
Preimage Attacks on Reduced Troika with
Divide-and-Conquer Methods

Fukang Liu1,3, Takanori Isobe2,3

1 East China Normal University, Shanghai, China
liufukangs@163.com

2 National Institute of Information and Communications Technology, Japan
3 University of Hyogo, Hyogo, Japan

takanori.isobe@ai.u-hyogo.ac.jp

Abstract. Troika is a recently proposed sponge-based hash function for IOTA’s
ternary architecture and platform, which is developed by CYBERCRYPT. In this
paper, we introduce the preimage attack on 2 and 3 rounds of Troika with a
divide-and-conquer approach. Instead of directly matching a given hash value,
we propose equivalent conditions to determine whether a message is the preimage
before computing the complete hash value. As a result, for the two-round hash
value that can be generated with one block, we can search the preimage only in a
valid space and efficiently enumerate the messages which can satisfy most of the
equivalent conditions with a guess-and-determine technique. For the three-round
preimage attack, an MILP-based method is applied to separate the one-block
message space into two parts in order to obtain the best advantage over brute
force. Our experiments show that the time complexity of the preimage attack on
2 (out of 24) rounds of Troika can be improved to 379, which is 3164 times faster
than the brute force. For the preimage attack on 3 (out of 24) rounds of Troika,
we can obtain an advantage of 325.7 over brute force. In addition, how to construct
the second preimage for two-round Troika in seconds is presented as well. Our
attacks do not threaten the security of Troika.

Keywords: hash function, Troika, preimage, guess-and-determine, divide-and-
conquer, MILP

1 Introduction

IOTA and CYBERCRYPT announced a new lightweight ternary cryptographic hash
function named Troika as well as the competition for cryptanalysts to evaluate Troika
with a e 200,000 prize pool for breaking its round-reduced variants on December 20,
2018 [1]. The motivation to design Troika is to develop suitable new lightweight hash
function for the ternary architecture of the IOTA protocol. Since the announcement of
this competition, practical collisions for one/two-round Troika with two blocks have
been found by Virginie Lallemand. The one-round preimage challenge was solved by
Håvard Raddum, John-Petter Indrøy and Morten Øygarden.

Troika [3] is a hash function h : F∗3 → F243
3 mapping arbitrary-length inputs to hash

values of 243 trits. It follows the sponge construction with a rate of 243 and a capacity

of 486 trits, yielding a total state of 729 trits, as shown in Fig. 1. Furthermore, the rate
part of the state of Troika is overwritten by the input instead of added to it, in order to
enable distributed hashing where only the capacity part of the state (486 trits) needs to
be sent instead of the entire state (729 trits). Troika has to satisfy the following three
requirements in order to be considered secure.

• Preimage resistance: No preimage attack of non-negligible success probability with
a complexity of less than 3243 queries.

• Second preimage resistance: No second preimage attack of non-negligible success
probability with a complexity of less than 3243 queries.

• Collision resistance: No collision attack of non-negligible success probability with
a complexity of less than 3243/2 queries.

Although Troika shares many similarities with Keccak [4], which is the winner
of SHA-3, the nonlinear transform is placed before the linear transform in Troika.
Moreover, the algebraic degree of one-round Troika is 4 while it is 2 for Keccak.
Cryptanalysts are obviously aware of the low algebraic degree of one-round Keccak.
As a result, the linearizing techniques are widely exploited in the collision attack and
preimage attack on Keccak [5,7,8,10,11]. However, the disadvantage of such linearizing
techniques is the fast consumption of degree of freedom.

Considering the high algebraic degree of one-round Troika, it is not wise to use
similar linearizing techniques since the degree of freedom will be faster utilized.
Therefore, we will use a different strategy to achieve linearization without consuming
degree of freedom. In addition, we observe that the length of hash value is almost
equal to the length of one-block message, i.e. the padding rule must be satisfied. This
motivates us to investigate whether it is possible to search the preimage only in a smaller
potential space when the preimage can be generated with one block. As will be shown,
invalid preimages can be efficiently discarded and no degree of freedom are consumed
with our method.

Our Contributions Firstly, we propose equivalent conditions to pre-determine whether
a message is the preimage of a given hash value. As a consequence, when the hash
value can be derived from one block, the search for the preimage of two-round Troika
can be limited in a much smaller space, which can be further accelerated with a
guess-and-determine approach. Indeed, it is expected that our algorithm to find the
preimage of two-round Troika can be applied to arbitrary hash value, as shown in our
partially solving the two-round preimage challenge [1], though it is difficult to give an
accurate estimation of the time complexity. Moreover, we can construct several second
preimages for arbitrary messages in seconds for two-round Troika.

For the preimage attack on three rounds of Troika, the variables set at the rate part
of input state can be seprated into two parts with an MILP-based method, one of which
is used to verify some equivalent conditions. Only those conditions are satisfied will we
start guessing the values for the variables in another part. Due to the sufficient diffusion
of three-round Troika permutation, we expect our approach can be applied to arbitrary
hash value. All our results are displayed in Table 1.

Table 1: Summary of preimage and collision attack on Troika
Attack Type Rounds Time Generic Ref.

Collision
1 practical 3243/2 [1]
2 practical 3243/2 [1]

Preimage
1 practical 3243 [1]
2 379 3243 Sec. 4
3 3217.3 3243 Sec. 5

Second Preimage 2 36 3243 Sec. 4.6

Organization The paper is organized as follows. The description of Troika is presented
at Section 2. Then, we introduce how to derive equivalent conditions to match a given
hash value in Section 3. The preimage attack on two and three rounds of Troika are
displayed in Section 4 and Section 5 respectively. Finally, the paper is summarized in
Section 6.

2 Description of Troika

The hash function Troika h : F∗3 → F243
3 maps arbitrary-length inputs to hash values of

243 trits [3]. It should follow the sponge construction with a rate of 243 and a capacity
of 486 trits, yielding a total state of 729 trits as shown in Fig. 1. The state is initially
initialized with all zeros. A message m ∈ F∗3 is firstly padded with a trit ”1” and non-
negative number of ”0” until the trit length of the padded message becomes multiple of
243. Then, the padded message is divided into n blocks of 243 trits each. Each block
will be loaded in the rate part before processed. Formally, Troika operates on a state
A ∈ F729

3 , which is organized as a 9 × 3 × 27 cuboid of trits A ∈ F9×3×27
3 .

Fig. 1: Overview of Troika’s Sponge Structure

The individual trits of the state are identified as A[x][y][z] via their x, y, z coordinates
where 0 ≤ x < 9, 0 ≤ y < 3 and 0 ≤ z < 27. as illustrated in Fig. 2. A[·][y][z] composed

of 9 trits is called a row of A, A[x][·][z] composed of 3 trits is called a column, A[x][y][·]
composed of 27 trits is called a lane, A[·][·][z] composed of 27 trits is called a slice, and
A[·][y][·] composed of 243 trits is called a plane. The rate part is A[·][·][z] (0 ≤ z < 9)
and the capacity part is A[·][·][z] (9 ≤ z < 27).

