
CPA-to-CCA Transformation for KDM Security

Fuyuki Kitagawa1 and Takahiro Matsuda2

1 NTT Secure Platform Laboratories, Tokyo, Japan, fuyuki.kitagawa.yh@hco.ntt.co.jp
2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan,

t-matsuda@aist.go.jp

Abstract

We show that chosen plaintext attacks (CPA) security is equivalent to chosen ciphertext
attacks (CCA) security for key-dependent message (KDM) security. Concretely, we show
how to construct a public-key encryption (PKE) scheme that is KDM-CCA secure with
respect to all functions computable by circuits of a-priori bounded size, based only on a PKE
scheme that is KDM-CPA secure with respect to projection functions. Our construction
works for KDM security in the single user setting.

Our main result is achieved by combining the following two steps. First, we observe that
by combining the results and techniques from the recent works by Lombardi et al. (CRYPTO
2019), and by Kitagawa et al. (CRYPTO 2019), we can construct a reusable designated-
verifier non-interactive zero-knowledge (DV-NIZK) argument system based on an IND-CPA
secure PKE scheme and a secret-key encryption (SKE) scheme satisfying one-time KDM
security with respect to projection functions. This observation leads to the first reusable
DV-NIZK argument system under the learning-parity-with-noise (LPN) assumption. Then,
as the second and main technical step, we show a generic construction of a KDM-CCA secure
PKE scheme using an IND-CPA secure PKE scheme, a reusable DV-NIZK argument system,
and an SKE scheme satisfying one-time KDM security with respect to projection functions.
Since the classical Naor-Yung paradigm (STOC 1990) with a DV-NIZK argument system
does not work for proving KDM security, we propose a new construction methodology to
achieve this generic construction.

Moreover, we show how to extend our generic construction and achieve KDM-CCA
security in the multi-user setting, by additionally requiring the underlying SKE scheme in
our generic construction to satisfy a weak form of KDM security against related-key attacks
(RKA-KDM security) instead of one-time KDM security. From this extension, we obtain
the first KDM-CCA secure PKE schemes in the multi-user setting under the CDH or LPN
assumption.

Keywords: public-key encryption, key-dependent message security, chosen ciphertext se-
curity, designated-verifier non-interactive zero-knowledge argument.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our Results . 4
1.3 Related Work . 6
1.4 Paper Organization . 7

2 Technical Overview 7
2.1 Naor-Yung Paradigm with DV-NIZK Fails for KDM 7
2.2 How to Solve the Circularity Problem Involving DV-NIZK? 8
2.3 KDM-CPA Variant of Our Construction . 9
2.4 KDM-CCA Secure PKE Using DV-NIZK . 10
2.5 Extension to KDM-CCA Security in the Multi-User Setting 12
2.6 On the Connections with the Techniques by Barak et al. [BHHI10] 13

3 Preliminaries 14
3.1 Notations . 14
3.2 Public-Key Encryption . 14
3.3 Secret-Key Encryption . 15
3.4 Designated-Verifier Non-interactive Zero-Knowledge Arguments 17
3.5 Garbled Circuits . 18

4 DV-NIZK via KDM Security 19

5 Generic Construction of KDM-CCA Secure PKE 20

6 Multi-User KDM-CCA Security from RKA-KDM Security 26

7 Passively RKA-KDM Secure SKE from Hash Encryption 32
7.1 Definition of Hash Encryption . 32
7.2 Construction . 33

8 Putting It All Together 38

A Other Definitions 43
A.1 Recovery from Randomness for PKE . 43
A.2 Attribute-Based Secure Function Evaluation . 44
A.3 Equivocable Commitment . 46
A.4 Pseudorandom Generator . 47
A.5 Leftover Hash Lemma . 47

B Key-Hiding Enhancement for AB-SFE via KDM Security 47
B.1 Proof of Theorem 10: Strong Key-Hiding of ABSFE′ 49
B.2 Proof of Theorem 11: Weak Message-Hiding of ABSFE′ 52

1 Introduction

1.1 Background

The most basic security notion for public-key encryption (PKE) is indistinguishability against
chosen plaintext attacks (IND-CPA security) [GM82]. Intuitively, IND-CPA security guarantees
that an adversary can obtain no information about a message from its encryption, except for
its length. However, in practice, PKE schemes should satisfy the stronger notion of indistin-
guishability against chosen ciphertext attacks (IND-CCA security) [NY90, RS92]. IND-CCA
security implies non-malleability [DDN91, BDPR98], and provides security guarantees against
active adversaries [Ble98].

Since IND-CCA security is stronger than IND-CPA security, the existence of IND-CCA
secure PKE implies that of IND-CPA secure one. However, the implication of the opposite
direction is not known. While a partial negative result was shown by Gertner, Malkin, and
Myers [GMM07], the question whether an IND-CCA secure PKE scheme can be constructed
from an IND-CPA secure one has still been standing as a major open question in cryptography
from both the theoretical and practical points of view.

In the literature, a number of efforts have been made for (implicitly or explicitly) tackling
the problem.1 Among them, we highlight the two very recent works that make solid progress.
Koppula and Waters [KW19] showed that an IND-CCA secure PKE scheme can be constructed
from an IND-CPA secure one by using a pseudorandom generator (PRG) satisfying a special
security notion. This additional primitive is called a hinting PRG. Subsequently, Kitagawa,
Matsuda, and Tanaka [KMT19] showed that a transformation from an IND-CPA secure PKE
scheme to an IND-CCA secure one is also possible by using a secret-key encryption (SKE)
scheme satisfying one-time key-dependent message security [BRS03] instead of a hinting PRG.

We further study the question of CPA security vs CCA security. Many previous works focus-
ing on this question (some of which we review in Section 1.3) sought an additional assumption
that bridges IND-CPA security and IND-CCA security. In this work, we tackle the question
from a somewhat different angle. Concretely, we aim at finding a security notion under which
CPA security and CCA security are equivalent. As far as we know, such an equivalence is not
known for any security notion for PKE schemes (e.g., leakage resilience, key-dependent message
security, and selective opening security). Finding such a security notion is an important ques-
tion in the theoretical study of public-key cryptography. Moreover, we believe that clarifying
for what types of notions CPA security and CCA security are equivalent potentially gives us
new insights for the major open question on the equivalence between IND-CPA security and
IND-CCA security.

Based on the above motivation, in this work, we study the equivalence of CPA security and
CCA security for key-dependent message (KDM) security [BRS03]. Informally, KDM security
guarantees that an encryption scheme can securely encrypt messages that depend on its own
secret key. We can see some connections between IND-CCA security and KDM-CPA security
from several previous results [MH15, HK15, KMT19], and thus KDM security can be consid-
ered as one of the best candidates for which CPA security and CCA security could be shown
equivalent. Moreover, KDM security is important and interesting enough to be studied in its
own right since it has found a number of applications in both theoretical and practical stud-
ies in cryptography, e.g., anonymous credentials [CL02], formal methods [ABHS05], hard-disc
encryption [BHHO08], fully homomorphic encryption [Gen09], non-interactive zero-knowledge
proofs [CCRR18, CCH+19], and homomorphic secret-sharing [BKS19].

1We review some of them in Section 1.3.

3

1.2 Our Results

As noted above, we study the equivalence between CPA security and CCA security for KDM
security. Then, we obtain the following main theorem.

Theorem 1 (Informal) Assume that there exists a KDM-CPA secure PKE scheme. Then,
there exists a KDM-CCA secure PKE scheme.

We show this theorem for KDM-CPA security and KDM-CCA security in the single user
setting. The underlying scheme needs to be KDM-CPA secure with respect to functions called
projection functions (P-KDM-CPA secure). The family of projection functions is one of the
simplest classes of functions, and KDM security with respect to this function class has been
widely studied [BHHO08, ACPS09, BG10, BLSV18, DGHM18]. The resulting scheme is KDM-
CCA secure with respect to all functions computable by circuits of a-priori bounded size. The
achieved security notion is the CCA-analogue of the notion called bounded KDM security by
Barak, Haitner, Hofheinz, and Ishai [BHHI10].

We obtain Theorem 1 by combining the following two steps.

Reusable DV-NIZK Based on One-Time KDM Secure SKE. A designated-verifier
non-interactive zero-knowledge (DV-NIZK) argument system is a relaxation of a standard NIZK
argument system in the common reference string model (CRS-NIZK, for short), and allows a
verifier to have its own public/secret key pair; The public key is used to generate a proof non-
interactively, which can be verified by using the corresponding secret key. A DV-NIZK argument
system is said to be reusable if its soundness (resp. zero-knowledge property) is maintained even
if an adversary can make multiple verification (resp. proving) queries. It was recently shown by
Lombardi, Quach, Rothblum, Wichs, and Wu [LQR+19a] that a reusable DV-NIZK argument
system can be constructed from the combination of an IND-CPA secure PKE scheme and a
hinting PRG introduced by Koppula and Waters [KW19].

As the first step for Theorem 1, we observe that we can construct a reusable DV-NIZK
argument system based on an IND-CPA secure PKE scheme and an SKE scheme that is one-
time KDM secure with respect to projection functions (one-time P-KDM secure), by combining
the results and techniques from the recent works by Lombardi et al. [LQR+19a] and Kitagawa
et al. [KMT19].

In fact, this is somewhat obvious from the results [LQR+19a, KMT19] and not our main
contribution. However, this observation leads to the following interesting implications. A one-
time P-KDM secure SKE scheme can be constructed based on the polynomial hardness of the
constant-noise learning-parity-with-noise (LPN) assumption [ACPS09]. Moreover, we can con-
struct an IND-CPA secure PKE scheme based on the polynomial hardness of the low-noise
LPN assumption [Ale03] or the sub-exponential hardness of the constant-noise LPN assump-
tion [YZ16]. Thus, combined together, our observation leads to the first reusable DV-NIZK
argument system based on either the polynomial hardness of the low-noise LPN assumption or
the sub-exponential hardness of the constant-noise LPN assumption.

We note that the exact same observation (i.e. a reusable DV-NIZK argument system based
on IND-CPA secure PKE and one-time P-KDM secure SKE, and the LPN-based instantiation)
was very recently made independently and concurrently by Lombardi et al. [LQR+19b].

Generic Construction of KDM-CCA Secure PKE Using Reusable DV-NIZK. Then,
as the second and main technical step for Theorem 1, we show a generic construction of KDM-
CCA secure PKE based on the following five building blocks.

• An IND-CPA secure PKE scheme

4

• An IND-CCA secure PKE scheme

• A one-time P-KDM secure SKE scheme

• A garbling scheme

• A reusable DV-NIZK argument system

In the first step above, we show how to construct a reusable DV-NIZK argument system from
an IND-CPA secure PKE scheme and a one-time P-KDM secure SKE scheme. Also, IND-CCA
secure PKE can be constructed from the same building blocks [KMT19]. Moreover, a garbling
scheme can be constructed from one-way functions [Yao86], which is in turn implied by other
building blocks. Therefore, through our generic construction, we can construct a KDM-CCA
secure PKE scheme based on an IND-CPA secure PKE scheme and a one-time P-KDM secure
SKE scheme. Since both of the underlying primitives are implied by P-KDM-CPA secure PKE,
we obtain Theorem 1.

We highlight that our construction can “amplify” KDM security in terms of not only the
class of functions (from projection functions to circuits of a-priori bounded size) but also the
number of KDM-encryption queries allowed for an adversary. Specifically, among the building
blocks, the only “KDM-secure” component is the one-time P-KDM secure SKE scheme, while
our construction achieves the standard many-time KDM-CCA security. For more details, see
Section 2.3.

One might think that if we can use a reusable DV-NIZK argument system, a KDM-CPA
secure PKE scheme can easily be transformed into a KDM-CCA secure one by the Naor-Yung
paradigm [NY90]. In fact, if the goal is to achieve an IND-CCA secure PKE scheme, then
it is possible to replace a CRS-NIZK argument system in the Naor-Yung paradigm with a
reusable DV-NIZK argument system. Furthermore, Camenisch, Chandran, and Shoup [CCS09]
showed that (a slight variant of) the Naor-Yung paradigm with a CRS-NIZK argument system
can be used to transform a KDM-CPA secure PKE scheme into a KDM-CCA secure one.
Unfortunately, however, things are not so easy if we aim at achieving KDM-CCA security using
a reusable DV-NIZK argument system via the Naor-Yung paradigm (or its existing variants).
The main cause of difficulty is that if we apply the standard Naor-Yung paradigm using a
DV-NIZK argument system, the secret verification key of the DV-NIZK argument system is
included in the secret key of the resulting scheme, and a circularity involving a DV-NIZK
argument system occurs in the KDM-CCA security game. Our main technical contribution is
circumventing this difficulty. We will detail the difficulty as well as our techniques in Section 2.

KDM-CCA Security in the Multi-User Setting Based on New Assumptions. Al-
though our main focus in this work is on showing that KDM-CPA security and KDM-CCA
security are equivalent, through the above results, we obtain the first KDM-CCA secure PKE
schemes based on the computational Diffie-Hellman (CDH) assumption and the LPN assump-
tion, since KDM-CPA secure PKE schemes can be constructed under these assumptions [BLSV18,
Döt15, DGHM18]. These schemes satisfy only KDM-CCA security in the single user setting,
since so does our generic construction, as noted earlier.

We then show how to extend our generic construction and achieve a PKE scheme satisfying
KDM-CCA security in the multi-user setting under the CDH and LPN assumptions. This is
done by requiring the underlying SKE scheme in our generic construction to satisfy a variant
of KDM security against related-key attacks (RKA-KDM security) [App13], instead of one-time
KDM security. (We also require a mild property that a secret key is a uniformly distributed ran-
dom string.) An SKE scheme satisfying our definition of RKA-KDM security can be constructed
based on the (polynomial hardness of) constant-noise LPN assumption [App13]. Moreover, we

5

show how to construct an SKE scheme satisfying our RKA-KDM security notion based on hash
encryption [DGHM18, BLSV18], which in turn can be based on the CDH assumption. This
construction is an extension of a KDM-CPA secure PKE scheme based on batch encryption
proposed by Brakerski, Lombardi, Segev, and Vaikuntanathan [BLSV18].

1.3 Related Work

Generic Constructions for KDM-CCA Secure PKE. To the best of our knowledge,
the only existing generic methods for constructing KDM-CCA secure PKE, are the works by
Camenisch, Chandran, and Shoup [CCS09], by Galindo, Herrantz, and Villar [GHV12], and by
Kitagawa and Tanaka [KT18a]. Camenisch et al. [CCS09] showed how to construct a KDM-
CCA secure PKE scheme from a KDM-CPA secure PKE scheme, an IND-CCA secure PKE
scheme, and a CRS-NIZK proof (or argument) system. (We will touch it in Section 2.) Galindo
et al. [GHV12] showed how to construct a KDM-CCA secure PKE scheme from an identity-
based encryption scheme which satisfies so-called master-key-dependent message security, via
the transformation by Canetti, Halevi, and Katz [CHK04]. However, the only known instanti-
ation of Galindo et al.’s method can achieve security against adversaries that make an a-priori
bounded number of master-key-KDM-encryption queries, which is translated to KDM-CCA se-
curity against adversaries that make an a-priori bounded number of KDM-encryption queries.
Kitagawa and Tanaka [KT18a] showed how to construct a KDM-CCA secure PKE scheme based
on a hash proof system [CS02] satisfying some homomorphic property. It is not obvious how
to modify the methods of [GHV12, KT18a] to achieve a generic construction of a KDM-CCA
secure PKE scheme starting from a KDM-CPA secure one.

Generic Constructions for IND-CCA Secure PKE. Here, we review the works that
showed how to construct IND-CCA secure PKE schemes from an IND-CPA secure PKE scheme
(or an equally fundamental primitive of a trapdoor function (TDF)) by assuming some addi-
tional structural/security properties on it and/or using some additional building blocks.

Dolev, Dwork, and Naor [DDN91] were the first to show the construction of an IND-CCA
secure PKE scheme, from an IND-CPA secure scheme and a CRS-NIZK proof (or argument)
system, based on the construction by Naor and Yung [NY90] that achieves weaker non-adaptive
CCA (IND-CCA1) security.

Canetti, Halevi, and Katz [CHK04] showed how to transform an identity-based encryption
scheme into an IND-CCA secure PKE scheme. Kiltz [Kil06] showed that the transformation is
applicable to a weaker primitive of tag-based encryption.

Peikert and Waters [PW08] showed how to construct an IND-CCA secure PKE scheme from
a lossy TDF. Subsequent works showed that TDFs with weaker security/functionality properties
are sufficient for obtaining IND-CCA secure PKE schemes [RS09, KMO10, Wee10, YYHK16].
Hemenway and Ostrovsky [HO13] showed that one can construct a lossy TDF (and hence, an
IND-CCA secure PKE scheme via [PW08]) from a lossy encryption scheme [BHY09] which can
encrypt a message longer than an encryption-randomness.

Matsuda and Hanaoka [MH14a] showed how to construct an IND-CCA secure PKE scheme
by using an IND-CPA secure PKE scheme and point obfuscation [Can97], and they [MH14b]
showed another construction from an IND-CPA secure PKE scheme and a hash family satis-
fying one of universal computational extractors (UCE) assumptions [BHK13]. Dachman-Soled
[Dac14] and Matsuda and Hanaoka [MH16] showed how to construct an IND-CCA secure PKE
scheme from a PKE scheme which satisfies (weak) simulatability and the (standard model)
plaintext awareness under the multiple keys setting.

Matsuda and Hanaoka [MH15] also showed that an IND-CCA secure PKE scheme can be

6

built from the combination of a sender non-committing encryption scheme and a one-time
KDM secure SKE scheme with respect to a-priori bounded size circuits. Hajiabadi and Kapron
[HK15] showed how to construct an IND-CCA secure PKE scheme, from a 1-bit PKE scheme
that satisfies circular security and has the structural property called reproducibility.

Very recently, Koppula and Waters [KW19] showed how to construct an IND-CCA secure
PKE scheme based on the combination of an IND-CPA secure PKE scheme and a hinting
PRG. Building on [KW19], Kitagawa, Matsuda, and Tanaka [KMT19] showed how to construct
an IND-CCA secure PKE scheme based on an IND-CPA secure PKE scheme and a one-time
KDM secure SKE scheme with respect to projection functions, both of which are implied by a
KDM-CPA secure PKE scheme with respect to projection functions.

1.4 Paper Organization

In Section 2, we give an overview of our techniques. In Section 3, we review definitions of
cryptographic primitives. In Section 4 (and Appendix B), we explain how to construct a reusable
DV-NIZK argument system from the combination of IND-CPA secure PKE and one-time KDM
secure SKE with respect to projection functions. In Section 5, we present our main technical
result: a CPA-to-CCA transformation for KDM security. In Section 6, we show that the
construction given in Section 5 also achieves KDM-CCA security in the multi-user setting, if
the building block SKE scheme additionally satisfies what we call passive RKA-KDM security
whose formal definition is given in Section 3. In Section 7, we present a passively RKA-KDM
secure SKE scheme from a hash encryption scheme. Finally, in Section 8, we summarize our
results.

2 Technical Overview

In this section, we provide a technical overview of our main results. As mentioned in the intro-
duction and will be detailed in Section 4, we can observe from the previous results [LQR+19a,
KMT19] that a reusable DV-NIZK argument system can be constructed based on the combi-
nation of an IND-CPA secure PKE scheme and a one-time KDM secure SKE scheme. Thus, in
this overview, we mainly focus on the generic construction of a PKE scheme that is KDM-CCA
secure in the single user setting using a reusable DV-NIZK argument system. (From here on, we
drop “reusable”.) We also briefly explain how to extend it into the multi-user setting by using
RKA-KDM secure SKE. We start with why we cannot achieve such a generic construction by
using the standard Naor-Yung paradigm [NY90].

2.1 Naor-Yung Paradigm with DV-NIZK Fails for KDM

Camenisch, Chandran, and Shoup [CCS09] showed that the Naor-Yung paradigm with a CRS-
NIZK argument system goes through for KDM security. We first review their construction,
and then explain the problems that arise when replacing the underlying CRS-NIZK argument
system with a DV-NIZK argument system.

KDM-CCA PKE by Camenisch et al. [CCS09]. The construction uses a KDM-CPA
secure PKE scheme PKE, an IND-CCA secure PKE scheme PKE′, and a CRS-NIZK argument
system NIZK.2 Using these building blocks, we construct PKENY as follows. A public key
of PKENY consists of (pk, pkcca, crs), where pk and pkcca are public keys of PKE and PKE′,

2In their actual construction, a one-time signature scheme is also used. We ignore it in this overview for
simplicity, since the problem we explain below is unrelated to it.

7

respectively, and crs is a CRS of NIZK. The corresponding secret key is sk corresponding to
pk. The secret key skcca corresponding to pkcca is discarded and used only in the security proof.
When encrypting a message m, PKENY generates a ciphertext of the form(

ct = Encpk(m), ctcca = Enc′pkcca(m), π
)
,

where Enc and Enc′ denote the encryption algorithms of PKE and PKE′, respectively, and π is
a proof of NIZK proving that ct and ctcca encrypt the same message, generated by using m and
random coins used to generate ct and ctcca as a witness. When decrypting the ciphertext, we
first check whether the proof π is accepted or not. If π is accepted, we decrypt ct by using sk,
and recover m.

