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Abstract We consider the problem of obfuscating programs for fuzzy matching (in other words,
testing whether the Hamming distance between an n-bit input and a fixed n-bit target vector is
smaller than some predetermined threshold). This problem arises in biometric matching and other
contexts. We present a virtual-black-box (VBB) secure and input-hiding obfuscator for fuzzy match-
ing for Hamming distance, based on certain natural number-theoretic computational assumptions.
In contrast to schemes based on coding theory, our obfuscator is based on computational hardness
rather than information-theoretic hardness, and can be implemented for a much wider range of pa-
rameters. The Hamming distance obfuscator can also be applied to obfuscation of matching under
the `1 norm on Zn.
We also consider obfuscating conjunctions. Conjunctions are equivalent to pattern matching with
wildcards, which can be reduced in some cases to fuzzy matching. Our approach does not cover
as general a range of parameters as other solutions, but it is much more compact. We study the
relation between our obfuscation schemes and other obfuscators and give some advantages of our
solution.

1 Introduction

Program obfuscation is a major topic in cryptography. Since it was shown that virtual black box (VBB)
obfuscation is impossible in general [4], a large amount of research has gone into constructing solutions in
special cases. One special case that has attracted attention is evasive functions [3, 43]. Evasive functions
are programs for which it is hard to find an accepting input from black-box access to the program.
There are some classes of evasive functions that are quite efficiently obfuscated, such as hyperplane
membership [14], logical formulae defined by many conjunctions [11, 12], pattern matching with wild
cards [5, 7], root of a polynomial system of low degree [3], compute-and-compare programs [30, 54], and
more [43].

More general obfuscation tools are less practical. For example, there are candidates for indistinguisha-
bility obfuscation [28], but the downside of all of these schemes is they are completely infeasible in terms
of runtime and are only able to deal with very simple programs. While general-purpose and efficient
obfuscation is a “holy grail”, the hope is that by restricting to a narrow class of programs we are able to
construct customised and practical solutions.

Hamming Distance. One very natural class of evasive functions is fuzzy matching for the Hamming
metric. Define the program Px(y), parametrised by x ∈ {0, 1}n and a threshold 0 < r < n/2, that
determines whether or not the n-bit input y has Hamming distance at most r from x. Let D be a
distribution on {0, 1}n. Then D determines a program collection P = {Px : x ← D}. For P to be an
evasive program collection it is necessary that the distribution D has high Hamming ball min-entropy
(see Definition 2.4; this notion is also known as fuzzy min-entropy in [27]). The uniform distribution on
{0, 1}n is an example of such a distribution.

We are interested in obfuscating the membership program Px(y), so that the description of Px does
not reveal the value x. Note that once an accepting input y ∈ {0, 1}n is known then one can easily
determine x by a sequence of chosen executions of Px. Indeed, as with most other solutions to this
problem, our scheme is essentially an error correcting code, and so the computation recovers the value
x.

Fuzzy matching has already been treated by many authors and there is a large literature on it. For
example, Dodis et al. [21, 22, 23] introduced the notion of secure sketch and a large number of works
have built on their approach. They also show how to obfuscate proximity queries.



One drawback of the secure sketch approach is that the parameters are strongly constrained by the
need for an efficient decoding algorithm. As discussed by Bringer et al. [13] this leads to “a trade-off
between the correction capacity and the security properties of the scheme”. Since the security analysis
in [23] is information-theoretic, there is no discussion about the “form” of the leakage, although Dodis
et al. prove that the secure sketch preserves entropic security. A related issue with secure sketches and
fuzzy extractors is reusability [10]. In general, fuzzy extractors are not secure if the same or correlated
values are encoded multiple times. In contrast, our scheme is based on computational hardness rather
than information-theoretic hardness, and can be implemented for a much wider range of parameters.

A different solution to fuzzy matching was given by Karabina and Canpolat [37], based on computa-
tional assumptions related to the discrete logarithm problem (we sketch their scheme in Appendix A).
Note that they do not mention obfuscation or give a security proof. Wichs and Zirdelis [54] note that
fuzzy matching can be obfuscated using an obfuscator for compute-and-compare programs.

Our Contribution. We give a full treatment of fuzzy matching based on computational assumptions.
We present an extremely practical and efficient obfuscator, based on a natural number-theoretic com-
putational assumption we call the modular subset product problem. In short, given r < n/2, distinct
primes (pi)i=1,...,n, a prime q such that

∏
i∈I pi < q for all subsets I of {1, . . . , n} of size r, and an

integer X =
∏n
i=1 p

xi
i mod q for some secret vector x ∈ {0, 1}n, the problem is to find x. We call the

decisional version of the problem the decisional modular subset product problem: Distinguish between a
modular subset product instance and uniformly random element of (Z/qZ)∗. If q ≤ 2n, we conjecture
that the statistical distance of the distribution

∏n
i=1 p

xi
i mod q for uniform x and the uniform distri-

bution on (Z/qZ)∗ is negligible. For q > 2n we conjecture that the distributions are computationally
indistinguishable.

The modular subset product problem is similar to computational problems that have been used in
previous works in cryptography [18].

In practice our scheme improves upon all previous solutions to this problem: It handles a wider range
of parameters than secure sketches; it is 20 times faster than [37]; it is many orders of magnitude more
compact than [16, 54]; for full discussion see Section 7.5. Our solution is related to [37], but we think our
approach is simpler and furthermore we give a complete security analysis.

We present two variants of our scheme. One is based only on the subset-product assumption but when
r is very small, it admits the possibility of accepting an input y that is not within the correct Hamming
ball. The second variant (and the one we present in the main body of this work) assumes the existence
of a dependent auxiliary input point function obfuscator [6, 8, 9, 43, 53] and is perfectly correct. The key
idea is to use the point function obfuscator to verify the Hamming ball center after error correction, see
Section 7.3 for details. The auxiliary input in our case is the tuple ((pi)i=1,...,n, q,X).

The following theorems are both special cases of Theorem 8.1, which we will prove later. The first one
shows that, under the subset product assumption, our scheme gives a secure obfuscator for the uniform
distribution over {0, 1}n when n is sufficiently large.

Theorem 1.1. Let λ ∈ N be a security parameter. Consider the family of parameters (n, r) = (6λ, λ).
Assuming the decisional modular subset product problem is hard and that there exists a dependent auxil-
iary input distributional VBB point function obfuscator, the Hamming distance obfuscator for a uniformly
distributed x ∈ {0, 1}n is distributional VBB secure.

Taking λ = 170 gives parameters (n, r) = (1020, 170), which are beyond the reach of practical secure
sketches.

Under the further constraint r < n/ log(n log(n)) we prove security under the discrete logarithm
assumption. Taking n = 1000 this allows r = 113. This gives us the following

Theorem 1.2. Consider the family of parameters (n, r) = (6λ, n/ log(n log(n))) for a security parameter
λ > 20. Under the discrete logarithm assumption and the assumptions of Theorem 5.1 and assuming that
there exists a dependent auxiliary input distributional VBB point function obfuscator, the Hamming
distance obfuscator for a uniformly distributed x ∈ {0, 1}n is distributional VBB secure.

Conjunctions. Another class of evasive functions are conjunctions. A conjunction on Boolean variables
b1, . . . , bn is χ(b1, . . . , bn) =

∧k
i=1 ci where each ci is of the form bj or ¬bj for some 1 ≤ j ≤ n.
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An alternative representation of a conjunction is called pattern matching with wildcards. Consider a
vector x ∈ {0, 1, ?}n of length n ∈ N where ? is a special wildcard symbol. Such an x then corresponds
to a conjunction χ : {0, 1}n → {0, 1} which, using Boolean variables b1, . . . , bn, can be written as
χ(b) =

∧n
i=1 ci where ci = ¬bi if xi = 0, ci = bi if xi = 1, and ci = 1 if xi = ?.

Conjunction obfuscators have been considered before [5, 7, 11, 12]. See Appendix D for a summary
of these. It is clear that, if the number r of wildcards is sufficiently smaller than n/2, one can reduce
pattern matching with wildcards to fuzzy Hamming matching. Hence our solution also gives an alternative
approach to obfuscating conjunctions that can be used for certain parameter ranges. We give a full
security analysis and comparison to existing schemes.

Applications. Hamming distance obfuscators are interesting for a variety of applications. One major
application is biometric matching, where a biometric reading is taken and matched with a stored tem-
plate [36, 42, 51, 52]. Since biometric readings (e.g., fingerprints, iris scans, or facial features) are a noisy
process, the binary string representing the extracted features may not be an exact match for the template
string. We will study some applications in more detail in Appendix B.

Our Approach. We give a short summary of our Hamming distance obfuscator. Let r, n ∈ N with
r < n/2. We wish to “encode” an element x ∈ {0, 1}n so that it is hidden, and yet we will be able
to recognise if an input y ∈ {0, 1}n is within Hamming distance r of x. To do this we will sample a
sequence of small distinct primes (pi)i=1,...,n (i.e., pi 6= pj for i 6= j) and a small safe prime q such that∏
i∈I pi < q/2 for all I ⊂ {1, . . . , n} with |I| ≤ r. The encoding of x ∈ {0, 1}n is

X =

n∏
i=1

pxii mod q

along with the primes (pi)i=1,...,n and q. Given an input y ∈ {0, 1}n anyone can compute the encoding
Y =

∏n
i=1 p

yi
i mod q and then compute

XY −1 mod q ≡
n∏
i=1

pxi−yii mod q =

n∏
i=1

pεii mod q

for errors εi = xi − yi ∈ {−1, 0, 1}. If y is close to x then almost all εi are zero, and so we are able
to recover the errors εi using the continued fraction algorithm and factoring. We give the background
theory and explanation in Section 6. In Remark 1 we explain that this technique also applies to matching
vectors in Zn under the `1-norm.

Note that these ideas have also been used in [47] where they are used to construct a number theoretic
error correcting code. Some major differences to our scheme are: In [47] the parameters (pi)i=1,...,n and
q are fixed for all messages; the encoding X is appended to each message. A similar application is given
in [24] to construct a lattice with efficient bounded distance decoding.

Outline of This Work. Sections 2, 3,and 4 introduce basic notions in hamming distance/fuzzy matching
and obfuscation. Section 5 introduces our new computational assumption. Section 6 gives background
on continued fractions. Section 7 presents the obfuscator for fuzzy matching in the Hamming distance,
including parameters and performance. Section 8 proves that the obfuscator is VBB secure and input-
hiding. Section 9 (continued in Appendix C) briefly discusses our solution to obfuscating conjunctions.
Appendix B discusses applications of fuzzy matching, and discusses leakage. Appendix A and Appendix D
discuss other solutions to the problem. Appendix F discusses a number-theoretical issue that arises in
the security analysis. Appendix G presents the mathematics behind continued fractions in polynomial
rings.

2 Hamming Distance

We want to obfuscate the function that determines if an input binary vector is close to a fixed target. In
our setting, one of the input vectors will be a secret and the other an arbitrary input. Let us first state
some key definitions.
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A natural property of a binary vector is its Hamming weight which is the number of non-zero elements
of the vector. For x ∈ {0, 1}n, we will denote this by wH(x). The Hamming distance between two binary
vectors x, y ∈ {0, 1}n is then given by dH(x, y) = wH(x− y). Finally, a Hamming ball BH,r(x) ⊂ {0, 1}n
of radius r around a point x ∈ {0, 1}n is the set of all points with Hamming distance at most r from x.
We denote by BH,r the Hamming ball around an unspecified point. See Appendix E for formal definitions
of these concepts.

2.1 Hamming Ball Membership over Uniformly Chosen Centers

We are interested in programs that determine if an input binary vector y ∈ {0, 1}n is contained in a
Hamming ball of radius r around some secret value x, i.e., if y ∈ BH,r(x). This problem is only interesting
if it is hard for a user to determine such an input y, because if it is easy to determine values y such
that y ∈ BH,r(x) and also easy to determine values y such that y 6∈ BH,r(x) then an attacker can easily
learn x by binary search. So the first task is to find conditions that imply it is hard to find a y that is
accepted by such a program. In other words, we need conditions that imply Hamming ball membership
is an evasive problem. As we will see in Figure 1, there are essentially three ways that this problem can
become easy: if the Hamming balls are too big; if there are too few possible centers x; or if the centers
x are clustered together.

