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Abstract—At CRYPTO 2018 Cramer et al. presented
SPDZ2k , a new secret-sharing based protocol for actively secure
multi-party computation against a dishonest majority, that
works over rings instead of fields. Their protocol uses slightly
more communication than competitive schemes working over
fields. However, their approach allows for arithmetic to be
carried out using native 32 or 64-bit CPU operations rather
than modulo a large prime. The authors thus conjectured that
the increased communication would be more than made up for
by the increased efficiency of implementations.

In this work we answer their conjecture in the affirmative.
We do so by implementing their scheme, and designing and
implementing new efficient protocols for equality test, compar-
ison, and truncation over rings. We further show that these
operations find application in the machine learning domain,
and indeed significantly outperform their field-based competi-
tors. In particular, we implement and benchmark oblivious
algorithms for decision tree and support vector machine (SVM)
evaluation.
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I. INTRODUCTION

In the setting of secure multi-party computation, or MPC,
a set of parties P1, . . . , Pn jointly compute a function
z = f(x1, . . . , xn), where Pi holds some input xi, in a
secure manner. On a high level this means that all parts of
the computation must remain secret towards all parties, in
particular each party’s input must remain private, and no
party is able to modify the function being computed. In
recent years, many new applications have been discovered
for MPC, including wide-ranging areas such as distributed
key management, secure auctions, private genome analysis
and data mining.

The security of an MPC protocol is formulated by the
requirement that an execution of the protocol can be simu-
lated and shown to be equivalent to execution by a trusted
third party [1]. Security can then be specified according to
the powers an adversary is assumed to have. One of the
most important security metrics is whether we assume the
adversary is passively or actively corrupted. In the passive
corruption case we assume that the adversary follows the
prescribed protocol (but tries to break privacy by analyzing
the transcript of execution), whereas in the active corruption
case the adversary may deviate arbitrarily (to possibly break

both privacy and correctness). Of these, active security is the
most desired, but also the hardest to achieve. In particular
actively secure protocols tend to be orders of magnitude
slower than semi-honestly secure protocols, although recent
developments have made the gap much smaller [2], [3], [4].
Another important security metric is the number of parties an
adversary is allowed to corrupt. Of particular interest is the
setting where the adversary is allowed to corrupt more than
half of the participating parties, known as dishonest majority.
This include the interesting case of two-party computation,
but is much harder to achieve than the case of an honest
majority, for example with three parties and one corruption.

A. Computational Models in MPC

Different MPC protocols may require different representa-
tions of the function f , which can greatly affect the overhead
of the protocol, compared with computing f in the clear. The
most common approach is to consider f as a circuit where
input, output, and internal values are from some algebraic
structure and gates represent operations over this structure.
A typical choice of algebraic structure is the finite field
F2 [5], [6], [7], [8], [2] , which means that f computes
over bits, addition is equivalent to XOR, and multiplication
is equivalent to AND. Another popular choice is the ring
Zq [9], [10], [11], [4], [3] where addition and multiplication
are carried out over the integers modulo some large q. Some
protocols also use a binary extension field F2k (for a large
k), where addition is equivalent to XOR but multiplication is
binary polynomial multiplication, which is particularly well-
suited to computing certain cryptographic functions such as
AES [12], [13], [14].

Each of these have their strengths and weaknesses, for
example F2 is best for bitwise computations such as com-
parison of two integers, symmetric encryptions and hash
functions, while arithmetic modulo q is suitable for arith-
metic operations such as computing statistics or linear
programming [15]. However, in an application it will of-
ten be useful to convert between different representations,
depending on the requirements at various stages of the
program. For example, this has been done successfully in
the ABY framework [16] and subsequent works [17], which
convert between arithmetic and binary sharings for applica-



tions such as private biometric matching and classification
using support vector machines, linear/logistic regression and
neural networks. The downside of these approaches is that
they only offer security against a passive adversary, or, in
the case of [17], can only achieve active security in the
restricted setting of three parties with an honest majority
(that is, no collusions). MPC protocols with active security
against a dishonest majority tend to be much more complex,
and also typically only support arithmetic modulo q, where
q is a large prime. This restriction makes it much more
difficult to convert between Zq sharings and binary sharings,
making the protocols less suitable for applications where
these conversions are needed.

B. The SPDZ2k Protocol

A recent work by Cramer et al. [18] took a first step
in overcoming the above hurdle, with a protocol named
SPDZ2k (after the SPDZ family of protocols [10], [19])
allowing actively secure, dishonest majority MPC over Zq
even when q is not a prime, for example q = 2k. This
gives hope that we may be able to exploit arithmetic in Z2k

to improve the efficiency of applications and obtain similar
benefits to that seen recently in the honest majority setting
with the aforementioned protocols.

One of the main advantages of working modulo 2k is
that it corresponds naturally to 32/64-bit computations done
in standard CPUs, allowing for very simple and efficient
implementations without finite field arithmetic. Furthermore,
the fact that 32 and 64-bit computation has been the norm for
many years means that there are many algorithms optimized
for this domain. These cannot trivially be leveraged in MPC
applications working over Fp.

Despite these advantages, we note that Cramer et al. [18]
only described how to do additions and multiplications
securely over Z2k , which on its own is not enough to
realize complex applications. This is because a large number
of applications require efficient sub-routines for operations
such as equality testing, comparison, and truncation, which
do not give rise to efficient arithmetic circuits. Subprotocols
for these tasks are well-studied when the computation is over
Fp [20], [21], [22], but it is not immediately clear whether
these techniques apply directly to the ring setting over Z2k .
In particular, many of the techniques rely on properties of
fields, like the simple fact that division by 2 is possible (as
long as the characteristic of the field is not 2). However, this
does not work modulo 2k since 2 is not invertible, so some
workarounds are needed.

C. Contributions

In this work we present new primitives and applications
for actively secure computation with a dishonest majority
using arithmetic modulo 2k. We first describe efficient pro-
tocols for conversion between binary and arithmetic sharings
in Z2k , and then leverage these to design efficient protocols
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Figure 1: Relations among the protocols considered in this work. An
arrow pointing from A to B means that protocol B requires protocol A.

for equality testing, comparison and truncation that work
over the ring of integers modulo 2k. Finally, we show how
these protocols can be applied to solve problems in machine
learning, namely, private classification using decision trees
and support vector machines (SVMs). An overview of the
different protocols considered in this work is provided in
Fig. 1.

We introduce several optimizations and implement our
protocols in the FRESCO framework [23], along with the
underlying SPDZ2k protocol of Cramer et al. [18]. We
benchmark and compare our implementation with SPDZ,
the state-of-the-art MPC protocol in the dishonest majority
setting, also implemented in the FRESCO framework. Our
implementation shows a speedup of 4–6x for SPDZ2k over
SPDZ for computing multiplication, equality and compar-
ison. We also implemented the preprocessing of SPDZ2k ,
which is independent of the function to be computed, on
top of Bristol-SPDZ [24]. We show this implementation to
be highly competitive with the OT-based MASCOT [11]
protocol in both WAN and LAN settings. Compared with the
more recent Overdrive protocol [25] based on homomorphic
encryption, our preprocessing comes close to meeting Over-
drive’s performance in a LAN setting, but is several times
slower in a WAN due to the high communication costs.

To demonstrate our new building blocks, we consider
the application of oblivious evaluation of decision trees and
SVMs, and show that using our subprotocols for comparison,
coupled with the SPDZ2k protocol, is around 2–5.3x faster
in the online execution phase.

D. Overview of our Techniques

Both SPDZ, SPDZ2k , and in fact many contemporary
MPC protocols are cast in the online/offline setting. In
this setting a “slow”, function independent, preprocessing
phase is first carried out to construct some raw material.
When the parties know the specific function to compute,
along with their respective inputs, then this raw material



is used in the online phase to complete the actual com-
putation. The raw material consists of random elements,
and random triples for multiplications. During the online
phase the random elements can be used to obliviously give
input and similarly the multiplication triples can be used to
realize multiplication gates. We embrace this model in our
protocols, which are typically based on random preprocessed
triples, bits or random values, and we also show how to
generate this preprocessing data over the appropriate ring
for our binary and arithmetic protocols where this was not
previously studied.