Fig. 2: Coordinate

The internal permutation of Troika consists of 24 rounds. Each round is composed
of five operations: SubTrytes, ShiftRows, ShiftLanes, AddColumnParity and
AddRoundConstant, where only SubTrytes is the nonlinear transform.

SubTrytes The SubTrytes mapping consists of the application of a 3-trit S-box S :
F3

3 → F3
3 to each tryte of the state as follows:

(a2, a1, a0)← S (9A[3i][y][z] + 3A[3i + 1][y][z] + A[3i + 2][y][z]),
(A[3i][y][z], A[3i + 1][y][z], A[3i + 2][y][z])← (a2, a1, a0),

where 0 ≤ i < 3, 0 ≤ y < 3, 0 ≤ z < 27 and ti ∈ F3 (0 ≤ i ≤ 2). The lookup table of the
S-box is specifed in Table 2.

Table 2: Lookup table for the tryte S-box
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

S (x) 6 25 17 5 15 10 4 20 24 0 1 2 9 12 26 18 16 14 3 13 23 7 11 12 8 21 19

ShiftRows The ShiftRows provides diffusion along the x-axis in each row by shifting
entire trytes cyclically to the right as follows:

A[x][0][z]← A[x][0][z], A[x][1][z]← A[(x − 3)][1][z], A[x][2][z]← A[(x − 6)][2][z],

where 0 ≤ x < 9 and 0 ≤ z < 27.

ShiftLanes ShiftLanes is to provide diffusion along the z-axis in each lane by shifting
trits cyclically to the right as follows:

A[x][y][z] ← A[x][y][(z − r[x][y])%27],

where 0 ≤ x < 9, 0 ≤ y < 3 and 0 ≤ z < 27. The specification of r[x][y] can be referred
to Table 3.

Table 3: Specification of rotational constants r[x][y]
x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8

y=0 19 13 21 10 24 15 2 9 3
y=1 14 0 6 5 1 25 22 23 2
y=2 7 17 26 12 8 18 16 11 4

AddColumnParity AddColumnParity provides diffusion along columns by adding to
each column A[x][·][z] the parities of the two adjacent columns A[x− 1][·][z] and A[x +

1][·][z + 1], where indices are taken modulo their respective dimensions:

A[x][y][z]← A[x][y][z] + Σ2
y′=0A[x − 1][y′][z] + Σ2

y′=0A[x + 1][y′][z + 1],

where 0 ≤ x < 9, 0 ≤ y < 3 and 0 ≤ z < 27.

AddRoundConstant The operation AddRoundConstant only works on the first plane
A[·][0][·] in each round. Suppose RCi represents the round constant in round i, which is
a vector of size 243 then, the internal state A is updated as follows:

A[x][0][z]← A[x][0][z] + RCi[x + 9z],

where 0 ≤ x < 9 and 0 ≤ z < 27.
For convenience, we denote these five operations by S T , S R, S L, AP and AC

respectively and define L = AP◦S L◦S R and L−1 = S R−1◦S L−1◦AP−1. For simplicity,
we denote the input state of round i by Ai (0 ≤ i ≤ 23). The states after S T , S R, S L, AP
and AC in round i are denoted by Ai

S T , Ai
S R, Ai

S L, Ai
AP and Ai

AC respectively. Obviously,
the state A can be viewed as a trit vector of size 729 as well. When it is viewed as a trit
vector, A[x][y][z] will correspond to the (27z+9y+ x)-th trit in the vector. The complete
description of Troika can be found at [3].

3 Equivalent Conditions to Find the Preimage

In this section, we introduce equivalent conditions to determine whether an input state
is the preimage of a given hash value. Given a hash value of (t + 1)-round (0 ≤ t ≤ 23)
Troika permutation, 243 trits in the rate part of At

AC are constants. Set variables to the
remaining 486 trits in the capacity part of At

AC and construct an equation system

L−1 · At
AC = At

S T .

Note that such an equation system must have solutions to At
AC . Otherwise, it is

impossible to obtain the given hash value. Therefore, we define a space S satisfying
the following two constraints:

Constraint 1. For each At
S T belonging to S , the equation system L−1 ·At

AC = At
S T must

have solutions to At
AC .

Constraint 2. For those At
S T not belonging to S , the equation system L−1 · At

AC = At
S T

must not have solutions to At
AC .

Obviously, At
S T ∈ S is a necessary but not sufficient condition to obtain the (t + 1)-

round preimage of the given hash value with one block. This is due to that the capacity
part of the input state is fixed. However, when we start from a random input state A0

with a correct fixed capacity part and compute forward until At
S T , the corresponding A0

must be the preimage of the given hash value if At
S T ∈ S . As a result, the equivalent

condition to match a given hash value with one block can be stated as follows.
The Equivalent Condition. To find the preimage of (t + 1)-round Troika, when

starting from a random input state with a correct fixed capacity part, the preimage
is found only when At

S T belongs to a specific space S satisfying Constraint 1 and
Constraint 2.

3.1 Deriving the Space S

Let At
AC = (C||V), where C is a 243-trit constant dependent on the hash value and V is

a 486-trit variable. Then, the equation becomes

L−1 · (C||V) = L−1 · (C||0) + L−1 · (0||V) = At
S T .

Let T = At
S T − L−1 · (C||0), we have

L−1 · (0||V) = T.

Define a matrix S L−1, where S L−1[i][j] = L−1[i][j + 243] for (0 ≤ i < 729, 0 ≤ j <
486), we obtain

S L−1 · V = T.

Suppose there is a space TS , which is used to store all valid T that make the equation
system S L−1 · V = T have solutions to V . Then, the space S used to store all valid At

S T
can be trivially derived since At

S T = T + L−1 · (C||0).
The space TS can be easily calculated based on Gauss elimination. A similar

example is explained in Appendix A. Then, a linear equation system ET in terms of
T can be derived to store all valid values of T which can make S L−1 · V = T have
solutions to V . Apply Gauss elimination to ET , the solution structure of T can be
determined. Such a structure is good for attackers since it reveals that some trits of
T are fixed as shown in Table 8 (see Appendix A), implying that the some trits of At

S T
must be constants in order to match a given hash value. The space TS is obviously the
set of T satisfying the conditions in Table 8.

Taking into account the equivalent condition to determine whether an input state is
the preimage, instead of computing until At+1, we can only compute until At

S T and check
whether these conditions on At

S T hold. If they do not hold, such an input state must
not be the preimage and we can try another input state. Such a strategy is ultimately
exploited in our preimage attack on two/three rounds of Troika.

