformation from single-data scheme to multi-data
scheme by Gorbunov et al. [GVW15], we obtain multi-data HomSig scheme based on HEC. On the other hand, unlike
the HTDF-based construction, the resulting scheme does not satisfy the amortized verification efficiency, which means
that a verifier only needs to perform a computation depending on the size of the circuit only once and then he can reuse
it for verifying signatures generated by multiple signers w.r.t. multiple data sets.

70

Contents
1 Introduction 2

1.1 Background . 2
1.2 Our Contribution . 3
1.3 Technical Overview . 4
1.4 Related Works . 10

2 Preliminaries 10
2.1 Symmetric Key Encryption . 10
2.2 Public Key Encryption . 12
2.3 One-Time Signature . 12
2.4 Non-Interactive Zero-Knowledge Proofs (and Arguments) . 13
2.5 Computational Diffie-Hellman Assumption . 14
2.6 Laconic Function Evaluation . 14

3 Homomorphic Equivocal Commitment 15
3.1 Definition . 15
3.2 Construction of HEC with Efficient Verification from CDHER Assumption 17
3.3 Construction of HEC without Efficient Verification from CDH . 24

4 Compact CRS-NIZK from HEC 28
4.1 Extractable CRS-NIZK . 28
4.2 Construction of Compact CRS-NIZK . 30
4.3 Instantiations . 32

5 Compact UC-NIZK for NC1 from HEC 33
5.1 UC Framework . 33
5.2 Ideal Functionalities. 34
5.3 Construction . 36
5.4 Instantiations . 38

6 Compact DV-NIZK 39
6.1 Preliminaries . 39
6.2 Construction . 41
6.3 DV- NIZK for NC1 with Shorter Proof from CDHI Assumption . 48

7 CRS-NIZK with Efficient Prover From Laconic Function Evaluation 54
7.1 Instantiations . 57

A Learning with Errors 62

B Proof of Lemma 6.3 63

C (CRS,DV)-NIZK for Leveled Relations with Sublinear Proof Size 64
C.1 Leveled Circuits and Relations. 64
C.2 CRS-NIZK with Sublinear Proof Size. 65
C.3 DV-NIZK with Sublinear Proof Size. 66

D HEC from Homomorphic Trapdoor Function 66
D.1 Definition of HTDF . 66
D.2 HEC from HTDF . 67

71

E Homomorphic Signature from HEC 68
E.1 Definition . 68
E.2 Construction of Homomorphic Signatures from HEC . 70

72

	Introduction
	Background
	Our Contribution
	Technical Overview
	Generic Construction of Compact (CRS, UC)-NIZK from HEC
	Compact DV-NIZKs based on Pairing-Free Groups
	Generic Construction of Prover-Efficient NIZK from LFE

	Related Works

	Preliminaries
	Symmetric Key Encryption
	Public Key Encryption
	One-Time Signature
	Non-Interactive Zero-Knowledge Proofs (and Arguments)
	Computational Diffie-Hellman Assumption
	Laconic Function Evaluation

	Homomorphic Equivocal Commitment
	Definition
	Construction of HEC with Efficient Verification from CDHER Assumption
	Construction of HEC without Efficient Verification from CDH

	Compact CRS-NIZK from HEC
	Extractable CRS-NIZK
	Construction of Compact CRS-NIZK
	Instantiations

	Compact UC-NIZK for NC1 from HEC
	UC Framework
	Ideal Functionalities.
	Construction
	Instantiations

	Compact DV-NIZK
	Preliminaries
	Construction
	DV- NIZK for NC1 with Shorter Proof from CDHI Assumption

	CRS-NIZK with Efficient Prover From Laconic Function Evaluation
	Instantiations

	Learning with Errors
	Proof of lem:CircuitSATtoArithmeticCircuit
	(CRS,DV)-NIZK for Leveled Relations with Sublinear Proof Size
	Leveled Circuits and Relations.
	CRS-NIZK with Sublinear Proof Size.
	DV-NIZK with Sublinear Proof Size.

	HEC from Homomorphic Trapdoor Function
	Definition of HTDF
	HEC from HTDF

	Homomorphic Signature from HEC
	Definition
	Construction of Homomorphic Signatures from HEC