For our arithmetic-to-binary conversions, we start with
the observation that an arithmetic SPDZ2k sharing of x ∈
Z2k , denoted [x], can be locally converted into a sharing
of x mod 2, but under a different secret-sharing scheme,
namely a SPDZ2k instance with k = 1. We therefore
define this instance with k = 1 to be our secret-shared
representation of binary values. This also immediately gives
us a complete arithmetic-to-binary conversion, assuming we
can first bit-decompose x into SPDZ2k shares of its bits xi,
which we turn to later. To convert the other way, from binary
to arithmetic sharings, we can take a random SPDZ2k -shared
bit [r], convert r to a binary share, then open x ⊕ r and
use this to adjust [r] into an arithmetic sharing of x, which
can be done as a local computation. We can also perform
computations on binary-shared values similarly to operations
on SPDZ2k sharings, using multiplication triples designed
for our k = 1 instance of SPDZ2k to implement AND gates.

To complete the picture, we need to be able to generate the
necessary preprocessed random bits over Z2k and random
multiplication triples over Z2 (the case of triples over Z2k

was shown in [18]). Generating random bits modulo 2k is
not as simple as applying standard techniques from the field
setting [19] since this relies on taking square roots modulo p,
but square roots modulo a power of 2 have a more complex
structure, so this cannot be directly applied. However, we
show how to exploit the nature of the secret-sharing scheme
in SPDZ2k such that it is still possible to generate random
bits using one multiplication triple, as in SPDZ.

We also show that binary SPDZ2k triples, with k = 1,
can be generated very efficiently by exploiting TinyOT-style
protocols [7], [26] based on XOR-sharings. To do this, we
give a conversion protocol which takes a batch of TinyOT-
like XOR sharings and converts them to binary SPDZ2k

sharings with almost no overhead. Since our conversion
protocol guarantees that the new sharings will be of the same
value, this means creating the new type of triples costs just
the same as in TinyOT. This gives us a huge advantage over
using native SPDZ2k triples, since TinyOT triples can be
generated at over 250 000 triples per second, more than
10x the throughput of our SPDZ2k implementation.

For our other key building blocks like secure comparison,
equality and bit decomposition, we adapt existing solutions
over finite fields [22] to the ring setting. Since many of these

protocols have key sub-components consisting only of bit-
wise operations, we can apply our conversion protocols to
optimize them. We thus obtain very fast online phases for se-
cure comparison and equality, with an online communication
complexity of just O(k) bits for k-bit integers. This gives up
to a 85-fold reduction compared with the online complexity
of protocols used in SPDZ, which typically require sending
O(k) field elements per comparison or equality.

E. Related Work

Many of our subprotocols’ optimizations rely on moving
between computation over bits and over Z2k . Several previ-
ous works have studied conversions between different types
of secret-sharing representations for MPC, most notably the
ABY framework [16], which has passively secure two-party
protocols for converting between arithmetic, binary and Yao-
based secret data types. Chameleon [27] extended this to a
setting with an external, non-colluding third party to assist
in the computation, and ABY 3 [17] extended this to a more
general three-party honest majority setting, also with some
support for active security. On the theoretical side, share
conversion between different secret-sharing schemes was
first studied by Cramer, Damgård and Ishai [28].

In the last few years there has been a lot of research
in private machine learning applications using secure com-
putation. For our applications to decision tree and SVM
evaluation, the most relevant are the works by de Cock et
al. [29], Demmler et al. [27] and Makri et al. [30]. For
a more thorough survey including other machine learning
applications, we refer the reader to [31], [17].

On the side of MPC primitives like comparison, there has
been some other work in the setting of general, dishonest
majority MPC over the ring Z2k [32]. Although their pro-
tocols are quite efficient asymptotically, they unfortunately
have quite large hidden constants and local computation,
compared to the state-of-the-art protocols working over
fields [22], and in turn our protocols as well.

Even though SPDZ2k is the only MPC protocol we are
aware of that works over the ring Z2k and is actively secure
against a dishonest majority, other authors have worked on
MPC protocols over Z2k , but with less stringent security
requirements. Of particular interest is Sharemind [33], as
this scheme also allows mixing boolean and arithmetic
operations. However, security is only in the passive, 3-party
setting for an honest majority. Sharemind has also been
extended to the active case [34]. Another relevant work in
this area is the compiler by Damgård et al. [35], which can
transform a passively secure protocol for t corruptions into
an actively secure protocols for

√
t corruptions (meaning

an honest majority). Recently Araki et al. [36] presented a
highly efficient stand-alone protocol for passive security in
the honest majority setting.



F. Outline

We organize the paper as follows: In Sec. II we give
background on the SPDZ2k protocol. Sec. III discusses the
connection between this and the TinyOT [7] protocol, which
only works over bits. We then show how to convert between
representations of SPDZ2k and TinyOT elements, develop
protocols for preprocessing bits for SPDZ2k in Sec. IV,
and show how this can be used to efficiently compute
equality testing, comparison, and truncation in SPDZ2k .
Sec. V shows machine learning applications that rely heavily
on comparison, in particular, oblivious decision tree and
SVM evaluation. We discuss our implementation of both
SPDZ2k , subprotocols and applications in Sec. VI, evaluate
its performance in Sec. VII, and conclude with Sec. VIII.

II. PRELIMINARIES

A. Notation

Given a natural number M , we denote by ZM the set of
integers x such that 0 ≤ x ≤ M − 1. We abbreviate the
congruence x ≡ y mod 2k as x ≡k y. We let x mod M
denote the remainder of x when divided by M , and we take
this representative as an element of the set ZM . When we

write c = a
?
< b, we mean that c is 1 if a < b, and 0

otherwise.

B. Background on SPDZ2k Shares and Core Protocols

Our protocols build upon the secret-sharing scheme
from SPDZ2k [18] based on additive secret-sharing with
information-theoretic MACs, and its subprotocols used for
computing on shares. The main idea behind this secret-
sharing scheme is that, to perform a secure computation on
additive shares modulo 2k with active security, the parties
will run a computation over a larger ring modulo 2k+s,
where σ = s − log(s) is a statistical security parameter,
but correctness is only guaranteed modulo 2k. The reason
for this is that in a ring with many zero-divisors, traditional
information-theoretic MACs cannot protect the integrity of
an entire ring element x′ ∈ Z2k+s , however, they can offer
integrity on the lower-order k bits, namely x = x′ mod 2k.

Given x ∈ Z2k , we denote by [x]2k the situation in which
the parties have additive shares x1, . . . , xn,m1, . . . ,mn ∈
Z2k+s and α1, . . . , αn ∈ Z2s such that x ≡k

∑
j x

j and(∑
j α

j
)
·
(∑

j x
j
)
≡k+s mj . If there is no chance of

ambiguity we use [x] to denote [x]2k when k is a large
integer, e.g. k = 32 or 64.

We now summarize the core protocols for manipulating
SPDZ2k shares, based on [18], which we use.
Input value. [x] ← Input(x, Pi), where x ∈ Z2k . Secret-

shares and authenticates a private input x from party
Pi.

Linear operations. [z]← a[x]+[y]+b. Any linear function
or addition by a constant can be performed without
interaction, resulting in a sharing of z = ax + y + b

mod 2k. The shares zj , tj ∈ Z2k+s of z and its MAC
can be computes as follows. Let xj ,mj ∈ Z2k+s be the
shares of x and the shares of its MAC for party Pj , and
let yj , hj ∈ Z2k+s be the analogous for y. Party P1 sets
z1 = ax1 + y1 + b mod 2k+s and, for j ≥ 2, party Pj
sets zj = axj + yj mod 2k+s. Finally, all parties Pj
compute tj = amj + hj + bαj mod 2k+s.

Secret-shared multiplication. [z] ← [x] · [y]. Given
a secret-shared multiplication triple, that is, shares
[a], [b], [c] for random a, b ∈ Z2k and c = a · b mod 2k,
a sharing of the product of any two sharings [x] and
[y] can be obtained with 1 round of interaction.