To make this paper clear, we define some terms. A tryte is called a conditional
tryte if this tryte can not take arbitrary values. A trit is called a conditional trit if its

value is fixed to a constant. A condition is called a single-tryte condition if only one
tryte is involved in it. A condition is called a multi-tryte condition if more than one
tryte are involved in it. A condition is called a single-trit/two-trit/three-trit condition
if it is imposed on a conditional tryte, where one/two/three trits of this tryte are fixed to
constants. According to Table 8, there are 162 conditional trytes, 216 conditional trits,
162 single-tryte conditions, 115 single-trit conditions (marked in black), 40 two-trit
conditions (marked in blue), 7 three-trit conditions (marked in red) and 27 multi-tryte
conditions.

4 Preimage Attack on Two-Round Troika

To find the preimage for two-round Troika, according to Table 8, there are 7 three-trit
conditions and 40 two-trit conditions on A1

S T . If we can guess the message in a proper
way to ensure these conditions always hold, an advantage over brute force is achieved.
This motivates us to investigate the property of an S-box.

4.1 Linearizing the Inputs of an S-box

Denote the input and output of an S-box by (x0, x1, x2) ∈ F3
3 and (y0, y1, y2) ∈ F3

3
respectively. If (y0, y1, y2) is a constant, then (x0, x1, x2) is a constant as well. When two
trits of (y0, y1, y2) are fixed, there are 3 × 32 = 27 patterns for (y0, y1, y2) since it take
values from F3

3 . We list all these 27 cases in Table 7 (see Appendix A). Based on this
table, we observe Property 1.

Property 1. When two trits of the output of an S-box are fixed, at least one
linear equation of its corresponding input can be derived. In other words, the two-trit
condition on the output hold with a probability of at least 3−1 if the inputs are linearized
with such linear equations.

4.2 Naive Preimage Attack on Two-Round Troika

Since there are 7 three-trit conditions and 40 two-trit conditions on A1
S T , if we linearize

the corresponding inputs of the S-box in A1 based on Table 7, the probability that these
conditions hold is improved to at least 3−40 from 3−21−80 = 3−101.

Observe that the nonlinear transform (SubTrytes) in the first round can be fully
peeled off. In other words, we start from the state A0

S T and set variables V1 to A0
S T [·][·][z]

(0 ≤ z ≤ 8). After linearizing some inputs of the S-box in A1 as discussed above,
there are at least 3 × 7 + 40 = 61 linear equations in terms of A1 in order to satisfy
the 7 three-trit conditions and 40 two-trit conditions. Since A1 is linear with V1, these
linear equations are converted to the linear equations in terms of V1 and form a linear
equation system. Then, we can arbitrary choose V1 from the solution space of this linear
equation system and test whether the hash value is matched. In this way, we can gain
an advantage of at least 361 over brute force to find the preimage of two-round Troika.

4.3 Improved Preimage Attack on Two-Round Troika

Only the three-trit and two-trit conditions on A1
S T are exploited in the above naive two-

round preimage attack. Indeed, the single-trit conditions on A1
S T can be utilized as well

to significantly improve the attack.
In the same way, we start from the middle state A0

S T and set variables at A0
S T [·][·][z]

(0 ≤ z ≤ 8). Formally, let A0
S T = (V1||P), where P is a 486-trit constant representing the

capacity part of A0
S T and V1 is a 243-trit variable. Consider the following relation:

L · (V1||P) = L · (V1||0) + L · (0||P) = A0
AP.

Let V0 = A0
AP − L · (0||P), we have

L · (V1||0) = V0.

To leverage all the single-tryte conditions on A1
S T , we can firstly compute all valid

inputs of the S-box for the corresponding conditional trytes in A1
S T . For example, there

is a single-trit condition on (A1
S T [0][2][0], A1

S T [1][2][0], A1
S T [2][2][0]) (see Table 8). As

a result, the tryte (A1[0][2][0], A1[1][2][0], A1[2][2][0]) can only take 9 possible values,
thus resulting that (A0

AP[0][2][0], A0
AP[1][2][0], A0

AP[2][2][0]) can only take 9 possible
values as well. Note that V0 = A0

AP − L · (0||P) and L · (0||P) is a constant for a fixed
capacity part of the input state. Therefore, the corresponding tryte in V0 can also only
take 9 possible values. Similarly, for each conditional tryte in A1

S T , we store the valid
values for the corresponding tryte in V0 in a two-dimensional dynamic array PV .

However, due to the non-full diffusion of L, there are 15 trits in A0
AP as listed below,

which only depend on P. Therefore, before storing each valid value, we firstly check
whether it is contradictory with the values of these 15 trits. Only those values that are
consistent with these 15 trits will be stored. If there is no valid value for a specific
conditional tryte, it implies that such a fixed capacity P can never lead to the given hash
value. In this case, it is essential to generate another value for the capacity part of A0 by
compressing random messages until there is at least one valid value for each conditional
tryte in A1

S T .

A0
AP[8][1][5], A0

AP[6][1][7], A0
AP[6][2][7], A0

AP[7][1][12], A0
AP[7][1][13],

A0
AP[7][1][14], A0

AP[7][1][15], A0
AP[3][1][16], A0

AP[3][1][17], A0
AP[3][1][18],

A0
AP[3][0][19], A0

AP[3][1][19], A0
AP[3][0][20], A0

AP[3][1][20], A0
AP[2][1][26].

According to the equivalent condition in Section 3, if we can find a solution V1 such
that V0 = L·(V1||0) can be contained in PV , then we ensure all the single-tryte conditions
on A1

S T . Since only the 162 single-tryte conditions are considered at this phase, we only
need compute the corresponding 162 trytes in V0. Consequently, we only need to focus
on the 162 × 3 = 486 linear equations between V1 and V0. Denote the equation system
composed of these 486 linear equations by S1: S L ·V1 = V ′0, where S L is the coefficient
matrix of size 486 × 243 and V ′0 is of size 486 × 1. Note that all valid values for the
trytes in V ′0 have been stored in PV .

With Gauss elimination, it is easy to derive a linear equation system S0 in terms
of V ′0, which is used to store all valid values of V ′0 that makes the equation system S1:

S L · V1 = V ′0 have solutions to V1. If we can find a value for V ′0 such that it is not
only a solution of S0 and but also contained in PV , then V1 is found to satisfy all the
single-tryte conditions. In next parts, we will expand on how to find such V ′0 with a
guess-and-determine approach. Before searching for such V ′0, a preprocessing phase is
necessary to pre-determine whether it can be found.