Definition 2.1 (Evasive Program Collection). Let P = {Pn}n∈N be a collection of polynomial-size
programs such that every P ∈ Pn is a program P : {0, 1}n → {0, 1}. The collection P is called evasive if
there exists a negligible function ε such that for every n ∈ N and for every y ∈ {0, 1}n:

Pr
P←Pn

[P (y) = 1] ≤ ε(n).

In short, Definition 2.1 means that a random program from an evasive collection P evaluates to 0
with overwhelming probability. Finally, we call a member P ∈ Pn for some n ∈ N an evasive program or
an evasive function.

Hamming Ball Program Collection. Let r, n ∈ N with 0 < r < n/2. For every binary vector
x ∈ {0, 1}n there exists a polynomial size program Px : {0, 1}n → {0, 1} that computes whether the input
vector y ∈ {0, 1}n is contained in a Hamming ball BH,r(x) and evaluates to 1 in this case, otherwise to
0. Any distribution on {0, 1}n therefore gives rise to a distribution Pn of polynomial-size programs.

We first consider the uniform distribution on {0, 1}n, so that sampling P ← Pn means choosing x
uniformly in {0, 1}n and setting P = Px. Since the condition y ∈ BH,r(x) is equivalent to x ∈ BH,r(y)
we need to determine the probability that a random element lies in a Hamming ball. This is done in the
next two lemmas. Note that if r ≥ n/2 then a random element lies in the Hamming ball with probability
≥ 1/2, which is why we are always taking r < n/2.

Lemma 2.1. Let n ∈ N, x ∈ {0, 1}n. The number of elements in a Hamming ball BH,r(x) ⊆ {0, 1}n of
radius r is given by

hr = |BH,r| =
r∑

k=0

(
n

k

)
.

Proof. This can be readily seen from the fact that for each k ∈ [0, r] a vector has
(
n
k

)
possible ways to

be at Hamming distance of k from the origin point. ut

Next we show that the probability for a randomly chosen element in {0, 1}n to be contained in a
Hamming ball BH,r is negligible if the parameters r < n/2 are chosen properly.

Lemma 2.2. Let λ ∈ N be a security parameter and let r, n ∈ N such that

r ≤ n

2
−
√
nλ log(2).

Fix a point x ∈ {0, 1}n. Then the probability that a randomly chosen vector y ∈ {0, 1}n is contained in
a Hamming ball of radius r around x satisfies

Pr
y←{0,1}n

[y ∈ BH,r(x)] ≤ 1

2λ
.
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Proof. The total number of points in {0, 1}n is given by 2n. By Lemma 2.1 we thus have the probability
of a randomly chosen vector y ∈ {0, 1}n to be contained in a Hamming ball of radius r around a point
x given by

Pr
y←{0,1}n

[y ∈ BH,r(x)] =
hr
2n

=
1

2n

r∑
k=0

(
n

k

)
.

On the other hand, consider the cumulative binomial distribution for probability p which for r ≤ np
is bounded1 by

Pr(X ≤ r) =

r∑
k=0

(
n

k

)
pk(1− p)n−k ≤ exp

(
− 1

2p

(np− r)2

n

)
.

Substitute p = 1/2 to find Pr(X ≤ r) = hr/2
n. Hence, for r < n/2 −

√
nλ log(2) we have hr/2

n ≤
exp

(
− (n/2− r)2 /n

)
≤ 1/2λ and the result follows. ut

This result shows that Hamming ball membership over the uniform distribution is evasive when r is
small enough.

Lemma 2.3. Let λ(n) be such that the function 1/2λ(n) is negligible. Let r(n) be a function such that
r(n) ≤ n/2 −

√
log(2)nλ(n). Let Pn be the set of programs that tests Hamming ball membership in

BH,r(n)(x) ⊆ {0, 1}n over uniformly sampled x ∈ {0, 1}n. Then Pn is an evasive program collection.

Proof. We need to show that, for every n ∈ N and for every y ∈ {0, 1}n, PrP←Pn [P (y) = 1] is negligible.
Note that

Pr
P←Pn

[P (y) = 1] = Pr
x←{0,1}n

[y ∈ BH,r(n)(x)] = Pr
x←{0,1}n

[x ∈ BH,r(n)(y)]

and this is negligible by Lemma 2.2. ut

2.2 Hamming Ball Membership over General Distributions

Biometric templates may not be uniformly distributed in {0, 1}n, so it is important to have a workable
theory for fuzzy matching without assuming that the input data is uniformly sampled binary strings.
For example, in the worst case, there is only a small number of possible values x ∈ {0, 1}n that arise, in
which case taking y to be one of these x-values will show that Hamming ball membership is not evasive.
More generally, as pictured in the right hand panel of Figure 1, one could have many centers but if they
are too close together then there might be values for y such that PrP←Pn [P (y) = 1] is not negligible.

{0, 1}n {0, 1}n

x1

x2 x3

y

Figure 1: Two example cases of Hamming ball distributions. The left side depicts the ideal distribution
of Hamming ball centers. The right one shows what happens if the balls overlap.

Hence, for Hamming ball membership to be evasive, the centers x must be chosen from a “reasonably
well spread” distribution. Before treating this in detail we give some definitions related to entropy of
distributions in the computational sense.

1 Chernoff bound for binomial distribution tail [1, 17].
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Definition 2.2 (Min-Entropy). The min-entropy of a random variable X is defined as H∞(X) =
− log (maxx Pr[X = x]). The (average) conditional min-entropy of a random variable X conditioned on
a correlated variable Y is defined as H∞(X|Y ) = − log (Ey←Y [maxx Pr[X = x|Y = y]]).

Definition 2.3 (Computational Indistinguishability). We say that two ensembles of random vari-

ables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable and write X
c
≈ Y if for

every (non-uniform) PPT distinguisher A it holds that Pr[A(Xλ) = 1] − Pr[A(Yλ) = 1] ≤ ε(λ) where
ε(λ) is some negligible function.

Now suppose we have a distribution Dn on {0, 1}n, which defines a distribution Pn of Hamming
ball membership programs. For the program collection to be evasive (i.e., to satisfy Definition 2.1), it is
necessary that for any y ∈ {0, 1}n we have PrP←Pn [P (y) = 1] being negligible. But note that

Pr
P←Pn

[P (y) = 1] = Pr
x←Dn

[y ∈ BH,r(x)] = Pr
x←Dn

[x ∈ BH,r(y)].

So the requirement for evasiveness is that this probability is negligible. In other words, we need that Dn

has large min-entropy in the following sense.

Definition 2.4 (Hamming Ball Min-Entropy). (Also known as fuzzy min-entropy [27, Definition
3].) The Hamming ball min-entropy of a random variable X on {0, 1}n is defined to be

HH,∞(X) = − log

(
max

y∈{0,1}n
Pr[X ∈ BH,r(y)]

)
.

For convenience, we give some necessary conditions to have Hamming ball min-entropy at least λ.
Let |Dn| = {x ∈ {0, 1}n : Pr(x← Dn) > 0} be the support of Dn. If for any y ∈ {0, 1}n∣∣∣⋃x∈|Dn|BH,r(x)

∣∣∣
|BH,r(y)|

< 2λ

then we certainly do not have min-entropy at least λ. Hence at the very least it is required that points
in Dn are well-spread-out, as pictured in the left-hand panel of Figure 1.

Intuitively, we can say that if there are enough points in |Dn| and if they are spread out such that
the overlap between the Hamming balls is relatively small, then Hamming ball membership is an evasive
problem.

Definition 2.5 (Hamming Distance Evasive Distribution). Consider an ensemble of distributions
Dλ over {0, 1}n(λ), call it D = {Dλ}λ∈N. Let r(λ) < n(λ)/2 be some function. We say that D is Hamming
distance evasive if the Hamming ball min-entropy of Dλ for Hamming balls in {0, 1}n(λ) of radius r(λ)
(as in Definition 2.4) is at least λ.

3 Conjunctions

Similar to Section 2, we will first give basic definitions regarding conjunctions and then determine nec-
essary conditions for a given conjunction to be evasive.

Definition 3.1 (Conjunction/Pattern Matching With Wildcards). Let n ∈ N and let x ∈
{0, 1, ?}n where ? is a special wildcard symbol. Such an x then corresponds to a conjunction χ : {0, 1}n →
{0, 1} which, using a vector of Boolean variables b = (b1, . . . , bn), can be written as χ(b) =

∧n
i=1 ci where

ci = ¬bi if xi = 0, ci = bi if xi = 1, and ci = 1 if xi = ?. Denote by Wx = {i|xi = ?} the set of all
wildcard positions and let r = |W | ∈ N be the number of wildcards.

Note that a priori the input is considered a plaintext and directly visible to the evaluating party. The
wildcard positions of an obfuscated conjunction are only secret as long as no matching input is known.
Once such an input is presented to the evaluator, it is straightforward to work out all wildcard positions
in time linear in the input length: Simply flip each input bit and check whether this changed input still
matches, in which case the flipped position must be a wildcard.
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Lemma 3.1. Let λ ∈ N be a security parameter and let r < n/2 ∈ N such that r ≤ n − λ. Fix a
conjunction χ corresponding to a vector x ∈ {0, 1, ?}n such that r = |{i|xi = ?}|. Then the probability
that χ evaluates to true on a randomly chosen vector y ∈ {0, 1}n satisfies Pry←{0,1}n [χ(y) = 1] ≤ 1/2λ.

Proof. The total number of points in {0, 1}n is given by 2n. We thus have the probability of a randomly
chosen vector y ∈ {0, 1}n to be matched by χ to be Pry←{0,1}n [χ(y) = 1] = 2r/2n. This probability is

upper-bounded by 1/2λ if r ≤ n− λ.

Lemma 3.1 shows that all conjunctions which have their non-wildcard values uniformly distributed
over {0, 1}n−r are evasive. For general distributions we need to consider the following

Definition 3.2 (Conjunction Evasive Distribution). Consider an ensemble D = {Dλ}λ∈N of dis-
tributions Dλ over {0, 1, ?}n(λ) with r(λ)-many wildcards for functions r(λ) < n(λ). We say that D is
conjunction evasive if the min-entropy of Dλ is at least λ.

4 Obfuscation Definitions

Our ultimate goal is to prove that our obfuscators are distributional virtual black box (VBB) secure. For
this we first state the definition of such a distributional VBB obfuscator.

Definition 4.1 (Distributional Virtual Black-Box Obfuscator [3, 4]). Let P = {Pn}n∈N be a
family of polynomial-size programs with input size n and let O be a PPT algorithm which takes as input
a program P ∈ P, a security parameter λ ∈ N and outputs a program O(P ) (which itself is not necessarily
in P). Let D be a class of distribution ensembles D = {Dλ}λ∈N that sample P ← Dλ with P ∈ P. The
algorithm O is a VBB obfuscator for the distribution class D over the program family P if it satisfies
the following properties:

– Functionality preserving: There exists a negligible function ε(λ) such that for all P ∈ P

1− Pr [∀x ∈ {0, 1}n : P (x) = O(P )(x)] ≤ ε(λ)

where the probability is over the coin tosses of O.
– Polynomial slowdown: For every λ ∈ N and P ∈ P, we have |O(P )| ≤ poly(|P |, λ).
– Virtual black-box: For every (non-uniform) polynomial size adversary A, there exists a (non-uniform)

polynomial size simulator S with oracle access to P , such that for every D = {Dλ}λ∈N ∈ D, and
every (non-uniform) polynomial size predicate ϕ : P → {0, 1}:∣∣∣∣ Pr

P←Dλ,O,A
[A(O(P )) = ϕ(P )]− Pr

P←Dλ,S

[
SP (|P |) = ϕ(P )

]∣∣∣∣ ≤ ε(λ)

where ε(λ) is a negligible function.

In simple terms, Definition 4.1 states that a VBB obfuscated program O(P ) does not reveal anything
more than would be revealed from having black box access to the program P itself.

A definition that is more convenient to work with is distributional indistinguishability.