Camenisch et al. showed that PKENY is KDM-CCA secure for a function class F with
respect to which the underlying PKE scheme PKE satisfies KDM-CPA security.3

Circularity Involving DV-NIZK. We now explain why the above construction technique
by Camenisch et al. does not work if we use a DV-NIZK argument system instead of a CRS-
NIZK argument system.

If we use a DV-NIZK argument system DVNIZK instead of NIZK as a building block of
PKENY, then we need a secret key skdv of DVNIZK to verify a proof contained in a ciphertext
when decrypting the ciphertext. Thus, we have to include skdv into the secret key of PKENY.

In this case, an encryption of a message of the form f(sk∥skdv) is given to an adversary
in the KDM-CCA security game, where f is a function chosen by the adversary as a KDM-
encryption query. Then, there is a circularity problem involving not only encryption schemes but
also DVNIZK, since when encrypting a message f(sk∥skdv), a proof of DVNIZK is generated to
guarantee that encryptions of its own secret key skdv are well-formed. Even if such a circularity
exists, we can use the zero-knowledge property of DVNIZK in the security proof since a reduction
algorithm attacking the zero-knowledge property is given a secret verification key skdv and thus
can handle such a circularity. However, we cannot use its soundness property in the security
proof unless we solve the circularity, because a secret verification key skdv is not directly given
to an adversary attacking the soundness of DVNIZK.

Due to this circularity problem involving a DV-NIZK argument system, it seems difficult to
achieve a KDM-CCA secure PKE scheme using a DV-NIZK variant of the Naor-Yung paradigm.

2.2 How to Solve the Circularity Problem Involving DV-NIZK?

The circularity problem involving a DV-NIZK argument system of PKENY occurs because in the
security game, a message depending on skdv is encrypted by encryption schemes the validity of
whose ciphertexts is proved by the DV-NIZK argument system. In order to solve this circularity
problem, we have to design a scheme so that it has an indirection that a message is not directly
encrypted by encryption schemes related to a DV-NIZK argument system.

The most standard way to add such an indirection to encryption schemes would be to
use the hybrid encryption methodology. However, it is difficult to use the hybrid encryption
methodology to construct a KDM-CCA secure scheme, since it leads to a dead-lock in the sense
that the key encapsulation mechanism and data encapsulation mechanism could encrypt each
other’s secret key in the presence of key-dependent messages.

Thus, we use a different technique. We use a garbling scheme [Yao86] to realize the indi-
rection that a message is not directly encrypted by encryption schemes related to a DV-NIZK

3We note that in this construction, NIZK need not satisfy the simulation soundness property [Sah99], and we
can complete the proof based on the ordinary soundness (and zero-knowledge) property of NIZK.

8

argument system.4 Concretely, when encrypting a message m, we first garble a circuit into
which m is hardwired. Then, we encrypt each of the labels generated together with the garbled
circuit by a PKE scheme, and then generate a proof proving that the encryptions of the labels
are well-formed by using a DV-NIZK argument system.

In order to realize the above idea using a garbling scheme, we use a one-time KDM secure
SKE scheme at the key generation to encrypt (and add to a public key) secret key components
of the building block PKE schemes. With the help of a one-time KDM secure SKE scheme, a
garbling scheme makes it possible to simulate an encryption of the secret key without directly
using the secret key itself, and we can prove the (multi-time) KDM security of the resulting
scheme, which has the indirection.

Below, we first show the KDM-CPA variant of our construction without using a DV-NIZK
argument system. Then, we show how to extend it into a KDM-CCA secure one.

2.3 KDM-CPA Variant of Our Construction

In the following, we show how to construct a KDM-CPA secure PKE scheme PKE∗kdm from a
garbling scheme, a one-time KDM secure SKE scheme SKE, and IND-CPA secure PKE schemes
PKE and PKE′.

Construction Using Garbled Circuits. The key generation algorithm generates a key pair
(PK,SK) of PKE∗kdm as follows. It first generates a secret key s = (s1, . . . , sℓs) ∈ {0, 1}ℓs of SKE.
Next, it generates a key pair (pk′, sk′) of PKE′ and 2ℓs key pairs (pkj,α, skj,α)j∈[ℓs],α∈{0,1} of PKE.
Then, it encrypts ℓs + 1 secret keys sk′ and (skj,sj)j∈[ℓs] into ctske by SKE under the key s.
The public-key PK consists of 2ℓs + 1 public keys pk′ and (pkj,α)j∈[ℓs],α∈{0,1}, and ctske. The
corresponding secret key SK is just s. Namely, PK and SK are of the form

PK =
(
(pkj,α)j∈[ℓs],α∈{0,1}, pk′, ctske = Es(sk

′, (skj,sj)j∈[ℓs])
)

and SK = s,

respectively, where Es(·) denotes the encryption algorithm of SKE using the key s.
When encrypting a message m under PK, PKE∗kdm first garbles a constant circuit Q that has

m hardwired and outputs it for any input of length ℓs.
5 This results in a single garbled circuit

Q̃ and 2ℓs labels (labj,α)j∈[ℓs],α∈{0,1}. Then, the encryption algorithm encrypts “0-labels” labj,0

into ctj,α by pkj,α for every j ∈ [ℓs] and α ∈ {0, 1}. It finally encrypts Q̃ and those encrypted
labels (ctj,α)j,α using pk′. The resulting ciphertext CT is of the form

CT = Enc′pk′
(
Q̃, (ctj,0 = Encpkj,0(labj,0), ctj,1 = Encpkj,1(labj,0))j∈[ℓs]

)
,

where Enc and Enc′ are the encryption algorithms of PKE and PKE′, respectively. We stress
that for every j ∈ [n], the same label labj,0 is encrypted under both pkj,0 and pkj,1.

When decrypting the ciphertext CT using the secret key SK = s, we first retrieve the
secret keys sk′ and (skj,sj)j∈[ℓs] from ctske contained in PK. Then, using sk′, we recover Q̃ and
(ctj,α)j∈[ℓs],α∈{0,1}. Moreover, we recover the “0-label” labj,0 from ctj,sj using skj,sj for every

j ∈ [ℓs]. Finally, we evaluate the recovered garbled circuit Q̃ with these ℓs “0-labels” by the
evaluation algorithm of the garbling scheme. This results in m, since given 0ℓs , Q outputs m.

4The following explanations assume that the reader is familiar with a garbling scheme. See Section 3.5 for its
formal definition.

5 In the actual construction, we use a garbled circuit and labels that are generated by the simulator of the
garbling scheme, instead of those generated by garbling a constant circuit. This makes the security proof simpler.
We ignore this treatment here for the simplicity of the explanation.

9

Overview of the Security Proof of PKE∗kdm. We explain how we prove the KDM-CPA
security in the single user setting of PKE∗kdm. Specifically, we explain that no adversary A can
guess the challenge bit b with probability significantly greater than 1/2 given an encryption of
fb(SK) = fb(s), when A queries two functions (f0, f1) as a KDM-encryption query.6

In this construction, the secret keys of PKE corresponding to s, namely (skj,sj)j∈[ℓs], are
encrypted in ctske, but the rest of the secret keys (skj,1⊕sj)j∈[ℓs] are hidden from A’s view.
Thus, in the security proof, we can always use the IND-CPA security of PKE under the public
keys (pkj,1⊕sj)j∈[ℓs]. By combining the IND-CPA security of PKE under these keys with the
security of the garbling scheme, we can change the security game so that the encryption of
fb(s) given to A can be simulated without using s, without being noticed by A. Concretely,
in the modified security game, an encryption of fb(s) is generated as follows. We first generate
Q̃ and (labj,α)j∈[ℓs],α∈{0,1} by garbling a circuit computing fb, instead of a constant circuit Q
in which fb(s) is hardwired. Then, we encrypt labj,α into ctj,α by pkj,α for every j ∈ [ℓs] and

α ∈ {0, 1}. Finally, we encrypt Q̃ and those encrypted labels (ctj,α)j,α using pk′, and obtain

CT = Encpk′(Q̃, (ctj,0, ctj,1)j∈[ℓs]). We see that we now do not need s to generate CT. The
explanation so far in fact works even when A makes multiple KDM-encryption queries.

After the above change, a ciphertext CT given to A does not have any information of s, and
thus we can use the one-time KDM security of SKE. Although the message (sk′, (skj,sj)j∈[ℓs])
encrypted in ctske depends on the secret key s, by relying on the one-time KDM security of
SKE, we can further change the security game so that ctske is generated as an encryption of
some constant message such as the all-zero string. Then, since sk′ is now hidden from A’s view,
we can argue that A’s advantage in the final game is essentially 1/2 based on the IND-CPA
security of PKE′. This completes the proof for the KDM-CPA security of PKE∗kdm.

Features of PKE∗kdm. This KDM-CPA secure construction PKE∗kdm has some nice properties.
First, all of the building blocks are implied by KDM-CPA secure PKE. (Recall that a garbling
scheme can be realized from one-way functions [Yao86].) Moreover, through this construc-
tion, we can transform a one-time KDM-CPA secure scheme into a (multi-time) KDM-CPA
secure PKE scheme. Also, the resulting scheme satisfies KDM-CPA security with respect to all
functions computable by circuits of a-priori bounded size even though the underlying KDM-
CPA secure scheme needs to satisfy a much weaker form of KDM-CPA security. Concretely,
the underlying scheme needs to be only KDM-CPA secure with respect to projection func-
tions, since the encrypted message (sk′, (skj,sj)j∈[ℓs]) can be seen as an output of a function
g(x1, . . . , xℓs) = (sk′, (skj,xj)j∈[ℓs]), which can be described as a projection function of an input

x = (x1, . . . , xℓs) ∈ {0, 1}ℓs that has (sk′, (skj,α)j∈[ℓs],α∈{0,1}) hardwired. From these facts, in the
single user setting, the construction PKE∗kdm in fact improves the previous amplification meth-
ods for KDM-CPA secure schemes [App11, DGHM18, KT18b]. In addition, most importantly,
PKE∗kdm can be easily extended into a KDM-CCA secure one by using a DV-NIZK argument
system.

2.4 KDM-CCA Secure PKE Using DV-NIZK

We extend PKE∗kdm into a KDM-CCA secure PKE scheme PKEkdm by the following two steps.
First, we use a DV-NIZK argument system DVNIZK for proving that encrypted labels are

well-formed. Concretely, we use it in the following manner. When generating a key pair (PK,SK)

6Usually, KDM security requires that an encryption of f(SK) be indistinguishable from that of some constant
message such as 0|f(·)| instead of requiring encryptions of f0(SK) and f1(SK) be indistinguishable, where f , f0,
and f1 are functions chosen by adversaries. However, these definitions are equivalent if a function class with
respect to which we consider KDM security contains constant functions, which is the case in this paper.

10

of PKEkdm, we additionally generate a key pair (pkdv, skdv) of DVNIZK, and add pkdv to PK.
Moreover, we encrypt skdv into ctske together with (sk′, (skj,sj)j∈[ℓs]) by using s. The secret key

SK is still only s = (s1, . . . , sℓs) ∈ {0, 1}ℓs . Namely, PK and SK are of the form

PK =
(
(pkj,α)j∈[ℓs],α∈{0,1}, pk′, pkdv, ctske = Es(sk

′, skdv, (skj,sj)j∈[ℓs])
)

and SK = s,

respectively. When encrypting a message m, we first generate Q̃ and (ctj,0, ctj,1)j∈[ℓs] in the
same way as PKE∗kdm. Then, using pkdv, we generate a proof π of DVNIZK proving that ctj,0
and ctj,1 encrypt the same message for every j ∈ [ℓs], by using labj,0 and random coins used to
generate ctj,0 and ctj,1 as a witness.

Next, in order to make the entire part of the ciphertext non-malleable, we require that PKE′

satisfy IND-CCA security instead of IND-CPA security, and encrypt Q̃, the encrypted labels
(ctj,0, ctj,1)j∈[ℓs], and the proof π, using pk′ of PKE′. Therefore, the resulting ciphertext CT is
of the form

CT = Enc′pk′
(
Q̃, (ctj,0 = Encpkj,0(labj,0), ctj,1 = Encpkj,1(labj,0))j∈[ℓs], π

)
.

We perform the decryption of this ciphertext in the same way as before, except that we addi-
tionally check whether π is accepted or not by using skdv retrieved from ctske, and if it is not
accepted, the ciphertext is rejected.

As mentioned earlier (and will be detailed in Section 4), by combining the techniques from
the two recent results [LQR+19a, KMT19], a DV-NIZK argument system can be based on the
same building blocks. Moreover, an IND-CCA secure PKE scheme can also be based on the
same building blocks [KMT19]. Thus, similarly to PKE∗kdm, all the building blocks of PKEkdm

can be based on the combination of an IND-CPA secure PKE scheme and a one-time KDM
secure SKE scheme, which are in turn both implied by a KDM-CPA secure PKE scheme.

Overview of the Security Proof of PKEkdm. At first glance, the circularity involving
DVNIZK occurs when encrypting a key-dependent message f(SK) = f(s) = skdv by PKEkdm,
where f is a function that, given s as input, retrieves skdv from ctske by using s and outputs skdv.
This is because DVNIZK is used to generate a proof that proves ctj,0 and ctj,1 encrypt the same
label, and the labels may contain some information of the key-dependent message f(s) since it
is generated by garbling a constant circuit Q into which f(s) is hardwired. However, due to the
indirection that skdv is not encrypted by encryption schemes the validity of whose ciphertexts
is proved by the DV-NIZK argument system, we can solve the circularity and prove the KDM-
CCA security of PKEkdm by adding some modifications to the proof for the KDM-CPA security
of PKE∗kdm explained in the previous section.

First of all, the zero-knowledge property of DVNIZK allows us to change the security game
so that we use the simulator for the zero-knowledge property to generate the DV-NIZK key pair
(pkdv, skdv) at the key generation, and we use the simulator also for generating a fake proof π
in a ciphertext when responding to KDM-encryption queries. Then, similarly to what we do in
the proof for PKE∗kdm, we can change the security game so that we do not need s for responding
to KDM-encryption queries by using the security of the garbling scheme and the IND-CPA
security of PKE under public keys (pkj,1⊕sj)j∈[ℓs]. However, differently from the proof for the
KDM-CPA security of PKE∗kdm, we cannot use the one-time KDM security of SKE immediately
after this change. This is because we still need s for responding to decryption queries. More
specifically, when responding to a decryption query, we have to decrypt the “sj-side” ciphertext
ctj,sj of PKE using skj,sj for every j ∈ [ℓs] to recover the labels of a garbled circuit.7 Thus,

7Strictly speaking, we also use s to retrieve (sk′, skdv, (skj,sj)j∈[ℓs]) from ctske. However, we can omit this

11

before using the one-time KDM security of SKE, we change the security game so that we do not
need s to respond to decryption queries by relying on the soundness of DVNIZK.

Concretely, we change the security game so that when responding to a decryption query CT,
we always decrypt the “0-side” ciphertext ctj,0 of PKE using skj,0 for every j ∈ [ℓs]. Although
we cannot justify this change based solely on the soundness of DVNIZK, we can justify it by
combining the soundness and zero-knowledge property of DVNIZK, the one-time KDM security
of SKE, and the IND-CCA security of PKE′ using a deferred analysis technique. This technique
of justifying changes for decryption queries using the deferred analysis originates in the context
of expanding the message space of IND-CCA secure PKE schemes [HLW12], and was already
shown to be useful in the context of KDM-CCA security [KMHT15, KT18a]. In fact, the
indirection explained so far makes it possible to use the deferred analysis technique.

Once we change how decryption queries are answered in this way, we can complete the
remaining part of the proof based on the one-time KDM security of SKE and the IND-CCA
security of PKE′ similarly to the proof for the KDM-CPA security of PKE∗kdm.

For the formal description of our construction as well as the security proof, see Section 5.

Is It Essential to Encrypt skdv into ctske? It is not essential to maintain skdv (and sk′) in the
encrypted form ctske by the key s and make SK consist only of s. In fact, we can consider a variant
of PKEkdm such that we set SK := (s, skdv, sk

′). In this case, we use 2 ·ℓSK = 2 ·(|s|+ |skdv|+
∣∣sk′∣∣)

key pairs of PKE, and we generate ctske as an encryption of (skj,SKj
)j∈[ℓSK] by s, where SKj is

the j-th bit of SK for every j ∈ [ℓSK]. Even if we adopt such a construction, we can realize
an indirection that is sufficient to use the deferred analysis technique, and we can prove its
KDM-CCA security similarly to the above.

The security proof for PKEkdm is simpler than that for the above variant. Moreover, as we
will explain below, we need to encrypt skdv and sk′ and make SK = s when considering KDM-
CCA security in the multi-user setting. For these reasons, we adopt the current construction of
PKEkdm.

2.5 Extension to KDM-CCA Security in the Multi-User Setting

We finally explain how to extend the above construction PKEkdm into a scheme that is KDM-
CCA secure in the multi-user setting. In fact, we need not change the construction at all.
The only difference is that we require a weak variant of RKA-KDM security [App13] for the
underlying SKE scheme SKE, instead of one-time KDM security. We also require a mild property
that a secret key is uniformly distributed over the secret key space {0, 1}ℓs .

Informally, an SKE scheme is said to be RKA-KDM secure if no adversary can guess the
challenge bit b with probability significantly greater than 1/2 given an encryption of fb(s) under
the key s ⊕∆ ∈ {0, 1}ℓs when it queries two functions (f0, f1) and a key shift ∆ ∈ {0, 1}ℓs as
an RKA-KDM-encryption query. For our purpose, we need a much weaker form of RKA-KDM
security where all key shifts are not chosen by an adversary, but generated uniformly at random
in advance by the challenger. We call our RKA-KDM security passive RKA-KDM security. For
its formal definition, see Definition 5 in Section 3.

In the security proof of the KDM-CCA security in the multi-user setting of PKEkdm, there
exist n key pairs of PKEkdm for some polynomial n of the security parameter. As the first step of
the proof, we change the security game so that n secret keys s1, . . . , sn of PKEkdm are generated
by first generating a single source key s and n key shifts (∆i)i∈[n] and then setting si := s⊕∆i

for every i ∈ [n]. This does not at all change the distribution of the keys due to the requirement

decryption process and use (sk′, skdv, (skj,sj)j∈[ℓs]) directly without changing the view of an adversary, and thus
we ignore this issue here.

12

on SKE that a secret key is distributed uniformly in the secret key space {0, 1}ℓs . We next
change the security game so that for every i∗ ∈ [n], an encryption of fb(s

1∥ . . . ∥sn) under the
i∗-th key can be simulated from fb and n key shifts (∆i)i∈[n] and not the source key s, where
(i∗, f0, f1) is a KDM-encryption query made by an adversary. This is possible by garbling a
circuit into which fb, i

∗, and (∆i)i∈[n] are hardwired,8 while we just directly garble fb in the
proof for the single user security. Then, we can complete the rest of the security proof in the
same way as the proof of the single user security except that we use the (passive) RKA-KDM
security instead of one-time KDM security. For the details of the proof, see Section 6.

Differently from the single user case, it is critical that skdv and sk′ are encrypted into ctske,
and SK consists only of s. If SK is of the form (s, skdv, sk

′), it is not clear how we control the
multiple secret keys even if SKE is RKA-KDM secure.

KDM-CCA Secure PKE from New Assumptions. An SKE scheme satisfying our defi-
nition of RKA-KDM security can be constructed based on the LPN assumption [App13]. More-
over, we show how to construct an SKE scheme satisfying our RKA-KDM security definition
based on hash encryption [DGHM18, BLSV18] which in turn can be based on the CDH as-
sumption. The construction is an extension of that of a KDM-CPA secure PKE scheme based
on batch encryption proposed by Brakerski et al. [BLSV18]. For the details of the construction
and its security proof, see Section 7.

In addition to RKA-KDM secure SKE schemes, all other building blocks of our construction
can be obtained based on the LPN and CDH assumptions via KDM-CPA secure PKE schemes.
Through our generic construction, we obtain the first PKE schemes that are KDM-CCA secure
in the multi-user setting based on the LPN and CDH assumptions. Previously to our work,
KDM-CCA secure PKE schemes even in the single user setting based on these assumptions
were not known.

2.6 On the Connections with the Techniques by Barak et al. [BHHI10]

The idea of garbling a constant circuit used in this overview was previously used by Barak et al.
[BHHI10] in which they constructed a PKE scheme that is KDM-CPA secure with respect to
functions computable by circuits of a-priori bounded size (i.e. bounded-KDM-CPA security).
They used the technique of garbling a constant circuit together with a primitive that they
call targeted encryption, which is a special form of PKE and whose syntactical and security
requirements have some similarities with hash encryption [DGHM18]. In fact, the KDM-CPA
variant of our construction PKE∗kdm explained in Section 2.3 can be described by using the
abstraction of targeted encryption in which the targeted encryption scheme is constructed from
an IND-CPA secure PKE scheme and a one-time KDM secure SKE scheme.9

We note that although we can use the abstraction of targeted encryption for the KDM-CPA
variant of our construction, it seems difficult to use it for our main construction of a KDM-CCA
secure PKE scheme. The problem is that if we use the abstraction of targeted encryption, we
have to prove the well-formedness of ciphertexts of the targeted encryption scheme by using the
DV-NIZK argument system. As explained in Section 2.5, in the security proof of our KDM-
CCA secure PKE scheme, we have to change the security game so that when responding to a
decryption query, we recover all labels from “0-side” ciphertexts (ctj,0)j∈[ℓs] of the underlying
IND-CPA secure PKE scheme (instead of “si-side” ciphertexts (ctj,si)j∈[ℓs]). This key-switching

8To make this change possible, in the formal proof, we need to pad a circuit garbled in the encryption algorithm
to some appropriate size depending on n.