Note that all single-trit/two-trit/three-trit conditions have been taken into account.
Therefore, for different trytes in V ′0, the number of their valid values stored in PV
will be different. Specifically, some trytes in V ′0 can only take a unique value if they
correspond to a three-trit condition. Some trytes in V ′0 can only take at most 3 values if
they correspond to a two-trit condition. And some trytes in V ′0 can take at most 9 values
if they correspond to a single-trit condition. For the trytes taking 1 or 3 values, it has
been discussed previously that at least 61 linear equations in terms of V ′0 can be derived.

Therefore, after obtaining S0, we derive linear equations for each tryte of V ′0 based
on its valid values stored in PV as far as possible and add them to S0. Once new
equations are introduced in S0, more variables in S0 will become fixed. As a result,
it is possible to remove invalid values for some trytes in V ′0 from PV , which can be
proceeded by checking whether each valid value is contained in the solution space of
the updated S0 via Gauss elimination. As invalid values are removed, the number of
valid values for some trytes will decrease, thus having the potential to be linearized.
Such a procedure is repeated until S0 becomes stable, which means the size of the
solution space S0 will not be changed when adding the derived linear equations to it.

Observe that it is possible that none valid values for some trytes in V ′0 are left after
removing operation. In this case, it implies that such a fixed capacity P can never lead to
the given hash value and it is necessary to generate another P by compressing arbitrary
message.

On the whole, the above procedure can be illustrated with Figure 3. First of all, we
initialize PV as stated above. At this phase, we will remove the invalid values from
PV based on the 15 constant trit values, which are computed from a fixed value for the
capacity part of the input. If no valid value for a conditional tryte is left, we conclude it is
impossible to generate the given hash value with only one block when the capacity part
of input takes such a fixed value. Otherwise, we start initializing the equation system
S0 and record its size of solution space. Next, we will repeat updating PV and S0 until
the size of the solution space of S0 becomes unchanged. At this phase, it is possible
that there is no valid value for a conditional tryte in PV after updating it. Then, we will
again conclude that it is infeasible. Once a stable S0 is obtained, it implies we cannot
remove invalid values from PV anymore and PV also becomes stable. Therefore, we
can start the guess-and-determine phase to find the preimage.

4.4 Guess-and-Determine Method to Find the Preimage

After obtaining the stable linear equation system S0, whose coefficient matrix is the
row simplest form matrix, instead of naively exhausting the solution space of S0 and
checking whether it is contained in PV , we use a guess-and-determine technique to find
V ′0 which is not only contained in PV but also contained in the solution space of S0.

Fig. 3: Illustration of the procedure to obtain a stable S0

As is known, for the coefficient matrix of S0, each non-zero row will correspond to
an equation

α0V ′0[0] + α1V ′0[1] + · · · + α485V ′0[485] = α486,

where αi ∈ F3 (0 ≤ i ≤ 486). Since it corresponds to a non-zero row, there must exists
αi , 0 (0 ≤ i ≤ 485). Suppose αi , 0 and α j = 0 (j < i ≤ 485), if there exists αk , 0
(i < k ≤ 485), then we define V ′0[k] as the free variable in the equation system S0.
Moreover, we define this equation as the the equation on the trit V ′0[i].

Note that the coefficient matrix of S0 is the row simplest form matrix. If we guess
the values for V ′0 in the order that

(V ′0[485],V ′0[484],V ′0[483])→ (V ′0[482],V ′0[481],V ′0[480])→
(V ′0[3i + 2],V ′0[3i + 1],V ′0[3i])→ · · · → (V ′0[2],V ′0[1],V ′0[0]),

we can always verify the equations on (V ′0[3i + 2],V ′0[3i + 1],V ′0[3i]) (0 ≤ i ≤ 161) when
(V ′0[3i + 2],V ′0[3i + 1],V ′0[3i]) (0 ≤ i ≤ 161) is guessed. In other words, when choosing
a valid value from PV for the tryte (V ′0[3i + 2],V ′0[3i + 1],V ′0[3i]) (0 ≤ i ≤ 161), we can
verify whether it is contained in the solution space of S0 before guessing the remaining
free variables. If it is not contained, such a guess for this tryte is obviously wrong.
Following such an order to guess, there are several advantages over simply exhausting
the solution space of S0 when properly using the guess-and-determine technique below.

How to Guess. Firstly, note that each tryte of V ′0 can take at most 9 possible values. If
all the three trits in a tryte are free variables, we have to try 27 possible values of this
tryte when simply exhausting the solution space of S0. However, if we only choose valid
values from PV for the three trits, we only need to guess at most 9 times, thus obtaining

an advantage of at least 31. If two trits in a tryte are free variables, we can obtain an
advantage by guessing values from PV for this tryte when the number of valid values
for this tryte stored in PV is smaller than 9, which is possible to occur. If only one trit in
a tryte is a variable, advantages can be gained when the number of valid values for this
tryte stored in PV is smaller than 3. Otherwise, we simply guess this free variable and
determine the whole tryte and then check whether it is contained in the corresponding
PV . The last case is that no trit in a tryte is a variable. In this case, according to the
guess order, the value for this tryte can be computed based on the corresponding three
equations on them. Then, we simply check whether the computed value for this tryte is
contained in the corresponding PV , which can be finished in 1 time.

Local Test. When guessing a value for a tryte from PV , it is necessary to check whether
such a guessed value is contained in the solution space of S0. This can be efficiently
checked by verifying the equations on this tryte due to the guess order. If a guessed
value can not pass the test, i.e. the equations on this tryte do not hold, there is no need
to move ahead to next tryte from this guessed value, thus reducing the search space
further more.

Look-ahead and fast backtracking. Although local test can provide early stop in a
way, it is possible to occur that one value of a first guessed tryte will always lead to a
contradiction for a later guessed tryte. In this case, there will be a lot of unnecessary
backtracking if the two trytes locate far from each other since the guess order is
predetermined. To improve the efficiency of looking ahead, we can construct a table for
each tryte, which is used to record the trytes to be checked when this tryte is guessed.
Only when all trytes in the recorded table can pass the local test can we move ahead to
guess another tryte. In this case, for each checked tryte, the index of the first valid value
in PV are recorded in order to remove redundant operations when the search actually
reach these trytes.

Although look-ahead can be used to achieve faster early stop, another bad case may
occur, which causes many unnecessary backtracking. Specifically, we can ensure that
there is at least one valid value for a later guessed tryte with the look-ahead strategy.
However, when we actually reach this tryte, we have to look ahead from this tryte as
far as possible. It is possible that there is no valid value for this tryte that can pass
look-ahead. As a result, backtracking starts. However, there will be many unnecessary
backtracking if the value of this tryte is only influenced by a pre-guessed tryte that
locates far from it. Obviously, if we can immediately backtrack to this pre-guessed tryte,
the backtracking between this tryte and the pre-guessed tryte is removed, thus further
reducing the search space on the whole. To achieve efficiency of fast backtracking, we
construct a table for each tryte, which is used to record the tryte to be backtracked when
this tryte fails to move ahead.