Open. x′ ← Openk′([x], Pi). Opens the sharing [x] modulo
2k
′

towards party Pi, where k′ ≤ k, so that Pi learns
only x′ := x mod 2k

′
. The MAC on [x] is checked for

authenticity, although sometimes when opening many
values at once, the checks can be deferred and batched
for greater efficiency. If k′ is omitted, we assume
k′ = k. Furthermore, if the argument Pi is omitted,
we assume the share is opened towards all parties.

Remark II.1. We highlight the fact that Openk′ can even be
used when k′ < k, so that the parties can switch to a smaller
modulus during the opening phase. This corresponds to only
opening the lower k′ bits of the shared value x.

Security Model: The security properties of the above pro-
tocols, and all the protocols in this work, can be formalized
using the arithmetic black box model, see for instance [32].
In this exposition we omit the formal definitions and proofs
in this model. Instead we prove basic correctness and
privacy properties of our protocols, but these can be extended
to the formal model.

C. Preprocessing Material in SPDZ2k

The SPDZ2k protocol runs in two separate phases, the pre-
processing phase, which is independent of the parties’ inputs
and can be done in advance, and the online phase. There
are several different types of random preprocessing data
that are needed for different operations in the online phase.
As mentioned above, we need a preprocessed multiplication
triple for every secret-shared multiplication. For each input
by a party Pi, we also need a preprocessed random shared
mask known to Pi. Additionally, in some of our protocols
we use random shared bits, which we show how to generate
from a multiplication triple. The Open protocol also uses
a preprocessed random mask, however, when opening and
checking MACs on many values in a batch the same mask
can be used for one check of all values, so we do not count
this cost in our evaluation.

Multiplication triples are the most performance-intensive
type of preprocessing data to generate. Random bits cost
around the same as a triple; together these form the bottle-
neck of the preprocessing phase. The masks used for inputs



and opening are cheaper, requiring around 30x less commu-
nication than triples when using the protocols from [18].

III. CONVERTING BETWEEN BINARY AND ARITHMETIC
SHARINGS

A. Binary sharings

To represent a binary shared value, we simply use a
standard mod 2k sharing with k = 1. That is, the bit b
and the MAC α · b are both additively shared modulo 2s+1,
where the shares of b are only guaranteed to be of the correct
value modulo 2. We denote this by [b]2, in contrast with [b]
for an arithmetic sharing. Given two binary shared values
[a]2 and [b]2, if the parties locally add the shares then they
obtain a valid sharing of the XOR of the two bits, a ⊕ b.
Multiplication corresponds to AND, and requires a binary
shared triple [x]2, [y]2, [z]2 such that z ≡ x · y mod 2. We
remark that, just as with SPDZ2k triples, it is not necessary
for the multiplicative relation to hold modulo 2s+1. So, even
though the parties hold additive shares of x, y and z modulo
2s+1, we may have z 6= x · y mod 2s+1. In fact, this is
exploited by our protocol for efficiently converting XOR-
shared binary triples into [·]2-sharings.

B. Efficient binary triple generation

The online phase of the SPDZ2k protocol works for any
k, but unfortunately its offline phase (more specifically, the
sacrifice step in the triple generation protocol) requires k to
be at least the security parameter. To combine SPDZ2k with
binary operations, we need another way of generating multi-
plication triples. One way could be to generate triples with a
large k and then reduce them to get [·]2 shares (as explained
in Sec. III-D). However, binary triples [x]2, [y]2, [z]2 can be
generated much more efficiently by exploiting TinyOT-style
protocols [7], [37], [26], which generate triples with XOR-
shared MACs and shares, as we now show.

We will present a general technique for converting be-
tween two different types of sharings, which both support
linear computations over F2. Given this conversion protocol,
we can convert triples generated using TinyOT—or any other
authenticated, F2-linear secret-sharing scheme—into a triple
based on our binary share representation.

Let 〈x〉 denote that the bit x is shared and authenticated
using TinyOT, that is, each party Pi holds a bit xi and a
MAC M j

xi
∈ {0, 1}s on xi, as well as a MAC key Ki

xj
∈

{0, 1}s for Pj’s share xj , for all j 6= i. Each party also has a
global MAC key ∆i ∈ {0, 1}s. The shares and MACs are set
up such that x =

⊕
i x

i and M j
xi

= Kj
xi
⊕xi∆j , for all j 6=

i. TinyOT-shared values can be XORed together locally and
multiplied by 0/1 constants in the usual manner. To convert a
batch of TinyOT sharings 〈x1〉, . . . , 〈xm〉 into [·]2 sharings,
we use the protocol in Fig. 2. The basic idea is that, for
each input x, every party will authenticate their XOR shares
xi using SPDZ2k to create a new binary sharing and obtain
[x]2. Note that even though the original shares xi ∈ {0, 1}

are now summed over the integers modulo 2s+1 to form [x]2,
they should still give a valid sharing of x mod 2, since the
upper s bits do not matter. To verify that everyone inputs the
correct shares xi, we take a random F2-linear combination
of all m shares, masked by an additional random share, then
open this using both the TinyOT and the SPDZ2k sharings
and check consistency. This check has soundness 1/2, so we
repeat it σ times (using σ additional random masked bits)
to achieve a cheating probability of 2−σ .

Protocol Π〈x〉→[x]2

INPUT: TinyOT sharings 〈x1〉, . . . , 〈xm〉.
OUTPUT: Binary sharings [x1]2, . . . , [xm]2.

1) Sample s additional random TinyOT-shared bits
〈r1〉, . . . , 〈rσ〉.

2) Each party Pi inputs the shares xi1, . . . , x
i
m, r

i
1, . . . , r

i
σ

with Input(·, Pi), and then the parties sum up the shares
to obtain (possibly incorrect) sharings [x1]2, . . . , [xm]2 and
[r1]2, . . . , [rσ]2.

3) Sample m · s random bits χi,j ←R {0, 1}, for i =
1, . . . ,m and j = 1, . . . , σ, using a coin-tossing protocol.

4) For each j, let yj = Open2([rj ]2⊕
∑m
i=1 χi,j · [xi]2) and

y′j = ΠTinyOT.Open(〈rj〉2 ⊕
∑m
i=1 χi,j · 〈xi〉2).

5) Check that yj = y′j for all j. If not, abort.
6) Output the sharings [x1]2, . . . , [xm]2.

Figure 2: TinyOT share to binary SPDZ2k share conversion. ΠTinyOT.Open

denotes the TinyOT share opening protocol.

Lemma III.1. If the inputs 〈x1〉, . . . , 〈xm〉 form consistent
TinyOT sharings of bits x1, . . . , xm under uniformly ran-
dom MAC keys, then the output sharings [x1]2, . . . , [xm]2
form consistent SPDZ2k sharings with k = 1, except with
probability at most 2−σ .

Proof: Suppose the adversary causes incorrect values
x′1, . . . , x

′
m, r

′
1, . . . , r

′
σ to be authenticated in the [·]2 shar-

ings, and write x′i = xi + δi mod 2 and r′i = ri + εi mod 2.
If all consistency checks pass then from the j-th check we
have:

εj +

m∑
i=1

χi,j · δi = 0.

Since each χi,j is uniformly random and independent of
δi, εj , if any δi 6= 0 then this holds with probability at
most 1/2 for a single j. Taking all σ checks into account, it
follows that the outputs are correct with probability at least
1− 2−σ .

C. Arithmetic to Binary

Given a SPDZ2k sharing [x], the parties can obtain a
correct binary sharing of the least significant bit of x by
simply truncating the upper k − 1 bits of the shares and
MAC shares of [x]. This protocol is given in Fig. 3, and it
is easy to see that this gives a consistent sharing of x mod 2.

If sharings of different bits of x are required, we must first
perform a bit decomposition using the techniques that will



be presented in Sec. IX-D to obtain sharings [x1], . . . , [xk]
of the bits of x, and then run ΠA2B on these.

Protocol ΠA2B

INPUT: Arithmetic sharing [x].
OUTPUT: Binary sharing [y]2, where y = x mod 2.