9These connections with the techniques by Barak et al. were pointed out by the anonymous reviewers.

13

step is not compatible with the syntax of targeted encryption, and it seems difficult to use a
targeted encryption scheme in a black-box way.

3 Preliminaries

In this section, we review basic notation and the definitions of cryptographic primitives used in
the paper.

3.1 Notations

N denotes the set of natural numbers, and for n ∈ N, we define [n] := {1, . . . , n}. For a discrete
finite set S, |S| denotes its size, and x

r←− S denotes choosing an element x uniformly at random
from S. For strings x and y, x∥y denotes their concatenation. For a (probabilistic) algorithm
or a function A, y ← A(x) denotes assigning to y the output of A on input x, and if we need to
specify a randomness r used in A, we denote y ← A(x; r) (in which case the computation of A
is understood as deterministic on input x and r). λ always denotes a security parameter. PPT
stands for probabilistic polynomial time. A function f(λ) is said to be negligible if f(λ) tends
to 0 faster than λ−c for every constant c > 0. We write f(λ) = negl(λ) to mean that f(λ) is a
negligible function.

3.2 Public-Key Encryption

Here, we review the definitions for public-key encryption (PKE).

Definition 1 (Public-Key Encryption) A PKE scheme PKE is a three tuple (KG,Enc,Dec)
of PPT algorithms.

• KG is the key generation algorithm that takes a security parameter 1λ as input, and outputs
a public/secret key pair (pk, sk).

• Enc is the encryption algorithm that takes a public key pk and a message m as input, and
outputs a ciphertext ct.

• Dec is the (deterministic) decryption algorithm that takes a public key pk, a secret key sk,
and a ciphertext ct as input, and outputs a message m which could be the special symbol
⊥ indicating that ct is invalid.

Correctness We require Dec(pk, sk,Enc(pk,m)) = m for all λ ∈ N, all key pairs (pk, sk) output
by KG(1λ), and all messages m.

Security Notions for PKE. Next, we review the definitions of key-dependent message se-
curity against chosen plaintext attacks/chosen ciphertext attacks (KDM-CPA/CCA security).
Note that IND-CPA/CCA security are covered as their special cases.

Definition 2 (KDM-CCA/KDM-CPA Security) Let PKE be a PKE scheme whose secret
key and message spaces are SK and M, respectively. Let n ∈ N, and let F be a function
family with domain SKn and rangeM. Consider the following F-KDM(n)-CCA game between
a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates n

key pairs
(
pki, ski

)
← KG(1λ) (i ∈ [n]). Then, the challenger sets sk :=

(
sk1, . . . , skn

)
and

sends
(
pk1, . . . , pkn

)
to A. Finally, the challenger prepares an empty list Lkdm.

14

2. A may adaptively make the following queries.

KDM-encryption queries: A sends (j, f0, f1) ∈ [n] × F2 to the challenger. The chal-
lenger returns ct ← Enc(pkj , fb(sk)) to A. Finally, the challenger adds (j, ct) to
Lkdm.

Decryption queries: A sends (j, ct) to the challenger. If (j, ct) ∈ Lkdm, then the chal-
lenger returns ⊥ to A. Otherwise, the challenger returns m ← Dec(pkj , skj , ct) to
A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM(n)-CCA secure if for all PPT adversaries A, we have Advkdmcpa
PKE,F ,A,n(λ)

:= 2 · |Pr[b = b′]− 1/2| = negl(λ).
F-KDM(n)-CPA security is defined similarly, using the F-KDM(n)-CPA game where an

adversary A is not allowed to make decryption queries.

The above definition is slightly different from the standard definition where an adversary is
required to distinguish encryptions of f(sk1, . . . , skn) from encryptions of some fixed message.
However, the two definitions are equivalent if the function class F contains a constant function,
which is the case for the function families used in this paper (see below). This formalization is
easier to work with for security proofs.

Function Families. In this paper, we will deal with the following function families for KDM
security of PKE:

P (Projection functions): A function is said to be a projection function if each of its output
bits depends on at most a single bit of its input. We denote by P the family of projection
functions.

Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size = size(λ) is
a polynomial, the function family such that each member in Bsize can be described by a
circuit of size size.

C (Constant functions): We denote by C the set of all constant functions. Note that C-KDM-CCA
(resp. C-KDM-CPA) security is equivalent to IND-CCA (resp. IND-CPA) security.

3.3 Secret-Key Encryption

Here, we review the definitions for secret-key encryption (SKE).

Definition 3 (Secret-Key Encryption) An SKE scheme SKE is a three tuple (K,E,D) of
PPT algorithms.

• K is the key generation algorithm that takes a security parameter 1λ as input, and outputs
a key s.

• E is the encryption algorithm that takes a secret key s and a message m as input, and
outputs a ciphertext ct.

• D is the (deterministic) decryption algorithm that takes a secret key s and a ciphertext ct
as input, and outputs a message m which could be the special symbol ⊥ indicating that ct
is invalid.

Correctness We require D(s,E(s,m)) = m for all λ ∈ N, all keys s output by K(1λ), and all
messages m.

15

Security Notions for SKE. In this paper, we will deal with two types of security notions
for SKE: one-time KDM security and passive RKA-KDM security. We review the definitions
below.

One-time KDM security is a weak form of KDM-CPA security in which an adversary is
allowed to make only a single KDM-encryption query.

Definition 4 (One-Time KDM Security) Let SKE = (K,E,D) be an SKE scheme whose
key and message spaces are K and M, respectively. Let F be a function family with domain
K and range M. Consider the following one-time F-KDM game between a challenger and an
adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates a

secret key s← K(1λ) and sends 1λ to A.

2. A sends a function f ∈ F as a single KDM-encryption query to the challenger. If b =
1, the challenger returns ct ← E(s, f(s)) to A; Otherwise, the challenger returns ct ←
E(s, 0|f(·)|) to A. (Note that this step is done only once.)

3. A outputs b′ ∈ {0, 1}.

We say that SKE is one-time F-KDM secure if for all PPT adversaries A, we have AdvotkdmSKE,F ,A(λ)
:= 2 · |Pr[b = b′]− 1/2| = negl(λ).

Remark 1 (On the Message Space of One-Time KDM Secure SKE) When talking about
the one-time KDM security of an SKE scheme, the size of the message space is an important
factor. As shown by Hofheinz and Unruh [HU08], SKE satisfying one-time KDM security with
respect to all functions can be achieved unconditionally if its message space is sufficiently smaller
than its secret key space.

Unlike ordinary IND-CPA secure encryption schemes, extending the message space of KDM
secure encryption schemes is in general not easy. Fortunately, however, things are easy for
P-KDM security. We can extend the message space of a one-time P-KDM secure SKE scheme
as much as we want, if the size of the message space of the SKE scheme is already sufficiently
large. Specifically, we can show that if there exists a one-time P-KDM secure SKE scheme
whose secret key and message spaces are {0, 1}ℓ and {0, 1}µ, respectively, for some polynomials
ℓ = ℓ(λ) and µ = µ(λ) satisfying µ = Ω(ℓ · λ), then for any polynomial µ′ = µ′(λ), there also
exists a one-time P-KDM secure SKE scheme that can encrypt messages of length µ′.

To see this, we observe that the KDM-CPA secure construction PKE∗kdm that we described
in Section 2.3, works also in the secret-key setting. Namely, if we replace the building block
IND-CPA secure PKE schemes with IND-CPA secure SKE schemes, then the resulting SKE
scheme10 is (multi-time) Bsize-KDM secure where size = size(λ) is some polynomial that depends
on the size of a constant circuit (in which a message is hardwired). In fact, we can make the
message space of this construction arbitrarily large since by setting size appropriately, we can
hardwire a message of arbitrary length into a circuit to be garbled without compromising the
security. Moreover, we only need to assume that the underlying one-time P-KDM secure SKE
scheme can encrypt messages of length µ = Ω(ℓ · λ) since it is only required to encrypt ℓ + 1
secret keys of IND-CPA secure SKE schemes, each of which can be assumed to be λ-bit without
loss of generality. This means that, using this construction, we can extend the message space of
a one-time P-KDM secure SKE scheme as much as we want if the scheme can already encrypt
a message of length µ = Ω(ℓ · λ).

10If we are only interested in one-time KDM security of the resulting scheme, the SKE-ciphertext ctske that is
originally put in a public key of PKE∗

kdm can be sent as part of a ciphertext.

16

Next, we give a formalization of passive RKA-KDM security, which is a weaker variant of
RKA-KDM security formalized by Applebaum [App13]. Recall that the original RKA-KDM
security of [App13] is a slightly stronger form of standard KDM-CPA security (albeit in the
presence of a single challenge key) where we consider an adversary that is allowed to ask en-
cryptions of key-dependent messages, encrypted under “related” keys. In this paper, we only
consider “XOR by a constant” as related-key deriving functions, and hence give a definition
specialized to this setting. On the other hand, however, we only need a weaker “passive” variant
of RKA-KDM security where the security game is changed as follows: (1) not the adversary but
the challenger randomly chooses the related-key deriving functions (i.e. constants for XORing
in our setting), and (2) an adversary has to make its RKA-KDM-encryption queries in one
shot.

Definition 5 (Passive RKA-KDM Security) Let SKE be an SKE scheme whose key space
is {0, 1}ℓ for some polynomial ℓ = ℓ(λ) and whose message space isM. Let F be a function fam-
ily with domain {0, 1}ℓ and range M. Let n ∈ N be an a-priori bounded polynomial. Consider
the following passive F-RKA-KDM(n) game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1} and generates s ← K(λ) and

∆i r←− {0, 1}ℓ for every i ∈ [n]. Then, the challenger sends (∆i)i∈[n] to A.

2. A sends n functions f1, . . . , fn ∈ F to the challenger. If b = 1, the challenger computes
cti ← E(s ⊕ ∆i, f i(s)) for every i ∈ [n]. Otherwise, the challenger computes cti ←
E(s⊕∆i, 0|f i(·)|) for every i ∈ [n]. Finally, the challenger sends

(
cti

)
i∈[n] to A.

3. A outputs b′ ∈ {0, 1}.

We say that SKE is passively F-RKA-KDM(n) secure, if for all PPT adversaries A, we
have AdvprkakdmSKE,F ,A,n(λ) := 2 · |Pr[b = b′]− 1/2| = negl(λ).

3.4 Designated-Verifier Non-interactive Zero-Knowledge Arguments

Here, we review the definitions for (reusable) designated-verifier non-interactive zero-knowledge
(DV-NIZK) argument systems.

Definition 6 (DV-NIZK) Let L be an NP language associated with the corresponding NP
relation R. A DV-NIZK argument system DVNIZK for L is a three tuple (DVKG,P,V) of PPT
algorithms.11

• DVKG is the key generation algorithm that takes a security parameter 1λ as input, and
outputs a public proving key pk and a secret verification key sk.

• P is the proving algorithm that takes a public proving key pk, a statement x, and a witness
w as input, and outputs a proof π.

• V is the (deterministic) verification algorithm that takes a secret verification key sk, a
statement x, and a proof π as input, outputs either accept or reject.

11Lombardi et al. [LQR+19a] adopted the syntax of a DV-NIZK argument system in which there is a setup
algorithm that generates a CRS. This is necessary for considering zero-knowledge property against malicious
verifiers that may generate its public proving key maliciously. Since we only consider the standard zero-knowledge
property with honestly generated keys, we adopt a simpler syntax without a separate setup algorithm.

17

We require that DVNIZK satisfy the three requirements: Correctness, (adaptive) soundness,
and zero-knowledge. In particular, we consider a version of soundness which holds against
adversaries that make multiple verification queries, and a version of zero-knowledge which holds
against adversaries that make multiple challenge proving queries. A DV-NIZK argument system
that satisfies these versions of soundness and zero-knowledge is called reusable.

Formally, these requirements are defined as follows.

Correctness We say that DVNIZK is correct if we have V(sk, x,P(pk, x, w)) = accept for all
λ ∈ N, all key pairs (pk, sk) output by DVKG(1λ), and all valid statement/witness pairs
(x,w) ∈ R.

Soundness Consider the following soundness game between a challenger and an adversary A.

1. First, the challenger generates (pk, sk)← DVKG(1λ) and sends pk to A.
2. A may adaptively make verification queries. When A makes a verification query

(x, π), the challenger responds with V(sk, x, π).

3. A outputs (x∗, π∗).

We say that DVNIZK is sound if for all PPT adversaries A, we have AdvsoundDVNIZK,A(λ)
:= Pr[x∗ /∈ L ∧ V(sk, x∗, π∗) = accept] = negl(λ).

Zero-Knowledge Let S = (S1, S2) be a pair of PPT “simulator” algorithms whose syntax is
as follows.

• S1 takes a security parameter 1λ as input, and outputs a fake public key pk, a fake
secret key sk, and a trapdoor td.

• S2 takes a trapdoor td and a statement x as input, and outputs a fake proof π.

Consider the following zero-knowledge game between a challenger and an adversary A.

1. First, the challenger chooses the challenge bit b
r←− {0, 1}. If b = 1, then the challenger

generates (pk, sk) ← DVKG(1λ); Otherwise the challenger generates (pk, sk, td) ←
S1(1

λ). Then, the challenger sends (pk, sk) to A.
2. A may adaptively make proving queries. When A submits a proving query (x,w), if

(x,w) /∈ R, then the challenger returns ⊥ to A. Then, if b = 1, the challenger com-
putes π ← P(pk, x, w); Otherwise, the challenger computes π ← S2(td, x). Finally,
the challenger returns π to A.

3. A outputs b′ ∈ {0, 1}.

We say that DVNIZK is zero-knowledge if there exists a PPT simulator S = (S1, S2)
such that for all PPT adversaries A, we have AdvzkDVNIZK,A,S(λ) := 2 · |Pr[b = b′]− 1/2| =
negl(λ).

3.5 Garbled Circuits

Here, we recall the definitions of a garbling scheme in the form we use in this paper. We can real-
ize a garbling scheme for all efficiently computable circuits based on one-way functions [Yao86].

Definition 7 (Garbled Circuits) Let {Cn}n∈N be a family of circuits where the input-length
of each circuit in Cn is n. A garbling scheme GC is a three tuple (Garble,Eval,Sim) of PPT
algorithms.

18

• Garble is the garbling algorithm that takes as input a security parameter 1λ and a circuit
C ∈ Cn, where n = n(λ) is a polynomial. Then, it outputs a garbled circuit C̃ and 2n
labels (labj,α)j∈[n],α∈{0,1}. For simplicity and without loss of generality, we assume that
the length of each labj,α is λ.

• Eval is the evaluation algorithm that takes a garbled circuit C̃ and n labels (labj)j∈[n] as
input, and outputs an evaluation result y.

• Sim is the simulator algorithm that takes a security parameter 1λ, the size parameter size
(where size = size(λ) is a polynomial), and a string y as input, and outputs a simulated
garbled circuit C̃ and n simulated labels (labj)j∈[n].

For a garbling scheme, we require the following correctness and security properties.

Correctness For all λ, n ∈ N, all x = (x1, . . . , xn) ∈ {0, 1}n, and all C ∈ Cn, we require that
the following two equalities hold.12

• Eval(C̃, (labj,xj)j∈[n]) = C(x) for all (C̃, (labj,α)j∈[n],α∈{0,1}) output by Garble(1λ, C).

• Eval(C̃, (labj)j∈[n]) = C(x) for all (C̃, (labj)j∈[n]) output by Sim(1λ, |C|, C(x)).

Security Consider the following security game between a challenger and an adversary A.

1. First, the challenger chooses a bit b
r←− {0, 1} and sends a security parameter 1λ to

A.
2. A sends a circuit C ∈ Cn and an input x = (x1, . . . , xn) ∈ {0, 1}n to the challenger.

Then, if b = 1, the challenger computes (C̃, (labj,α)j∈[n],α∈{0,1})← Garble(1λ, C) and

returns (C̃, (labj,xj)j∈[n]) to A; Otherwise, the challenger returns (C̃, (labj)j∈[n]) ←
Sim(1λ, |C| , C(x)) to A.

3. A outputs b′ ∈ {0, 1}.

We say that GC is secure if for all PPT adversaries A, we have AdvgcGC,A,Sim(λ) := 2 ·
|Pr[b = b′]− 1/2| = negl(λ).

4 DV-NIZK via KDM Security

In this section, we explain how to construct a reusable DV-NIZK argument system from the
combination of an IND-CPA secure PKE scheme and a one-time P-KDM secure SKE scheme.
Specifically, we explain how the following statement can be derived.

Theorem 2 Assume that there exist an IND-CPA secure PKE scheme and a one-time P-KDM
secure SKE scheme that can encrypt messages of length Ω(ℓ · λ), where ℓ = ℓ(λ) is the secret
key length of the SKE scheme. Then, there exists a reusable DV-NIZK argument system for all
NP languages.

As mentioned in the introduction, this almost immediately follows by combining the re-
sults and techniques from the recent works by Lombardi et al. [LQR+19a] and by Kitagawa et
al. [KMT19]. To see this, we first briefly review Lombardi et al.’s work.

12Requiring correctness for the output of the simulator may be somewhat non-standard. However, it is satisfied
by Yao’s garbling scheme based on an IND-CPA secure SKE scheme.

19

Lombardi et al. showed how to construct a reusable DV-NIZK argument system for all
NP languages from the combination of an IND-CPA secure PKE scheme and a hinting PRG
introduced by Koppula and Waters [KW19]. The main intermediate technical tool for their
construction is what they call attribute-based secure function evaluation (AB-SFE), which can
be seen as a generalization (and simplification) of a single-key attribute-based encryption (ABE)
scheme (i.e., an ABE scheme secure in the presence of a single secret key). Lombardi et al.
formalized two kinds of security notions for AB-SFE: key-hiding andmessage-hiding, each notion
with strong and weak variants, resulting in total four security notions.13 Using the notion of
AB-SFE, they achieved their result in a modular manner by showing the following steps:

• (DV-NIZK-from-AB-SFE:) A reusable DV-NIZK argument system can be constructed
from an AB-SFE scheme satisfying strong key-hiding and weak message-hiding.

• (Key-Hiding Enhancement:) An AB-SFE scheme satisfying strong key-hiding and
weak message-hiding can be constructed from an AB-SFE scheme satisfying weak key-
hiding and weak message-hiding, by additionally assuming a hinting PRG. This step
directly uses the CPA-to-CCA security transformation for ABE using a hinting PRG by
Koppula and Waters [KW19].

• (AB-SFE-from-PKE:)An AB-SFE scheme satisfying weak key-hiding and weak message-
hiding can be constructed from an IND-CPA secure PKE scheme.

On the other hand, Kitagawa et al. [KMT19] showed that an IND-CCA secure PKE scheme
can be constructed from the combination of an IND-CPA secure PKE scheme and a one-time
P-KDM secure SKE scheme which can encrypt messages of length Ω(ℓ ·λ), where ℓ denotes the
secret key length of the SKE scheme, based on the Koppula-Waters construction [KW19].

Kitagawa et al.’s result can be understood as showing a technique for replacing a hinting
PRG in the Koppula-Waters construction (and its variants) with a one-time P-KDM secure SKE
scheme. Hence, we can apply Kitagawa et al.’s technique to the “key-hiding enhancement” step
of Lombardi et al. to replace the hinting PRG with a one-time P-KDM secure SKE scheme.
This can be formally stated as follows.

Theorem 3 (Key-Hiding Enhancement via KDM Security) Assume that there exists an
AB-SFE scheme that satisfies weak key-hiding and weak message-hiding, and a one-time P-
KDM secure SKE scheme that can encrypt messages of length Ω(ℓ · λ), where ℓ = ℓ(λ) is the
secret key length of the SKE scheme. Then, there exists an AB-SFE scheme that satisfies strong
key-hiding and weak message-hiding.

Then, Theorem 2 follows from the combination of the “DV-NIZK-from-AB-SFE” and “AB-
SFE-from-PKE” steps of Lombardi et al. [LQR+19a] and Theorem 3.

For completeness, we give the formal proof of Theorem 3 in Appendix B.

5 Generic Construction of KDM-CCA Secure PKE

In this section, we show our main result: a CPA-to-CCA transformation for KDM security.
More specifically, we show how to construct a PKE scheme that is KDM-CCA secure with

respect to circuits whose size is bounded by an a-priori determined polynomial size = size(λ)
and in the single user setting (i.e. Bsize-KDM(1)-CCA), from the combination of the five building

13We recall the formal definitions for AB-SFE in Appendix A.2. Among the four security notions for AB-SFE,
strong message-hiding is not directly relevant to our result on KDM-CCA secure PKE, and we do not mention
the results related to it.

20

block primitives: (1) an IND-CPA secure PKE scheme, (2) an IND-CCA secure PKE scheme,
(3) a reusable DV-NIZK argument system for an NP language, (4) a garbling scheme, and (5)
a one-time P-KDM secure SKE scheme.

We have seen in Section 4 that a reusable DV-NIZK argument system can be constructed
from the combination of an IND-CPA secure PKE scheme and a one-time P-KDM secure SKE
scheme. Furthermore, the recent work by Kitagawa et al. [KMT19] showed that an IND-CCA
secure PKE scheme can also be constructed from the same building blocks. Moreover, a garbling
scheme can be constructed only from a one-way function [Yao86], which is in turn implied by
an IND-CPA secure PKE or a one-time P-KDM secure SKE scheme. Hence, our result in this
section implies that a Bsize-KDM(1)-CCA secure PKE scheme can be constructed only from an
IND-CPA secure PKE scheme and a one-time P-KDM secure SKE scheme.