4.5 Complexity Evaluation

When a valid V ′0 is found with the guess-and-determine approach, start exhausting the
solution space of S L ·V1 = V ′0 and check whether the given hash value can be generated

with V1. The size of the solution space of S L · V1 = V0 is 36 based on our analysis,
which is only related to the fixed coefficient matrix S L.

According to our guess-and-determine technique above, the found V ′0 can only
ensure the single-tryte conditions on A1

S T . Therefore, each solution of the equation
system S L · V1 = V ′0 can also only ensure the single-tryte conditions on A1

S T . For
the multi-tryte conditions on A1

S T , they are not taken into account in our guess-and-
determine technique to find a valid V ′0. To remove unnecessary enumeration of V1 for
each found V ′0, when a valid V ′0 is found, we firstly check some multi-tryte conditions
composed of the trits that can be computed based on the fully determined V ′0. There are
8 such multi-tryte conditions. Only when they are satisfied will we start exhausting the
solution space of S L · V1 = V ′0. Consequently, the time complexity to find a preimage
with one block is equivalent to the time complexity to enumerate all valid V ′0 with our
guess-and-determine technique.

To calculate the time complexity to enumerate all valid V ′0, we firstly omit the
influence of local test, look-ahead and fast backtracking and only focus on the size of
solution space if adopting our method to guess values for each tryte. Initialize a counter
cnt = 0. After a stable S0 is obtained, we check the positions of free variables. Suppose
there are f0 free variables in a tryte of V ′0 and the number of valid values for this tryte
stored in PV is f1. For each of the 162 trytes of V ′0, update cnt based on the following
relations between f0 and f1.

cnt =


cnt (if f0 = 0)
cnt + log3(f1) (if f0 = 1 and f1 ≤ 3)
cnt + 1 (if f0 = 1 and 3 < f1 ≤ 9)
cnt + log3(f1) (if f0 = 2)
cnt + log3(f1) (if f0 = 3)

We generate hundreds of thousands of hash values used as the inputs to the
program with random one-block messages. After a stable equation system S0 and PV
are obtained, start computing cnt. Among all these values for cnt, the largest one is
cnt = 92. However, the effect of local test, look-ahead and fast backtracking has not
been taken into account. It is reasonable to estimate that these early stop strategies can
at least reduce the whole search space by a factor of 313 according to our experiments.
Specifically, when it is computationally feasible, we exhaust all possible values from
the first guessed tryte to a certain later tryte. Then, record the total trying times in
order to enumerate all valid solutions until this tryte. Meanwhile, the number of valid
solutions is recorded as well. Suppose the total trying times is 3cnt0 , the number of valid
solutions is 3cnt1 and the search space is 3cnt2 without early stop strategy. In this way, we
can reduce the whole search space by a factor of at least 3cnt2−cnt1 . As a consequence,
for the hash value of two-round Troika that can be generated with one block, the time
complexity to find its preimage is upper bounded by 392−13 = 379, which is 3164 times
faster than brute force. Due to this significant advantage over brute force as well as our
algorithm to predetermine whether a hash value can be generated with one block, it is
expected that our algorithm can be applied to arbitrary hash values.

Attempt to solve the two-round preimage challenge. For the two-round preimage
challenge [1], our algorithm shows that one block is not sufficient to generate this hash

value. Therefore, we append random message blocks before the last block to generate
a suitable capacity part for the last block. Such a capacity part can pass the test of our
algorithm to determine whether it is potential to match the given hash value by using
the degree of freedom of the last block. Then, the guess-and-determine technique will
be applied to enumerate all valid V ′0 and the corresponding V1. The appended message
block Mapp we found is shown in Table 4. With such an appended message block, the
two-round preimage challenge can be partially solved. Specifically, we found a solution
Mlast for the last block in minutes. There are only 18 different trits between the two-
round preimage challenge and the hash value computed from Mapp||Mlast, as displayed
in Table 4.

4.6 Second Preimage Attack on Two-Round Troika

To find the preimage of two-round Troika with one block, two linear equation systems
S0 in terms of V ′0 and S1: S L · V1 = V ′0 are constructed. The goal is to find a valid V ′0.
After it is found, start exhausting the solution space of S1: S L · V1 = V ′0. However,
when given a message M0 and its corresponding hash value H0 after two-round Troika
permutation, the corresponding value for V ′0 computed from M0 is known! To find the
second preimage for (M0,H0), we simply set V ′0 the same with that computed from M0.
Then, we start exhausting the solution space S1: S L · V1 = V ′0. Note that there is at
least one solution to V1 that can lead to the hash value H0, which exactly corresponds
to M0. However, our program suggests that there are several V1 that can lead to the
same hash value H0. For the sake of correctness, we generate many random messages
and compute the corresponding hash value. Our program suggests that there are always
several V1 which can lead to the same given hash value. Since the size of the solution
space of S1 is 36, the time complexity to find the second preimage is upper bounded
by 36. To support our approach, we randomly generate a value for M0 and compute the
corresponding hash value H0. Then we found that there are many second preimages for
H0. Due to the space limit, we only list 6 second preimages (M1, M2, M3, M4, M5, M6)
in Table 9 (see Appendix A).

5 Preimage Attack on Three-Round Troika

The preimage attack on two-round Troika can be viewed as the interaction between
two linear equation systems. As the attacked round increases, it is almost impossible
to establish similar linear equation systems. However, we can still construct two
interacting systems to find the preimage of three-round Troika. Such an idea is much
inspired from the cube-attack-like cryptanalysis of Keccak-MAC by Dinur et al. [6].

Note that an equivalent condition to match a given hash value has been proposed
in Section 3. Specifically, when starting from a state with a correct fixed capacity part,
matching a three-round hash value is equivalent to satisfying the 243 trit conditions
on A2

S T as displayed in Table 8. The main technique is to separate the 243 variables
set at A0

S T [·][·][z] (0 ≤ z ≤ 8) into two parts PA1 and PA2. Then, exhaust all
possible values of the variables at PA1 and compute some trytes in A2

S T . Only when the
equivalent conditions on these trytes hold can we start exhausting all possible values

Table 4: Partially solving the two-round preimage challenge
Two-round preimage challenge

100222202111012011001001110100211221021212210220201121
111111211000221112102012121212121020210211112202122212
111112221020112011200112222202010020010022022101020202
220012011012010000111111120102011222212011022121011122
121111111001201002212110012

Mapp

202112201010011210202110200210010222102000011201012021
022111110012202011112121220100010202122201111210120102
201022100200121011102101112102001221101221011102120100
000221212011102001211211120212110102011220111021020212
011101122101212011000210021

Mlast

021011012111000010020220220200110201220120022221022000
201010120220102022101211222111212201101002001211222000
110120212012222100120102102102110100210000021101212211
201011111021000011221122002200211102221201111002202101
211121000001022111210112100

Hash value computed from Mapp||Mlast

100222202111012011001001110100211221021212210220201121
111111211000221112102012121212121020210211112202122212
111112221020112011200112222202010020010022022101020202
220012011012010000111111120110011222220011022102011122
121121111201000101010101210

of the variables in PA2. When all variables in PA1 and PA2 are guessed, the one-block
message is fixed and we can determine whether it is the preimage of the three-round
hash value.