Definition 4.2 (Distributional Indistinguishability [54]). An obfuscator O for the distribution
class D over a family of programs P satisfies distributional indistinguishability if there exists a (non-
uniform) PPT simulator S such that for every distribution ensemble D = {Dλ}λ∈N ∈ D the following
distributions are computationally indistinguishable

(O(P ), α)
c
≈ (S(|P |), α) (4.1)

where (P, α)← Dλ. Here α denotes some auxiliary information.

Note that the sampling procedure for the left and right side of Equation (4.1) in Definition 4.2
is slightly different. For both we sample (P, α) ← Dλ and for the left side we simply output (O(P ), α)
immediately. On the other hand, for the right side we record |P |, discard P and finally output (S(|P |), α)
instead.

It can be shown that distributional indistinguishability implies VBB security under certain conditions.
To see this, we first require the following
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Definition 4.3 (Predicate Augmentation [54]). For a distribution class D, its augmentation under
predicates aug(D) is defined as follows: For any (non-uniform) polynomial-time predicate ϕ : {0, 1}∗ →
{0, 1} and any D = {Dλ}λ∈N ∈ D, the class aug(D) indicates the distribution D′ = {D′λ}λ∈N where
D′λ samples (P, α) ← Dλ, computes α′ = (α,ϕ(P )) and outputs (P, α′). Here α denotes some auxiliary
information.

Theorem 4.1 (Distributional Indistinguishability Implies VBB [54]). For any family of pro-
grams P and a distribution class D over P, if an obfuscator satisfies distributional indistinguishability
(Definition 4.2) for the class of distributions aug(D) then it also satisfies distributional VBB security for
the distribution class D (Definition 4.1).

Proof. See [12, Lemma 2.2]. ut

Lastly, we also want to prove that our obfuscator is input hiding. For this we state the definition of
an input hiding obfuscator.

Definition 4.4 (Input Hiding Obfuscator [3]). An obfuscator O for a collection of evasive programs
P is input hiding, if for every PPT adversary A there exists a negligible function ε such that for every
n ∈ N and for every auxiliary input α ∈ {0, 1}poly(n) to A:

Pr
P←Pn

[P (A(α,O(P ))) = 1] ≤ ε(n),

where the probability is also over the randomness of O.

To summarise, Definition 4.4 states that given the obfuscated program O(P ) it is hard to find an
input that evaluates to 1.

5 Computational Assumptions

In this section we introduce our new computational assumptions. We start with the definition of a safe
prime.

Definition 5.1 (Safe Prime, Sophie Germain Prime). A prime q is called a safe prime if q is of
the form q = 2p+ 1 for a prime p. The prime p is then called a Sophie Germain prime.

Problem 5.1 (Distributional Modular Subset Product Problem). Let r < n ∈ N, D be a distri-
bution over {0, 1}n. Given a sequence of distinct primes (pi)i=1,...,n, a safe prime q such that∏

i∈I
pi <

q

2
< (1 + o(1)) max{pi}r for all I ⊂ {1, . . . , n} with |I| ≤ r (5.1)

and an integer

X =

n∏
i=1

pxii mod q (5.2)

for some vector x ← D, the (r, n,D)-distributional modular subset product problem (MSPr,n,D) is to
find x.

We also state a decisional version of the problem.

Problem 5.2 (Decisional Distrib. Modular Subset Product Problem). Let r < n ∈ N, D be a
distribution over {0, 1}n. Define the distribution

D0 = ((pi)i=1,...,n, q,X)

where (pi)i=1,...,n are distinct primes, q satisfies Equation (5.1), and X satisfies Equation (5.2) for some
vector x← D. Define the distribution

D1 = ((pi)i=1,...,n, q,X
′)

8



where (pi)i=1,...,n and q are as in D0, but

X ′ ← (Z/qZ)∗.

Then the (r, n,D)-decisional distributional modular subset product problem (D-MSPr,n,D) is to distin-
guish D0 from D1. In other words, given a sample from Db for uniform b ∈ {0, 1}, the problem is to
determine b.

We believe these computational problems are hard whenever the fuzzy matching problem itself is
evasive. Precisely we make the following conjecture that covers all possible distributions D.

Conjecture 1. Fix r < n/2 ∈ N. If D is a distribution on {0, 1}n with Hamming ball min-entropy at
least λ (i.e. D is a Hamming distance evasive distribution in the sense of Definition 2.5) then solving
D-MSPr,n,D (Problem 5.2) requires Ω(min{2λ, 2n/2}) operations.

Note that Problem 5.2 only makes sense if the two distributions are different. In the case 2n � q
we conjecture that the values X =

∏n
i=1 p

xi
i mod q are distributed close to uniformly if x is sampled

uniformly, and so it makes no sense to ask for a distinguisher between this distribution and the uniform
distribution. For the proof of Theorem 5.1 we need a more precise version of this statement, so we make
the following conjecture that we believe is very reasonable.

Conjecture 2. Let r, n, (pi)i=1,...,n, q be as in Problem 5.1, with the extra condition that q ≤ 2n. Let D
be the uniform distribution on {0, 1}n. Then the statistical distance of the distribution

∏n
i=1 p

xi
i mod q

over x← D and the uniform distribution on (Z/qZ)∗ is negligible.

The situation is summarised in the following diagram. The left hand side is the low-density case. The
right hand side is the high-density case where for every value X there are likely (multiple) solutions. As
can be seen in Figure 2 our interest reaches over all density cases.

q � 2n q ≈ 2n q � 2n

injective: given X
then x is unique both assumed hard

decisional: impossible
search: not unique

A “search-to-decision” reduction in the low-density or density one case (i.e., 2n < q) is possible by
borrowing techniques from [35, 46]. One can obtain the result that a decision oracle for Problem 5.2
in this case can be used to solve the search problem Problem 5.1 in polynomially many queries to the
decision oracle. This gives further evidence that Problem 5.2 should be hard (recall that the assumption
makes no sense in the high-density case).

5.1 Algorithms

We now consider algorithms for Problem 5.1. If the Hamming weight of x is too small, or if q is too
large, then it might happen that

∏n
i=1 p

xi
i < q and hence Problem 5.1 can be solved by factoring X over

the integers. This is the low-density case. More generally, an approach to Problem 5.1 is to guess some
xi for i ∈ I and try to factor X

∏
i∈I p

−xi
i mod q. It can be shown that if q = O((n log(n))r) and if x

is sampled from a distribution with large Hamming ball min-entropy then this approach does not lead
to an efficient attack. In short, the requirement that the Hamming ball membership program is evasive
already implies that such an attack requires exponential time.

We now consider algorithms that are appropriate in general. There is an obvious meet-in-the-middle
algorithm: Let m = bn/2c. Given X we compute a list L of pairs (z, Z) where Z =

∏m
i=1 p

zi
i mod q for

all z ∈ {0, 1}m. Then for all z′ ∈ {0, 1}n−m compute Z ′ = X
∏n−m
i=1 p

−z′i
m+i mod q and check if Z ′ is in

L. If there is a match then we have found x = z‖z′. This attack requires O(2n/2) operations. It follows
that n must be sufficiently large for the problem to be hard.
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5.2 Hardness

We now give evidence that Problems 5.1 and 5.2 are hard in the high-density case. Our argument is
based on ideas from index calculus algorithms in finite fields. We prove that if one can solve Problem 5.1
(in the medium-/high-density case) in time T then can solve the discrete logarithm problem (DLP) in
(Z/qZ)∗ in time poly(T ). Note that this result gives at best a subexponential hardness guarantee, and
does not say anything about post-quantum security. A similar computational assumption (called the very
smooth number discrete log) was considered in [18], where a similar reduction to the discrete logarithm
problem is also given.

Theorem 5.1. Fix r, n ∈ N such that r < n/2. Let q be prime such that q ≤ 2n and (pi)i=1,...,n be
a sequence of distinct primes such that pi ∈ [2, O(n log(n))]. Assume Conjecture 2 holds and suppose
MSPr,n,D (Problem 5.1) can be solved with probability 1 in time T . Then there is an algorithm to solve

the DLP in (Z/qZ)∗ with expected time Õ(nT ).

Proof. Let g, h ∈ Z∗q be a DLP instance and let A be an oracle for Problem 5.1 that runs in time T and
succeeds with probability 1. Let g be a generator of (Z/qZ)∗ so that its order is M = q − 1. Choose
random 1 < a < q and compute C = ga mod q. Call A on C. Due to the assumptions in the theorem,
with probability bounded below by a constant, A succeeds and outputs a solution x. Store (a, x). Note
that each relation implies a linear relation

a ≡
n∑
i=1

xi logg(pi) mod M.

Repeat until we have n linearly independent relation vectors x, and hence use linear algebra to solve for
logg(pi). Finally, choose a random b and set C = hgb mod q. Call A on C to get, with high probability,
one more relation (b, y). Knowing logg(pi) we now compute logg(h) = −b+

∑
i yi logg(pi). ut

The above proof can be generalised to any group whose order is known. When q = (n log(n))r then
the condition 2n ≥ q boils down to r < n/ log2(n log(n)). Hence, when r < n/ log2(n log(n)) the hardness
of Problem 5.1 follows from the discrete log assumption.

It follows that Problem 5.1 has a spectrum of difficulty, ranging from easy in the extreme low-density
case to hard in the medium-/high-density case. We visualise the situation below.

r = n r = n/2 r = 1r = n/ log2(n log(n))

easy

non-neg. gap√
log(2)nλ

conjectured
hard hard

All index calculus algorithms for factoring and discrete logarithms are based on smoothness. A typical
situation is to generate certain random elements x modulo N (or p), and check if they are equal to∏
i p
ei
i for primes pi less than some bound. If one could efficiently compute a smooth product

∏
i p
ei
i

that is congruent to x modulo N (or p) then factorization and discrete logarithm algorithms would be
revolutionised (and classical public key crypto broken).

Our subset product problem is slightly different, since we impose the restriction ei ∈ {0, 1}. But
we still believe any fundamentally new algorithmic approach to the problem would likely lead to major
advances. The only algorithms we know for this problem are “combinatorial” (in other words, requiring
some kind of brute-force search), apart from when the density is extremely low and we can just factor.
Note that our parameter choices (e.g. in Figure 2) are very far from such low density (as we require
r < n/2 by Lemma 2.3).

We briefly discuss the relation with lattice problems in the next section and in Section 7.3. Our feeling
is that the subset product problem is not really a lattice problem but a number-theoretical problem. As
evidence, references [24, 47] use similar number theory ideas to solve coding/lattice type problems.
Nevertheless, any new algorithms to solve Problem 5.1 would have implications in lattices, such as giving
an improvement on the work of [24].

Ultimately, we are making a new assumption based on our experience and knowledge. A similar
assumption was made in [18]. We hope this work will inspire further study of these problems.
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5.3 Post-Quantum Security

To the best of our knowledge there exists no classical nor quantum algorithm that efficiently solves either
of Problem 5.1 or Problem 5.2 in general.

Consider an adversary that has access to a quantum computer for computing discrete logarithms.
Given an encoding ((pi)i=1,...,n, q,X) of a secret x ∈ {0, 1}n, the adversary may then turn it into a
modular subset sum instance logg(X) =

∑
i xi logg(pi) mod q− 1. Such a modular subset sum problem

may be classified by its density d, see [19, 38]. In our case, when x is chosen from the uniform distribution,
the density is d = n/ log2(q).

There is a polynomial time algorithm for low-density subset sum instances where d < 0.645 [38] which
was later improved to d < 0.941 [19]. This algorithm requires access to a perfect lattice oracle (just using
LLL [41] is not enough). It is furthermore assumed that the lattice oracle is perfect.

In our case, we can give an estimate for when we expect post-quantum security. By the prime number
theorem, we have q ∼ (n log n)r. Thus we can estimate the density by d ∼ n/(r log2(n log n)). To ensure
density of d > 1 we can require

r <
n

log2(n log n)
= rPQ(n). (5.3)

Hence we conjecture post-quantum hardness of the modular subset product problem when r < rPQ(n),
and potentially even for slightly larger values for r.