1) Let xi,mi
x be Pi’s share and MAC share of [x].

2) Pi defines yi = xi mod 2s+1 and mi
y = mi

x mod 2s+1

to obtain shares of [y]2.

Figure 3: Arithmetic to binary SPDZ2k share conversion

D. Binary to Arithmetic

To convert a binary share [x]2 into a SPDZ2k sharing, we
use the protocol in Fig. 4. This uses a subprotocol ΠRandBit

for generating a sharing [r]2k of a random bit r known to
none of the parties, which we show how to do in Sec. IV-A.
Given this, we can locally compute [r]2 using arithmetic-to-
binary conversion, and then open c = x+ r mod 2, which
perfectly hides b. Finally, using c and [r] we can locally
compute an arithmetic sharing of x = c⊕ r.

Protocol ΠB2A

INPUT: Binary sharing [x]2.
OUTPUT: Arithmetic sharing [x].

1) Let [r] = ΠRandBit().
2) Compute [r]2 = ΠA2B([r]).
3) Let c = Open2([x]2 + [r]2).
4) Output [x] = c+ [r]− 2 · c · [r].

Figure 4: Binary to arithmetic SPDZ2k share conversion

IV. BASIC PRIMITIVES

The SPDZ2k protocol allows for computation modulo 2k,
and we already mentioned in the introduction the poten-
tial advantages that this scenario could bring. However, in
order to being able to use the SPDZ2k protocol (or any
MPC protocol in general) in practice, a toolkit of efficient
subprotocols for basic primitives that are often used in
real-life applications is needed. For instance, comparison
and equality tests are an essential tool, and they are used
regularly, such as in the machine learning domain.

Developing subprotocols for these tasks has been an active
and fruitful line of research (e.g. [20], [31], [22], [16], [38]).
Unfortunately, most of the existing solutions require the
use of field arithmetic. For instance, shifting integers down,
which can be seen as division by 2, is often needed when
working over a field of odd characteristic. However, this
seemingly simple task is already highly non-trivial over Z2k

since 2 is non-invertible in this domain.
In this section we show how to overcome this and some

other issues that appear in the Z2k setting and develop
primitives like truncation and comparison. Our most notable
contribution in this domain is the generation of shared bits
[b], b ∈ {0, 1} for use in the arithmetic setting of SPDZ2k .

A. Shared bits

In this protocol the parties obtain a random bit secret-
shared under SPDZ2k . Notice that the shares themselves are
elements in Z2k+s , whose underlying secret may be k-bits
long, but the protocol guarantees that the secret is only one
bit.

The concept of shared bits has been considered before in
the SPDZ setting [19], and, working over a field, these bits
can be obtained by making use of the property that every
non-zero quadratic residue has exactly one root. Although
this is not true over the ring Z2k , something similar holds,
as we now show.

Lemma IV.1. Let ` > 2. If x ∈ Z is such that x2 ≡` 1,
then x is congruent mod 2` to either 1,−1,−1 + 2`−1 or
1 + 2`−1.

Proof: It is clear that x2 ≡` 1 if and only if (x −
1)(x + 1) ≡` 0 so 2` divides (x − 1)(x + 1). The case
x = ±1 is trivial, so we may assume that x 6= ±1. Let
2u and 2v be the largest power of 2 dividing the non-zero
integers x−1 and x+1 respectively, then 2u+v is the largest
power of 2 dividing x2−1, so u+v ≥ `. On the other hand,
since 2min(u,v) divides both x+ 1 and x− 1, it also divides
(x + 1) − (x − 1) = 2 and therefore min(u, v) ∈ {0, 1}.
Thus, either u = 0, u = 1, v = 0 or v = 1. If u = 0 then
v ≥ ` and therefore x+ 1 ≡` 0. If u = 1 then v ≥ `− 1, so
x+ 1 ≡`−1 0. A similar analysis follows if v = 0 or v = 1,
which finishes the proof.

Our protocol is described in Fig. 5. At the end of the
execution the parties will get shares b1, . . . , bn ∈ Z2k+s and
t1, . . . , tn ∈ Z2k+s such that b1 + · · · + bn ≡k b and h1 +
· · ·+ hn ≡k+s α · (

∑
i b
i), where b is random in {0, 1}.

Protocol ΠRandBit

OUTPUT: Random shared bit [b] over Z2k with MAC shares
over Z2k+s .

In the following the parties use an instance of SPDZ2k over
Z2k+2 with MAC shares over Z2k+s+1 .

1) Pi samples ui ←R Z2k+2 .
2) Each party inputs their share ui to to obtain a sharing of a

random element [u], where u = u1 + · · ·+un mod 2k+2.
3) Compute [a]← 2[u] + 1.
4) Compute [a2]← [a] · [a].
5) Let e = Open([a2]). If a is not odd then the parties abort.
6) Let c be the smallest root modulo 2k+2 of e and let c−1

be its inverse modulo 2k+2. Compute [d]← c−1[a] + 1.
7) Let dj , tj ∈ Zk+s+1 be Pj’s shares of d and of its MAC,

respectively. Each Pj sets bj = dj

2
and hj = tj

2
.

8) Output [b], defined by the shares bj and the MAC shares
hj above.

Figure 5: Protocol for obtaining authenticated shared bits

Proposition IV.1. If the protocol ΠRandBit does not abort,
then its output is a random shared bit [b].



Proof: We begin by arguing correctness. In step 5
the value e = a2 mod 2k+2 is opened. Then, notice that
(c−1a)2 ≡k+2 c

−2a2 ≡k+2 e
−1e ≡k+2 1, so c−1a ≡k+1

±1 due to Lemma IV.1. Moreover, since c is taken to be the
smallest square root of e and a is one of such roots, which
was chosen at random, we conclude that c−1a is congruent
modulo 2k+1 to either −1 or +1 with equal probability.
Clearly, this implies that c−1a+1 is congruent modulo 2k+1

to either 0 or 2 with equal probability.
Now, the key point to observe is that, due to the fact

that [a] was computed as 2[u] + 1, and due to the way the
addition of shared values in SPDZ2k works (see Section
II-B), we have that both the shares of [a] and the shares
of its MAC corresponding to party Pj are even for j > 1,
and odd for j = 1. Then, since c−1 is odd it follows by
a similar argument that dj , tj ∈ Z2k+s+1 , the shares of
the value [c−1a + 1] and its MAC, are all even, so the
division by 2 used in the protocol is well defined. Notice
that

∑
j d

j ≡k+2 c
−1a+ 1 and

∑
j t
j ≡k+s+1 α ·

(∑
j d

j
)

,

so
∑
j
dj

2 ≡k+1
c−1a+1

2 and
∑
j
tj

2 ≡k+s α ·
(∑

j
dj

2

)
. In

particular,
∑
j b
j is congruent modulo 2k to 0 or 1 with equal

probability, so bj , hj indeed define authenticated shares of a
bit over Z2k , with shares over Z2k+s , as desired.

As for security, notice that the only possibility of an
attack is that the adversary causes a selective abort, therefore
biasing the resulting bit. Fortunately this is not possible
since, right before step 5, the value a looks uniformly
random to the adversary.

B. Extraction of most significant bit

Here the parties have a shared value [a], with a =∑k−1
i=0 ai2

i ∈ Z2k , and they wish to compute shares of the
most significant bit (MSB) of a, [ak−1]. This is achieved
by masking [a] with a random value [r] where the bits
are shared individually (using shared random bits) and then
opening c = a+r mod 2k. Since a = (c−r) mod 2k, shares
of a mod 2k−1 can be obtained together from c mod 2k−1

and the shares of r mod 2k−1 (obtained from the shares
of the bits of r), using a bitwise comparison procedure
ΠBitLT to account for the sign of the difference (c mod
2k−1) − (r mod 2k−1). Finally, 2k−1ak−1 is computed as
a − (a mod 2k−1), and the factor 2k−1 is removed by
masking the k-th bit of [2k−1ak−1] with a shared random bit,
opening this result, truncating the lower k − 1 bits (which
are all zero) and removing the mask. For details, see the
protocol in Fig. 6.