As has been mentioned in [3], after three-round Troika permutation, the computa-
tion of one S-box requires the knowledge of all S-boxes in the first round. Therefore,
it is reasonable to assume that three-round Troika provides sufficient diffusion and the
243 trits of the three-round hash value are independent from each other. In other words,
suppose the capacity part of A0

S T is fixed and there are 243 variables at A0
S T [·][·][z]

(0 ≤ z ≤ 8), we expect that one hash value only corresponds to one value of these
243 variables. Note that matching a given hash value is equivalent to satisfying the 243
conditions on A2

S T when starting from a correct fixed capacity part. Suppose the 243 trit
conditions are not independent from each other, it may occur that more than one values
of the variables can make the all the 243 trit conditions on A2

S T hold, suggesting that one
hash value may correspond to more than one value of the 243 variables. Consequently,
we can assume the 243 conditions on A2

S T are independent based on the assumption that
three-round Troika provides sufficient diffusion.

If there are t0 trit conditions on A2
S T that can be tested by only guessing all the t1

variables at PA1, based on the assumption that these trit conditions are independent,
we can expect that only 3t1−t0 valid values are left for these t1 variables after 3t1

computations. Then, for each of the 3t1−t0 valid values, exhaust the remaining (243− t1)
variables and compute the three-round hash value. As a result, with time complexity
3t1 + 3243−t0 , we can exhaust all possible one-block messages. Suppose the given hash
value can be generated with only one block, the preimage must be found. When it can
not be generated with only one block, we can append random blocks before the last
block to generate a valid capacity part of the last block and exhaust all possible values
of the last block with the above method. As a result, with at most 3 × (3t1 + 3243−t0)
computations, we can expect to find the preimage of three-round Troika.

Based on the above analysis, achieving the optimal time complexity is equivalent to
finding the optimal separation of the 243 variables. As will be shown, such a problem
can be solved with MILP (Mixed-Integer Linear Programming), which was firstly
introduced to cryptanalysis in [9].

5.1 Finding Optimal Separation with MILP

Our attack starts from the middle state A0
S T and the 243 variables (v0, ..., v242) are set at

A0
S T [·][·][z] (0 ≤ z ≤ 8), i.e. v27z+9y+x = A0

S T [x][y][z]. First of all, for each conditional
tryte CTi (0 ≤ i ≤ 161) at A2

S T , record the corresponding variables in (v0, ..., v242) that
need knowing in order to compute this conditional tryte, which can be easily finished
with the linear transform matrix L. Suppose the recorded variables for the conditional
tryte CTi are (v j0 , v j1 , ..., v jr), then we construct the following inequalities to ensure that
when CTi needs to be determined, each of (v j0 , v j1 , ..., v jr) must be guessed:

TVi − VV js ≤ 0, s ∈ {0, 1, .., r},

where TVi = 1 (0 ≤ i ≤ 161) denotes that the tryte CTi needs to be determined and
VVi = 1 (0 ≤ i ≤ 242) denotes that the variable vi belongs to PA1, while TVi = 0

(0 ≤ i ≤ 161) denotes that the tryte CTi does not need to be determined and VVi = 0
(0 ≤ i ≤ 242) denotes that the variable vi belongs to PA2. In this way, as many as 16305
inequalities can be derived.

The objective function of the MILP model is set as

MAX
161∑
i=0

ci · TVi,

where ci denotes the number of conditonal trits in the conditional tryte CTi.
To ensure that the number of variables in PV1 is not too large, we adaptively add

the following inequality to the constraints

242∑
i=0

VVi ≤ bd,

where bd is used to constrain the number of variables in PA1. To obtain optimal time
complexity of the preimage attack on three-round Troika, bd should be as small as
possible while the objective function should be as large as possible. Therefore, we
adaptively choose values for bd and record the results of the objective function returned
by the Gurobi solver [2]. Some results are displayed in Table 5.

Table 5: Results for different bd
bd Result of obj. Time complexity of attack
124 5 3 × (3124 + 3238)
160 10 3 × (3160 + 3233)
170 13 3 × (3170 + 3230)
190 18 3 × (3190 + 3225)
200 20 3 × (3200 + 3223)
210 24 3 × (3210 + 3219)
215 27 3 × (3215 + 3216)

Based on the results displayed in Table 5, the optimal value for bd is 215. For
bd = 215, the corresponding separation of the variables (v0, ..., v242) and the conditional
trits in A2

S T to be checked are listed in Table 6. Therefore, the time complexity of the
preimage attack on three-round Troika is 3217.3, which is 325.7 times faster than brute
force.

6 Conclusion & Future Work

By discovering some equivalent conditions to pre-determine whether a message is the
preimage of a given hash value, invalid messages can be filtered at an early stage and the
search can be limited to a smaller potential space. To speed up the search in this potential
smaller space for two-round preimage attack, two interacting linear equation systems

Table 6: The optimal separation of variables to achieve best time complexity
PA1

v0, v1, v2, v3, v4, v5, v6, v8, v9, v11, v12, v13, v14, v15, v16,
v17, v18, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32,
v33, v34, v35, v36, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48,
v51, v52, v53, v54, v55, v57, v58, v59, v60, v63, v64, v65, v66, v67, v69,
v70, v71, v72, v73, v74, v75, v76, v77, v78, v79, v80, v82, v83, v84, v85,
v86, v87, v88, v89, v90, v91, v92, v93, v94, v95, v97, v98, v99, v100, v101,
v102, v103, v104, v105, v106, v107, v108, v109, v110, v111, v113, v114, v115, v116, v117,
v118, v119, v120, v121, v122, v123, v124, v125, v126, v128, v129, v130, v131, v132, v133,
v134, v135, v137, v138, v140, v141, v142, v143, v144, v145, v146, v147, v148, v149, v150,
v151, v152, v153, v155, v156, v157, v158, v159, v160, v161, v162, v163, v165, v166, v167,
v168, v170, v171, v172, v173, v174, v175, v177, v178, v179, v180, v181, v182, v183, v185,
v187, v188, v190, v192, v193, v194, v195, v197, v198, v199, v200, v201, v202, v203, v204,
v205, v206, v207, v208, v209, v210, v212, v213, v214, v215, v216, v217, v218, v220, v221,
v222, v223, v224, v225, v226, v227, v228, v229, v230, v232, v233, v234, v235, v236, v237,
v238, v239, v240, v241, v242.