6 Continued Fractions

The background can be found in any number theory textbook, such as [31]. Consider a rational number
x ∈ Q. It has a finite continued fraction representation of the form

x = a0 +
1

a1 +
1

. . . +
1

aN

for ai ∈ N. We define the notation x = [a0; a1, a2, . . . , aN ] for such a representation. In the more general
case of x ∈ R such a representation also exists, though it is not necessarily finite.

We call the fractions hi/ki for an index i ∈ N defined by the recursion

hi = aihi−1 + hi−2, h−1 = 1, h−2 = 0,

ki = aiki−1 + ki−2, k−1 = 0, k−2 = 1
(6.1)

the convergents of x.

Theorem 6.1 (Diophantine Approximation [34]). Let α ∈ R then there exist fractions p/q ∈ Q
such that

∣∣∣α− p
q

∣∣∣ < 1√
5q2
. If, on the other hand, there exist p/q ∈ Q such that

∣∣∣α− p
q

∣∣∣ < 1
2q2 , then p/q

is a convergent of α.

Proof. The proof of the second half of this theorem is analogous to the proof of a generalised version
given by Theorem G.1. ut

To find the continued fraction representation it is useful to review the extended Euclidean algorithm
first.

Extended Euclidean Algorithm. For a pair of integers a, b, the extended euclidean algorithm finds
integers x, y such that ax+by = gcd(a, b). The algorithm proceeds as follows: First, it initialises variables
ri, si, ti for i = 0, 1 as

r0 = a, r1 = b, s0 = 1, s1 = 0, t0 = 0, t1 = 1.

11



Then it iteratively produces the sequence

ri+1 = ri−1 − qiri, si+1 = si−1 − qisi, ti+1 = ti−1 − qiti. (6.2)

Here ri+1 and qi are found using Euclidean division (ri−1 = qiri+ri+1) such that 0 ≤ ri+1 < |ri|. Finally,
the algorithms stops when ri+1 = 0.

It can be shown that the worst-case runtime of the extended Euclidean algorithm is of the order
O(log(b)) assuming that b < a; the average runtime is of a similar order [20, 32].

Finding Convergents. Comparison of Equation (6.1) with Equation (6.2) shows that the convergents
of a fraction p/q ∈ Q are exactly produced by the integers si, ti (up to signs) in the steps of the
extended Euclidean algorithm applied to p and q. Thus the runtime for computing the continued fraction
representation is essentially the same as that of the extended Euclidean algorithm. Furthermore, we see
that the number of convergents is linear in the input size.

7 Obfuscating Hamming Distance

In this section we will present our Hamming distance obfuscator in detail and then give some examples
for parameter choices. The obfuscator is given in Section 7.1.

The Hamming Distance Obfuscator. Let r, n ∈ N with r < n/2. Choose a random sequence of
small distinct primes (pi)i=1,...,n (i.e., pi 6= pj for i 6= j). By the prime number theorem it suffices
to randomly sample each pi from the interval [2, O(n log(n))]. Choose then a safe prime q such that∏
i∈I pi < q/2 for all I ⊂ {1, . . . , n} with |I| ≤ r. The prime q should be sampled to satisfy the bound

q/2 < (1 + o(1)) max{pi}r as in Equation (5.1). We refer to the discussion regarding Equation (9.3) to
justify why we may assume that such a suitable safe prime exists.

To encode an element x ∈ {0, 1}n, publish

X =

n∏
i=1

pxii mod q (7.1)

along with the list of primes (pi)i=1,...,n and q. Note that, for this encoding to hide x, we require that
wH(x) > r and

∏n
i=1 p

xi
i > q.

Given another element y ∈ {0, 1}n we can now check if y ∈ BH,r(x) using the encoding X. First we
compute Y =

∏n
i=1 p

yi
i mod q from which we can find

E = XY −1 mod q =

n∏
i=1

pxi−yii mod q =

n∏
i=1

pεii mod q

where εi ∈ {−1, 0, 1}. We show in Lemma 7.1 that if y ∈ BH,r(x) then we are able to recover the errors
εi using continued fraction decomposition and factoring.

Legendre Symbol. Recall that the Legendre symbol (aq ) is +1 if a is a non-zero square modulo q and

−1 if a is a non-zero non-square. It is multiplicative in the sense that (abp ) = (ap )( bp ). Thus for X as

in Equation (7.1) the Legendre symbol (Xq ) is equal to the product
∏
i(
pi
q )xi , which reveals a linear

equation in the secret (xi)i=1,...,n. In other words, the encoding X leaks one bit of information about x.
Note that this does not violate the definition of VBB security: since the primes pi are chosen randomly
by the obfuscator, we cannot fix in advance a predicate and compute it using the Legendre symbol.

Why a Safe Prime. As mentioned, the Legendre symbol leaks a linear equation in (xi). If there were
other small prime divisors of q− 1 then one could extend this idea to get further linear equations. Hence
we choose q to be a safe prime to ensure that only the single bit of leakage arises. An alternative solution
would be to square X, but this would mean we need to use larger parameters to do fuzzy matching with
Hamming weight r, so we prefer to use the minimal parameters.
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7.1 Obfuscator and Obfuscated Program

To be precise, for every pair of integers r < n/2 ∈ N and every binary vector x ∈ {0, 1}n there exists
a polynomial size program Px : {0, 1}n → {0, 1} that computes whether the input vector y ∈ {0, 1}n is
contained in a Hamming ball BH,r(x) and evaluates to 1 in this case, otherwise to 0. Denote the family
of all such programs with P.

The Hamming distance obfuscator OH : P → P ′ takes one such program Px ∈ P and uses Algo-
rithm 7.2 to output another polynomial size program in a different family denoted by P ′. In our case
this is the decoding algorithm along with the polynomial size elements (pi)i=1,...,n, q and X ∈ Z/qZ.

We furthermore require a dependent auxiliary input point function obfuscator [8, 9] that we call OPT .
Let Rz : {0, 1}n → {0, 1} be a program that takes an input y ∈ {0, 1}n and outputs 1 if and only if
y = z. The point function obfuscator outputs an obfuscated version OPT (Rz) of Rz. In addition to the
output of Algorithm 7.2, our obfuscator OH also outputs Q = OPT (Rx).

As the decoding algorithm is a universal algorithm, we will simply denote the obfuscated program
OH(P ) with the tuple ((pi)i=1,...,n, q,X,Q). During the execution of the obfuscated program, Algo-
rithm 7.4 is run on (n, (pi)i=1,...,n, q,X, y) and returns either ⊥ (in which case the program returns 0)
or a candidate value x′. The obfuscated program then outputs Q(x′), which is 1 if and only if x′ = x.
Formally, the obfuscated program is given in Algorithm 7.1.

Algorithm 7.1 Obfuscated Program (with embedded data (pi)i=1,...,n, q,X,Q)

procedure Execute(y ∈ {0, 1}n)
x′ = Decode(n, (pi)i=1,...,n, q,X, y)
if x′ =⊥ then return 0
return Q(x′)

end procedure

The encoder (Algorithm 7.2) receives as an input the distance threshold r, the vector size n and the
target vector x. It then outputs the encoding represented by a triple ((pi)i=1,...,n, q,X).

Algorithm 7.2 Encoding (Obfuscation)

procedure Encode(r < n/2 ∈ N; x ∈ {0, 1}n)
sample a random sequence of distinct primes (pi)i=1,...,n from [2, O(n log(n))]
sample small safe prime q such that ∀I ⊂ {1, . . . , n} with |I| ≤ r,

∏
i∈I pi < q/2

compute X =
∏n
i=1 p

xi
i mod q

return ((pi)i=1,...,n, q,X)
end procedure

The constrained factoring algorithm (Algorithm 7.3) factors an input number using a fixed list of
primes and outputs the factors respectively fails if the input is composite with factors that are not in
the list of primes.

Algorithm 7.3 Constrained Factoring

procedure CFactor(n, (pi)i=1,...,n, x ∈ N)
set F = {}
for i = 1, . . . , n do

if pi | x then append pi to F and reduce x← x/pi
end for
return F if x = 1 else ⊥

end procedure
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The decoder (Algorithm 7.4) receives as an input an encoding in the form of a triple ((pi)i=1,...,n, q,X)
and a test vector. It then attempts to decode the triple and outputs the original target vector or fails if
the test vector was not within the required distance threshold.

Algorithm 7.4 Decoding (Executing the obfuscated program)

procedure Decode(n, (pi)i=1,...,n, q ∈ N; X ∈ Z/qZ; y ∈ {0, 1}n)
compute Y −1 =

∏n
i=1 p

−yi
i mod q

compute E = XY −1 mod q
compute the continued fraction representation of E/q, with convergents C
for all h/k ∈ C do

F ← CFactor(n, (pi)i=1,...,n, k), F ′ ← CFactor(n, (pi)i=1,...,n, kE mod q)
if F 6= ⊥ and F ′ 6= ⊥ then

let m = (0, . . . , 0) ∈ {0, 1}n be the zero vector
for i = 1, . . . , n do

if pi ∈ F ∪ F ′ then set mi = 1
end for
return y ⊕m

end if
end for
return ⊥

end procedure

7.2 Decoding

In this section we will analyse decoding complexity and efficiency. For decoding we have to factor the
product

E =

n∏
i=1

pεii mod q. (7.2)

where εi ∈ {−1, 0, 1}. First, we note that Equation (7.2) can be written as ND−1 modulo q, or in other
words ED = N + sq, N =

∏n
i=1 p

µi
i , and D =

∏n
i=1 p

νi
i for some s ∈ Z and where now µi, νi ∈ {0, 1},

µiνi = 0 for all i. By expanding E/q into a continued fraction we are then able to recover s/D from one
of the convergents hi/ki for some i ∈ N under the condition that ND < q/2. Hence decoding always
succeeds since we have chosen the primes (pi)i=1,...,n and q such that ND =

∏
i∈I pi < q/2 for some

I ⊂ {1, . . . , n} with |I| ≤ r.
Lemma 7.1 (Correctness). Consider the algorithms Encode (Algorithm 7.2) and Decode (Algo-
rithm 7.4). For every r < n/2 ∈ N, x ∈ {0, 1}n, for every

((pi)i=1,...,n, q,X)← Encode(r, n, x)

and for every y ∈ {0, 1}n such that dH(x, y) < r it holds that

Decode(n, (pi)i=1,...,n, q,X, y) = x.

Proof. To see why we require ND < q/2, note that there exists an s ∈ Z such that ED − sq = N .

Therefore
∣∣∣Eq − s

D

∣∣∣ = N
qD . Now Theorem 6.1 asserts us that s/D is a convergent of E/q if

∣∣∣Eq − s
D

∣∣∣ < 1
2D2

and so we find the requirement ND < q/2.
For each convergent hi/ki of E/q, ki respectively (kiE mod q) can be factored separately using the

pi to recover the νi and µi from which x ∈ {0, 1}n can then finally be recovered using y ∈ {0, 1}n. This
all works assuming y ∈ BH,r(x) since then the factors of N and D will be unique (of multiplicity 1) and
contained in the sequence (pi)i=1,...,n. If now y /∈ BH,r(x) then with high probability (dependent on r, n)
the factors of N and D will not be unique and/or not contained in (pi)i=1,...,n in which case the decoding
fails. ut
Remark 1. Note that our decoding algorithm can also be used to solve the problem of matching distance
in Zn under the `1 norm. If X =

∏
i p
xi
i mod q is an encoding of x ∈ Zn and if y ∈ Zn is such that

‖x−y‖1 ≤ r then by taking continued fractions and factoring still reveals the error vector e = x−y ∈ Zn.
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Decoding Efficiency. We will now argue that decoding E is efficient. Assuming that E = XY −1 for
some x, y ∈ {0, 1}n such that dH(x, y) < r, one of the convergents hi/ki will yield s/D. From Section 6
we know that in our case the number of convergents we have to factor is of the order O(log(q)) in the
worst case. Because we fixed a list of small primes pi beforehand, we can test for a proper convergent
hi/ki and simultaneously factor N and D efficiently. Thus decoding is of the order O(n log(q)) in the
number of (modular) multiplications/divisions. By the prime number theorem we may take q ∼ (n log n)r

and thus decoding is also of the order O(nr log(n log n)).