Looking ahead, in the next section, we will show that the same construction can be shown
to be secure in the n-user setting (i.e. Bsize-KDM(n)-CCA secure) if we additionally require the
SKE scheme to be passively P-RKA-KDM(n) secure.

Construction. Let ℓm = ℓm(λ) be a polynomial that denotes the length of messages to be
encrypted by our constructed PKE scheme. Let size = size(λ) be a polynomial and let n ∈ N
be the number of users for which we wish to achieve Bsize-KDM(n)-CCA security.14

We use the following building blocks.

• Let PKE = (KG,Enc,Dec) be a PKE scheme whose message space is {0, 1}λ. We denote
the randomness space of Enc by R, and the secret key length by ℓsk = ℓsk(λ).

• Let PKE′ = (KGcca,Enccca,Deccca) be a PKE scheme whose message space is {0, 1}∗. We
denote its secret key length by ℓ′sk = ℓ′sk(λ).

• Let SKE = (K,E,D) be an SKE scheme whose plaintext space is {0, 1}µ for a polyno-
mial µ = µ(λ) to be determined below and whose secret key space is {0, 1}ℓs for some
polynomial ℓs = ℓs(λ).

• Let GC = (Garble,Eval, Sim) be a garbling scheme.

• Let DVNIZK = (DVKG,P,V) be a DV-NIZK argument system for the following NP lan-
guage15

L =

{
(pkj,α, ctj,α)j∈[ℓs],α∈{0,1}

∣∣∣∣ ∃(labj , rj,0, rj,1)j∈[ℓs] s.t. ∀(j, α) ∈ [ℓs]× {0, 1} :
ctj,α = Enc(pkj,α, labj ; rj,α)

}
.

We denote the verification key length of DVNIZK by ℓskdv = ℓskdv(λ).

We require the message length µ of the underlying SKE scheme SKE to satisfy µ = ℓs · ℓsk +
ℓ′sk+ ℓskdv . Finally, let pad = pad(λ, n) ≥ size be a polynomial that is used as the size parameter
for the underlying garbling scheme, and is specified differently in Theorem 4 in this section and
in Theorem 5 in Section 6.

Using these ingredients, we construct our proposed PKE scheme PKEkdm = (KGkdm,Enckdm,
Deckdm) whose message space is {0, 1}ℓm , as described in Figure 1.

14As noted earlier, in this section we aim at achieving the security for n = 1, and in the next section we will
consider more general n ≥ 1.

15Intuitively, a statement (pkj,α, ctj,α)j∈[ℓs],α∈{0,1} of the language L constitutes a (ℓs × 2)-matrix of public
key/ciphertext pairs, and it is in L if the ciphertexts ctj,0, ctj,1 in the j-th row encrypt the same plaintext labj
for each j ∈ [ℓs].

21

KGkdm(1
λ) :

∀(j, α) ∈ [ℓs]× {0, 1} : (pkj,α, skj,α)← KG(1λ)
(pkcca, skcca)← KGcca(1

λ)
(pkdv, skdv)← DVKG(1λ)
s = (s1, . . . , sℓs)← K(1λ)
ctske ← E(s, ((skj,sj)j , skcca, skdv))
PK← ((pkj,α)j,α, pkcca, pkdv, ctske); SK← s

Return (PK,SK).

Enckdm(PK,m) :
((pkj,α)j,α, pkcca, pkdv, ctske)← PK

(Q̃, (labj)j)← Sim(1λ, pad,m) (†)

∀(j, α) ∈ [ℓs]× {0, 1} :
rj,α

r←− R
ctj,α ← Enc(pkj,α, labj ; rj,α)

x← (pkj,α, ctj,α)j,α
w ← (labj , rj,0, rj,1)j
π ← P(pkdv, x, w)

CT← Enccca(pkcca, (Q̃, (ctj,α)j,α, π))
Return CT.

Deckdm(PK, SK,CT) :
(⋆)

((pkj,α)j,α, pkcca, pkdv, ctske)← PK
s = (s1, . . . , sℓs)← SK
((skj,sj)j , skcca, skdv)← D(s, ctske)

(Q̃, (ctj,α)j,α, π)← Deccca(pkcca, skcca,CT)
x← (pkj,α, ctj,α)j,α
If V(skdv, x, π) = reject then return ⊥.
∀j ∈ [ℓs] : labj ← Dec(pkj,sj , skj,sj , ctj,sj)

Return m← Eval(Q̃, (labj)j).

Figure 1: The proposed PKE scheme PKEkdm. The notations like (Xj,α)j,α and (Xj)j are
abbreviations for (Xj,α)j∈[ℓs],α∈{0,1} and (Xj)j∈[ℓs], respectively.

(⋆) If D, Dec, or Deccca returns

⊥, then we make Deckdm return ⊥ and terminate. (†) pad = pad(λ, n) denotes the size parameter
that is specified differently in each of Theorems 4 and 5.

Correctness. The correctness of PKEkdm follows from that of the building blocks. Specifically,
let (PK,SK) = (((pkj,α)j,α, pkcca, pkdv, ctske), s) be a key pair output by KGkdm, let m ∈ {0, 1}ℓm
be any message, and let CT← Enckdm(PK,m) be an honestly generated ciphertext. Due to the
correctness of PKE, PKE′, SKE, and DVNIZK, each decryption/verification done in the execu-
tion of Deckdm(PK, SK,CT) never fails, and just before the final step of Deckdm, the decryptor
can recover a garbled circuit Q̃ and the labels (labj)j , which must have been generated as

(Q̃, (labj)j) ← Sim(1λ, pad,m). Hence, by the correctness of GC (in particular, correctness of

the evaluation of a simulated garbled circuit and labels), we have Eval(Q̃, (labj)j) = m.

Security. The following theorem guarantees the Bsize-KDM(1)-CCA security of the PKE
scheme PKEkdm.

Theorem 4 Let ℓm = ℓm(λ) and size = size(λ) ≥ max{ℓs, ℓm} be any polynomials, and let
pad := size. Assume that PKE is IND-CPA secure, PKE′ is IND-CCA secure, SKE is one-time
P-KDM secure, GC is a secure garbling scheme, and DVNIZK is a reusable DV-NIZK argument
system for the NP language L. Then, PKEkdm is Bsize-KDM(1)-CCA secure.

One might wonder the necessity of IND-CCA security for the outer PKE scheme PKE′.
Suppose the underlying garbling scheme GC has the property that a circuit being garbled is
hidden against adversaries that do not see the corresponding labels (which is satisfied by Yao’s
garbling scheme). Then, among the components (Q̃, (ctj,α)j,α, π), the only component that
actually needs to be encrypted is the DV-NIZK proof π, as long as all the components are
“tied” together in a non-malleable manner (say, using a one-time signature scheme). Looking
ahead, in a sequence of games argument in the security proof, we will consider a modified game

22

in which the key pair (pkdv, skdv) and proofs π in the challenge ciphertexts are generated by the
zero-knowledge simulator of DVNIZK, and we have to bound the probability that an adversary
makes a “bad” decryption query CT such that the statement/proof pair (x, π) corresponding to
CT is judged valid by V while x is actually invalid (i.e. not in L). This could be done if DVNIZK
satisfies (unbounded) simulation soundness, which is not achieved by the DV-NIZK argument
system in Section 4. By encrypting π with an IND-CCA secure scheme (and relying also on
the security properties of the other building blocks), we can argue that the probability of the
bad event that we would like to bound, is negligibly close to the probability of the bad event in
another modified game in which the key pair (pkdv, skdv) is generated honestly by DVKG, and
proofs π need not be generated for the challenge ciphertexts. The probability of the bad event
in such a game can be bounded by the (ordinary) soundness of DVNIZK. For the details, see
the proof below.

Proof of Theorem 4. LetA be an arbitrary PPT adversary that attacks the Bsize-KDM(1)-CCA
security of PKEkdm. We proceed the proof via a sequence of games argument using eight games.
For every t ∈ [7], let SUCt be the event that A succeeds in guessing the challenge bit b in Game t.
(Game 8 will be used only to bound the probability of a bad event introduced later.)

Game 1: This is the original Bsize-KDM(1)-CCA game regarding PKEkdm. By definition, we
have Advkdmcca

PKEkdm,Bsize,A,1(λ) = 2 · |Pr[SUC1]− 1/2|.
The detailed description of the game is as follows.

1. The challenger chooses the challenge bit b
r←− {0, 1}, and generates a key pair (PK,SK)

of PKEkdm as follows.

(a) For every j ∈ [ℓs] and α ∈ {0, 1}, generate (pkj,α, skj,α)← KG(1λ).

(b) Generate (pkcca, skcca)← KGcca(1
λ), (pkdv, skdv)← DVKG(1λ), and s = (s1, . . . , sℓs)

← K(1λ).

(c) Compute ctske ← E(s, ((skj,sj)j , skcca, skdv)).

(d) Set PK := ((pkj,α)j,α, pkcca, pkdv, ctske) and SK := s.

The challenger sends PK to A, and also prepares an empty list Lkdm.

2. A may adaptively make the following queries.

KDM-encryption queries: A sends (f0, f1) ∈ B2size to the challenger. The chal-
lenger responds as follows.

(a) Compute (Q̃, {labj}j)← Sim(1λ, pad = size, fb(s)).

(b) For every j ∈ [ℓs] and α ∈ {0, 1}, pick rj,α
r←− R and compute ctj,α ← Enc(pkj,α,

labj ; rj,α).

(c) Set x := (pkj,α, ctj,α)j,α and w := (labj , rj,0, rj,1)j , and compute π ← P(pkdv, x, w).

(d) Return CT← Enccca(pkcca, (Q̃, (ctj,α)j,α, π)) to A, and add CT to the list Lkdm.

Decryption queries: A sends CT to the challenger. The challenger returns ⊥ to
A if CT ∈ Lkdm, and otherwise responds as follows.

(a) Compute (Q̃, (ctj,α)j,α, π)← Deccca(pkcca, skcca,CT), and set x := (pkj,α, ctj,α)j,α.

(b) If V(skdv, x, π) = reject, then return ⊥ to A.
(c) For every j ∈ [ℓs], compute labj ← Dec(pkj,sj , skj,sj , ctj,sj).

(d) Return m← Eval(Q̃, (labj)j) to A.

23

Note that the above procedure is not exactly the same as Deckdm(PK,SK = s,CT),
since the computation of D(s, ctske) for retrieving ((skj,sj)j , skcca, skdv) is omitted.
However, the answer to a decryption query computed by the above procedure is
exactly the same as that computed by Deckdm. Therefore, it does not affect A’s
view.

3. A outputs b′ ∈ {0, 1}.

Game 2: Same as Game 1, except that the challenger uses the simulator S = (S1,S2) for the
zero-knowledge property of DVNIZK for generating (pkdv, skdv) and a proof π in generat-
ing a ciphertext in response to KDM-encryption queries, instead of using DVKG and P.
Namely, when generating PK and SK, the challenger generates (pkdv, skdv, td) ← S1(1

λ)
instead of (pkdv, skdv) ← DVKG(1λ). In addition, when A makes a KDM-encryption
query (f0, f1), the challenger computes π ← S2(td, x) instead of π ← P(pkdv, x, w), where
x = (pkj,α, ctj,α)j,α and w = (labj , rj,0, rj,1)j .

By the zero-knowledge property of DVNIZK, we have |Pr[SUC1]− Pr[SUC2]| = negl(λ).

Game 3: Same as Game 2, except that when responding to a KDM-encryption query, the chal-
lenger generates a garbled circuit Q̃ and labels (labj)j by garbling fb. More precisely, when

A makes a KDM-encryption query (f0, f1), the challenger computes (Q̃, (labj,α)j,α) ←
Garble(1λ, fb), instead of (Q̃, (labj)j) ← Sim(1λ, pad, fb(s)). Moreover, for every j ∈ [ℓs]
and α ∈ {0, 1}, the challenger computes ctj,α ← Enc(pkj,α, labj,sj).

16

By definition, the circuit size of fb is pad = size. Hence, by the security of GC, we have
|Pr[SUC2]− Pr[SUC3]| = negl(λ).

Game 4: Same as Game 3, except that when responding to a KDM-encryption query (f0, f1),
the challenger computes ctj,1⊕sj ← Enc(pkj,1⊕sj , labj,1⊕sj) for every j ∈ [ℓs]. Due to the
change made in this game, the challenger now computes ctj,α ← Enc(pkj,α, labj,α) for every
j ∈ [ℓs] and α ∈ {0, 1}.
In Games 3 and 4, we do not need the secret keys (skj,1⊕sj)j of PKE that do not correspond
to s = (s1, . . . , sℓs) (though we need (skj,sj)j for computing ctske and responding to de-
cryption queries). Therefore, by the IND-CPA security of PKE under the keys (pkj,1⊕sj)j ,
we have |Pr[SUC3]− Pr[SUC4]| = negl(λ).

At this point, the challenger need not use s to respond to KDM-encryption queries. In
the next game, we will ensure that the challenger does not use s to respond to decryption
queries.

Game 5: Same as Game 4, except that when responding to a decryption query, the challenger
computes the labels (labj)j of a garbled circuit by decrypting ctj,0, instead of ctj,sj , for
every j ∈ [ℓs]. More precisely,

for a decryption query CT from A, the challenger returns ⊥ to A if CT ∈ Lkdm, and
otherwise responds as follows. (The change from the previous game is underlined.)

1. Compute (Q̃, (ctj,α)j,α, π)← Deccca(pkcca, skcca,CT), and then set x := (pkj,α, ctj,α)j,α.

2. If V(skdv, x, π) = reject, then return ⊥ to A.
3. For every j ∈ [ℓs], compute labj ← Dec(pkj,0, skj,0, ctj,0).

16Note that in Game 3, the labels of the “opposite” positions, namely (labj,1⊕sj)j , are not used. They will be
used in the subsequent games.

24

4. Return m← Eval(Q̃, (labj)j) to A.

(By the change made in this game, s is not needed for responding to decryption queries.)

We define the following events in Game t ∈ {4, . . . , 8}.

BDQt: In Game t, A makes a decryption query CT /∈ Lkdm that satisfies the following two
conditions, where (Q̃, (ctj,α)j,α, π)← Deccca(pkcca, skcca,CT):

1. V(skdv, (pkj,α, ctj,α)j,α, π) = accept.

2. There exists j∗ ∈ [ℓs] such that Dec(pkj∗,0, skj∗,0, ctj∗,0) ̸= Dec(pkj∗,1, skj∗,1,
ctj∗,1).

We call such a decryption query a bad decryption query.

Games 4 and 5 are identical unless A makes a bad decryption query in the corresponding
games. Therefore, we have |Pr[SUC4]− Pr[SUC5]| ≤ Pr[BDQ5].

Game 6: Same as Game 5, except that when generating PK, the challenger generates ctske ←
E(s, 0µ), instead of ctske ← E(s, ((skj,sj)j , skcca, skdv)).

In Games 5 and 6, when generating PK, the challenger does not need the secret key s of SKE
except for the step of computing ctske. Furthermore, the “message” ((skj,sj)j , skcca, skdv)
encrypted in ctske in Game 5 can be described by a projection function of s. Thus, by the
one-time P-KDM security of SKE, we have |Pr[SUC5]− Pr[SUC6]| = negl(λ). In addition,
whether A has submitted a bad decryption query can be detected by using skcca, skdv,
and (skj,α)j,α, without using s. Thus, again by the one-time P-KDM security of SKE, we
have |Pr[BDQ5]− Pr[BDQ6]| = negl(λ).

Game 7: Same as Game 6, except that when responding to a KDM-encryption query, the
challenger computes CT← Enccca(pkcca, 0

ℓ′), where ℓ′ = |Q̃|+ 2ℓs · |ctj,α|+ |π|.
Recall that in the previous game, we have eliminated the information of skcca from ctske.
Thus, we can rely on the IND-CCA security of PKE′ at this point, and straightforwardly
derive |Pr[SUC6]− Pr[SUC7]| = negl(λ). Moreover, a reduction algorithm (attacking the
IND-CCA security of PKE′) can detect whether A’s decryption query is bad by using
(skj,α)j,α, skdv, and the reduction algorithm’s own decryption queries. Thus, again by the
IND-CCA security of PKE′, we have |Pr[BDQ6]− Pr[BDQ7]| = negl(λ).

We see that in Game 7, the challenge bit b is information-theoretically hidden from A’s
view. Thus, we have Pr[SUC7] = 1/2.

We need one more game to bound Pr[BDQ7].

Game 8: Same as Game 7, except that when generating PK, the challenger uses DVKG to
generate (pkdv, skdv), instead of using S1. Namely, we undo the change made between
Games 1 and 2 for generating (pkdv, skdv).

17

By the zero-knowledge property of DVNIZK, we have |Pr[BDQ7]− Pr[BDQ8]| = negl(λ).

Finally, we argue that the soundness of DVNIZK implies Pr[BDQ8] = negl(λ). To see
this, note that in Game 8, (pkdv, skdv) is now generated by DVKG. Also, if A submits
a bad decryption query CT such that (1) V(skdv, (pkj,α, ctj,α)j,α, π) = accept and (2)

Dec(pkj∗,0, skj∗,0, ctj∗,0) ̸= Dec(pkj∗,1, skj∗,1, ctj∗,1) for some j∗ ∈ [ℓs], where (Q̃, (ctj,α)j,α, π)
← Deccca(pkcca, skcca,CT), then the condition (2) in particular implies (pkj,α, ctj,α)j,α /∈ L.

17Note that in Games 7 and 8, π is not computed when generating CT, and thus we need not use S2.

25

Thus ((pkj,α, ctj,α)j,α, π) satisfies the condition of violating the soundness of DVNIZK.
Note that a reduction algorithm (attacking the soundness of DVNIZK) is not directly
given a secret verification key skdv. However, the reduction algorithm is allowed to make
verification queries, which is sufficient to perfectly simulate Game 8 for A. The reduction
algorithm can also detect whether A has made a bad decryption query by using skcca
and (skj,α)j,α, and verification queries. Hence, by the soundness of DVNIZK, we have
Pr[BDQ8] = negl(λ).

From the above arguments, we see that

1

2
· Advkdmcca

PKEkdm,Bsize,A,1(λ) =

∣∣∣∣Pr[SUC1]− 1

2

∣∣∣∣
≤

∑
t∈[6]

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC7]− 1

2

∣∣∣∣
=

∑
t∈[6]\{4}

|Pr[SUCt]− Pr[SUCt+1]|+ |Pr[SUC4]− Pr[SUC5]|

≤
∑

t∈[6]\{4}

|Pr[SUCt]− Pr[SUCt+1]|+
∑

t∈{5,6,7}

|Pr[BDQt]− Pr[BDQt+1]|+ Pr[BDQ8]

= negl(λ).

Since the choice of A was arbitrary, we can conclude that PKEkdm is Bsize-KDM(1)-CCA secure.
□ (Theorem 4)

6 Multi-User KDM-CCA Security from RKA-KDM Security

In this section, we show that for any polynomial n = n(λ), our proposed PKE scheme PKEkdm

presented in Section 5 can be shown to be Bsize-KDM(n)-CCA secure, by choosing a suitable
parameter for pad = pad(λ, n) and additionally requiring the underlying SKE scheme SKE
satisfies P-RKA-KDM(n) security, and its key generation algorithm outputs a uniformly random
string in the secret key space. Formally, we prove the following theorem.

Theorem 5 Let n = n(λ), ℓm = ℓm(λ), and size = size(λ) ≥ max{ℓs, ℓm} be any polynomials,
and let pad := size+O(ℓs ·n).18 Assume that PKE is IND-CPA secure, PKE′ is IND-CCA secure,
SKE is passively P-RKA-KDM(n) secure and its key generation algorithm outputs a string that
is distributed uniformly over {0, 1}ℓs, GC is a secure garbling scheme, and DVNIZK is a reusable
DV-NIZK argument system for the NP language L. Then, PKEkdm is Bsize-KDM(n)-CCA secure.

A high-level structure of the sequence of the games used in the proof of Theorem 5 is similar
to that of Theorem 4. The main differences are as follows.

• Before the game-hop for switching the simulator Sim of the garbling scheme GC to the
ordinary algorithm Garble, we introduce a game in which every user’s secret key si is
derived by using a randomly chosen single “main” key s ∈ {0, 1}ℓs and a randomly chosen
“shift” ∆i ∈ {0, 1}ℓs , so that si := s ⊕ ∆i. This does not at all change the distribution
of the keys due to the requirement on SKE that a secret key is distributed uniformly in
the secret key space {0, 1}ℓs . This enables us to conduct the remaining game-hops as if
s ∈ {0, 1}ℓs is the single “main” secret key such that we need to care only its leakage to
an adversary via KDM-encryption and decryption queries.

18Looking ahead, this choice of pad corresponds to the size of the circuit Q specified in Figure 2.

26

• In the game-hop for switching the simulator Sim of GC to the ordinary garbling algorithm
Garble, instead of directly garbling a KDM-function fb (which is a function of all users’
secret keys S := s1∥ . . . ∥sℓs in the n-user setting) appearing in an adversary’s KDM-
encryption query (i∗, f0, f1), we garble some appropriately designed circuit Q with input
length ℓs. More specifically, we garble a circuit Q that has the index i∗, the KDM-function
fb, and the shifts (∆i)i∈[n] hard-wired, and satisfies fb(S) = Q(si

∗
).