Note that the main online cost is two openings of k-bit
ring elements, and the ΠBitLT subprotocol (Sec. IX-E) on
length k − 1 inputs, which has 2k − 4 bit multiplications
in log(k − 1) rounds. This gives a total communication
complexity of 6k−8 bits per party in log(k−1)+2 rounds.

The idea of extracting most significant bits by first sub-
tracting the lower bits and then truncating is already present

Protocol ΠMSB

INPUT: Shared value [a].
OUTPUT: Shared value [ak−1], where a =

∑k−1
i=0 ai2

i ∈ Z2k .
1) Call [b], [r0], . . . , [rk−1] ← ΠRandBit() and compute [r] =

[
∑k−1
i=0 ri2

i].
2) Let c← Open([a] + [r]).
3) Compute c′ = c mod 2k−1 and [r′]←

∑k−2
i=0 2i[ri].

4) Call [r0]2, . . . , [rk−2]2 ← ΠA2B([r0], . . . , [rk−2]).
5) Let [u]2 ← ΠBitLT(c′, [r0]2, . . . , [rk−2]2).a

6) Call [u]← ΠB2A([u]2).b

7) Compute [a′]← c′ − [r′] + 2k−1[u] and [d]← [a]− [a′].
8) Let e ← Open([d] + 2k−1[b]), and let ek−1 be the most

significant bit of e.
9) Output ek−1 + [b]− 2ek−1[b].

aWhen one of the inputs is public, ΠBitLT operates in the same way
as if both inputs were shared but using the bits of the public input in
the clear.

bWe can avoid the share-conversion by noticing that 2k−1[u]2 =
[2k−1u].

Figure 6: Protocol for extracting most significant bit

in [22], as well as the idea of extracting lower bits (obtaining
a mod 2k−1 in our case) using bit-decomposed masks. The
truncation step is trivial when working in a field, but does
not extend to Z2k , which is why at the end of the protocol
we mask by the random bit [b] and shift down the result [d].

Proposition IV.2 (Informal). Protocol ΠMSB correctly com-
putes [ak−1] from [a], where a =

∑k−1
i=0 ai2

i. Moreover, it
does not reveal any information about a.

Proof: To argue correctness, we begin by showing that
a′ = a mod 2k−1. To see this, notice that a ≡k−1 c′ − r′,
and that c′−r′ ∈ {−2k−1, . . . , 2k−1−1}. Therefore, c′−r′
is the remainder of a when divided by 2k−1 if and only
if c′ − r′ ≥ 0, and otherwise it is equal to this remainde,
minus 2k−1. This can be written in a more compact way as

c′− r′ = (a mod 2k−1)−u2k−1, where u = c′
?
< r′, which

implies that a mod 2k−1 = c′−r′+u2k−1 = a′. We can see
then that d = a − a′ = 2k−1ak−1, so e = 2k−1(ak−1 ⊕ b)
and therefore ek−1 = ak−1⊕b. Thus, ak−1 can be computed
as ak−1 = ek−1 ⊕ b = ek−1 + b− 2ek−1b.

Finally, to argue security we show that none of the opened
values reveal anything about a. The value c does not leak
information since the random mask r is used. On the other
hand, we saw above that d = 2k−1ak−1, so the mask 2k−1b
completely hides this value when e is opened.

C. Comparison of Signed Integers

In many applications it makes sense to assume that the
underlying data are signed, meaning that it can be negative,
positive, or zero. We can represent this using integers
modulo 2k, by taking the class representatives in the interval
[−2k−1, 2k−1). For computational purposes this is the same
as our set Z2k of unsigned values, but we can add some



additional interpretation to the numbers in [−2k−1, 2k−1)
(namely, the sign) that is useful in many applications.

Every integer in a ∈ [−2k−1, 2k−1) can be written as
a = −ak−12k−1 +

∑k−2
i=0 ai2

i (this is the so-called two’s
complement representation), and its corresponding represen-
tative in Z2k is a mod 2k =

∑k−1
i=0 ai2

i. It is easy to see that
in this setting, a ∈ [−2k−1, 2k−1) is negative if and only if
ak−1 = 1, so, as in [22], we define the comparison-with-zero
operator for a shared value as ΠLTZ([a]) := ΠMSB([a]).

Now, consider a, b ∈ [−2k−2, 2k−2). Clearly, −2k−1 ≤
a− b < 2k−1 so we can determine u = a

?
< b (comparison

as signed integers) by u = ΠLTZ([a] − [b]). Therefore, as
done in [22], we define comparison of two shared values as
ΠLT([a], [b]) = ΠLTZ([a]− [b]).

Finally, notice that we restricted a, b ∈ [−2k−2, 2k−2).
This is because if a, b ∈ [−2k−1, 2k−1), then correctness
may not hold if a− b overflows. For instance, if a = −2k−1

and b = 1, then a < b but the most significant bit of
(a − b) mod 2k =

∑k−2
i=0 2i is 0, so, in other words, a − b

is treated as positive even though it is not. If numbers
in [−2k−1, 2k−1) must be compared, this can be done at
the cost of roughly three calls to ΠMSB. Intuitively, this is
because subtracting b−a and comparing against zero is only
guaranteed to work if a and b have the same sign and, if

this is not the case, the sign of a dictates the value of a
?
< b.

Therefore, besides extracting the most significant bit of the
difference b−a, we also check if a and b have the same sign
and choose the right output depending on the case. This is
done by extracting the most significant bits of both a and b,
which incurs in the two additional calls to ΠMSB.

The protocol works, in detail, as follows.
• Let [ak−1]← ΠMSB([a]) and [bk−1]← ΠMSB([b]).
• Compute [h]← [ak−1] + [bk−1]− 2[ak−1][bk−1].
• Let [e]← ΠMSB([a]− [b]).
• Output [d]← [h] · [ak−1] + [1− h] · [e].
We argue that this protocol produces the right output. The

main observation is that if a and b have the same sign then
extracting the most significant bit of a − b will yield the

correct bit a
?
< b. Now, if a and b have different sign then

the result is simply the most significant bit of a. Finally,
observe that h = ak−1⊕bk−1 and that a and b have the same
most significant bit if and only if h = 0. This concludes the
argument.

D. Equality Test

We introduce a protocol for computing securely a
?
= 0,

where a ∈ [−2k−1, 2k−1 − 1]. The protocol can be found
in Fig. 7, and it is almost the same as Protocol 3.7 in [22].
However, one relevant change with respect to the original
protocol is that, instead of performing step 5 directly on
arithmetic shares, we convert these first to binary and then
calculate the OR circuit using binary shares, which involve

less communication than arithmetic shares. The result is then
converted from binary to arithmetic.

Protocol ΠEQZ

INPUT: Shared value [a].
OUTPUT: Shared value [b] where b = (a

?
= 0), regarding a to

be signed (i.e. a ∈ [−2k−1, 2k−1)).
1) Call [r0], . . . , [rk−1]← ΠRandBit().
2) Let [r]← −2k−1[rk−1] +

∑k−2
i=0 2i[ri].

3) Let c← Open([a]+ [r]). Let (c0, . . . , ck−1) be the binary
representation of c.

4) Call [r0]2, . . . , [rk−1]2 ← ΠA2B([r0], . . . , [rk−1]).
5) Let [b]2 ← 1−

∨k−1
i=0 (ci + [ri]2 − 2ci[ri]2).

6) Output [b]← ΠB2A([b]2).

Figure 7: Protocol for testing equality of a shared value with 0.

To argue correctness, we notice that a = 0 if and only if
a+r ≡k r for some r ∈ [−2k−1, 2k−1−1]. This is what the
protocol does, since it returns 1 if and only if all the bits of
c coincide with those of r. For security, we notice that the
opened value c is uniformly distributed, so no information
is leaked.

We remark that the computation of the OR in the last step
can be done in O(log k) rounds, as shown in [22].

V. APPLICATIONS

In this section we discuss some applications leveraging
our efficient comparison protocol.