7.3 Avoiding False Accepts

We define a false accept to be an input y that is far from x but such that E has a smooth product
representation. Recall that the obfuscator OH defined in Section 7.1 additionally outputs Q = OPT (Rx)
which is used to prevent such false accepts. We will explain in this section that the additional step can
be omitted if r is chosen such that

r > log(2
√

2πe)
n

log(n log(n))
= rf (n). (7.3)

Let y be a false accept, which means XY −1 ≡
∏
i p
εi
i mod q as in Equation (7.2), where εi ∈

{−1, 0, 1}. Then
n∏
i=1

pxi−yi−εii = 1 mod q

where −2 ≤ xi − yi − εi ≤ 2. It follows that there is a non-zero vector in the lattice

Λ =

{
x ∈ Zn

∣∣∣∣∣
n∏
i=1

pxii = 1 mod q

}

with norm bounded by 2
√
n. For more details about this lattice see Appendix F.

We now explain why Equation (7.3) implies that Λ is not expected to have a short enough vector
to admit a false accept. Equation (F.2) tells us that the expected length of the shortest vector in Λ is

λ1 ∼
√

n
2πeq

1
n =

√
n

2πe (n log(n))
r
n . Hence, to minimise the probability of false accepts, we should choose

r, n ∈ N such that λ1 > 2
√
n, i.e, such that

(n log(n))
r
n > 2

√
2πe. (7.4)

Equation (7.4) assumes that q ∼ (n log(n))r, i.e. the size of the primes pi is as small as possible. If
we want to be able to use a smaller r we may also choose the primes pi > n log(n).

7.4 Example Parameters

The parameters of the Hamming distance obfuscator can be chosen fairly flexibly. We want to emphasize
that a priori any vector size n ∈ N is possible. The actual security level of the obfuscator depends on
the error parameter r < n/2 which we expect to be fixed by the demands of the application. Note that
it is naturally bounded by Lemma 2.2. Assuming a uniform distribution of possible target vectors x,
the bit-security (meaning logarithm to base 2 of the expected number of operations to find an accepting
input) of a parameter set (r, n) can be calculated using

λr,n = − log2

(
hr
2n

)
where hr is defined in Lemma 2.1. We give some example parameter sets along with their bit-security in
Figure 2.
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r bλr,nc blog2(q)c
155 64 1804
128 102 1490
32 346 372

(a) n = 512 (rf (n) = 134, rPQ(n) = 44)

r bλr,nc blog2(q)c
306 128 3915
256 199 2546
64 686 818

(b) n = 1024 (rf (n) = 244, rPQ(n) = 80)

Figure 2: Example parameter sets for obfuscated Hamming distance with r < n/2 and bit-security pa-
rameter λr,n. We estimate the size of q by q ∼ (n log n)r. When r > rf (n) (see Equation (7.3)) we do
not expect false accepts, and so do not need to use the point obfuscator. When r < rPQ(n) (see Equa-
tion (5.3)) then the scheme is conjectured to be post-quantum secure (as long as the point obfuscator is
post-quantum secure).

7.5 Performance

For completeness, we have implemented (an unoptimised version of) the Hamming distance obfuscator us-
ing the C programming language and conducted experiments on a desktop computer (Intel(R) Core(TM)
i7-4770 CPU 3.40 GHz). We take n = 511 and r = 85 (i.e. bλ85,511c = 185 and blog2(q)c = 989) to allow
comparison with [52] and [37]. We measured the time to produce and decode 1000 obfuscation instances.
We found an average encoding time of 52 ms and an average decoding time of 14 ms. In comparison
Karabina and Canpolat [37] found 100 ms for encoding and 350 ms for decoding respectively on a similar
computer (Intel(R) Xeon(R) CPU E31240 3.30 GHz). It is possible to further speed up encoding by choos-
ing a good safe prime generating algorithm and decoding can be parallelised in the factoring steps instead
of attempting to factor after computing each new convergent. Note that the data ((pi)i=1,...,n, q,X) can
be stored in less than one kilobyte.

An interactive model of program obfuscation called token based obfuscation was first considered by
Goldwasser et al. [29] and an LWE based implementation was presented by Chen et al. [16]. They
found experimentally that “For the case of the Hamming distance threshold of 3 and 24-bit strings, the
TBO construction requires 213 GB to store the obfuscated program.” Obfuscation took 72.6 minutes.
Of course, the parameters (n, r) = (24, 3) are much too small for the function to be evasive. Further,
this problem is easily solved using a secure sketch. In comparison our scheme can be implemented with
realistic parameters like (n, r) = (511, 85) and requires less than a kilobyte of storage and less than a
second to run. Clearly the ring-LWE approach in [16] is orders of magnitude worse than in our scheme.
Also for comparison, the scheme of Bishop et al [7] (using the optimised variant in [5]) requires n + 1
elements of a group with a hard discrete logarithm problem. With n = 511 and a group of size 2256 this
would require at least 16 kilobytes to store the program.

Due to lack of space we do not give further details. To deflect any criticism of our performance
analysis, we remark that none of the works [5, 7, 16] give any performance comparison with previous
proposals.

7.6 Polynomial Ring Variant

There is a variant of our Hamming distance obfuscator that uses a polynomial ring over a finite field to
encode binary vectors. Note that this variant works analogously for the conjunction obfuscator.

Consider a field k and the ring of polynomials k[z] respectively the field of fractions k(z). One can
show that a similar statement to Theorem 6.1 holds; see Appendix G for a summary of the relevant
theory and especially Theorem G.1 for the generalised statement.

Let R = k[z], then the idea is to replace Z/qZ by R/Q where the ideal Q = (q(z)) is generated by
some suitable irreducible polynomial q ∈ R. For the ground field we may take a finite field of suitable
order.

Given r < n/2 ∈ N, encoding a target vector x ∈ {0, 1}n follows the same process as before. We
choose a random sequence of small distinct irreducible polynomials (pi)i=1,...,n in R and an irreducible
polynomial q such that ∑

i∈I
deg(pi) < deg(q)

for all I ⊂ {1, . . . , n} with |I| ≤ r. To encode x ∈ {0, 1}n, publish X =
∏n
i=1 p

xi
i mod q along with

the polynomials (pi)i=1,...,n and q. Given another element y ∈ {0, 1}n we can check if y ∈ BH,r(x) using
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the encoding X. Again, to recover the errors εi we use continued fraction decomposition and factoring,
though now in R. We are asserted that this works by Theorem G.1.

Decoding Condition. Again, we find that Equation (7.2) can be written as ED = N + sq, N =∏n
i=1 p

µi
i , and D =

∏n
i=1 p

νi
i for some polynomial s ∈ R. Hence we have that

∣∣∣Eq − s
D

∣∣∣ =
∣∣∣ NqD ∣∣∣. The-

orem G.1 asserts us that s/D is a convergent of E/q if
∣∣∣Eq − s

D

∣∣∣ < 1
|D|2 , i.e. for correctness in the

polynomial case we find the relaxed requirement |ND| < |q|.

Comparison to Z/qZ-case. Using polynomials has several advantages: The ground field k can be
of small order since the order of R/Q is given by |R/Q| = |k|deg(q) and thus controllable by the size
of q ∈ R. We may furthermore choose a compact representation of the irreducibles (pi)i=1,...,n and q
to shrink encoding size and speed up computation. Working out an exact comparisons of parameters,
encoding sizes, and computational aspects we leave as a future open question.

8 Security

Here we analyse the security of our Hamming distance obfuscator. We will show distributional VBB secu-
rity and that the obfuscator is input-hiding. Our results will depend on the hardness of the distributional
modular subset product problem that was introduced in Section 5.

8.1 Security of the Obfuscator

To show that the Hamming distance obfuscator is a distributional VBB obfuscator, we need to show that
it satisfies all the properties of Definition 4.1. Note that Definition 4.1 for VBB obfuscation is given in
asymptotic terms with respect to a security parameter λ. On the other hand, Problem 5.1 and Problem 5.2
are given in terms of explicit parameters r, n ∈ N. Thus in the following, let the parameters r, n ∈ N be
implicitly dependent on the security parameter λ, i.e. r = r(λ), n = n(λ). Taking (n(λ), r(λ)) = (16λ, λ)
gives Theorem 1.1 of the introduction.

Theorem 8.1. Let (n(λ), r(λ)) be a sequence of parameters for λ ∈ N. Let D = {Dλ}λ∈N be an ensemble
of Hamming distance evasive distributions (as in Definition 2.5). Suppose that D-MSPr,n,D (Problem 5.2)
is hard and that OPT is a dependent auxiliary input distributional VBB point function obfuscator. Then
the Hamming distance obfuscator OH is a distributional VBB obfuscator.

Proof. The obfuscator is functionality preserving by Lemma 7.1. It is also clear that the obfuscator
causes only a polynomial slowdown when compared to an unobfuscated Hamming distance calculation
since the evaluation algorithm runs in time polynomial in all the involved parameters.

By Theorem 4.1 it is sufficient to show that there exists a (non-uniform) PPT simulator S such
that, for every distribution ensemble D = {Dλ}λ∈N ∈ D, it holds that (where α denotes any auxiliary
information, if required)

(OH(P ), α)
c
≈ (S(|P |), α).

Let D now be a class of distribution ensembles such that each D ∈ D is a Hamming distance evasive
distribution as in Definition 2.5. We will construct the simulator S. First the simulator S takes as input
|P | and determines the parameters r, n ∈ N. Then it runs Algorithm 8.1 which will generate the first
half of the eventual output.

Lastly, the simulator S samples a uniformly randomQ′ from the codomain ofOPT (using the simulator
SPT that exists due to the assumption of OPT being a distributional VBB obfuscator). The simulator
SPT receives the auxiliary information ((pi)i=1,...,n, q,X

′) as additional input, provided by the top-level
simulator S.

Denote the simulator output by the tuple ((pi)i=1,...,n, q,X
′, Q′). It is clear that S is polynomial-time

since Algorithm 8.1 is too. Finally, assuming that Problem 5.2 is hard, a real obfuscation ((pi)i=1,...,n, q,X,Q)
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Algorithm 8.1 Encoding Simulator

procedure SimulateEncode(r < n/2 ∈ N)
sample random sequence of distinct primes (pi)i=1,...,n from [2, O(n log(n))]
sample small safe prime q such that ∀I ⊂ {1, . . . , n} with |I| ≤ r:

∏
i∈I pi < q/2

sample X ′ ← Z/qZ uniformly
return ((pi)i=1,...,n, q,X

′)
end procedure

obtained from the Hamming distance obfuscator OH described in Section 7.1 and the simulator output
are computationally indistinguishable:

((pi)i=1,...,n, q,X,Q)
c
≈ ((pi)i=1,...,n, q,X

′, Q′). (8.1)

This completes the proof. ut

Remark 2. As noted in Section 7.3, the obfuscator OH can be modified to omit the point obfuscation
step. Hence Theorem 8.1 can be restated without requiring a distributional VBB obfuscator OPT by
assuming an ensemble of Hamming distance evasive distributions {Dλ}λ∈N that satisfy Equation (7.3).

Next, we will show that the Hamming distance obfuscator is input hiding according to Definition 4.4.

Theorem 8.2. Let (n(λ), r(λ)) be parameters satisfying r > rf (n) (recall Equation (7.3)). Let D =
{Dλ}λ∈N be an ensemble of Hamming distance evasive distributions (as in Definition 2.5). Suppose that
MSPr,n,D (Problem 5.1) is hard. Then the Hamming distance obfuscator OH is input hiding.

Proof. The ensemble {Dλ}λ∈N of Hamming distance evasive distributions induces an ensemble of pro-
grams {Pn}n∈N (see Section 7.1). Suppose there exists a PPT adversary A such that the success proba-
bility is bounded by

Pr
P←Pn

[P (A(α,OH(P ))) = 1] ≤ g(n)

for some function g(n) (recall Definition 4.4 of an input hiding obfuscator).
We will now construct an algorithm A′ that solves Problem 5.1 given A with success probabil-

ity bounded by g(n). Let ((pi)i=1,...,n, q,X) be an instance of Problem 5.1. Since r > rf (n), this in-
stance uniquely defines x ∈ {0, 1}n such that X =

∏n
i=1 p

xi
i mod q, and hence defines a program P .