27 conditional trits on A2
S T to be checked

A2
S T [4][0][3], A2

S T [5][2][3], A2
S T [6][0][4], A2

S T [8][0][4], A2
S T [7][1][4], A2

S T [2][0][6],
A2

S T [1][1][6], A2
S T [2][1][6], A2

S T [4][0][7], A2
S T [3][1][7], A2

S T [4][1][7], A2
S T [5][1][7],

A2
S T [4][0][8], A2

S T [3][1][8], A2
S T [4][1][8], A2

S T [5][1][8], A2
S T [5][2][8], A2

S T [4][0][9],
A2

S T [3][1][9], A2
S T [4][1][9], A2

S T [5][1][9], A2
S T [5][0][13], A2

S T [5][1][13], A2
S T [4][2][13],

A2
S T [0][1][23], A2

S T [1][2][23], A2
S T [2][2][23].

are constructed. Then, a guess-and-determine technique involving fast cutting branches
to efficiently enumerate valid solutions for one of the equation systems is proposed.
Consequently, the time complexity to find the preimage of two-round Troika with one
block is at most 379, which is 3164 times faster then brute force. Moreover, with the
divide-and-conquer method, the one-block message space is separated in an optimal
way with MILP so as to achieve optimal time complexity of the preimage attack on
three-round Troika. As a result, the preimage of three-round Troika can be found with
time complexity 3217.3.

Our algorithm shows that the second preimage for two-round Troika can be found
with pretty small time complexity. In other words, we can efficiently enumerate several
two-round differential characteristics which can lead to a collision for two-round Troika
with only one block. To construct a collision for three-round Troika, we have placed
the obtained two-round differential characteristic in the last two rounds and computed
backward by one round to obtain the actual input difference. However, there is always
difference in the capacity part of the input, which implies that we cannot find a three-
round differential characteristic to generate a collision with only one block. We also
have tested whether the obtained two-round differential characteristics for collision can
be extended to three rounds. However, it is shown that there is always difference in
the rate part of the output. Our future work is to improve the strategy to search the
(second) preimage for two-round Troika and see whether it is possible to actually solve
the three-round collision challenge and two-round preimage challenge.

Acknowledgement We thank the anonymous reviewers of IWSEC 2019 for their
insightful comments and suggestions. We also thank the Troika Group for the
discussion. Fukang Liu is supported by Invitation Programs for Foreigner-based
Researchers of the National Institute of Information and Communications Technology
(NICT). Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B)
(KAKENHI 19H02141) for Japan Society for the Promotion of Science.

References

1. Cybercrypt. https://www.cyber-crypt.com/troika-challenge/.
2. Gurobi. https://www.gurobi.com/.
3. Troika: a ternary hash function, 2018. https://www.cyber-crypt.com/

wp-content/uploads/2018/12/20181221.iota_.troika-reference.
v1.0.1.pdf.

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak
reference, 2011. http://keccak.noekeon.org.

5. Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on Keccak-224 and Keccak-256.
In FSE 2012, pages 442–461, 2012.

6. Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus. Cube
attacks and cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In
EUROCRYPT 2015, pages 733–761, 2015.

7. Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to cryptanalysis of
round-reduced Keccak. In ASIACRYPT 2016, pages 249–274, 2016.

8. Ting Li, Yao Sun, Maodong Liao, and Dingkang Wang. Preimage attacks on the round-
reduced Keccak with cross-linear structures. IACR Trans. Symmetric Cryptol., 2017(4):39–
57, 2017.

9. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In Inscrypt 2011, pages 57–76, 2011.

10. Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New collision attacks on round-
reduced Keccak. In EUROCRYPT 2017, pages 216–243, 2017.

11. Ling Song, Guohong Liao, and Jian Guo. Non-full sbox linearization: Applications to
collision attacks on round-reduced Keccak. In CRYPTO 2017, pages 428–451, 2017.

A Some Tables and Example

Suppose there is a linear equation system E0 · X = Y , where X ∈ F3
3 and Y ∈ F4

3 and

E0 =


2 1 0
1 2 2
0 1 1
1 0 2

. (1)

The goal is to compute the space YS to store all valid Y which can make the equation
system E0 · X = Y have solutions to X for each Y ∈ S Y . Construct a new matrix
E1 = (E0, E) where E is an identity matrix of size 4× 4. Then, apply Gauss elimination

https://www.cyber-crypt.com/troika-challenge/
https://www.gurobi.com/
https://www.cyber-crypt.com/wp-content/uploads/2018/12/20181221.iota_.troika-reference.v1.0.1.pdf
https://www.cyber-crypt.com/wp-content/uploads/2018/12/20181221.iota_.troika-reference.v1.0.1.pdf
https://www.cyber-crypt.com/wp-content/uploads/2018/12/20181221.iota_.troika-reference.v1.0.1.pdf
http://keccak.noekeon.org

to E1 to obtain E′1 = (E′0, E
′) where E′0 becomes the staircase matrix.

E1 =


2 1 0 1 0 0 0
1 2 2 0 1 0 0
0 1 1 0 0 1 0
1 0 2 0 0 0 1

⇒ E′1 =


2 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 2 1 1 0 0
0 0 0 2 0 1 1

. (2)

Therefore, YS is actually the solution space of the following equation system 3.(
2 0 1 1

)
· Y =

(
0
)
. (3)

Table 7: Linearizing the input of an S-box
Output Inputs Equations

(y0, y1, y2) (x0, x1, x2)
(-,0,0) (1,0,0), (1,1,0), (1,2,0) x0 = 1, x2 = 0.
(-,0,1) (0,1,2), (1,0,1), (2,2,2) x0 + x1 = 1.
(-,0,2) (0,2,1), (1,0,2), (2,1,1) x0 − x1 = 1.
(-,1,0) (2,0,0), (2,1,2), (2,2,1) x0 = 2, x1 + x2 = 0.
(-,1,1) (0,2,0), (1,1,1), (2,0,1) x0 + x1 = 2.
(-,1,2) (0,1,0), (1,2,2), (2,0,2) x0 − x1 = 2.
(-,2,0) (0,0,0), (0,1,1), (0,2,2) x0 = 0, x1 − x2 = 0.
(-,2,1) (0,0,1), (1,2,1), (2,1,0) x0 + x1 = 0.
(-,2,2) (0,0,2), (1,1,2), (2,2,0) x0 − x1 = 0.