A. Decision Trees

We consider the machine-learning application of decision
trees which is used for classification. A decision tree is a
function T : Rn → Zq , where n is called the dimension of
the feature space and q is the amount of possible output
categories. The input x = (x1, . . . , xn) ∈ Rn to T is
called the feature vector. The function T is implemented
as a binary tree with m internal nodes, where each internal
node vj for j ∈ [1,m] has associated a Boolean function

fj : Rn → {0, 1} s.t. fj(x) = xιj
?
< tj where ιj ∈ Zn is an

index into the feature vector x and tj ∈ R is a threshold.
Thus fj(x) evaluates to 1 if and only if xιj ≤ tj , and 0
otherwise. Each leaf node of the tree is associated with an
output value z ∈ Zq . Now to evaluate T (x) = z, start at the
root node and evaluate f1(x). If f1(x) = 0 then proceed
to evaluate the left child, if instead f1(x) = 1 then proceed
to evaluate the right child. Continue in this manner until
reaching a leaf and return the value z of this leaf.

For simplicity, and since we want to hide the structure of
the tree, we assume that it is complete. We note that this is
always possible as dummy nodes can be inserted as needed,
which always evaluate to 0.

The depth of T is the longest path from the root node to
any leaf, which we denote by d. Thus the tree will consist
of d layers which we index by i, starting with the root layer



being 0. This also means that layer i contains exactly 2i

nodes.
We index nodes starting with 1 for the root node and

then indexing by reading each layer top to bottom and left
to right; thus if vj is an internal node then v2j is the left
child of vj and v2j+1 is the right child. We say the depth
is the amount of nodes in the path from the root to, and
including, the leaf; defining the root to be level 0. Thus the
tree will have m = 2d−1 − 1 internal nodes and 2d leaves.
Note that the leaves will have index 2d to 2d+1.

Concretely we define T as a tuple of values (t,v, z),
where t ∈ Rm, v ∈ Zmn and z ∈ Z2d

q . That is, t =
(t1, . . . , tm) and v = (v1, . . . , vm) are lists of cardinality
m. We view as ordered such that the j’th entry describe the
j’th internal node in the tree. That is, each internal node vj
will compute the value fj = xvj

?
< tj . z = (z1, . . . , v2d) is

an ordered list of integers, each representing an output of a
leaf, thus each leaf node vj (i.e. with j ∈]m,m+ 2d]) will
output the value fj = zj−2d .

Furthermore we consider the two-party setting where
one party, called the client holds the feature vector x =
(x1, . . . , xn) ∈ Rn. The other party, called the server holds
the decision tree T . The parties then wish to compute
T (x) = z where the client learns z and the server learns
nothing. We express this functionality formally in Fig. 13
(Sec. X).

To evaluate a decision tree privately we work over a finite
set of integers Z2k instead of the real numbers. We convert
a model based on real numbers by simply multiplying
every decimal number in the model by a set constant and
then rounding to nearest integer. This of course causes
loss in accuracy, however, this rarely causes a problem
and for real data the constant does not necessarily have
to be large to avoid losing classification accuracy [30]. We
furthermore note that this conversion still allows us to work
with negative integers by considering the positive integers
up to 2k as a value in two’s complement, as in Section
IV-C, thus representing the positive integers up to 2k−1 − 1
and following these, the negative integers from −2k−1 to
−1. Because our computations will take place over a ring
this representation will ensure arithmetic operations act as
expected (assuming no over- and underflow).

1) An actively secure protocol: Our protocol takes depar-
ture in the work by De Cock et al. [29] which presents
a protocol for evaluating decision trees based on secret
sharing. We picked this protocol since it works in the
arithmetic black box setting, whereas other approaches such
as the one by Wu et al. [39] or Joye and Sahali [40] require
homomorphic encryption. Still, the scheme by De Cock et
al. is only secure in the semi-honest setting. We show how
to make it actively secure by adding a cheap extra step.

The overall idea of their scheme is to first pick each
relevant value from the input feature vector x for each node

j, i.e. xvj . This is done by having the party holding the
tree, P1, input an n-bit vector for each of the m nodes. This
bitvector will contain a single 1-bit in the position of the
feature to use. That is, we associate a bit cj,i ∈ {0, 1} with
each feature for each node (i.e. for all i ∈ [1, n], j ∈ [1,m])
s.t.

∑
i∈[1,n] cj,i = 1 and cj,vj = 1. With these indicator

bits we can arithmetically compute the attribute to use in
the j’th node as

∑
i∈[1,n] cj,i · xi.

If the tree holder is actively corrupted then it will be able
to input value cj,i s.t.

∑
i∈[1,n] cj,i 6= 1. This is a problem

since this would allow a linear combination of (x1, . . . , xn)
to be used for the comparison in each node of the tree. This
would make it hard to write a simulation proof since the
simulator would not know x. To fix this issue we propose
a solution that consists of enforcing that cj,i is a bit, then
open

∑
i∈[1,n] cj,i for j ∈ [1,m] and check if this is always

1. It is easy to see that this check is sufficient and clearly
does not leak any information (as it is public knowledge
that the opened value is supposed to be 1). Furthermore, it
is also easy to enforce that cj,i is a bit, even if the whole
ring Z2k is allowed as input: simply compute and open the
value (1 − cj,i) · cj,i and check if it is 0. Again it can be
argued that this is sufficient as cj,i equal to 0 or 1 are the
only values for which (1 − cj,i) · cj,i = 0 when working
over Z2k . Alternatively one could use ΠRandBit in Fig. 5
to get a random bit [b], then open this towards P1. P1 could
then publish a public value telling whether to let cj,i = [b]
or cj,i = 1− [b].

Adding this check allows us to compute the correct at-
tributes for each node with active security. Via the attributes
the output of the comparison in each node can be computed
by the comparison subprotocol; the output is a bit indicating
whether to go left (0) or right (1) down the tree. To evaluate
the tree obliviously it is not possible to simply follow the
correct path from the root to a leaf, as this would leak too
much. Thus, we must visit every node in the evaluation.
This is done by computing a bit for each leaf, which is the
product of the output of the comparison for all the nodes on
the path to the root.1 There will be only one leaf for which
this bit is 1. This is the leaf whose value is the final output of
the decision tree evaluation. Since the evaluator is oblivious
to which leaf this is, we multiply the bit of each leaf with
the leaf’s value and sum this for all leaves. Because the bit
for every leaf, other than the correct one is 0, the output
of this computation gives the correct result. This means that
the comparisons can be done once; for each internal node of
the tree we can then compute if it is part of the root-to-leaf
path that is the result of the decision tree evaluation. Still,
this requires O(d) rounds of communication as all nodes on
a given layer are dependent on a partial result of the nodes
higher up the tree.

1The output of the comparison is negated for each node if it is a left
child.



We can compute the partial values of all nodes in the
tree using a “reduction” approach by exploiting the fact that
multiplication is associative, i.e. that x1 · x2 · x3 · x4 can be
computed as (x1 ·x2)·(x3 ·x4), rather than ((x1 ·x2)·x3)·x4.
Thus we can compute the product of d values with d − 1
multiplications and log(d − 1) sequential rounds. For each
node in every second layer from the root to the leaves, we
compute the product of the output of its comparison with
the output of the comparison of its parent (negated if it is a
left node). Next we use these results to compute a product
for every four layers, by multiplying the result of every node
with the result of its grandparent (negated if its parent is a
left child). We continue until we have computed a product
between every layer in the tree.

Computing these products dominates protocol round cost,
since both selecting the feature for all nodes, along with
computing the comparison can be done in constant rounds
(assuming we use the constant round comparison protocol).
We express our actively secure protocol in Fig. 14 (Sec. X).

We note that De Cock et al. have implemented their
protocol using boolean values, whereas we use arithmetic
values. Using boolean values and replacing multiplication
and addition with component-wise AND and XOR respec-
tively would unfortunately not directly work on our fix to
get active security. This is because XOR’ing two 1’s would
give 0, so an actively corrupted model holder would be able
to have the classification happen using XOR combinations
of the different values of the inputting party’s feature vector.
Even more importantly, as the feature values are not binary
but rather elements from Z2k , using a binary protocol would
require k multiplications (AND gates) to compute cj,i ·xi for
i ∈ [m] and j ∈ [n], needed for each node in the tree. Even
for relatively small values of k, like 32, this would probably
not be faster using a binary protocol. In particular, using the
optimized TinyOT protocol [37] this would be slower as the
construction of a TinyOT triple is only about 12x faster than
a SPDZ2k triple.