Then ((pi)i=1,...,n, q,X) is a correct obfuscation of P . The algorithm A′ runs the adversary on A on
((pi)i=1,...,n, q,X) and A outputs a vector y ∈ {0, 1}n that is accepted by P with probability g(n). Note
that in Definition 4.4 the adversary outputs a valid input for P , not OH(P ). Hence, y is close to x as
r > rf (n). Finally, A′ decodes X given y using Algorithm 7.4 and thus outputs x with probability g(n).

But we assumed that Problem 5.1 is hard and hence g(n) is negligible. ut

9 Obfuscating Conjunctions

In this section we describe a new obfuscator for conjunctions, based on the Hamming distance obfuscator
of Section 7. Recall the notation χ(x) from Definition 3.1.

We first give a generic reduction of pattern matching with wildcards to hamming distance. Let
x ∈ {0, 1, ?}n be a pattern and let r be the number of wildcards. Let x′ ∈ {0, 1}n be any string such
that x′i = xi for all non-wildcard positions 1 ≤ i ≤ n. Then it is clear that any y ∈ {0, 1}n that satisfies
the pattern has Hamming distance at most r from x′. The problem is that there are many other vectors
y that have Hamming distance at most r from x′ but which do not satisfy the pattern. Further, pattern
matching with wildcards can be evasive with r as large as n − λ where λ is a security parameter (e.g.,
n = 1000 and r = 900), while Hamming distance is not evasive if r > n/2). So it is clear that this is not
a general reduction of obfuscating conjunctions to fuzzy matching.

However, in certain parameter ranges (where r < n/2) one can consider using fuzzy matching to
give an approach to obfuscating conjunctions. As we will explain in this section, our scheme has some
advantages over the generic reduction because inputs y that match the pattern are more easily identified
than vectors y that are close to x′ in the Hamming metric but do not match the pattern. Indeed, we will
explain that, for certain parameter ranges, our approach is much more compact than other solutions to
the conjunction problem.
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The Conjunction Obfuscator. Let n ∈ N and x ∈ {0, 1, ?}n. Choose a random sequence of small
distinct primes (pi)i=1,...,n (i.e. pi 6= pj for i 6= j). It suffices to randomly sample each pi from the
interval [(n log(n))2, ((n+ 1) log(n+ 1))2]. Denote by Wx = {i |xi = ?} the set of indices such that xi is
a wildcard. Assume we can choose a safe prime q such that∏

i∈Wx

pi <
q

2
<

∏
i∈Wx∪{j}

pi (9.1)

for all j ∈ {1, . . . , n} \Wx. Set r = |Wx|; we furthermore require that r < n/2 as we will see shortly.

To encode x, consider the map σ : {0, 1, ?} → {−1, 0, 1} that acts in the following fashion

0 7→ −1, 1 7→ 1, ? 7→ 0.

Publish then

X =

n∏
i=1

p
σ(xi)
i mod q

along with the list of primes (pi)i=1,...,n and the modulus q. Note that, for this encoding to hide x, we

require
∏n
i=1 p

σ(xi)
i > q.

Given a vector y ∈ {0, 1}n such that χ(y) = 1, we compute Y =
∏n
i=1 p

σ(yi)
i mod q from which we

can immediately find

E = XY −1 mod q =

n∏
i=1

p
σ(xi)−σ(yi)
i mod q =

n∏
i=1

pεii mod q (9.2)

where εi ∈ {−1, 0, 1}. We then recover the errors εi using continued fraction decomposition and factoring.
The errors εi directly correspond to the wildcard positions Wx.

If χ(y) 6= 1 then yi 6= xi in some non-wildcard positions, i.e. Equation (9.2) includes values εi ∈
{−2, 2} and so decoding fails with high probability. The fact that incorrect inputs give factors p±2i in
the product (while wildcard positions introduce simply pi) is a nice feature that makes our scheme more
secure than the generic transformation of conjunctions to Hamming matching. It means we are not
reducing conjunctions to Hamming distance, but to a weighted `1-distance on Z, where the non-wildcard
positions are weighted double. Hence, even if an attacker guesses some wildcard positions (and so does
not include the corresponding pi in their product Y ), the value XY −1 mod q has p±2i terms for each
incorrect non-wildcard position and so the attacker still needs to correctly guess the correct bits in most
non-wildcard positions.

Obfuscator and Obfuscated Program. The conjunction obfuscator works as follows: For every
conjunction x ∈ {0, 1, ?}n with |Wx| < n/2 there exists a polynomial size program P : {0, 1}n → {0, 1}
that computes whether the input vector y ∈ {0, 1}n matches x and evaluates to 1 in this case, otherwise
to 0. Denote the family of all such programs with P.

The conjunction obfuscator OC : P → P ′ takes one such program P ∈ P and uses Algorithm C.1
to output another polynomial size program in a different family P ′. In our case this is the decoding
algorithm along with the polynomial size elements (pi)i=1,...,n, q and X ∈ Z/qZ. The obfuscator also
outputs Q = OPT (Rx′) where x′ denotes the vector x with the wildcards replaced with 0.

We again identify the obfuscated program with the tuple ((pi)i=1,...,n, q,X,Q). The obfuscated pro-
gram outputs 1 if Algorithm C.2 succeeds for an input y ∈ {0, 1}n and if the program Q, when executed
on the decoded conjunction with its wildcards replaced with 0, outputs 1, else the output is 0. Formally,
the obfuscated program is given in Algorithm 9.1.

Parameters. The same considerations regarding the use of a safe prime and decoding efficiency as in
Section 7 apply here. Let us now argue that a safe prime q which is bounded as in Equation (9.1) exists.
We use the following heuristic: The density of Sophie Germain primes is given by πSG(n) ∼ 2Cn/ log2(n)
for a constant 2C ≈ 1.32032 [48]. An asymptotic inverse is given by n log2(n) and so we can expect the
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Algorithm 9.1 Obfuscated Program (with embedded data (pi)i=1,...,n, q,X,Q)

procedure Execute(y ∈ {0, 1}n)
x′ = Evaluate(n, (pi)i=1,...,n, q,X, y)
if x′ =⊥ then return 0
return Q(x′)

end procedure

m-th Sophie Germain prime to be of size approximately m log2(m). Hence, assuming that the pi are
sampled from [(n log(n))2, ((n+ 1) log(n+ 1))2], we require that there exists an index m ∈ N such that

((n+ 1) log(n+ 1))2r < m log2(m) < (n log(n))2(r+1) (9.3)

which, heuristically, we may convince ourselves to hold by considering the exponential nature of the
bounding expressions in r.

As an example, consider the explicit family of parameters n = n(λ) = 6λ and r = r(λ) = λ that
admits a security parameter of at least λ. The left plot in Figure 3 exhibits how we can fit m log2(m)
for some m ∈ N between the bounds for an example interval for λ = 30, ..., 45. Denote with πSG[r, r+ 1]
the number of Sophie Germain primes in the interval [((n+ 1) log(n+ 1))2r, (n log(n))2(r+1)] (where the
number of Sophie Germain primes in the interval [a, b] is given by πSG(b) − πSG(a)). The right plot of
Figure 3 shows πSG[r, r + 1].

30 35 40 45
λ
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10254
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p
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(nlog(n))2(r+ 1)

mlog2(m)

30 35 40 45
λ10165
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10270

10285

πSG[r, r+ 1]

Figure 3: A plot of the heuristic given by Equation (9.3) for the explicit family n = n(λ) = 6λ and
r = r(λ) = λ and the expected number of Sophie Germain primes in the interval [((n + 1) log(n +
1))2r, (n log(n))2(r+1)].

9.1 Relation to Hamming Distance

Our conjunction obfuscator construction is related to our Hamming distance obfuscator (cf. Section 7)
and thus exhibits several limitations.

– Firstly, the construction limits the number of wildcards |Wx| < n/2.
– Secondly, due to the construction, the problem of finding a match to x ∈ {0, 1, ?}n reduces to the

problem of finding a vector y ∈ {−1, 0, 1}n ⊂ Zn such that ‖σ(x) − y‖1 < |Wx|. Note that we took
the representatives of Z/3Z to be {−1, 0, 1} such that the wildcard primes never appear as factors
of X.
We may compute the number of possible vectors in an `1-ball of radius r (0 ≤ r ≤ n(q−1) for Z/qZ)
using

|B1,q,r| =
r∑

k=0

〈
n

k

〉
q

where the q-nomial triangle
〈
n
k

〉
q

is defined as〈
n

k

〉
q

=

n∑
i=0

(−1)i
(
n

i

)(
k + n− 1− iq

n− 1

)
.
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The upper limit of the sum may actually be taken as b(k + n− 1)/qc instead of n. The symbol
〈
n
k

〉
q

counts the number of compositions of k into n parts pi such that 0 ≤ pi ≤ q − 1 for each pi [25].
– Finally, an input conjunction x ∈ {0, 1, ?}n needs to be evasive. Assuming a uniform conjunction,

this will be the case if
|B1,3,r|

3n
<

1

2λ

for 1/2λ negligible.

9.2 Parameter Choices

In Section 9.1 we have learned that the possible parameter choices of the conjunction obfuscator are
more limited. Assuming a uniform and evasive conjunction distribution, we find from Lemma 3.1 and
Section 9.1 that the bit-security is given by

λr,n = min

{
n− r,− log2

(
|B1,3,r|

3n

)}
.

On the other hand, the conjunction obfuscators given in [5, 7] allow for a wider range of r < n −
O(log(n)) at the cost of assuming a generic group model, see Section D.2. Brakerski et al. [12] give no
estimate of encoding size or security parameters for their graded coding scheme based obfuscator, see
Section D.1. Chen et al. [16] found experimentally that “The TBO of 32-bit conjunctions is close to
being practical, with a total evaluation runtime of 11.6 milliseconds, obfuscation runtime of 5.1 minutes,
and program size of 11.6 GB for a setting with more than 80 bits of security.” This program size and
obfuscation time is orders of magnitude worse than the encoding size of our scheme or the schemes of
[5, 7].

9.3 Security

Showing security of the conjunction obfuscator works in essentially the same way as for the Hamming
distance obfuscator in Section 8.1. Note that Problem 5.1 respectively Problem 5.2 also makes sense when
the distribution D is considered to be over {−1, 0, 1}n instead of {0, 1}n. Note that Remark 2 applies to
Theorem 9.1 as well.

Theorem 9.1. Let D = {Dλ}λ∈N be an ensemble of conjunction evasive distributions (as in Defini-
tion 3.2). Suppose that D-MSPr,n,D (Problem 5.2) with the distribution D over {−1, 0, 1}n is hard and
that OPT is a dependent auxiliary input distributional VBB point function obfuscator. Then the Con-
junction obfuscator OC is a distributional VBB obfuscator.

Theorem 9.2. Let D = {Dλ}λ∈N be an ensemble of conjunction evasive distributions (as in Defini-
tion 3.2). Suppose that MSPr,n,D (Problem 5.1) with the distribution D over {−1, 0, 1}n is hard for
r > rf (n) (recall Equation (7.3)).Then the Conjunction obfuscator OC is input hiding.

10 Conclusion

We have introduced a new special purpose obfuscator for fuzzy matching under Hamming distance as well
as a new special purpose obfuscator for conjunctions. We have shown that our obfuscators are virtual-
black-box secure and input hiding, based on the search and decision versions of the distributional modular
subset product problem. We believe our obfuscators are post-quantum secure. The Hamming distance
obfuscator can cover a wider range of parameters than previous solutions based on secure sketches.

Open problems include finding optimal parameters. More speculative open problems include obfus-
cating fuzzy matching with respect to edit distance or other metrics.
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A The Scheme of Karabina and Canpolat

Karabina and Canpolat [37] gave a secure fuzzy matching scheme, that uses a particular subgroup of a
finite field that has a representation as an algebraic torus. We briefly describe their scheme here, changing
the notation to be consistent with our work and also making some simplifications to the presentation.

Let (r, n) be such that we want to do fuzzy matching on x ∈ {0, 1}n up to Hamming distance r < n/2.
First Karabina and Canpolat choose p > 2n and m = 2r and work in the subgroup G of F∗p2m of order

pm + 1 (technically they work with a representation of this group as the algebraic torus T2(Fpm)).
To encode a string x ∈ {0, 1}n they choose n elements gi in a special subset S of G that has size p.