• In the game-hop for erasing the information of ((skij,sj)j , sk
i
cca, sk

i
dv) from ctiske for every

i ∈ [n], we rely on the passive P-RKA-KDM(n) security of SKE (as opposed to its one-time
P-KDM security). Intuitively, passive P-RKA-KDM(n) security suffices here because each
user’s secret key si is computed as si = s⊕∆i where s and each ∆i are chosen randomly
by the challenger, due to the change made in the first item above.

Proof of Theorem 5. Let n = n(λ) be an arbitrary polynomial that denotes the number of
key pairs. Let A be an arbitrary PPT adversary that attacks the Bsize-KDM(n)-CCA security
of PKEkdm. We proceed the proof via a sequence of games argument using nine games. For
every t ∈ [8], let SUCt be the event that A succeeds in guessing the challenge bit b in Game t.
As in the proof of Theorem 4, the final game (Game 9) is used only to bound the probability
of a bad event introduced later.

Game 1: This is the original Bsize-KDM(n)-CCA game regarding PKEkdm. Then, we have
Advkdmcca

PKEkdm,Bsize,A,n(λ) = 2 · |Pr[SUC1]− 1/2|.
The detailed description of the game is as follows.

1. The challenger chooses the challenge bit b
r←− {0, 1}, and generates a key pair

(PKi,SKi) of PKEkdm for every i ∈ [n] as follows.

(a) For every j ∈ [ℓs] and α ∈ {0, 1}, generate (pkij,α, sk
i
j,α)← KG(1λ).

(b) Generate (pkicca, sk
i
cca)← KGcca(1

λ), (pkidv, sk
i
dv)← DVKG(1λ), and si := (si1, . . . , s

i
ℓs
)

r←− {0, 1}ℓs .
(c) Compute ctiske ← E(si, ((skij,sj)j , sk

i
cca, sk

i
dv)).

(d) Set PKi := ((pkij,α)j,α, pk
i
cca, pk

i
dv, ct

i
ske) and SKi := si.

The challenger sends (PKi)i∈[n] to A, and prepares an empty list Lkdm.

2. A may adaptively make the following queries. Below, let S := s1∥ . . . ∥sn.
KDM-encryption queries: A sends (i∗, f0, f1) ∈ [n]×B2size to the challenger. The
challenger responds as follows.

(a) Compute (Q̃, (labj)j)← Sim(1λ, pad, fb(S)).

(b) For every j ∈ [ℓs] and α ∈ {0, 1}, pick rj,α
r←− R and compute ctj,α ← Enc(pki

∗
j,α,

labj ; rj,α).

(c) Set x := (pki
∗
j,α, ctj,α)j,α and w := (labj , rj,0, rj,1)j , and compute π ← P(pki

∗
dv, x, w).

(d) Return CT ← Enccca(pk
i∗
cca, (Q̃, (ctj,α)j,α, π)) to A and add (i∗,CT) to the list

Lkdm.

Decryption queries: A sends (i,CT) to the challenger. The challenger returns ⊥
to A if (i,CT) ∈ Lkdm, and otherwise responds as follows.

(a) Compute (Q̃, (ctj,α)j,α, π)← Deccca(pk
i
cca, sk

i
cca,CT), and set x := (pkij,α, ctj,α)j,α.

(b) If V(skidv, x, π) = reject, then return ⊥ to A.

27

Circuit Q[i∗, f, (∆i)i∈[n]](·) :
Hardwired: An index i∗ ∈ [n], a circuit f : {0, 1}ℓs·n → {0, 1}ℓm , and strings (∆i)i∈[n] ∈ ({0, 1}ℓs)n.
Input: A string z ∈ {0, 1}ℓs .

1. For every i ∈ [n], compute zi ← z ⊕∆i∗ ⊕∆i.

2. Return m← f(z1∥ . . . ∥zn).

Figure 2: Description of the circuit Q.

(c) For every j ∈ [ℓs], compute labj ← Dec(pki
j,sij

, ski
j,sij

, ctj,sij
).

(d) Return m← Eval(Q̃, (labj)j) to A.
Note that the above procedure is not exactly the same as Deckdm(PK

i, SKi = si,CT),
because the computations of D(si, ctiske) for retrieving ((sk

i
j,sij

)j , sk
i
cca, sk

i
dv) is omitted.

However, the answer to a decryption query computed by the above procedure is
exactly the same as that computed by Deckdm. Therefore, it does not affect A’s
view.

3. A outputs b′ ∈ {0, 1}.

Game 2: Same as Game 1, except that the challenger uses the simulator S = (S1,S2) for the
zero-knowledge property of DVNIZK for generating (pkidv, sk

i
dv) for every i ∈ [n] and a

proof π in generating a ciphertext in response to KDM-encryption queries, instead of
using DVKG and P. Namely, when generating PKi and SKi, the challenger generates
(pkidv, sk

i
dv, td

i)← S1(1
λ) instead of (pkidv, sk

i
dv)← DVKG(1λ). In addition, when A makes

a KDM-encryption query (i∗, f0, f1), the challenger computes π ← S2(td
i∗ , x) instead of

π ← P(pki
∗
dv, x, w), where x = (pki

∗
j,α, cti,α)j,α and w = (labj , rj,0, rj,1)j .

Due to the zero-knowledge property of DVNIZK, we have |Pr[SUC1]− Pr[SUC2]| = negl(λ).

Game 3: Same as Game 2, except for how the secret keys (si)i∈[n] are generated. Specifically,

in this game, the challenger first generates a single “main” key s
r←− {0, 1}ℓs . Then, for

every i ∈ [n], the challenger generates the “shift” ∆i r←− {0, 1}ℓs and sets si := s⊕∆i.

For every i ∈ [n], the distribution of si in Game 3 is identical to that in Game 2. Thus,
we have Pr[SUC2] = Pr[SUC3].

Game 4: Same as Game 3, except that when responding to a KDM-encryption query from A,
the challenger generates a garbled circuit by garbling the circuit Q shown in Figure 2. More
precisely, when A makes a KDM-encryption query (i∗, f0, f1), the challenger computes
(Q̃, (labj,α)j,α) ← Garble(1λ,Q[i∗, fb, (∆

i)i∈[n]]). Moreover, for every j ∈ [ℓs] and α ∈
{0, 1}, the challenger computes ctj,α ← Enc(pki

∗
j,α, labj,si∗j

).19

Note that si
∗ ⊕∆i∗ ⊕∆i = s⊕∆i = si holds for all i ∈ [n]. Thus, we have

Q[i∗, fb, (∆
i)i∈[n]](s

i∗) = fb(s
1∥ . . . ∥sn) = fb(S).

Note also that the size of Q generated in this way is pad = size+O(ℓs · n). Thus, by the
security of GC, we have |Pr[SUC3]− Pr[SUC4]| = negl(λ).

19Note that in Game 4, the labels of the “opposite” positions, namely (labj,1⊕si
∗

j
)j , are not used. They will be

used in the subsequent games.

28

Game 5: Same as Game 4, except that when responding to a KDM-encryption query (i∗, f0, f1),
the challenger computes ctj,1⊕si∗j

← Enc(pki
∗

j,1⊕si∗j
, labj,1⊕si∗j

) for every j ∈ [ℓs]. Due to the

change made in this game, the challenger now computes ctj,α ← Enc(pki
∗
j,α, labj,α) for every

j ∈ [ℓs] and α ∈ {0, 1}.
In Games 4 and 5, we do not need the secret keys (ski

∗

j,1⊕si∗j
)j of PKE that do not corre-

spond to si
∗
(though we need (ski

∗

j,si
∗
j
)j for computing cti

∗
ske and responding to decryption

queries). Therefore, by the IND-CPA security of PKE under the keys (pki
∗

j,1⊕si∗j
)j , we have

|Pr[SUC4]− Pr[SUC5]| = negl(λ).

At this points, the challenger need not use the main key s to respond to KDM-encryption
queries. In the next game, we will ensure that the challenger does not use the main key
s to respond to decryption queries.

Game 6: Same as Game 5, except that when responding to a decryption query, the challenger
computes labels (labj)j of a garbled circuit by decrypting ctj,0, instead of ctj,sij

, for every

j ∈ [ℓs]. More precisely, the challenger responds to decryption queries as follows.

Decryption queries: A sends (i,CT) to the challenger. The challenger returns ⊥ to A
if (i,CT) ∈ Lkdm, and otherwise responds as follows. (The change from the previous
game is underlined.)

1. Compute (Q̃, (ctj,α)j,α, π)← Deccca(pk
i
cca, sk

i
cca,CT), and set x := (pkij,α, ctj,α)j,α.

2. If V(skidv, x, π) = reject, then return ⊥ to A.
3. For every j ∈ [ℓs], compute labj ← Dec(pkij,0, sk

i
j,0, ctj,0).

4. Return m← Eval(Q̃, (labj)j) to A.

(By the change made in this game, the main key s is not needed for responding to de-
cryption queries.)

We define the following events in Game t ∈ {5, . . . , 9}.

BDQt: In Game t, A makes a decryption query (i,CT) /∈ Lkdm that satisfies the following
two conditions, where (Q̃, (ctj,α)j,α, π)← Deccca(pk

i
cca, sk

i
cca,CT):

1. V(skidv, (pk
i
j,α, ctj,α)j,α, π) = accept.

2. There exists j∗ ∈ [ℓs] such that Dec(pkij∗,0, sk
i
j∗,0, ctj∗,0) ̸= Dec(pkij∗,1, sk

i
j∗,1, ctj∗,1).

We call such a decryption query a bad decryption query.

Games 5 and 6 are identical unless A makes a bad decryption query in the corresponding
games. Therefore, we have |Pr[SUC5]− Pr[SUC6]| ≤ Pr[BDQ6].

Game 7: Same as Game 6, except that for every i ∈ [n], when generating PKi, the challenger
computes ctiske ← E(si, 0µ), instead of ctiske ← E(si, ((ski

j,sij
)j , sk

i
cca, sk

i
dv)).

We argue that the passive P-RKA-KDM(n) security of SKE implies |Pr[SUC6]− Pr[SUC7]| =
negl(λ). To see this, consider the following PPT adversary Arka that uses A as a subroutine
and attacks the passive P-RKA-KDM(n) security of SKE.

1. Given 1λ and the random “shifts” (∆i)i∈[n] from Arka’s challenger, Arka generates

b
r←− {0, 1} and execute the following steps for every i ∈ [n]:

29

Circuit g[∆i, (skij,α)j,α, sk
i
cca, sk

i
dv](·) :

Hardwired: Strings ∆i, (skij,α)j,α, sk
i
cca, sk

i
dv.

Input: A string z ∈ {0, 1}ℓs .

1. Set zi = (zi1, . . . , z
i
ℓs) := z ⊕∆i.

2. Return ((ski
j,zij

)j , sk
i
cca, sk

i
dv).

Figure 3: Description of the circuit g.

(a) For every j ∈ [ℓs] and α ∈ {0, 1}, generate (pkij,α, sk
i
j,α)← KG(1λ).

(b) Generate (pkicca, sk
i
cca)← KGcca(1

λ) and (pkidv, sk
i
dv, td

i)← S1(1
λ).

(c) Prepare the following circuit:

gi(·) := g[∆i, (skij,α)j,α, sk
i
cca, sk

i
dv](·),

where g is described in Figure 3. Note that gi(s) = ((ski
j,sij

)j , sk
i
cca, sk

i
dv).

Then, Arka submit n circuits g1, . . . , gn as a (one-shot) RKA-KDM-encryption query,
and receives the challenge ciphertexts (ctiske)i∈[n] from the challenger. Arka then sets

PKi := ((pkij,α)j,α, pk
i
cca, pk

i
dv, ct

i
ske) for every i ∈ [n]. Finally, Arka sends (PKi)i∈[n] to

A, and prepares an empty list Lkdm.

2. Arka responds to KDM-encryption and decryption queries made by A as follows.

KDM-encryption queries: A sends (i∗, f0, f1) ∈ [n] × B2size. Arka responds as
follows.

(a) Compute (Q̃, (labj,α)j,α)← Garble(1λ,Q[i∗, fb, (∆
i)i∈[n]]).

(b) For every j ∈ [ℓs] and α ∈ {0, 1}, compute ctj,α ← Enc(pki
∗
j,α, labj,α).

(c) Set x := (pki
∗
j,α, ctj,α)j,α and compute π ← S2(td

i∗ , x).

(d) Return CT ← Enccca(pk
i∗
cca, (Q̃, (ctj,α)j,α, π)) to A and add (i∗,CT) to the list

Lkdm.

Decryption queries: A sends (i,CT). Arka returns ⊥ to A if (i,CT) ∈ Lkdm, and
otherwise responds as follows.

(a) Compute (Q̃, (ctj,α)j,α, π)← Deccca(pk
i
cca, sk

i
cca,CT), and set x := (pkij,α, ctj,α)j,α.

(b) If V(skidv, x, π) = reject, then return ⊥ to A.
(c) For every j ∈ [ℓs], compute labj ← Dec(pkij,0, sk

i
j,0, ctj,0).

(d) Return m← Eval(Q̃, (labj)j) to A.
3. When A terminates with output b′ ∈ {0, 1}, Arka sets β′ := 1 if b = b′, and otherwise

sets β′ := 0. Finally, Arka terminates with output β′.

We see that the function g in Figure 3 is a projection function since each bit of ski
j,sij

depends only on the j-th bit sj ∈ {0, 1} of s for every j ∈ [ℓs], and skicca and skidv do not de-
pend on the input s. Let β ∈ {0, 1} be the challenge bit in Arka’s passive P-RKA-KDM(n)

game. Then, we have AdvprkakdmSKE,P,Arka,n
(λ) = |Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]|.

If β = 1, then Arka perfectly simulates Game 6 for A so that the secret key in Arka’s
passive P-RKA-KDM(n) game is the “main” key s in the game for A simulated by Arka.

30

In particular, each ctiske is an encryption of ((ski
j,sij

)j , sk
i
cca, sk

i
dv) under the secret key

si = s⊕∆i, which is exactly how it is generated in Game 6.

On the other hand, if β = 0, then Arka perfectly simulates Game 7 for A. In particular,
each ctiske is an encryption of 0µ under the secret key si = s⊕∆i, which is exactly how it
is generated in Game 7.

Furthermore, Arka outputs β′ = 1 if and only if A succeeds in guessing the challenge bit
b, i.e. b = b′ occurs. Thus, we have Pr[β′ = 1|β = 0] = Pr[SUC6] and Pr[β′ = 1|β =

1] = Pr[SUC7], and consequently we have AdvprkakdmSKE,P,Arka,n
(λ) = |Pr[SUC6]− Pr[SUC7]|. Since

SKE is assumed to be passively P-RKA-KDM(n) secure, we have |Pr[SUC6]− Pr[SUC7]| =
negl(λ).

In addition, note that Arka can detect whether a decryption query made by A is bad
without using s, by using (skij,α)j,α, sk

i
cca, and skidv, all of which are generated by Arka

itself. Thus, by considering a slight variant of Arka that outputs β′ = 1 if and only if A
has submitted a bad decryption query, we can also derive |Pr[BDQ6]− Pr[BDQ7]| = negl(λ).

Game 8: Same as Game 7, except that when responding to a KDM-encryption query (i∗, f0, f1),
the challenger computes CT← Enccca(pk

i∗
cca, 0

ℓ′), where ℓ′ = |Q̃|+ 2ℓs · |ctj,α|+ |π|.
Recall that in the previous game, we have eliminated the information of skicca from ctiske
for every i ∈ [n]. Thus, we can rely on the IND-CCA security of PKE′ at this point, and
straightforwardly derive |Pr[SUC7]− Pr[SUC8]| = negl(λ). Moreover, a reduction algorithm
(attacking the IND-CCA security of PKE′) can detect whetherA’s decryption query (i,CT)
is bad by using (skij,α)j,α, skidv, and the reduction algorithm’s own decryption queries.
Thus, again by the IND-CCA security of PKE′, we have |Pr[BDQ7]− Pr[BDQ8]| = negl(λ).

We see that in Game 8, the challenge bit b is information-theoretically hidden from A’s
view. Thus, we have Pr[SUC8] = 1/2.

We need one more game to bound Pr[BDQ8].

Game 9: Same as Game 8, except that for every i ∈ [n], when generating PKi, the challenger
uses DVKG to generate (pkidv, sk

i
dv), instead of using S1. Namely, we undo the change

made between Games 1 and 2 for generating (pkidv, sk
i
dv) for every i ∈ [n].

Due to the zero-knowledge property of DVNIZK, we have |Pr[BDQ8]− Pr[BDQ9]| = negl(λ).
In addition, due to the soundness of DVNIZK, we also obtain Pr[BDQ9] = negl(λ). (The
reasoning is essentially identical to the corresponding step in the proof of Theorem 4.)

From the above arguments, we see that

1

2
· Advkdmcca

PKE,Bsize,A,n(λ) = |Pr[SUC1]−
1

2
|

≤
∑
t∈[7]

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC8]− 1

2

∣∣∣∣
=

∑
t∈[7]\{5}

|Pr[SUCt]− Pr[SUCt+1]|+ |Pr[SUC5]− Pr[SUC6]|

≤
∑

t∈[7]\{5}

|Pr[SUCt]− Pr[SUCt+1]|+
∑

t∈{6,7,8}

|Pr[BDQt]− Pr[BDQt+1]|+ Pr[BDQ9]

= negl(λ).

31

Since the choice of A and n was arbitrary, we can conclude that PKEkdm is Bsize-KDM(n)-CCA
secure. □ (Theorem 5)

7 Passively RKA-KDM Secure SKE from Hash Encryption

In this section, we show how to construct an RKA-KDM secure SKE scheme based on a hash
encryption scheme.

This section is organized as follows. In Section 7.1, we first recall the definition of hash
encryption. Then, in Section 7.2, we present our proposed SKE scheme and prove its passive
RKA-KDM security.

7.1 Definition of Hash Encryption

Here, we review the definition of hash encryption introduced in [DGHM18].

Definition 8 (Hash Encryption) A hash encryption scheme HE is a four tuple (HKG,H,
HEnc,HDec) of PPT algorithms.

• HKG is the key generation algorithm that takes as input a security parameter 1λ and the
input-length ℓinp (where ℓinp = ℓinp(λ) is a polynomial). Then, it outputs a hash key hk.

• H is the (deterministic) hashing algorithm that takes a hash key hk and a string x ∈
{0, 1}ℓinp as input, and outputs a hash value h ∈ {0, 1}λ.

• HEnc is the encryption algorithm that takes a hash key hk, a triple (h, j, α) ∈ {0, 1}λ ×
[ℓinp]× {0, 1}, and a message m ∈ {0, 1}∗ as input, and outputs a ciphertext ct.

• HDec is the (deterministic) decryption algorithm that takes a hash key hk, a string x ∈
{0, 1}ℓinp, and a ciphertext ct as input, and outputs a message m which could be the special
invalid symbol ⊥.

We require the following properties.

Correctness We require HDec(hk, x,HEnc(hk, (H(hk, x), j, xj),m)) = m for all λ ∈ N, all
polynomials ℓinp = ℓinp(λ), all strings x = (x1, . . . , xℓinp) ∈ {0, 1}ℓinp, all positions j ∈ [ℓinp],

all hash keys hk output by HKG(1λ, ℓinp), and all messages m.

Security Consider the following security game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger gener-

ates hk← HKG(1λ, ℓinp) and sends hk to A.
2. A sends x = (x1, . . . , xℓinp) ∈ {0, 1}ℓinp, a position j ∈ [ℓinp], and a pair of messages

(m0,m1) of the same length to the challenger. The challenger computes h← H(hk, x)
and ct← E(hk, (h, j, 1⊕ xj),mb), and returns ct to A.

3. A outputs b′ ∈ {0, 1}.

We say that HE is secure if for all PPT adversaries A, we have AdvheHE,A(λ) := 2 ·
|Pr[b = b′]− 1/2| = negl(λ).

Hash encryption can be constructed under the CDH assumption [DGHM18, BLSV18].

32

K(1λ) :

Return s = (s1, . . . , sℓ)
r←− {0, 1}ℓ .

E(s,m) :
hk← HKG(1λ, ℓ)
h← H(hk, s)
// Generate random shares r1, . . . , rℓ of m:

∀j ∈ [ℓ − 1] : rj
r←− {0, 1}µ

rℓ ← (
⊕

j∈[ℓ−1] rj)⊕m

∀(j, α) ∈ [ℓ]× {0, 1} : ctj,α ← HEnc(hk, (h, j, α), rj)

H
r←− H

ct← (ctj,α)j,α ⊕ PRG(H(s))
Return CT← (hk,H, ct).

D(s,CT) :
(hk,H, ct)← CT
(ctj,α)j,α ← ct⊕ PRG(H(s))
∀j ∈ [ℓ] : rj ← HDec(hk, s, ctj,sj)
Return m←

⊕
j∈[ℓ] rj .

Figure 4: The proposed SKE scheme SKE. The notation (ctj,α)j,α is the abbreviation for
(ctj,α)j∈[ℓ],α∈{0,1}.