B. Support Vector Machines (SVMs)

We consider the machine-learning application of Support
Vector Machines (SVMs), which is a type of supervised
learning model used for classification. In its simple form
it is used as a binary classifier, but it can easily be extended
to classify data into any finite set of categories. More
specifically an SVM is a function S : Rn → Zq , where
n is the dimension of the feature space and q the amount
of categories (each represented by a non-negative integer).
Similarly to the decision trees, the input x = (x1, . . . , xn) ∈
Rn to the function S is called the feature vector. The
SVM S is implemented as a matrix F ∈ Rq×n where
the rows are known as the support vectors and a vector
b = (b1, . . . , vq) ∈ Rn which is called the bias. Conceptu-
ally, each support vector, along with a scalar from the bias
vector, can classify an input x into a specific category (or

not). Specifically denoting the rows of F as F1, . . . , Fq , the
value Fi ·x+bi is computed to give a score of how likely x
is to be in category i. Thus, to find the most likely category
of x we compute category(x) = argmaxi∈[1,q]Fi · x + bi
where the result is an integer representing the corresponding
category.

Like the case for decision trees we consider the two-
party setting where one party, called the client holds the
feature vector x = (x1, . . . , xn) ∈ Rn. The other party,
called the server holds the SVM S. The parties then wish
to compute S(x) = z where the client learns z and the
server learns nothing. We express this functionality formally
in Fig. 15 (Sec. X). Similarly to the decision trees, we work
over a finite set of integers Z2k , assuming two’s complement
representation to allow for integers in the range [2k−1, 2k)

1) An actively secure protocol: Our protocol follows
the equation for SVM classification, category(x) =
argMaxi∈[1,q]Fi · x + bi, very straight forward: In paral-
lel compute the multiplication part of the inner products
between x and Fi for all i ∈ [1, q], as these are all
independent. Next we note that addition does not require
communication and thus we sequentially have the parties
sum up the component-wise product computed, in order
to compute the whole inner product. Next, for each inner
product the parties add bi. These steps only require constant
rounds of communication and q · n multiplications. Finally
computing the largest element of the q element list is done
in O(log(q)) rounds as follows: In a recursive manner
divide the list of elements in halves until two or three
elements remain. Compare these obliviously, and based on
this comparison construct a binary list where the index of
the maximum of these two or three elements is 1 and the
is rest 0. This requires one or two comparisons and at most
four multiplications. The merging of the partial results then
require O(q) comparisons and multiplications. Thus we end
with a total of O(q · log(q)) comparisons and multiplications
for the arg-max computation. We express this actively secure
protocol in detail in Fig. 16 and 17 of Sec. X.

VI. IMPLEMENTATION

To reach a compromise between usability and efficiency
we chose to implement the online and offline phases of
SPDZ2k and our protocols in different frameworks.

We implement the online phase in FRESCO [23], an
active open-source Java framework for MPC with a strong
track record [15], [41]. We chose FRESCO as it offers an ac-
cessible API-based approach for writing MPC applications.
This eased the implementation of the decision tree and SVM
evaluation. Since FRESCO is written in Java, it also eases
integration with broad, cross-platform pieces of software.
Though Java is less efficient than C/C++ we consider the
lower implementation and maintenance time required for
Java to make the trade-off worthwhile.



As the benchmarks in the next section show, the offline
phase requires orders of magnitude more time to execute
than the online phase. As such, time spent ensuring an
efficient offline phase gives a noticeable payoff in the view
of total execution time. We therefore implement the offline
phase in C/C++. The offline protocol we implemented is
the same as described in the original SPDZ2k paper [18].
That is, authentication of elements and construction of triples
is based on a vector Oblivious Linear function Evaluation
(vOLE) construction through correlated OT, using the recent
OT extension protocol by Scholl [42]. We integrated our
implementation into the Bristol-SPDZ framework [24].
Bristol-SPDZ is a highly efficient framework for prepro-
cessing. The framework already supports OT based prepro-
cessing through MASCOT [11], and so integrating SPDZ2k

preprocessing required little work.
FRESCO supports a bring-your-own-backend approach,

and implements the most efficient SPDZ online phase,
SPDZ-2 [19]. Besides containing an implementation of
MASCOT, Bristol-SPDZ also implements the most effi-
cient SPDZ preprocessing protocol, Overdrive [25], making
the combination of FRESCO and Bristol-SPDZ a sensible
choice for doing a fair comparison of both SPDZ2k and
SPDZ, from preprocessing to online execution.

A. Optimizations

Here we detail several optimizations we used when
implementing the online and preprocessing phases. Our
preprocessing phase optimizations allow us to reduce the
computation time so that in most cases, the networking is the
bottleneck of the protocol. We describe our core online phase
optimization (Sec. VI-A), and the three main preprocessing-
phase optimizations (Sec. VI-A, VI-A, X-A).

Fast Integer Arithmetic for the Online Phase: FRESCO
uses the BigInteger class to implement finite field arithmetic.
The largest primitive type supported by Java is long, at 64
bits. Thus, in order to fully leverage the option of working
with 2k bit integers in SPDZ2k we implemented our own
data-type for 128 bit integers, working on top of longs.
This implementation outperforms the BigInteger class, even
without taking into account that we don’t need to reduce
values modulo a large prime. Fig. 8 shows how much this
implementation reduces the time spent on multiplications in
the online phase. The figure compares the execution time for
doing 1,000,000 online multiplications in FRESCO using
the SPDZ protocol (which uses BigInteger and requires a
modular reduction of a large prime), SPDZ2k based on
BigInteger (that is, no modular reduction) and our optimized
approach for SPDZ2k where multiplication is done directly
with long types. Using our custom class based directly on
longs is up to 4.7x times faster than Java’s BigInteger class.
Comparing this with the amount of computation required
by SPDZ, the our SPDZ2k implementation becomes up to a
factor 24.5 faster. Even using BigInteger for SPDZ2k , still
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Figure 8: Time in milliseconds for 1,000,000 multiplications in Java, using
different implementations. Numbers are the average of 100 experiments.
“BigInt (mod p)” represents multiplications based on Java’s BigInteger

class with moduluar reducations, and “BigInt (no red.)” without.
“Custom” represents the time used by our custom implementation.

results in a factor 5.2 improvement. This affirms statements
made by Cramer et al. [18] that not needing to do modulo
reduction of a large prime will have a noticeable impact on
practical efficiency.

Fast Hashing with AES-NI: At several key places in
the preprocessing phase, we perform many calls to a hash
function on short inputs. Instead of using a standard hash
function such as SHA-256, we use the Matyas-Meyer-Oseas
construction [43], which builds a hash function out of a
block cipher and is secure in the ideal cipher model. This
greatly improves performance, since we can take advantage
of Intel’s AES-NI instructions on modern CPUs.

When the input and output of the hash are a single 128-bit
block, the hash function can be done using fixed-key AES
(for a random, pre-agreed key) with the simple construction
:

H(x) = AESk(x)⊕ x

Note that this optimization was previously used for MPC
in [11].

Fast Hashing for Large Domains: The MMO con-
struction is less efficient when applied to a large domain,
since processing multiple input blocks requires a re-keying
operation for AES, which is a lot more expensive than
fixed-key AES encryption with AES-NI. The construction of
correlated OTs using Scholl’s protocol [42] (needed for the
SPDZ2k triple generation [18]) requires computing several
hashes on very long inputs. We propose a new approach to
implementing these by combining a 2-universal family of
hash functions, H, and a strong cryptographic hash such as
SHA-256, with the function

H(x) = SHA256(h(X)), where h← H (1)

The advantage over using only, say, SHA-256 or MMO, is
that we can use a linear universal hash function over F2128

such as GMAC, and this finite field arithmetic can be imple-
mented very efficiently using carryless multiplication from
the AES-NI instruction set. Note that when implementing
this in the protocol, we require that the function h is sampled



at random by the receiver, just before the consistency check
is carried out by the (possibly corrupt) sender.