(0,-,0) (0,0,0), (1,0,0), (2,0,0) x1 = 0, x2 = 0.
(0,-,1) (0,2,0), (1,0,1), (2,1,0) x0 − x1 = 1.
(0,-,2) (0,1,0), (1,0,2), (2,2,0) x0 + x1 = 1.
(1,-,0) (0,1,1), (1,1,0), (2,1,2) x1 = 1, x0 + x2 = 1.
(1,-,1) (0,1,2), (1,2,1), (2,0,1) x0 − x1 = 2.
(1,-,2) (0,0,2), (1,2,2), (2,1,1) x0 + x1 = 0.
(2,-,0) (0,2,2), (1,2,0), (2,2,1) x1 = 2, x0 − x2 = 1.
(2,-,1) (0,0,1), (1,1,1), (2,2,2) x0 − x1 = 0.
(2,-,2) (0,2,1), (1,1,2), (2,0,2) x0 + x1 = 2.

(0,0,-) (1,0,0), (1,0,1), (1,0,2) x0 = 1, x1 = 0.
(0,1,-) (0,1,0), (0,2,0), (2,0,0) x2 = 0.
(0,2,-) (0,0,0), (2,1,0), (2,2,0) x2 = 0.
(1,0,-) (0,1,2), (1,1,0), (2,1,1) x1 = 1, x0 − x2 = 1.
(1,1,-) (1,2,2), (2,0,1), (2,1,2) x0 + x1 − x2 = 1.
(1,2,-) (0,0,2), (0,1,1), (1,2,1) x0 − x1 − x2 = 1.
(2,0,-) (0,2,1), (1,2,0), (2,2,2) x1 = 2, x0 + x2 = 1.
(2,1,-) (1,1,1), (2,0,2), (2,2,1) x0 − x1 + x2 = 1.
(2,2,-) (0,0,1), (0,2,2), (1,1,2) x0 + x1 + x2 = 1.

Table 8: Conditions on T
Slice: 0 Slice: 1 Slice: 2 Slice: 3 Slice: 4

--- --- 0-0 --- --- 0-0 --- --- 0-0 --- -0- 0-0 --- -0- 0-0
00- --- -00 00- --- -00 000 --- -0- -00 --- -0- -00 -0- -0-
--0 0-- --- --0 --0 --- --0 --0 --- --0 --0 --- --- --0 ---

Slice: 5 Slice: 6 Slice: 7 Slice: 8 Slice: 9
--- -0- 0-- --0 -0- --- --0 -0- --- 0-0 -0- --- 0-0 -0- ---
-00 00- -0- -00 00- -0- --0 000 -0- --0 000 --- --0 000 ---
--- --0 --- --- --0 --- --- --0 --- --- --0 --- --- --- --0

Slice: 10 Slice: 11 Slice: 12 Slice: 13 Slice: 14
0-0 -0- --- 0-0 --- --- 0-0 --0 --- 0-0 --0 --- 00- --0 ---
--- 000 --- --- 000 --- --- 0-0 --- --- --0 0-- --- --0 0--
--- -0- --0 0-- -0- --0 0-- -0- --0 0-- -0- --0 0-- -0- --0

Slice: 15 Slice: 16 Slice: 17 Slice: 18 Slice: 19
00- --0 --- -0- --0 --- -0- 0-0 --- -0- 0-0 -0- -0- 0-0 -0-
--- --- 0-- --- --- 0-- --- --- 0-- --- --- 0-- --- --- 0--
0-- -0- 0-0 00- -0- 0-0 00- -0- 0-- 00- --- 0-- -0- --- 00-

Slice: 20 Slice: 21 Slice: 22 Slice: 23 Slice: 24
-0- 0-- -0- -0- 0-- -0- --- 0-- -0- --- 0-- -0- --- 0-- -00
--- --- 0-- --- --- --0 0-- --- --0 0-- --- --0 0-- --- --0
-0- 0-- 00- -0- 0-- 00- -0- 0-- 00- -00 0-- -0- --0 0-- -0-

Slice: 25 Slice: 26
--- --- 000 --- --- 0-0
0-- --- --0 00- --- --0
--0 0-- -0- --0 0-- -0-

Multi-tryte conditions
T [7] + T [364] + T [531] + T [694] = 0, T [25] + T [308] + T [512] + T [572] = 0,
T [48] + 2T [582] = 0, T [52] + T [226] + T [328] + T [678] = 0,
T [71] + 2T [380] = 0, T [75] + T [419] + T [459] + T [609] = 0,
T [90] + 2T [678] = 0, T [98] + T [293] + T [407] + T [595] = 0,
T [117] + T [380] + T [672] + T [705] = 0, T [128] + 2T [419] = 0,
T [143] + 2T [419] = 0, T [155] + T [170] + T [446] + T [709] = 0,
T [168] + 2T [531] = 0, T [195] + T [390] + T [545] + T [558] = 0,
T [199] + T [308] + T [512] + T [572] = 0, T [232] + 2T [595] = 0,
T [259] + T [535] + T [582] + T [622] = 0, T [266] + 2T [380] = 0,
T [281] + 2T [545] = 0, T [301] + T [308] + T [512] + T [572] = 0,
T [337] + 2T [709] = 0, T [363] + 2T [531] = 0, T [432] + 2T [582] = 0,
T [485] + 2T [545] = 0, T [508] + 2T [595] = 0, T [645] + 2T [678] = 0,
T [667] + 2T [709] = 0.

Table 9: Instances of second preimage

M0

010111010120012002222211020001011221011201111110102021
011220112102112001012000110220000211022212112220221200
022220002100110000012011202010212212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

H0

201122002102220012201001121112002110102101210010010000
211020121011111222011201021220212210011022020101011220
202010222210112101212020102111202112211000220021012122
122220000020222021210102021010122120122111122221022201
110011212021210221220022111

M1

010111010022012002222211020001011221110201111110102021
011220112102112001012000110220000211022212112210221200
022102011100110000012011202010110212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M2

010111010022012002222211020001011221110201111110102021
011220112102112001012000110220000211022212112210221200
022102011100110000110011202010110201112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M3

010111010022012002222211020001011221110201111110102021
011220112102112001012000110220000211022212112220221200
022102002100110000012011202010110212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M4

010111010120012002222211020001011221011201111110102021
011220112102112001012000110220000211022212112210221200
022220011100110000012011202010212212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M5

010111010120012002222211020001011221011201111110102021
011220112102112001012000110220000211022212112220221200
022220002100110000110011202010212201112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M6

010111010120012002222211020001011221212201111110102021
011220112102112001012000110220000211022212112220221200
022220002100110000110011202010011201112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

	Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods
	Fukang Liu, Takanori Isobe