7.2 Construction

Let n = n(λ) be any polynomial with respect to which we wish our SKE scheme to be passively
P-RKA-KDM(n) secure. Let HE = (HKG,H,HEnc,HDec) be a hash encryption scheme whose
plaintext space is {0, 1}µ for some polynomial µ = µ(λ) and whose ciphertext size is ℓc = ℓc(λ).
Let ℓ = ℓ(λ) be any polynomial satisfying ℓ = 2nλ+ω(log λ), and let L = L(λ) = 2ℓ ·ℓc. Finally,
let H = {H : {0, 1}ℓ → {0, 1}λ} be a universal hash family, and let PRG : {0, 1}λ → {0, 1}L be
a PRG. (The formal definition of a PRG is recalled in Appendix A.4.)

Using these ingredients, we construct our SKE scheme SKE = (K,E,D) whose secret-key
space and message space are {0, 1}ℓ and {0, 1}µ, respectively, as described in Figure 4. Note
that the key generation algorithm K of SKE just outputs a secret key s ∈ {0, 1}ℓ uniformly at
random.

Correctness. The correctness of SKE follows from those of building blocks.

Security. The following theorem guarantees that SKE satisfies passive P-RKA-KDM security.

Theorem 6 Let n = n(λ) and ℓ = ℓ(λ) be any polynomials satisfying ℓ = 2nλ + ω(log λ).
Assume HE is a secure hash encryption scheme, H is a universal hash family, and PRG is a
secure PRG. Then, SKE is passively P-RKA-KDM(n) secure.

Outline of the Proof. Before showing the formal proof of Theorem 6, we briefly explain its
outline. Letting A be an adversary attacking the passive P-RKA-KDM(n) security of SKE, we
start with the security game in which A is given a ciphertext CTi in which a key-dependent
message f i(s) is encrypted under the shifted key s ⊕ ∆i, namely CTi ← E(s ⊕ ∆i, f i(s)), for
every i ∈ [n], where f i and ∆i are the i-th projection function queried by A and i-th key shift
randomly chosen by the challenger, respectively. Our goal is to gradually change this game and
reach the game where A is given CTi that encrypts the constant message 0µ under the shifted
key s⊕∆i for every i ∈ [n], in such a way that the changes are not noticed by A.

We first change the security game so that an encryption of f i(s) under the key s⊕∆i can be
simulated without using s except for computing hi = H(hki, s⊕∆i) and H i(s⊕∆i), where hki

is a hash key of HE and H i is a randomly chosen universal hash function for the i-th ciphertext
CTi. We perform this change by considering how each output bit of f i is determined. Since f i

33

is a projection function, for each output bit of f i, one of the following three cases always holds:
(i) it is a copy of some input bit (ii) it is a flip of some input bit (iii) it is a constant. Based
on this fact, by using some statistical arguments and the security of HE, we can complete the
change.

Once we complete the above change, for every i ∈ [n], we can replace H i(s ⊕ ∆i) with a
uniformly random string by relying on the leftover hash lemma. (A version of the leftover hash
lemma we use in the proof is reviewed in Appendix A.5.) This change is justified by the fact
that now s has enough entropy from A’s viewpoint since except for (H i(s⊕∆i))i∈[n], s is now
used to compute only “short” values (hi)i∈[n], and we set the secret key length ℓ large enough
to enjoy the statistical indistinguishability guaranteed by the leftover hash lemma.

Then, we can use the security of PRG since its inputs are now uniformly at random by the
previous change. The security of PRG ensures that the third component cti of CTi is distributed
independently and uniformly at random, and cti can be now viewed as a one-time-pad ciphertext
encrypting the HE-ciphertexts (ctij,α)j,α. Finally, after changing how the third component cti

in CTi is generated appropriately, and then undoing the changes made by using the security
of PRG and the leftover hash lemma, we reach the final game in which every CTi encrypts 0µ

under the key s⊕∆i, and complete the security proof.

Proof of Theorem 6. Let A be any adversary that attacks the passive P-RKA-KDM(n)

security of SKE. We proceed the proof via a sequence of games argument using eight games.
For every t ∈ [8], let Tt be the event that A outputs 1 in Game t.

In the following, the notations like (Xj,α)j,α and (Xj)j are the abbreviations for (Xj,α)j∈[ℓ],α∈{0,1}
and (Xj)j∈[ℓ], respectively.

Game 1: This is the original passive P-RKA-KDM(n) game regarding SKE in which the chal-
lenge bit is 1. The detailed description of the game is as follows.

1. The challenger samples s = (s1, . . . , sℓ)
r←− {0, 1}ℓ and ∆i r←− {0, 1}ℓ for every i ∈ [n],

and sends (∆i)i∈[n] to A.
2. A sends to the challenger n projection functions f1, . . . , fn whose domain and range

are {0, 1}ℓ and {0, 1}µ, respectively. For every i ∈ [n], the challenger computes CTi

as follows.20

(a) Generate hki ← HKG(1λ, ℓ).

(b) Compute hi ← H(hki, s⊕∆i).

(c) Pick ri1, . . . , r
i
ℓ−1

r←− {0, 1}µ and set riℓ ← (
⊕

j∈[ℓ−1] r
i
j)⊕ f i(s).

(d) For every j ∈ [ℓ] and α ∈ {0, 1}, compute ctij,α ← HEnc(hki, (hi, j, α), rij).

(e) Generate H i r←− H.
(f) Compute cti ← (ctij,α)j,α ⊕ PRG(H i(s⊕∆i)).

(g) Set CTi ← (hki,H i, cti).

Then, the challenger sends the challenge ciphertexts (CTi)i∈[n] to A.
3. A outputs b′ ∈ {0, 1}.

Game 2: Same as Game 1, except for how the challenger generates (rij)j for every i ∈ [n]. In

this game, each of the strings (rij)j is generated in a “bit-by-bit” fashion. To explain it
more specifically, let us introduce some notation. For every k ∈ [µ], we denote the k-th
bit of rij by rij [k], and let f i[k] : {0, 1}ℓ → {0, 1} denote the function corresponding to

20Note that the procedure below is exactly CTi ← E(s⊕∆i, f i(s)).

34

the k-th output bit of f i(·). Furthermore, we denote the j-th bit of ∆i by ∆i
j , for every

j ∈ [ℓ].

Then, since each f i is a projection function, one of the followings holds for every k ∈ [µ].

(i) f i[k] is a copy of the j∗-th input bit for some j∗ ∈ [ℓ]. (Thus, f i[k](s) = sj∗ .)

(ii) f i[k] is a flip of the j∗-th input bit for some j∗ ∈ [ℓ]. (Thus, f i[k](s) = 1⊕ sj∗ .)

(iii) f i[k] is a constant value γ ∈ {0, 1}. (Thus, f i[k](s) = γ.)

For every k ∈ [µ], depending on which one of the above three options holds, the challenger
generates (rij [k])j as follows.

• In Case (i), the challenger first generates random shares of ∆i
j∗ by picking wi

j [k]
r←−

{0, 1} for every j ∈ [ℓ] \ {j∗} and then setting wi
j∗ [k] := (

⊕
j∈[ℓ]\{j∗}w

i
j [k]) ⊕ ∆i

j∗ .
Then, for every j ∈ [ℓ], the challenger sets

rij [k]←

{
wi
j∗ [k]⊕ sj∗ ⊕∆i

j∗ if j = j∗

wi
j [k] otherwise

.

Note that rij∗ [k] = (
⊕

j∈[ℓ]\{j∗} r
i
j [k])⊕ sj∗ . Hence, (rij [k])j is distributed identically

to random shares of sj∗ = f i[k](s), which is exactly as in Game 1.

• In Case (ii), the challenger first generates random shares of 1⊕∆i
j∗ by picking wi

j [k]
r←−

{0, 1} for every j ∈ [ℓ] \ {j∗} and then setting wi
j∗ [k] := (

⊕
j∈[ℓ]\{j∗}w

i
j [k])⊕ 1⊕∆i

j∗ .
Then, for every j ∈ [ℓ], the challenger sets

rij [k]←

{
wi
j∗ [k]⊕ sj∗ ⊕∆i

j∗ if j = j∗

wi
j [k] otherwise

.

Note that rij∗ [k] = (
⊕

j∈[ℓ]\{j∗} r
i
j [k])⊕1⊕sj∗ . Hence, (rij [k])j is distributed identically

to random shares of 1⊕ sj∗ = f i[k](s), which is exactly as in Game 1.

• In Case (iii), the challenger picks rij [k]
r←− {0, 1} for every j ∈ [ℓ − 1], and then sets

riℓ [k] := (
⊕

j∈[ℓ−1] r
i
j [k])⊕ γ. Obviously, (rij [k])j is distributed identically to random

shares of γ = f i[k](s), which is exactly as in Game 1.

Then, for every j ∈ [ℓ], rij is defined as rij := rij [1]∥ . . . ∥rij [µ].

The above completes how we generate (rij)j in Game 2. For every i ∈ [n], the distribution

of (rij)j in Game 2 is exactly the same as that in Game 1, since so is each of their bits, as
seen above. Thus, we have Pr[T1] = Pr[T2].

Game 3: Same as Game 2, except for how (ctij,α)j,α is generated for every i ∈ [n]. Specifically,

in Game 3, each ctij,α is generated by ctij,α ← HEnc(hki, (hi, j, α), rij,α),
21 where each rij,α

is defined bit by bit based on which one of Cases (i), (ii), and (iii) above holds for each of
the output bits of f i.

Similarly to Game 2, we denote the k-th bit of rij,α by rij,α[k], for every k ∈ [µ]. Then, for

every k ∈ [µ], (rij,α[k])j,α is generated as follows.

21In contrast, in Game 2, both ctij,0 and ctij,1 always encrypt the same value rij for every j ∈ [ℓ].

35

• In Case (i), the challenger first generates random shares (wi
j [k])j of ∆i

j∗ satisfying⊕
j∈[ℓ]w

i
j [k] = ∆i

j∗ as in Game 2. Then, every j ∈ [ℓ] and α ∈ {0, 1}, the challenger
sets

rij,α[k]←

{
wi
j∗ [k]⊕ α if j = j∗

wi
j [k] otherwise

.

Note that for every (j, α) ≠ (j∗, 1⊕sj∗⊕∆i
j∗), r

i
j,α[k] in Game 3 is generated in exactly

the same way as rij [k] in Game 2. The only value that is generated differently from

Game 2 is ri
j∗,1⊕sj∗⊕∆i

j∗
[k], which is a flip of rij [k] in Game 2.

• In Case (ii), the challenger first generates random shares (wi
j [k])j of 1⊕∆i

j∗ satisfying⊕
j∈[ℓ]w

i
j [k] = 1 ⊕ ∆i

j∗ as in Game 2. Then, for every j ∈ [ℓ] and α ∈ {0, 1}, the
challenger sets

rij,α[k]←

{
wi
j∗ [k]⊕ α if j = j∗

wi
j [k] otherwise

.

As in Case (i), for every (j, α) ̸= (j∗, 1⊕ sj∗ ⊕∆i
j∗), r

i
j,α[k] in Game 3 is generated in

exactly the same way as rij [k] in Game 2. The only value that is generated differently

from Game 2 is ri
j∗,1⊕sj∗⊕∆i

j∗
[k], which is a flip of rij [k] in Game 2.

• In Case (iii), the challenger generates (rij [k])j as random shares of γ satisfying⊕
j∈[ℓ] r

i
j [k] = γ as in Game 2, and sets rij,0[k] := rij [k] and rij,1[k] := rij [k]. That

is, in this case, both (rij,0[k])j and (rij,1[k])j are distributed identically to (rij [k])j in
Game 2.

Then, for every j ∈ [ℓ] and α ∈ {0, 1}, rij,α is defined as rij,α := rij,α[1]∥ . . . ∥rij,α[µ].

The above completes how we generate (rij,α)j,α in Game 3. In the transition from Game 2

to Game 3, we have changed the distribution of only cti
j,1⊕sj⊕∆i

j
(but not cti

j,sj⊕∆i
j
), for

every j ∈ [ℓ] and i ∈ [n]. Moreover, recall that for each (j, α) ∈ [ℓ] × {0, 1}, ctij,α is

generated as ctij,α ← HEnc(hki, (hi, j, α), rij,α), where hi is the hash value computed as

hi = H(hki, s⊕∆i). Note also that sj⊕∆i
j is the j-th bit of (s⊕∆i), and thus 1⊕sj⊕∆i

j

is its flip. Therefore, by the security of HE, we have that the ciphertexts (cti
j,1⊕sj⊕∆i

j
)j

generated in Game 3 are indistinguishable from those generated in Game 2, and thus we
can derive |Pr[T2]− Pr[T3]| = negl(λ).

We note that in Game 3, for every i ∈ [n], (rij,α)j,α is generated independently of s.

Furthermore, (ctij,α)j,α can be generated by only using the hash value hi = H(hki, s⊕∆i)
(and no more information on s is needed). We are now ready for using the leftover hash
lemma to replace each H i(s⊕∆i) with a random value, which we do next.

Game 4: Same as Game 3, except that for every i ∈ [n], the challenger replaces H i(s ⊕ ∆i)
with a uniformly random string Ri r←− {0, 1}λ.
As seen above, in Game 3, except for computing (H i(s ⊕∆i))i∈[n], s is used to generate

only (hi ← H(hki, s ⊕ ∆i))i∈[n]. This fact allows us to show |Pr[T3]− Pr[T4]| = negl(λ)
based on the leftover hash lemma.

Specifically, we consider the following adversary Alhl playing the LHL game (see Lemma 1
in Section A.5 for its definition). Alhl picks ∆

i r←− {0, 1}ℓ and generates hki ← HKG(1λ, ℓ)

36

for every i ∈ [n]. Next, Alhl defines a hash family H′ = {H ′ : {0, 1}ℓ → ({0, 1}λ)n} and a
function leak : {0, 1}ℓ → ({0, 1}λ)n as follows:

H′ :=
{
H ′(·) :=

(
H1(· ⊕∆1), . . . , Hn(· ⊕∆n)

) ∣∣∣ H1, . . . , Hn ∈ H
}
,

leak(·) :=
(
H(hk1, · ⊕∆1), . . . ,H(hkn, · ⊕∆n)

)
.

Note that H′ is a universal hash family if so is H, and we identify its description H ′

with n descriptions (H i)i∈[n]. Then, Alhl submits the universal hash family H′ and the
function leak to the challenger of the LHL game, and receives a tuple (H ′, R, leak(s)),
where H ′ = (H i)i∈[n], R = (Ri)i∈[n], and leak(s) = (hi)i∈[n] = (H(hki, s⊕∆i))i∈[n]. (Here,

each Ri is either H i(s ⊕ ∆i) or a random string in {0, 1}λ.) Using these values, Alhl

executes the remaining procedure for generating CTi = (hki,H i, cti) for every i ∈ [n], in
exactly the same way as done in Game 4, and sends the challenge ciphertexts (CTi)i∈[n]
to A. (This is possible for Alhl since the remaining procedure does not directly use s.)
Then, Alhl outputs whatever A outputs.

Note that if the challenge bit for Alhl is 1 (resp. 0), Alhl perfectly simulates Game 3
(resp. Game 4) for A, and thus we have AdvlhlAlhl

(λ) = |Pr[T3]− Pr[T4]|. Recall that the
input length and output length of H′ are ℓ = 2n · λ + ω(log λ) and n · λ, respectively,
and the output length of leak is n · λ. Hence, by Lemma 1, we have AdvlhlAlhl

≤ 2−
ℓ−2n·λ

2 =

2−ω(log λ) = negl(λ). Consequently, we have |Pr[T3]− Pr[T4]| = negl(λ).

Game 5: Same as Game 4, except that for every i ∈ [n], the challenger replaces PRG(Ri) with
a uniformly random string W i ∈ {0, 1}L.
By the security of PRG, we have |Pr[T4]− Pr[T5]| = negl(λ).

Game 6: Same as Game 5, except for how CTi is generated for every i ∈ [n]. Specifically, in
this game, the challenger first generates random shares (rij)j of 0µ. Then, the challenger

generates ctij,α ← HEnc(hki, (hi, j, α), rij) for every j ∈ [ℓ] and α ∈ {0, 1}. Finally, the

challenger computes cti ← (ctij,α)i,j,α ⊕W i, and sets CTi ← (hki,H i, cti).

Since each W i ∈ {0, 1}L is chosen uniformly at random, independently of any other values,
the change made in this game does not affect A’s view. Thus, we have Pr[T5] = Pr[T6].

Game 7: Same as Game 6, except that we undo the change made between Games 4 and 5.
Namely, for each i ∈ [n], W i is replaced with PRG(Ri), where Ri r←− {0, 1}λ.
By the security of PRG, we have |Pr[T6]− Pr[T7]| = negl(λ).

Game 8: Same as Game 7, except that we undo the change made between Games 3 and 4.
Namely, for each i ∈ [n], Ri is generated as Ri ← H i(s ⊕∆i). This game is exactly the
same as the original passive P-RKA-KDM(n) game regarding SKE in which the challenge
bit is 0.

Applying the leftover hash lemma in the same way as before, we have |Pr[T7]− Pr[T8]| =
negl(λ).

From the above arguments, we see that

AdvprkakdmSKE,P,A,n(λ) = |Pr[T1]− Pr[T8]| ≤
∑
t∈[7]

|Pr[Tt]− Pr[Tt+1]| = negl(λ).

Since the choice of A was arbitrary, SKE is passively P-RKA-KDM(n) secure. □ (Theorem 6)

37

8 Putting It All Together

In this section, we summarize our results.
By combining Theorems 2 and 4, for any polynomial size = size(λ), a Bsize-KDM(1)-CCA

secure PKE scheme can be constructed from an IND-CPA secure PKE scheme, an IND-CCA
secure PKE scheme, a one-time P-KDM secure SKE scheme, and a garbling scheme. From
the result by Kitagawa et al. [KMT19], we can realize an IND-CCA secure PKE scheme from
an IND-CPA secure PKE scheme and a one-time P-KDM secure PKE scheme. Moreover, a
garbling scheme is implied by one-way functions [Yao86], which is in turn implied by an IND-
CPA secure PKE scheme. From these, we obtain the following theorem.

Theorem 7 Assume that there exist an IND-CPA secure PKE scheme and a one-time P-KDM
secure SKE scheme that can encrypt messages of length Ω(ℓ · λ), where ℓ = ℓ(λ) denotes the
secret key length of the SKE scheme. Then, for any polynomial size = size(λ), there exists a
Bsize-KDM(1)-CCA secure PKE scheme.

Since both an IND-CPA secure PKE scheme and a one-time P-KDM secure SKE scheme are
implied by a P-KDM(1)-CPA secure PKE scheme, we obtain the following main theorem.

Theorem 8 (CPA-to-CCA Transformation for KDM Security) Assume that there ex-
ists a P-KDM(1)-CPA secure PKE scheme. Then, for any polynomial size = size(λ), there exists
a Bsize-KDM(1)-CCA secure PKE scheme.

Similarly to Theorem 7, by combining Theorems 2 and 5, and the previous results [KMT19,
Yao86], we also obtain the following theorem.

Theorem 9 Let n = n(λ) be a polynomial. Assume that there exist an IND-CPA secure PKE
scheme, and a passively P-RKA-KDM(n) secure SKE scheme that can encrypt messages of
length Ω(ℓ · λ), where ℓ = ℓ(λ) denotes the secret key length of the SKE scheme, and whose
secret key generation algorithm outputs a string that is distributed uniformly over {0, 1}ℓ. Then,
for any polynomial size = size(λ), there exists a Bsize-KDM(n)-CCA secure PKE scheme.

Note that a passively P-RKA-KDM(n) secure SKE scheme is also a one-time P-KDM secure
SKE scheme.

For any polynomials n and µ, we can construct a passively P-RKA-KDM(n) secure SKE
scheme whose message space is {0, 1}µ based on the LPN assumption [App13]. In addition,
from Theorem 6 and the result by Döttling et al. [DGHM18] or Brakerski et al. [BLSV18],
for any polynomials n and µ, we can construct a P-RKA-KDM(n) secure SKE scheme whose
message space is {0, 1}µ based on the CDH assumption. The key generation algorithms of the
LPN-/CDH-based constructions output a uniformly random string as a secret key. Since an
IND-CPA secure PKE scheme can be constructed based on the LPN and CDH assumptions,
we obtain the following corollary.

Corollary 1 Let n = n(λ) and size = size(λ) be any polynomials. There exists a Bsize-KDM(n)-CCA
secure PKE scheme under either the LPN or CDH assumption.

Acknowledgement We thank the anonymous reviewers of TCC 2019 for helpful comments,
in particular the connections of our techniques with those by Barak et al. [BHHI10]. A part of
this work was supported by JST CREST Grant Number JPMJCR19F6.

38

References

[ABHS05] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of for-
mal encryption in the presence of key-cycles. In Sabrina De Capitani di Vimercati,
Paul F. Syverson, and Dieter Gollmann, editors, ESORICS 2005, volume 3679 of
LNCS, pages 374–396. Springer, Heidelberg, September 2005.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer,
Heidelberg, August 2009.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
FOCS, pages 298–307. IEEE Computer Society Press, October 2003.

[App11] Benny Applebaum. Key-dependent message security: Generic amplification and
completeness. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 527–546. Springer, Heidelberg, May 2011.