It is also important that if gi ∈ S then g−1i 6∈ S. The encoding of x is then

X =

n∏
i=1

g−2xi+1
i .

Given an input y ∈ {0, 1}n one can determine if y is within Hamming distance r of x by computing
Y =

∏
i g
−2yi+1
i and then trying to write XY −1 as a product of r elements. This is done in [37] using

some techniques from discrete logarithms in algebraic tori (namely, Weil descent and reduction to solving
a system of polynomial equations).

We remark that there is no difference in security between the encoding X =
∏
i g
−2xi+1
i and the

encoding X̃ =
∏
i g
xi
i , as one can convert between them: given X̃ one has X = X̃2(

∏
i gi)

−1; given X

one has X̃ =
√
X(
∏
i gi), and it is easy to compute square roots in finite fields and to make the correct

choice of sign.
Karabina and Canpolat [37] do not discuss obfuscation or give a formal security analysis. Their

analysis is for uniform distributions of x ∈ {0, 1}n, although they mention in Remark 1 that in real
situations the entropy of x may be lower.

In terms of size, the encoding in their scheme is an element of Fpm where pm ≈ (2n)2r. For our
scheme, an encoding is an element of Zq where q ≈ 2(n log(n))r. Hence the scheme of Karabina and
Canpolat is more compact than ours. On the other hand, their scheme is more complex to understand
and implement and the performance is weaker, cf. Section 7.5.

Security Analysis. We define two computational problems in order to formalise the security of the
scheme. Under the assumption that these problems are hard, the VBB and input hiding security of the
obfuscator follows immediately by the same arguments as used to prove Theorem 8.1 and Theorem 8.2.

Problem A.1 (Distributional Torus Subset Product Problem). Let r < n ∈ N, D be a distribu-
tion over {0, 1}n. Set m = 2r. Given a prime p > 2n, the subgroup G < F∗p2m of order pm + 1, S ⊂ G as

in [37], a sequence (gi)i=1,...,n with gi ∈ S, and an element

X =

n∏
i=1

g−2xi+1
i

for some binary vector x← D, the distributional torus subset product problem is to find x.

Problem A.2 (Decisional Distributional Torus Subset Product Problem). Let r < n ∈ N, D
be a distribution over {0, 1}n. Given parameters as in Problem ??, the decisional distributional torus
subset product problem is to distinguish between the two distributions on tuples ((gi), X) corresponding
to

X =

n∏
i=1

g−2xi+1
i

for some binary vector x← D, and uniformly random

X ′ ← G.

B Applications

In this section we will list several example applications of our obfuscated Hamming weight scheme.
However, we emphasize that the main motivation for this work is the new obfuscation construction
rather than any specific application.
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B.1 Biometric Matching

The main application for obfuscated Hamming weight is biometric matching. Some of the best examples
of this type of matching are fingerprint and DNA. Let us state the general problem: A party wants
to securely identify or grant access to individuals based on biometric features (such as mentioned by
comparing fingerprint or DNA information) but should not be able to see the actual biometrics of
the enrolled users. Often we also ask for anonymity in the sense that the enrolled users should not
be identifiable. Furthermore, the actual biometrics of the users might change over time (DNA might
mutate/degrade) or the measurement of the biometric may be noisy (e.g., due to a smudgy fingerprint
scanner or other measurement effects). These requirements imply that the biometric features need to be
stored in a cryptographically secure way and that we need a way for fuzzy matching against this encoded
data.

Dodis et al. [21, 23] introduced the notion of a “secure sketch” which we want to view from the
perspective of giving rise to an obfuscation scheme for fuzzy matching. We now survey this work. The
first step is to construct a random error-correcting linear code over F2 of length n with generator matrix
G and a secure cryptographic hash function H. To encode a vector x ∈ {0, 1}n one chooses a random
vector s (of dimension equal to the dimension of the code) and encodes x as the pair (X,h) where
X = x⊕Gs and h = H(s). Note that the target vector x needs to be of high enough entropy in order to
sufficiently hide all information about it in the encoding X. To test whether a vector y is close, one can
compute X ⊕ y, decode the result (using the decoding algorithm for the code C) to find a binary vector
s′ and test whether H(s′) = h. If y = x⊕ e then X ⊕ y = e⊕Gs and so the process is correct.

Since a decoding algorithm is part of the secure sketch, an attacker can efficiently compute a parity
check matrix P such that PG = 0. Then, given X, one can compute PX = Px, which is a system of n−k
explicit linear equations in the secret vector x. This leaks partial information about x. In [23] it is shown
that semantic security can be achieved for randomised encodings of vectors x with high enough entropy
by using random codes. Their definition of semantically secure encodings is similar to VBB obfuscation.
However, we stress that this leakage is not “theoretical” but very concrete linear equations that could
potentially be used by an adversary in some practical settings.

However, this leakage imposes constraints on the parameters in the secure-sketch setting. One needs
to consider families of codes with efficient decoding algorithms, and the resulting constraints on their
parameters. The choice of codes issue of entropy-loss has been investigated by Bringer et al. [13]. For
example, binary (n, k, d) Reed-Solomon codes limit the Hamming distance threshold to r ≤ d/2 ≤
(n−k)/(2 log n). Here n is the length of a code word, k is the code dimension (which gives the entropy of
the scheme), and d ≥ 2r is the minimum distance of the code. Tuyls et al. [52] give example parameters
for BCH codes: (n, k, d) = (511, 76, 85) and (511, 40, 95). The encodings reveal 435 bits respectively 471
bits as all the entropy stems from the 76 bit respectively 40 bit inputs. The Hamming distance r for
these examples is only 42 and 47 respectively, whereas our parameters in Figure 2 for n = 512 allow r
as large as 155.

It is of course important that the biometric features are distributed with high enough entropy in the
sense of Definition 2.5. Entropy of biometric features was studied in [42]. Other secure sketch schemes
exhibit leakage that lowers the entropy of the underlying features [51]. In short, the leakage from secure
sketches combined with constraints on the properties of codes (driven by the need for efficient decoding
algorithms in order to have practical solutions) leads to quite strong restrictions on the parameters (r, n).

Specifically, in a code based scheme, encodings leak a number of (random) linear equations constrain-
ing the secret. In contrast, our scheme is based on computational hardness rather than information-
theoretic hardness, and is free from such leakage. As explained in Section 7, the only explicit leakage is
a single linear equation obtained by considering the Legendre symbol.

This enables it to be implemented for a much wider range of parameters. Indeed, it was claimed
in [36] that matching of encrypted biometric templates is impossible, but our methods (and those of
Karabina and Canpolat [37]) show this claim was too pessimistic. We can reach greater Hamming distance
thresholds r and better security while keeping the target vector size the same. The decoding process is
also very efficient in practice, see Section 7.5.

B.2 Spelling Errors in Passwords

A similar application of obfuscated Hamming distance is secure fuzzy password matching. We can consider
two situations: user input contains spelling mistakes and we want to accept passwords that are r-close
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to the real one; a user remembers his password up to some positions and wants to recover it without
enrolling a fresh one. These situations have been considered before in the literature [15, 26, 45].

To see why our obfuscation scheme is an ideal solution, remember that the commonly accepted way
to store passwords is in the form of a salted hash (using a cryptographic hash function) for which it is
hard to compute a preimage. This way, even if the password database falls into the hands of an adversary,
the cleartext passwords are not compromised.

The downside of storing them in hashed form, is that fuzzy password recovery is impossible. On
the other hand, our obfuscation scheme is VBB secure and so automatically fulfills all the required
properties that a secure password scheme should have. Additionally, it has the property that passwords
can be recovered if a user input is r-close to the stored encoding.

B.3 Other applications

Another application of obfuscated Hamming distance is oblivious image matching. Here, “two parties want
to determine whether they have images of the same object or scene, without revealing any additional
information” [2]. This is an application related to privacy in video surveillance. Note that the treatment
of applying our obfuscator in this case is similar to biometric matching and a discussion of image pre-
processing and feature extraction is outside the scope of this work.

C Obfuscating Conjunctions

In this section we present further details of the conjunction obfuscator.

C.1 Algorithms

We will now present algorithms that detail the encoding part and the evaluation part of our conjunction
obfuscator.

The encoder (Algorithm C.1) receives as an input a vector x ∈ {0, 1, ?}n corresponding to a conjunc-
tion χ : {0, 1}n → {0, 1}. It then outputs the encoding represented by a triple ((pi)i=1,...,n, q,X).

Algorithm C.1 Encoding

procedure Encode(n ∈ N;x ∈ {0, 1, ?}n)
sample a random sequence of distinct primes (pi)i=1,...,n from [(n log(n))2, ((n+ 1) log(n+ 1))2]
let Wx = {i|xi = ?}
sample safe prime q such that

∏
i∈Wx pi < q/2 <

∏
i∈Wx∪{j} for all j ∈ {1, . . . , n} \Wx

compute X =
∏n
i=1 p

σ(xi)
i mod q

return ((pi)i=1,...,n, q,X)
end procedure

The evaluator (Algorithm C.2) receives as an input an encoding in the form of a triple ((pi)i=1,...,n, q,X)
and a test vector. It then attempts to decode the triple and outputs the conjunction with the wildcards
replaced with 0 if χ(y) = 1. The evaluator further uses Algorithm 7.3 for constrained factoring.

C.2 Decoding

We once again argue about the correctness of the obfuscator.

Lemma C.1 (Correctness). Consider the algorithms Encode (Algorithm C.1) and Evaluate (Algo-
rithm C.2). For every r < n/2 ∈ N, x ∈ {0, 1, ?}n corresponding to the conjunction χ : {0, 1}n → {0, 1},
for every

((pi)i=1,...,n, q,X)← Encode(n, x)

and for every y ∈ {0, 1}n such that χ(y) = 1 it holds that

Evaluate(n, (pi)i=1,...,n, q,X, y) = 1.
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Algorithm C.2 Evaluation

procedure Evaluate(n, (pi)i=1,...,n, q ∈ N; X ∈ Z/qZ; y ∈ {0, 1}n)

compute Y −1 =
∏n
i=1 p

−σ(yi)
i mod q

compute E = XY −1 mod q
determine the continued fraction representation of E/q, with convergents C
for all h/k ∈ C do

F ← CFactor(n, (pi)i=1,...,n, k), F ′ ← CFactor(n, (pi)i=1,...,n, kE mod q)
if F 6= ⊥ and F ′ 6= ⊥ then

let m = (1, . . . , 1) ∈ {0, 1}n the vector of all ones
for i = 1, . . . , n do

if pi ∈ F ∪ F ′ then set mi = 0
end for
return y ∧m

end if
end for
return ⊥

end procedure

Proof. We find the requirement ND < q/2 analogously to the proof of Lemma 7.1.
The ki respectively (kiE mod q) can be factored separately using the pi to recover the νi and µi

from which the wildcard positions can the immediately be recovered. This all works assuming χ(y) = 1
since then the factors of N and D will be unique (of multiplicity 1) and contained in the sequence
(pi)i=1,...,n. If now χ(y) = 0 then with high probability the factors of N and D will not be unique and/or
not contained in (pi)i=1,...,n. ut

D Existing Conjunction Obfuscators

Conjunction obfuscators have been considered before [5, 7, 11, 12]. Let us quickly remind the reader of
these schemes.

D.1 LWE-based

One way to tackle the problem of construction a conjunction obfuscator is to use a graded encoding
scheme [11]. Brakerski et al. [12] give an explicit construction of such a conjunction obfuscator along
with a security reduction to entropic ring LWE.

Before we summarise this obfuscation construction, we introduce a derived definition. A directed
encoding scheme is a variant of a multilinear map. Let R be a ring such that R has a notion of short
elements. Let m ∈ N. For public keys a1, a2 ∈ Rm, define the encoding of a short element s ∈ R along
the path (1→ 2) as a short matrix C ∈ Rm×m such that

a1C = sa2 + e

where e ∈ Rm is a short Gaussian error. Two such encodings C1 and C2 can be multiplied if the end
point of C1 coincides with the start point of C2. Encodings along the same path may furthermore be
added and subtracted, and we are also able to test whether an encoding is the encoding of 0 ∈ R. This
also allows us to test whether two encodings with the same start- and end-points are equal.

If we now wish to obfuscate a conjunction χ : {0, 1}n → {0, 1} represented by a vector x ∈ {0, 1, ?}n
for n ∈ N, we first sample a collection of random vectors ai for all i = 0, 1, . . . , n, n+ 1 representing the
paths (0→ 1), . . . , (n→ n+ 1). Next, we sample random short elements si,b, rib ∈ R for all i = 1, . . . , n
and all b ∈ {0, 1} such that si,0 = si,1 if xi = ?. We then sample encodings Ri,b of ri,b and Si,b of
si,b using ai−1 and ai, respectively. Finally, sample a random short element rn+1 ∈ R and sample the
encodings Rn+1 of rn+1 and Sn+1 of

rn+1

n∏
i=1

si,xi
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where we set si,? = si,0 = si,1 when xi = ?. These two encodings are sampled along the path (n→ n+1)
using an and an+1.

The obfuscated program consists of the tuple

((ai)i=0,...,n+1, (Si,b)i=1,...,n;b∈{0,1}, (Ri,b)i=1,...,n;b∈{0,1}, Sn+1, Rn+1).

To evaluate it on an input y ∈ {0, 1}n, compute

S =

(
n∏
i=1

Si,yi

)
Rn+1, R =

(
n∏
i=1

Ri,yi

)
Sn+1.

If χ(y) = 1, then S and R are encodings of the same value along the path (0 → n + 1). Otherwise, if
χ(y) = 0, they do not encode the same value with overwhelming probability.

The obfuscated programs consists of 2(2n + 1)m2 + (n + 2)m = O(nm2) elements of R. No proper
analysis in terms of R and security parameters is provided though it is apparent that the elements of
the base ring respectively the dimension m needs to be quite large. It needs to be large to guarantee
a suitable security parameter and to make sure that the accumulated error with respect to the direct
encoding scheme is bounded.

Security. The security of this scheme is based on the security assumptions about the underlying directed
encoding scheme. In this case, the entropic ring LWE assumption says that for random short ring elements
s1, . . . , sn ∈ R and a secret vector x ∈ {0, 1}n, the ring LWE assumption holds for the secret

∏n
i=1 s

xi
i

given that x is sampled from a high entropy distribution, cf. [12, Section 3.1].

D.2 Generic Group/DLP-based

Here we summarise the scheme presented by Bishop et al. [7]. Furthermore, a generalisation thereof was
given by Bartusek et al. [5].

Suppose we are given a conjunction χ : {0, 1}n → {0, 1} represented by a vector x ∈ {0, 1, ?}n for
n ∈ N. To obfuscate this conjunction, select a random prime p and sample a1, . . . , an−1 uniformly random
from Z/pZ. These coefficients determine a polynomial

f(X) =

n−1∑
i=1

aiX
i ∈ (Z/pZ)[X].

Let now G be a generic group with a generator g of prime order p > 2n. The obfuscated program consists
of the elements hi,j (for all i = 1, . . . , n and all j ∈ {0, 1}) where hi,j = gf(2i+j) if xi = j or xj = ?.
Otherwise hi,j is a randomly sampled element of G. Thus the obfuscated program is given by 2n group
elements.

To evaluate the obfuscated program on and input y ∈ {0, 1}n, compute the Lagrange interpolation
coefficients

Ci =
∏
j 6=i

−2j − yj
2i+ yi − 2j − yj

and then evaluate the interpolation polynomial using

T =

n−1∏
i=0

(hi,yi)
Ci .

If χ(y) = 1, then we have T = g0 and otherwise if χ(y) = 0 then T will be a random element of G with
overwhelming probability.

Assuming the size of one generic group element is log2(q) (q the order of G), then the size of the
obfuscated program is 2n log2(q) in the case of [7] and (n+ 1) log2(q) for the dual scheme of [5].
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Security. The security proof of this scheme in [7] works in the generic group model to show that the
pattern matching with wildcards obfuscator is distributional VBB for x ∈ {0, 1, ?}n if the number of
wildcards satisfies |Wx| < 0.774n. The dual scheme presented in [5] attains distributional VBB security
in the generic group model and replaces the limitation on the number of wildcards with the natural
bound |Wx| < n− ω(log(n)) respectively |Wx| < n−O(log(n)).

E Hamming Weight/Distance/Ball

In this section we give formal definitions of the key concepts Hamming weight, Hamming distance and
Hamming ball.

Definition E.1 (Hamming Weight). Let x ∈ {0, 1}n be a binary vector. Then the Hamming weight
of x is given by wH(x) = |{i |xi 6= 0}|.

Definition E.2 (Hamming Distance). Let x, y ∈ {0, 1}n be two binary vectors. Then the metric given
by

dH : {0, 1}n × {0, 1}n −→ N,
(x, y) 7−→ wH(x− y)

is called the Hamming distance between x and y.

Definition E.3 (Hamming Ball). A Hamming ball BH,r(x) ⊂ {0, 1}n of radius r around a point
x ∈ {0, 1}n is given by

BH,r(x) = {y ∈ {0, 1}n | dH(x, y) ≤ r} .

We denote with BH,r the Hamming ball around an unspecified point.

Remark 3. Note that Definition E.1, Definition E.2, and Definition E.3 make sense also for q-ary vectors
in (Z/qZ)n for some prime q.

F The Relation Lattice

The first half of this section closely follows [24].
Let n ∈ N and let (pi)i=1,...,n be a sequence of distinct primes. Let q be a prime distinct to pi for all

i = 1, . . . , n and consider the following group morphism

φ : Zn → (Z/qZ)∗,

(x1, . . . , xn) 7→
n∏
i=1

pxii mod q.
(F.1)

If any of the pi is a primitive root modulo q, then φ is surjective. The kernel of φ defines the relation
lattice

Λ = kerφ =

{
x ∈ Zn

∣∣∣∣∣
n∏
i=0

pxii = 1 mod q

}
.

We have that the volume of the lattice is given by | imφ| and thus bounded by

vol(Λ) ≤ q − 1

since ϕ(q) = q − 1 (ϕ is Euler’s totient function). Note that equality holds if and only if {p1, . . . , pn}
generates (Z/qZ)∗.

If the sequence of primes (pi)i=1,...,n is sufficiently random (and thus the generated lattice is sufficiently
random), then we may employ the Gaussian heuristic (see [33, Section 7.5.3]) to estimate the size of the
shortest lattice vector

λ1 ∼
√

n

2πe
vol(Λ)

1
n ≤

√
n

2πe
(q − 1)

1
n , (F.2)

where again equality holds if the pi generate (Z/qZ)∗.
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G Diophantine Approximation of Laurent Series

In this section we will give a proof for the Diophantine approximation theorem in a more general form.
Instead of approximating elements in R with fractions in Q, we will be approximating formal Laurent
series over some field k with fractions of polynomials in k[z]. This generalisation of continued fractions
and the theory of Diophantine approximation from R to formal Laurent series is an established theory
and has been studied many times; for a survey on the matter see for example [40].

Consider the field of fractions k(z). Remember, that a possible valuation on k(z) is given by ν(f) =
deg q − deg p for elements f = p/q with p, q ∈ k[z]. This induces a norm on k(z), namely

|f | =

{
c−ν(f) , f 6= 0

0 , f = 0
(G.1)

for some fixed constant c ∈ R with c > 1. This norm is non-Archimedean, i.e. it satisfies

|f + g| ≤ max{|f |, |g|} (?)

with equality when f 6= g (cf. definition of an ultrametric) [39, 50].

Definition G.1 (Formal Laurent Series). Let k be a field, then the formal Laurent series over k are
given by

L = k((z−1)) =

∑
i≤N

aiz
i

∣∣∣∣∣∣N ∈ Z; ai ∈ k, i ∈ (−∞, N ]

 .

One can show that L is a field, since for a non-zero α =
∑
i≤N aiz

i with aN 6= 0 there exists its

inverse α−1 =
∑
j≤−N a

′
jz
j with coefficients a′−N = a−1N and a′j−N = −a−1N

∑N−1
i=N+j aia

′
j−i where j < 0

[44].
Furthermore, one can show that L is the completion of k(z) with respect to the norm given by

Equation (G.1). The valuation on k(z) can be extended to a valuation on L in a natural way; for
α =

∑
i≤N aiz

i ∈ L we set ν(α) = −N and so |α| = cN .

Continued Fractions over L. We want to consider continued fractions over L. Given an element
f ∈ k(z), we can define a continued fraction expansion of the form

f = a0 +
1

a1 +
1

. . . +
1

aN

with a sequence of polynomials ai ∈ k[z]. As a shorthand notation we again use f = [a0; a1, . . . , aN ]. An
element α ∈ L has a similar expansion, though it is not necessarily finite anymore: α = [a0; a1, a2, . . . ].

Note that continued fractions may be nested:

[a0; a1, . . . , an, [an+1; an+2, . . . ]] = [a0; a1, . . . , an, an+1, an+2, . . . ].

They may also be contracted in the following sense:

[a0; a1, . . . , an, an+1, . . . ] = [a0; a1, . . . , αn]

where now αn ∈ L. We can immediately verify that for the convergents defined by Equation (6.1) the
following identities hold:

[a0; a1, . . . , αn] =
αnhn−1 + hn−2
αnkn−1 + kn−2

,

(−1)n = hn−1kn − hnkn−1.
(G.2)
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Furthermore, let α = [a0; a1, . . . , an, αn+1], then by Equation (G.2) we have∣∣∣∣α− hn
kn

∣∣∣∣ =
1

|kn(αn+1kn − kn−1)|
. (G.3)

Much like in the rational case, we find that the convergents of a fraction p/q ∈ k(z) are exactly
produced by the polynomials si, ti ∈ k[z] (cf. Equation (6.2)) in the steps of the extended Euclidean
algorithm applied to the polynomials p and q.

Inspecting degrees yields that for convergents hn/kn ∈ k(x) we have |kn−1| < |kn| = |a1| · · · |an| for
all n ≥ 0. Hence, from Equation (G.3), we find for α = [a0; a1, . . . , an, αn+1] that∣∣∣∣α− hn

kn

∣∣∣∣ =
1

|αn+1k2n|
,

as |kn(αn+1kn − kn−1)| = |αn+1k
2
n| by the ultrametric property (?). Now since |αn| = |an| and |kn| <

|kn+1|, we arrive at the following useful (in)equality∣∣∣∣α− hn
kn

∣∣∣∣ =
1

|knkn+1|
<

1

|kn|2
. (G.4)

Equality holds since the metric on L is non-Archimedean. In the case of an ordinary metric we would
have to replace = with < in Equation (G.4).

Diophantine Approximation in L. Finally, we want to show a statement that can be thought of as
a generalisation of Theorem 6.1, albeit in the case that the norm in question is non-Archimedean.

Theorem G.1 ([49]). Let k be a field. Let L be the formal Laurent series over k. Let α ∈ L and
p, q ∈ k[z] with gcd(p(z), q(z)) = 1 such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

|q|2
.

Then p/q is a convergent of α.

Proof. Consider the convergents of α. Let n ∈ N be the index such that |kn| ≤ |q| < |kn+1|. Then by our
assumption we have ∣∣∣∣α− p

q

∣∣∣∣ < 1

|q|2
≤ 1

|q||kn|
,

On the other hand, by Equation (G.4), we have∣∣∣∣α− hn
kn

∣∣∣∣ =
1

|knkn+1|
<

1

|q||kn|
.

Hence we find ∣∣∣∣pq − hn
kn

∣∣∣∣ < 1

|q||kn|
(G.5)

by the ultrametric property (?).
Now assume that p/q 6= hn/kn for all i ≥ 0, i.e. pkn − qhn 6= 0. Then, by inspection of degrees,

|pkn − qhn| ≥ 1 for all n ≥ 0. Thus we end up with the following inequality∣∣∣∣pq − hn
kn

∣∣∣∣ =
|pkn − qhn|
|q||kn|

≥ 1

|q||kn|
,

a contradiction to Equation (G.5). ut
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