[App13] Benny Applebaum. Garbling XOR gates “for free” in the standard model. In
Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 162–181. Springer,
Heidelberg, March 2013.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Heidelberg,
August 1998.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key
encryption under subgroup indistinguishability - (or: Quadratic residuosity strikes
back). In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 1–20.
Springer, Heidelberg, August 2010.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-
dependent message security. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 423–444. Springer, Heidelberg, May / June 2010.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 108–125. Springer, Heidelberg, August 2008.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random
oracles via UCEs. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 398–415. Springer, Heidelberg, August 2013.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility re-
sults for encryption and commitment secure under selective opening. In Antoine
Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer,
Heidelberg, April 2009.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices
without FHE. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2019,
Part II, LNCS, pages 3–33. Springer, Heidelberg, May 2019.

39

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 1–12. Springer, Heidelberg, August 1998.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anony-
mous IBE, leakage resilience and circular security from new assumptions. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 535–564. Springer, Heidelberg, April / May 2018.

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme secu-
rity in the presence of key-dependent messages. In Kaisa Nyberg and Howard M.
Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Heidelberg,
August 2003.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 455–469. Springer, Heidelberg, August 1997.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In
51st ACM STOC, pages 1082–1090. ACM Press, 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir
and correlation intractability from strong KDM-secure encryption. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption
scheme secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 351–368. Springer, Heidelberg, April 2009.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors, EU-
ROCRYPT 2004, volume 3027 of LNCS, pages 207–222. Springer, Heidelberg, May
2004.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, August 2002.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg,
April / May 2002.

[Dac14] Dana Dachman-Soled. A black-box construction of a CCA2 encryption scheme from
a plaintext aware (sPA1) encryption scheme. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 37–55. Springer, Heidelberg, March 2014.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

40

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769
of LNCS, pages 3–31. Springer, Heidelberg, March 2018.

[DIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and
non-malleable commitment. In 30th ACM STOC, pages 141–150. ACM Press, May
1998.

[Döt15] Nico Döttling. Low noise LPN: KDM secure public key encryption and sample
amplification. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
604–626. Springer, Heidelberg, March / April 2015.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540.
Springer, Heidelberg, May 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009.

[GHV12] David Galindo, Javier Herranz, and Jorge L. Villar. Identity-based encryption with
master key-dependent message security and leakage-resilience. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, ESORICS 2012, volume 7459 of LNCS, pages
627–642. Springer, Heidelberg, September 2012.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th ACM STOC, pages 365–377.
ACM Press, May 1982.

[GMM07] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic
and CCA security for public key encryption. In Salil P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS, pages 434–455. Springer, Heidelberg, February 2007.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[HK15] Mohammad Hajiabadi and Bruce M. Kapron. Reproducible circularly-secure bit
encryption: Applications and realizations. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 224–243.
Springer, Heidelberg, August 2015.

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous
queries: A new approach for chosen ciphertext security. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
663–681. Springer, Heidelberg, April 2012.

[HO13] Brett Hemenway and Rafail Ostrovsky. Building lossy trapdoor functions from
lossy encryption. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 241–260. Springer, Heidelberg, December
2013.

41

[HU08] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security
in the standard model. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965
of LNCS, pages 108–126. Springer, Heidelberg, April 2008.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi
and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer,
Heidelberg, March 2006.

[KMHT15] Fuyuki Kitagawa, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka.
Completeness of single-bit projection-KDM security for public key encryption.
In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 201–219.
Springer, Heidelberg, April 2015.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and
chosen-ciphertext security. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 673–692. Springer, Heidelberg, May / June 2010.

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and trap-
door functions via key-dependent-message security. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2019, Part III, LNCS, pages 33–64. Springer,
Heidelberg, August 2019.

[KT18a] Fuyuki Kitagawa and Keisuke Tanaka. A framework for achieving KDM-CCA
secure public-key encryption. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 127–157. Springer, Hei-
delberg, December 2018.

[KT18b] Fuyuki Kitagawa and Keisuke Tanaka. Key dependent message security and receiver
selective opening security for identity-based encryption. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 32–61.
Springer, Heidelberg, March 2018.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generi-
cally in attribute-based encryption and predicate encryption. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2019, Part II, LNCS, pages 671–700.
Springer, Heidelberg, August 2019.

[LQR+19a] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu.
New constructions of reusable designated-verifier nizks. IACR Cryptology ePrint
Archive, 2019:242, 2019. A preliminary version of [LQR+19b] (dated on Feb. 27,
2019).

[LQR+19b] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu.
New constructions of reusable designated-verifier NIZKs. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2019, Part III, LNCS, pages 670–700.
Springer, Heidelberg, August 2019.

[MH14a] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via point
obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
95–120. Springer, Heidelberg, February 2014.

[MH14b] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via UCE. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 56–76. Springer,
Heidelberg, March 2014.

42

[MH15] Takahiro Matsuda and Goichiro Hanaoka. Constructing and understanding chosen
ciphertext security via puncturable key encapsulation mechanisms. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 561–590. Springer, Heidelberg, March 2015.

[MH16] Takahiro Matsuda and Goichiro Hanaoka. Trading plaintext-awareness for sim-
ulatability to achieve chosen ciphertext security. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume
9614 of LNCS, pages 3–34. Springer, Heidelberg, March 2016.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May
1990.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196.
ACM Press, May 2008.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 433–444. Springer, Heidelberg, August 1992.

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 419–436. Springer,
Heidelberg, March 2009.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
October 1999.

[Wee10] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 314–332. Springer,
Heidelberg, August 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YYHK16] Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro.
Adversary-dependent lossy trapdoor function from hardness of factoring semi-
smooth RSA subgroup moduli. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 3–32. Springer, Heidelberg,
August 2016.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor
from constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 214–243. Springer, Heidel-
berg, August 2016.

A Other Definitions

A.1 Recovery from Randomness for PKE

Here, we recall a structural property for a PKE scheme called recovery from randomness [KW19],
which will be required for the building block PKE scheme used in the construction of a strongly

43

key-hiding AB-SFE scheme presented in Appendix B. It was shown by Koppula and Wa-
ters [KW19] that any IND-CPA secure PKE scheme can be turned into one satisfying this
property.

Definition 9 (Recovery from Randomness [KW19]) Let PKE = (KG,Enc,Dec) be a PKE
scheme, and let R denote the randomness space of Enc. We say that PKE satisfies the recovery-
from-randomness property if there exists a PPT algorithm Rec (called the recovery algorithm)
with the following property.

• Rec takes a public key pk, a ciphertext ct, and a randomness r ∈ R as input. It outputs
a message m satisfying Enc(pk,m; r) = ct if such m exists; Otherwise, it outputs ⊥.

A.2 Attribute-Based Secure Function Evaluation

Attribute-based secure function evaluation (AB-SFE) was introduced by Lombardi et al. [LQR+19a]
as the main building block of their reusable DV-NIZK argument system. We review its definition
here.

Informally, AB-SFE is a generalization (and simplification) of single-key ABE, and is as-
sociated with an efficiently computable function F : X × Y → {0, 1}, where X and Y are
the ciphertext-attribute and key-attribute spaces, respectively. In AB-SFE, each public/secret
key pair (pk, sk) is associated with a key-attribute y ∈ Y, and each ciphertext ct is associated
with a ciphertext-attribute x ∈ X , and ct (generated by using pk) can be decrypted by sk if
F (x, y) = 1; On the other hand, if F (x, y) = 0, then ct should hide its underlying message even
against an adversary that holds sk.

Definition 10 (Attribute-Based Secure Function Evaluation) An AB-SFE scheme ABSFE
for a function F : X ×Y → {0, 1} is a four tuple (ASetup,AKG,AEnc,ADec) of PPT algorithms.

• ASetup is the setup algorithm that takes a security parameter 1λ as input, and outputs a
CRS crs.

• AKG is the key generation algorithm that takes a CRS crs and a key-attribute y ∈ Y as
input, and outputs a public/secret key pair (pk, sk).

• Enc is the encryption algorithm that takes a CRS crs, a public key pk, a ciphertext-attribute
x ∈ X , and a message m as input, and outputs a ciphertext ct.

• Dec is the (deterministic) decryption algorithm that takes a CRS crs, a secret key sk, a
ciphertext-attribute x ∈ X , and a ciphertext ct as input, and outputs a message m which
could be the special invalid symbol ⊥.

Correctness We require ADec(crs, sk, x,AEnc(crs, pk, x,m)) = m for all CRS crs output by
ASetup(1λ), all attribute pairs (x, y) ∈ X × Y such that F (x, y) = 1, all key pairs (pk, sk)
output by AKG(crs, y), and all messages m.

Recovery from Randomness. As in the PKE case, we recall the definition of the recovery-
from-randomness property of AB-SFE, formalized by Lombardi et al [LQR+19a] analogously
to the PKE case. This property will be required for the underlying AB-SFE scheme in the
construction of a strongly key-hiding AB-SFE scheme presented in Appendix B.

44

Definition 11 (Recovery from Randomness ([KW19, LQR+19a])) Let ABSFE = (ASetup,
AKG,AEnc,ADec) be an AB-SFE scheme for a function F : X × Y → {0, 1}, and let R denote
the randomness space of AEnc. We say that ABSFE satisfies the recovery-from-randomness
property if there exists a PPT algorithm ARec (called the recovery algorithm) with the following
property.

• ARec takes a CRS crs, a public key pk, a ciphertext ct, and a randomness r ∈ R as
input. It outputs (x,m) satisfying AEnc(crs, pk, x,m; r) = ct if such a pair (x,m) exists;
Otherwise, it outputs ⊥.

Security Notions for AB-SFE. Here, we recall the security definitions for AB-SFE, called
strong key-hiding, weak key-hiding, and weak message-hiding, as formalized by Lombardi et
al. [LQR+19a].22

Definition 12 (Strong/Weak Key-Hiding for AB-SFE) Let ABSFE = (ASetup,AKG,AEnc,
ADec) be an AB-SFE scheme for a function F : X × Y → {0, 1}. Let Sim = (Sim1, Sim2) be a
pair of PPT “simulator” algorithms whose syntax is as follows.

• Sim1 takes a security parameter 1λ as input, and outputs a fake CRS crs, a fake public
key pk, and a trapdoor td.

• Sim2 takes a trapdoor td, a ciphertext-attribute x ∈ X , a ciphertext ct, and a bit β ∈ {0, 1}
(which is supposed to be F (x, y)) as input, and outputs a message m (which could be the
special invalid symbol ⊥).

Consider the following key-hiding game between a challenger and an adversary A.

1. First, A chooses the challenge key-attribute y ∈ Y and sends it to the challenger. Then,
the challenger chooses the challenge bit b

r←− {0, 1}. If b = 1, then the challenger generates
crs ← ASetup(1λ) and (pk, sk) ← AKG(crs, y), and sends (crs, pk) to A; Otherwise, the
challenger generates (crs, pk, td)← Sim1(1

λ), and sends (crs, pk) to A.

2. A can adaptively make decryption queries. For each of A’s decryption queries (x, ct),
if b = 1, then the challenger responds with ADec(crs, sk, x, ct); Otherwise, the challenger
responds with Sim2(td, x, ct, F (x, y)).

3. A outputs b′ ∈ {0, 1}.

We say that ABSFE satisfies strong key-hiding if there exists a PPT simulator Sim such
that for all PPT adversaries A, we have Advstrong−khABSFE,A,Sim(λ) := 2 · |Pr[b = b′]− 1/2| = negl(λ).

Furthermore, we say that ABSFE satisfies weak key-hiding if there exists a PPT simu-
lator Sim such that for all PPT adversaries A that make no decryption queries, we have
Advstrong−khABSFE,A,Sim(λ) = negl(λ).23

Definition 13 (Weak Message-Hiding for AB-SFE) Let ABSFE = (ASetup,AKG,AEnc,
ADec) be an AB-SFE scheme for a function F : X × Y → {0, 1}. Consider the following weak
message-hiding game between a challenger and an adversary A.

22As mentioned in Section 4, Lombardi et al. also introduced strong message-hiding. We do not recall its
formal definition here since it is not directly relevant to our purpose in this paper.

23Since an adversary for weak key-hiding never makes a decryption query, the corresponding simulator Sim
can just consist of a single algorithm that takes 1λ as input and outputs a fake CRS crs and a fake public key pk
(and no trapdoor).

45

1. First, A chooses the challenge key-attribute y ∈ Y and sends it to the challenger. Then,
the challenger generates crs← ASetup(1λ) and (pk, sk)← AKG(crs, y), and sends (crs, pk,
sk) to A.

2. A sends the challenge ciphertext-attribute x ∈ X such that F (x, y) = 0 and the challenge
messages (m0,m1) of equal length to the challenger. The challenger chooses the challenge
bit b

r←− {0, 1}, and then returns the challenge ciphertext ct← ABSFE(crs, pk, x,mb) to A.

3. A outputs b′ ∈ {0, 1}.

We say that ABSFE satisfies weak message-hiding if for all PPT adversaries A, we have
Advweak−mh

ABSFE,A(λ) := 2 · |Pr[b = b′]− 1/2| = negl(λ).

A.3 Equivocable Commitment

Here, we review the definition of a non-interactive equivocable (bit) commitment scheme [DIO98]
in the CRS model (which we will hereafter simply call an equivocable commitment scheme).
We will refer to a CRS in an equivocable commitment scheme as a committing key, and denote
it by ck.

Definition 14 (Equivocable Commitment) An equivocable commitment scheme EQCom is
a four tuple (CSetup,Com,CSetupEQ,Equiv) of PPT algorithms.

• CSetup is the setup algorithm that takes a security parameter 1λ as input, and outputs a
committing key ck.

• Com is the committing algorithm that takes a committing key ck and a message m ∈ {0, 1}
as input, and outputs a commitment com.

• CSetupEQ is the fake setup algorithm that takes a security parameter 1λ as input, and
outputs a fake committing key ck, a fake commitment com, and a trapdoor td.

• Equiv is the equivocation algorithm that takes a trapdoor td and a message m ∈ {0, 1} as
input, and outputs a randomness r.

We require the following properties for an equivocable commitment scheme EQCom. Let R
be the randomness space of Com.

Statistical Binding It holds that

Pr
ck←CSetup(1λ)

[
∃r0, r1 ∈ R : Com(ck, 0; r0) = Com(ck, 1; r1)

]
= negl(λ).

We call a committing key ck erroneous if there exists a randomness pair (r0, r1) ∈ R2 for
which Com(ck, 0; r0) = Com(ck, 1; r1) holds, and otherwise we call ck non-erroneous.

Security Consider the following security game between a challenger and an adversary A.

1. First, A sends a message m ∈ {0, 1} to the challenger. Then, the challenger chooses
the challenge bit b

r←− {0, 1}. If b = 1, then the challenger generates ck← CSetup(1λ),
picks r

r←− R, computes com← Com(ck,m; r), and then sends (ck, com, r) to A; Oth-
erwise, the challenger generates (ck, com, td)← CSetupEQ(1λ) and r ← Equiv(td,m),
and then sends (ck, com, r) to A.

2. A outputs b′ ∈ {0, 1}.

46

We say that EQCom is secure if for all PPT adversaries A, we have AdvequivEQCom,A(λ) :=
2 · |Pr[b = b′]− 1/2| = negl(λ).

We can realize an equivocable commitment scheme based on one-way functions [DIO98].

A.4 Pseudorandom Generator

We recall the definition of a pseudorandom generator (PRG).

Definition 15 (Pseudorandom Generator) Let PRG : {0, 1}λ → {0, 1}ℓ be an efficiently
computable deterministic function where ℓ = ℓ(λ) > λ is some polynomial. We say that PRG is
a secure PRG if for all PPT adversaries A, we have

AdvprgPRG,A(λ) :=

∣∣∣∣∣ Pr
s

r←−{0,1}λ
[A(1λ,PRG(s)) = 1]− Pr

R
r←−{0,1}ℓ

[A(1λ, R) = 1]

∣∣∣∣∣ = negl(λ).

We can realize secure PRGs based on one-way functions [HILL99].

A.5 Leftover Hash Lemma

Recall that a hash family H :=
{
H : {0, 1}ℓin → {0, 1}ℓout

}
is called universal if for all distinct

inputs x, x′ ∈ {0, 1}ℓin , we have Pr
H

r←−H[H(x) = H(x′)] ≤ 2−ℓout .

Here, we recall the leftover hash lemma [HILL99, DRS04], which will used in the security
proof for our construction of an RKA-KDM secure SKE scheme based on a hash encryption
scheme in Section 7. For convenience, we formalize it via a game between a challenger and an
adversary.

Lemma 1 (Leftover Hash Lemma) Consider the following LHL game between a challenger
and an adversary A.

1. First, the challenger chooses a bit b
r←− {0, 1} and sends a security parameter 1λ to A.

2. A sends the description of a universal hash family H :=
{
H : {0, 1}ℓin → {0, 1}ℓout

}
and a

function leak : {0, 1}ℓin → {0, 1}ℓleak to the challenger. Then, the challenger generates H
r←−

H, x r←− {0, 1}ℓin, and R
r←− {0, 1}ℓout. If b = 1, the challenger returns (H,H(x), leak(x))

to A; Otherwise, the challenger returns (H,R, leak(x)) to A.

3. A outputs b′ ∈ {0, 1}.

Then, for all computationally unbounded adversaries A, it holds that

AdvlhlA (λ) :=
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣ ≤ 2−
ℓin−(ℓout+ℓleak)

2 .

B Key-Hiding Enhancement for AB-SFE via KDM Security

In this section, we give the formal proof of Theorem 3 stated in Section 4. That is, we formally
show how to convert any AB-SFE scheme with weak key-hiding into one with strong key-
hiding, using a one-time P-KDM secure SKE scheme. (The formal definition of ABSFE is given
in Appendix A.2.)

The transformation preserves the function F with which the underlying AB-SFE scheme is
associated, and the weak message-hiding of the underlying scheme. The transformation uses

47

an IND-CPA secure PKE scheme and an equivocable bit commitment scheme (whose formal
definition is given in Appendix A.3) as additional building blocks, both of which exist if there
exists an AB-SFE scheme with weak key-hiding and weak message-hiding.

The main structure of the transformation is based on the one by Lombardi et al. [LQR+19a].
Essentially, we replace the hinting PRG used in their transformation with a one-time P-KDM
secure SKE scheme by using the technique of Kitagawa et al. [KMT19].

Construction. Let ABSFE = (ASetup,AKG,AEnc,ADec) be an AB-SFE scheme for an effi-
ciently computable function F : X × Y → {0, 1}, and PKE = (KG,Enc,Dec) be a PKE scheme.
We assume that ABSFE and PKE support the recovery-from-randomness property, and we
denote their recovery algorithms by ARec and Rec, respectively. (We recall the recovery-from-
randomness property of PKE and ABSFE in Appendices A.1 and A.2, respectively.) Further-
more, for notational simplicity (and without loss of generality), we assume that the message
spaces of both ABSFE and PKE contain the special symbol ⊥, and the randomness space of both
AEnc and Enc to be {0, 1}λ.24 Let EQCom = (CSetup,Com,CSetupEQ,Equiv) be an equivocable
bit commitment scheme, and we denote the randomness space of Com by R. We assume that
ABSFE and PKE can encrypt elements in R. Let SKE = (K,E,D) be an SKE scheme whose
secret key space is {0, 1}ℓ for some polynomial ℓ = ℓ(λ), and which can encrypt messages of
length ℓ · λ+ ℓm for some polynomial ℓm = ℓm(λ).

Using these building blocks, we construct another AB-SFE scheme ABSFE′ = (ASetup′,
AKG′,AEnc′,ADec′) whose message space is {0, 1}ℓm , as described in Figure 5.

Correctness. The correctness of ABSFE′ follows from that of ABSFE and PKE and their
corresponding recovery algorithms ARec and Rec, respectively.

Security. The following theorems guarantee the key-hiding and message-hiding of ABSFE′.

Theorem 10 Assume ABSFE satisfies weak key-hiding and EQCom satisfies statistical binding.
Then, ABSFE′ satisfies strong key-hiding.

Theorem 11 Assume ABSFE satisfies weak message-hiding, PKE is IND-CPA secure, SKE
is one-time P-KDM secure, and EQCom is a secure equivocable commitment scheme. Then,
ABSFE′ satisfies weak message-hiding.

As mentioned earlier, an IND-CPA secure PKE scheme and an equivocable commitment
scheme used as building blocks exist if there exists an AB-SFE scheme with weak key-hiding
and weak message-hiding. Hence, Theorem 3 follows from the construction of ABSFE′ and the
combination of Theorems 10 and 11.

The formal proofs of Theorems 10 and 11 are given in Appendices B.1 and B.2, respectively.

Remark 2 We note that ABSFE′ satisfies strong message-hiding (as defined in [LQR+19a]) if
so does the underlying AB-SFE scheme ABSFE. This can be easily inferred from the proof of
Theorem 11 given in Appendix B.2, and the proof of [LQR+19a, Theorem 5.13]. We omit the
details since it is not directly relevant to our results for KDM-CCA secure PKE in this paper.

24These assumptions are without loss of generality when we only encrypt messages of an a-priori fixed length
(say, n). The former property can be achieved by putting a prefix indicator bit, say 1, for an ordinary message,
and encoding ⊥ as 0∥0n. The latter property can be achieved by using a pseudorandom generator, because it
does not destroy the security properties of an AB-SFE scheme and the IND-CPA security of a PKE scheme.

48

ASetup′(1λ) :
crs← ASetup(1λ)
(pk, sk)← KG(1λ)
∀j ∈ [ℓ] : ckj ← CSetup(1λ)
CRS←

(
crs, pk, (ckj)j∈[ℓ]

)
Return CRS.

AKG′(CRS, y ∈ Y) :
(crs, pk, (ckj)j∈[ℓ])← CRS
(apk, ask)← AKG(crs, y)
APK← apk
ASK← (y, ask)
Return (APK,ASK).

AEnc′(CRS,APK, x ∈ X ,m) :
(crs, pk, (ckj)j∈[ℓ])← CRS
apk← APK
s = (s1, . . . , sℓ)← K(1λ)

r01, . . . r
0
ℓ , r

1
1, . . . , r

1
ℓ

r←− {0, 1}λ
ctske ← E(s, (r

sj
j)j∈[ℓ]∥m)

∀j ∈ [ℓ] :

ρj
r←− R

comj ← Com(ckj , sj ; ρj)
M

sj
j ← ρj

M
1⊕sj
j ← ⊥

ct0j ← AEnc(crs, apk, x,M0
j ; r

0
j)

ct1j ← Enc(pk,M1
j ; r

1
j)

CT← ((ct0j , ct
1
j , comj)j∈[ℓ], ctske)

Return CT.

ADec′(CRS,ASK, x ∈ X ,CT) :
(crs, pk, (ckj)j∈[ℓ])← CRS
(y, ask)← ASK
If F (x, y) = 0 then return ⊥.
((ct0j , ct

1
j , comj)j∈[ℓ], ctske)← CT

∀j ∈ [ℓ] :
ρj ← ADec(crs, ask, x, ct0j)

sj ←

{
0 if ρj ̸= ⊥ and Com(ckj , 0; ρj) = comj

1 otherwise

s← (s1 . . . , sℓ) ∈ {0, 1}ℓ
M ← D(s, ctske)
If M = ⊥ then return ⊥.
Parse M as ((rj)j∈[ℓ],m) ∈ ({0, 1}λ)ℓ × {0, 1}ℓm .
∀j ∈ [ℓ] : If the following check fails then return ⊥:
Case sj = 0 :
Check if ARec(crs, apk, ct0j , rj) = (x, ρj).

Case sj = 1 :
ρ′j ← Rec(pk, ct1j , rj)

Check if ρ′j ̸= ⊥ and Com(ckj , 1; ρ
′
j) = comj .

Return m.

Figure 5: A transformation converting a weakly key-hiding AB-SFE scheme into a strongly
key-hiding one.

B.1 Proof of Theorem 10: Strong Key-Hiding of ABSFE′

Let Sim be the PPT simulator for the weak key-hiding of the underlying AB-SFE scheme
ABSFE.25 Using Sim, we construct a PPT simulator Sim′ = (Sim′1,Sim

′
2) for showing the strong

key-hiding of ABSFE′ as described in Figure 6.
Let A be an arbitrary PPT adversary that attacks the strong key-hiding of ABSFE′. We

consider a sequence of three games, where the first (resp. last) game is the strong key-hiding
game with the challenge bit b = 1 (resp. b = 0). For t ∈ [3], let Tt be the event that A outputs

1 in Game t. We will show that Advstrong−kh
ABSFE′,A,Sim′(λ) = |Pr[T1]− Pr[T3]| = negl(λ), which will

prove the theorem.

Game 1: This is the strong key-hiding game regarding ABSFE′ in which b = 1.

The detailed description of the game is as follows.

1. A submits the challenge key-attribute y ∈ Y to the challenger. The challenger
generates a CRS CRS, a public key APK, a secret key ASK, and a trapdoor td as

25As remarked in the footnote in Definition 12, a simulator for weak key-hiding only outputs a pair of a fake
CRS and a fake public key (and no trapdoor).

49

Sim′(1λ) :

(crs, apk)← Sim(1λ)
(pk, sk)← KG(1λ)
∀j ∈ [ℓ] : ckj ← CSetup(1λ)

CRS← (crs, pk, (ckj)j∈[ℓ])

APK← apk

td← (CRS, apk, sk)

Return (CRS,APK, td).

Sim′2(td, x,CT, β ∈ {0, 1}) :
If β = 0 then return ⊥.
(CRS, apk, sk)← td

(crs, pk, (ckj)j∈[ℓ])← CRS
((ct0j , ct

1
j , comj)j∈[ℓ], ctske)← CT

∀j ∈ [ℓ] :
ρj ← Dec(pk, sk, ct1j)

sj ←

{
1 if ρj ̸= ⊥ and Com(ckj , 1; ρj) = comj

0 otherwise

s← (s1 . . . , sℓ) ∈ {0, 1}ℓ
M ← D(s, ctske)
If M = ⊥ then return ⊥.
Parse M as ((rj)j∈[ℓ],m) ∈ ({0, 1}λ)ℓ × {0, 1}ℓm .
∀j ∈ [ℓ] : If the following check fails then return ⊥:
Case sj = 0 :

(x′j , ρ
′
j)← ARec(crs, apk, ct0j , rj)

Check if x′j = x and Com(ckj , 0; ρ
′
j) = comj .

Case sj = 1 :
Check if Rec(pk, ct1j , rj) = ρj .

Return m.

Figure 6: The simulator algorithms used for showing the strong key-hiding of ABSFE′.

follows. (Although td is not used in Game 1, it is well-defined even in Game 1, and
defining it here is useful for describing the subsequent games and our analysis.)

(a) Generate crs← ASetup(1λ).

(b) Generate (pk, sk)← KG(1λ).

(c) Generate ckj ← CSetup(1λ) for every j ∈ [ℓ].

(d) Generate (apk, ask)← AKG(crs, y).

(e) Set CRS := (crs, pk, (ckj)j∈[ℓ]), APK := apk, ASK := (y, ask), and td := (CRS,
apk, sk)

The challenger sends (CRS,APK) to A.
2. A may adaptively make decryption queries (x,CT = ((ct0j , ct

1
j , comj)j∈[ℓ], ctske)). The

challenger responds to each of the queries as follows.

(a) If F (x, y) = 0 then return ⊥ to A.
(b) For each j ∈ [ℓ], do the following: Compute ρj ← ADec(crs, ask, x, ct0j). If ρj ̸= ⊥

and Com(ckj , 0; ρj) = comj , then set sj ← 0. Otherwise, set sj ← 1.

(c) Set s← (s1 . . . , sℓ) ∈ {0, 1}ℓ .
(d) Compute M ← D(s, ctske).

(e) If M = ⊥ then return ⊥ to A. Otherwise, parse M as ((rj)j∈[ℓ],m) ∈ ({0, 1}λ)ℓ×
{0, 1}ℓm .

(f) For each j ∈ [ℓ], check the following, and return ⊥ to A if any of the checks fails:

• Case sj = 0: Check if ARec(crs, apk, ct0j , rj) = (x, ρj).

• Case sj = 1: Compute ρ′j ← Rec(pk, ct1j , rj) and check if ρ′j ̸= ⊥ and
Com(ckj , 1; ρ

′
j) = comj .

(g) Return m to A.

50

3. A outputs b′ ∈ {0, 1}.

Game 2: Same as Game 1, except that the challenger uses Sim′2 to answer A’s decryption
queries. Namely, for a decryption query (x,CT) asked by A, the challenger responds with
Sim′2(td, x,CT, F (x, y)). (Note that crs and apk in (CRS,APK, td) are still generated as in
Game 1.)

We will later show in Lemma 2 that the statistical binding of the underlying equivocable
commitment scheme EQCom implies |Pr[T1]− Pr[T2]| = negl(λ).

Game 3: Same as Game 2, except that the challenger runs (crs, apk)← Sim(1λ), and uses them
as the substitutes for crs and apk in (CRS,APK, td). Note that this game is exactly the
strong key-hiding game regarding ABSFE′ in which b = 0.

By the weak key-hiding of the underlying AB-SFE scheme ABSFE, we have |Pr[T2]− Pr[T3]|
= negl(λ).

It remains to show the following.

Lemma 2 If EQCom is statistically binding, then we have |Pr[T1]− Pr[T2]| = negl(λ).

Proof of Lemma 2. Note that Game 1 and Game 2 proceed identically unless A submits a
decryption query (x,CT) satisfying ADec′(CRS,ASK, x,CT) ̸= Sim′2(td, x,CT, F (x, y)). We call
such a decryption query bad.

By the statistical binding of EQCom and the union bound, the probability that some of
(ckj)j∈[ℓ] is erroneous in Game 1 or Game 2 is bounded by negl(λ). Below, we will show that
if none of (ckj)j∈[ℓ] is erroneous, then there do not exist bad decryption queries in Game 1 or
Game 2, which will imply the lemma.

To this end, fix A’s challenge key-attribute y, a CRS CRS = (crs, pk, (ckj)j∈[ℓ]) such that
all of (ckj)j∈[ℓ] are non-erroneous, a key pair (APK,ASK) = (apk, (y, ask)), and a trapdoor
td = (CRS, apk, sk). Let (x,CT = ((ct0j , ct

1
j , comj)j∈[ℓ], ctske)) be any decryption query submitted

by A. If F (x, y) = 0, then both ADec′ and Sim′2 output ⊥. Thus, below we consider the case
F (x, y) = 1. Let s = (s1, . . . , sℓ) ∈ {0, 1}ℓ and s′ = (s′1, . . . , s

′
ℓ) ∈ {0, 1}ℓ be the s-values

computed in ADec′ and Sim′2, respectively. Namely, for each j ∈ [ℓ], we have

sj =

{
0 if ADec(crs, ask, x, ct0j) = ρj ̸= ⊥ and Com(ckj , 0; ρj) = comj

1 otherwise
,

s′j =

{
1 if Dec(pk, sk, ct1j) = ρj ̸= ⊥ and Com(ckj , 1; ρj) = comj

0 otherwise
.

In the following, we will consider two cases and show that in either case, the outputs of
ADec′(CRS,ASK, x,CT) and Sim′2(td, x,CT, F (x, y)) agree.

Case: sj = s′j holds for all j ∈ [ℓ]. In this case, s = s′ holds, and ABSFE′ and Sim′2 perform
the same set of validity checks on (x,CT) in their entire processes. Thus, their outputs
agree (either the least significant ℓm bits of D(s, ctske) = D(s′, ctske), or ⊥).

Case: There exists a position j∗ ∈ [ℓ] for which sj∗ ̸= s′j∗ holds. Let ρj∗ := ADec(crs, ask,

x, ct0j∗) and ρ′j∗ := Dec(pk, sk, ct1j∗). Consider the following two sub-cases.

• Subcase (sj∗ , s
′
j∗) = (0, 1): The condition of this subcase implies Com(ckj∗ , 0; ρj∗) =

Com(ckj∗ , 1; ρ
′
j∗) = comj∗ . However, it contradicts the premise that ckj∗ is non-

erroneous, and thus this sub-case never occurs.

51

• Subcase (sj∗ , s
′
j∗) = (1, 0): We will show that both ADec′ and Sim′2 return ⊥ in this

case. We first explain why ADec′ returns ⊥: If D(s, ctske) = ⊥, then ADec′ returns
⊥ by design; If D(s, ctske) = ((rj)j∈[ℓ],m) ̸= ⊥ (for some m), then s′j∗ = 0 and the

correctness of the recovery algorithm Rec imply26 either

– (a) Rec(pk, ct1j∗ , rj∗) = ⊥, or
– (b) Rec(pk, ct1j∗ , rj∗) = ρ′j∗ and Com(ckj∗ , 1; ρ

′
j∗) ̸= comj∗ .

Note that sj∗ = 1 means that the validity of the PKE-ciphertext ct1j∗ is checked
in the last step of ADec′. However, “(a) or (b)” implies that the validity check of
ct1j∗ cannot be satisfied. Hence, regardless of whether D(s, ctske) = ⊥ or not, ADec′

returns ⊥.
The explanation on why Sim′2 returns ⊥ is symmetric to the above: If D(s′, ctske) = ⊥,
then Sim′2 returns ⊥ by design. If D(s′, ctske) = ((rj)j∈[ℓ],m) ̸= ⊥ (for some m), then
sj∗ = 1 and the correctness of the recovery algorithm ARec imply either

– (a’) ARec(crs, apk, ct0j∗ , rj∗) = ⊥,
– (b’) ARec(crs, apk, ct0j∗ , rj∗) = (x′, ρ) ̸= ⊥ for some x′ ̸= x and ρ, or

– (c’) ARec(crs, apk, ct0j∗ , rj∗) = (x, ρj∗) ≠ ⊥ and Com(ckj∗ , 0; ρj∗) ̸= comj∗ .

Note that s′j∗ = 0 means that the validity of the AB-SFE-ciphertext ct0j∗ is checked
in the last step of Sim′2. However, “(a’) or (b’) or (c’)” implies that the validity check
of ct0j∗ cannot be satisfied. Hence, regardless of whether D(s′, ctske) = ⊥ or not, Sim′2
returns ⊥.

As seen above, if none of (ckj)j∈[ℓ] in CRS is erroneous, then we always have ADec′(CRS,ASK, x,CT)
= Sim′2(td, x,CT, F (x, y)). □ (Lemma 2)

From the above arguments, we see that

Advstrong−kh
ABSFE′,A,Sim′(λ) = |Pr[T1]− Pr[T3]| ≤

∑
t∈[2]

|Pr[Tt]− Pr[Tt+1]| = negl(λ).

Since the choice of A was arbitrary, we can conclude that ABSFE′ satisfies strong key-hiding.
□ (Theorem 10)

B.2 Proof of Theorem 11: Weak Message-Hiding of ABSFE′

Let A be an arbitrary PPT adversary that attacks the weak message-hiding of ABSFE′. We
proceed the proof via a sequence of games argument using five games. For every t ∈ [5], let
SUCt be the event that A succeeds in guessing the challenge bit b in Game t.

Game 1: This is the weak message-hiding game regarding ABSFE′. Thus, we have Advweak−mh
ABSFE′,A(λ)

= 2 · |Pr[SUC0]− 1/2|.
The detailed description of the game is as follows.

1. A submits the challenge key-attribute y ∈ Y to the challenger. The challenger
generates a CRS CRS, a public key APK, and a secret key ASK as follows.

(a) Generate crs← ASetup(1λ).

26Note that the correctness of the recovery algorithm Rec guarantees that for any key pair (pk, sk) output by KG
and any ciphertext ct (not necessarily in the image of Enc(pk, ·)), if Dec(pk, sk, ct) = m (which could be⊥), then we
have Rec(pk, ct, r) ∈ {m,⊥} for any r. Hence, since ρ′j∗ = Dec(pk, sk, ct1j∗), we have Rec(pk, ct1j∗ , rj∗) ∈ {ρ′j∗ ,⊥}.

52

(b) Generate (pk, sk)← KG(1λ).

(c) Generate ckj ← CSetup(1λ) for every j ∈ [ℓ].

(d) Generate (apk, ask)← AKG(crs, y).

(e) Set CRS := (crs, pk, (ckj)j∈[ℓ]), APK := apk, and ASK := (y, ask).

The challenger sends (CRS,APK,ASK) to A.
2. A sends the challenge ciphertext-attribute x ∈ X such that F (x, y) = 0 and the

challenge messages (m0,m1) ∈ ({0, 1}ℓm)2 to the challenger. The challenger chooses
the challenge bit b

r←− {0, 1}, and computes the challenge ciphertext CT as follows.

(a) Generate s = (s1, . . . , sℓ)← K(1λ).

(b) Pick r01, . . . , r
0
ℓ , r

1
1, . . . , r

1
ℓ

r←− {0, 1}λ.
(c) Compute ctske ← E(s, (r

sj
j)j∈[ℓ]∥mb).

(d) Pick ρj
r←− {0, 1}λ and compute comj ← Com(ckj , sj ; ρj) for each j ∈ [ℓ].

(e) For each j ∈ [ℓ], do the following: Set M
sj
j ← ρj and M

1⊕sj
j ← ⊥. Then,

compute ct0j ← AEnc(crs, apk, x,M0
j ; r

0
j) and ct1j ← Enc(pk,M1

j ; r
1
j).

(f) Set CT := ((ct0j , ct
1
j , comj)j∈[ℓ], ctske).

The challenger sends CT to A.
3. A outputs b′ ∈ {0, 1}.

Game 2: Same as Game 1, except that the challenger uses the fake setup and equivocation
algorithms of EQCom for generating ckj , comj , and ρj for all j ∈ [ℓ]. That is, for each
j ∈ [ℓ], when generating ckj , the challenger runs (ckj , comj , tdj) ← CSetupEQ(1λ), and
uses ckj as the substitute for ckj . Furthermore, when generating the challenge ciphertext
CT, the challenger runs ρj ← Equiv(td, sj), and uses this ρj and comj that it has already
generated as ρj and comj , respectively, for all j ∈ [ℓ].

By the security of the underlying equivocable commitment scheme EQCom, we have
|Pr[SUC1]− Pr[SUC2]| = negl(λ).

Game 3: Same as Game 2, except that when generating the challenge ciphertext, M1
j ’s for

positions j ∈ [ℓ] with sj = 0, are generated as M1
j ← Equiv(tdj , 1), instead of M1

j ← ⊥.

Note that the randomness for generating ct1j for positions j ∈ [ℓ] with sj = 0 are not
needed for generating the remaining components in CT. Hence, by the IND-CPA security
of the underlying PKE scheme PKE, we have |Pr[SUC2]− Pr[SUC3]| = negl(λ).

Game 4: Same as Game 3, except that when generating the challenge ciphertext, M0
j ’s for

positions j ∈ [ℓ] with sj = 1, are generated as M0
j ← Equiv(tdj , 0), instead of M0

j ← ⊥.

Note that the randomness for generating ct0j for positions j ∈ [ℓ] with sj = 1 are not
needed for generating the remaining components in CT, and in the security game for the
weak-hiding of the underlying AB-SFE scheme ABSFE, a reduction algorithm is given a
secret key ask from the challenger. Hence, by the weak message-hiding of the underlying
AB-SFE scheme ABSFE and F (x, y) = 0, we have |Pr[SUC3]− Pr[SUC4]| = negl(λ).

Note that in Game 4, we have ct0j ← AEnc(crs, apk, x,M0
j ; r

0
j) and ct1j ← Enc(pk,M1

j ; r
1
j)

for all j ∈ [ℓ], whereMα
j ← Equiv(tdj , α) for all (j, α) ∈ [ℓ]×{0, 1}. Hence, the components

(ct0j , ct
1
j , comj)j∈[ℓ] in CT become independent of s = (s1, . . . , sℓ). This means that the

only component that is still dependent on s in CT is ctske, which is generated as ctske ←
E(s, (r

sj
j)j∈[ℓ]∥mb).

53

Game 5: Same as Game 4, except that the information on mb is eliminated from ctske by
generating it as ctske ← E(s, 0ℓ·λ+ℓm). Since CT becomes truly independent of mb, we have
Pr[SUC5] = 1/2.

Finally, we argue that |Pr[SUC4]− Pr[SUC5]| = negl(λ) holds due to the one-time P-
KDM security of the underlying SKE scheme SKE. Specifically, consider the function
f : {0, 1}ℓ → {0, 1}ℓ·λ+ℓm that has (rαj)j∈[ℓ],α∈{0,1}∥mb hard-wired, and on input s =

(s1, . . . , sℓ) outputs (r
sj
j)j∈[ℓ]∥mb. Note that f is a projection function. Hence, we can

straightforwardly construct a reduction algorithm that simulates Game 4 or Game 5 for A
(depending on the reduction’s challenge bit) using the function f as its challenge KDM-
encryption query, and outputs 1 if and only if A succeeds in guessing the challenge bit.
Such a reduction algorithm has advantage exactly |Pr[SUC4]− Pr[SUC5]|, and thus we can
derive |Pr[SUC4]− Pr[SUC5]| = negl(λ).

From the above arguments, we see that

1

2
· Advweak−mh

ABSFE′,A(λ) =

∣∣∣∣Pr[SUC1]− 1

2

∣∣∣∣
≤

∑
t∈[4]

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC5]− 1

2

∣∣∣∣
= negl(λ).

Since the choice of A was arbitrary, we can conclude that ABSFE′ satisfies weak message-hiding.
□ (Theorem 11)

54

	Introduction
	Background
	Our Results
	Related Work
	Paper Organization

	Technical Overview
	Naor-Yung Paradigm with DV-NIZK Fails for KDM
	How to Solve the Circularity Problem Involving DV-NIZK?
	KDM-CPA Variant of Our Construction
	KDM-CCA Secure PKE Using DV-NIZK
	Extension to KDM-CCA Security in the Multi-User Setting
	On the Connections with the Techniques by Barak et al. EC:BHHI10

	Preliminaries
	Notations
	Public-Key Encryption
	Secret-Key Encryption
	Designated-Verifier Non-interactive Zero-Knowledge Arguments
	Garbled Circuits

	DV-NIZK via KDM Security
	Generic Construction of KDM-CCA Secure PKE
	Multi-User KDM-CCA Security from RKA-KDM Security
	Passively RKA-KDM Secure SKE from Hash Encryption
	Definition of Hash Encryption
	Construction

	Putting It All Together
	Other Definitions
	Recovery from Randomness for PKE
	Attribute-Based Secure Function Evaluation
	Equivocable Commitment
	Pseudorandom Generator
	Leftover Hash Lemma

	Key-Hiding Enhancement for AB-SFE via KDM Security
	Proof of Theorem 10: Strong Key-Hiding of ABSFE'
	Proof of Theorem 11: Weak Message-Hiding of ABSFE'