We now argue that this approach still suffices for the
security of the correlated OT protocol over Z2k from [42,
Section 5]. In the consistency check, a hash function is used
to allow a possibly corrupt sender in the protocol to ‘prove’
knowledge of certain values known to the receiver, to show
that the sender’s previous protocol messages were computed
correctly. This proof consists of sending various hashes on
very long inputs for the receiver to check.

Recall that when h is sampled at random from a 2-
universal family of hash functions, collision resistance holds
with overwhelming probability, as long as the inputs to h are
independent of the random choice of h. In general, this may
not hold in a protocol where the inputs can be adversarial,
since given h it is easy to find two inputs that generate a
collision. However, in our case there is no problem, since it
turns out that the only inputs for which collision resistance
is required to hold are already fixed before the consistency
check. This is because the check is always carried out by the
(honest) receiver on inputs known after the previous round
of messages, as can be seen from the proof of [42, Lemma 8]
or [44, Lemma 3.1]. In conclusion, as long as h is sampled
after this then we are fine.

Note that if collision-resistance was the only property we
needed, then we could even omit the SHA256 call in (1)
. However, for the case of a corrupt receiver the protocols
of [42], [44] also need a pseudorandomness property, so
we apply a strong hash function on the output to act as a
randomness extractor.

We microbenchmark these optimizations in Ap-
pendix X-A.

VII. PERFORMANCE EVALUATION

Further, we evaluate the concrete performance of our
implementation of the online phase (Sec. VII-A) and the
offline phase (Sec. VII-B). In Sec. XI of the appendix,
we also evaluate memory usage, and show that it is not
a bottleneck.

For the online phase, we run micro-benchmarks for our
basic primitives as well as end-to-end evaluations of our two
high-level applications on realistic datasets. We then com-
pare our online implementation of SPDZ2k in FRESCO with
the baseline SPDZ implementation in FRESCO. The SPDZ
implementation in FRESCO is based on SPDZ-2 [19], which
is the most recent and efficient online protocol for SPDZ. In
our evaluation of the offline phase, we evaluate the SPDZ2k

triple generation protocol across varying security parameters
and network configurations. We then compare our offline
implementation in the Bristol-SPDZ C++ framework with
the two most recent and efficient protocols for SPDZ triple
generation; MASCOT [11] and Overdrive [25]. Both of
these are also implemented in the Bristol-SPDZ framework,

which ensures a more fair comparison. Our implementation
forms part of MP-SPDZ [45], a successor to Bristol-SPDZ.

Furthermore, we are unaware of any other practically
competitive protocols considering a dishonest majority of
malicious parties in the arithmetic setting and thus believe
that comparing to SPDZ is sufficient.

We chose to benchmark our protocols in the two-party
setting, although all our constructions (except the protocols
for the specific setting of oblivious decision tree and SVM
evaluation) generalize to an arbitrary amount of parties. We
did this for simplicity and since both SPDZ and SPDZ2k

generalize to more parties with similar overheads.
Setup. We run all experiments in the two-party setting.

Each party executes on an m5d.xlarge AWS EC2 instance
running Ubuntu 16.04, with 4 vCPUs and 16GB memory.
The instances are hosted within the same region and con-
nected over an up to 10 Gbps link. To investigate how
different network settings affect the performance of our
protocols, we use tc to simulate bandwidth restrictions and
latency. For all experiments, we performed a minimum of
20 total runs and report the average result. We discard the
first run in order to ensure the JVM has warmed up.

A. Online Phase
For our online phase experiments, we consider two bit

length settings. For the low bit length setting, we use
k = s = 32 (total bit length of 64) which supports 32-
bit comparisons and equality operations and affords 26 bit
statistical security. We compare this setting to running SPDZ
over a 64 bit field; the larger field is necessary to ensure at
least 26 bits of statistical security in the comparison protocol
used by SPDZ. Similarly, we compare the larger bit setting
with k = 64, s = 64, total bit length 128, and 57 bit
statistical security to SPDZ over a 128 bit field with 57
bit statistical security.2

Table I shows throughput times (operations per second)
for three non-linear operations: multiplication, equality, and
comparison on a 1 Gbps network. We believe a 1 Gbps
LAN to be a suitable setting for the family of SPDZ2k and
SPDZ protocols; the high latency of lower bandwidth WAN
networks would significantly limit performance due to the
protocols’ non-constant round complexity. Constant round
protocols are more appropriate for such settings. Conversely,
we do not report numbers for a faster network since at 1
Gbps our implementation is not network-bound.

We obtain the throughput numbers from batched runs, i.e.,
parallel3 operations with batched communication. We use
batches of 100,000 parallel operations for multiplications
and 5,000 for equality and comparison.

226, respectively 57 bits of security, are chosen for a fair comparison
with SPDZ2k , as SPDZ2k has a logarithmic deterioration of the statistical
security, because of batched MAC checks.

3Parallel here does not imply running on multiple threads; it merely
means that the operations are independent and communication can thus be
batched.



Table I: Throughput in elements per second for the online phase of micro operations over 1 Gbps network. The factor columns express the runtime
improvement factor of SPDZ2k over SPDZ in FRESCO.

k = 32 k = 64

SPDZ2k (σ = 26) SPDZ (σ = 26) Factor SPDZ2k (σ = 57) SPDZ (σ = 57) Factor

Multiplication 687041 141346 4.9x 522258 114071 4.6x
Equality 15334 3213 4.8x 6902 1282 5.4x

Comparison 9153 1769 5.2x 4514 756 6.0x

For multiplications we see between a 4.6 and 4.9-fold
improvement for the different bit-length settings. This per-
formance gain stems from a speed up in local computation
as well as reduced communication. Local computation im-
proves since we do not need to perform modular reductions
and use a custom class for ring elements of specific bit-
length (64 and 128 bit) which significantly outperforms
BigInteger arithmetic as discussed in Sec. VI-A. The total
amount of data sent is also reduced; for all protocols that
require communicating an element to the other parties, we
only need to send the k least significant bits, as opposed to
an entire element for SPDZ. This alone cuts communication
in half.

Comparison and equality (for k = 64) show an even
higher increase in performance, with the biggest improve-
ment for comparison, six-fold for k = 64 and five-fold for
k = 32.

Switching to boolean mode for the comparison protocol
replaces a majority of the underlying multiplications with
bit-multiplications, which require sending only 2 bits per
party, in contrast to two whole field elements. This dras-
tically reduces communication as shown in Table V. The
improvement in throughput is not directly proportional to
the reduction in communication since our implemention
is not network-bound at 1 Gbps. We nonetheless observe
an improvement since reducing data sent also reduces the
amount of local serialization and data copying FRESCO
does as part of networking.

Equality also benefits from switching to boolean mode,
though the performance improvement is less pronounced;
we operate in arithmetic mode by default and must convert
the boolean output of the ΠEQZ protocol to an arithmetic
sharing. This introduces an additional protocol round. We
avoid this conversion for comparisons (see Step 5 of Fig. 6).

We note that for k = 32, multiplication yields a slightly
higher relative improvement than equality. This is due to the
fact that the benefit of reduced communication for equality is
not high enough to outweigh the internal framework-related
overhead of executing a more complex protocol.

The lower communication of multiplication and compar-
ison directly affects the communication and computation
required for the more advanced applications of decision trees
and SVMs, as can be seen in Tab. II, III and V.

B. Offline Phase
Fig. 9 compares our implementation of triple generation

to the two state-of-the-art preprocessing protocols of the
SPDZ family; MASCOT [11], and Overdrive [25]. All three
implementations are part of the MP-SPDZ framework [45].
We first note that SPDZ2k saturates the network for all
number threads we tested in the WAN setting, and for 2 and
4 threads on a 1 Gbps LAN. However, SPDZ2k becomes
computationally bounded in the case for one thread on the
1 Gbps LAN and for all number of threads we tested in
the 10 Gbps LAN setting. This is visible from the graphs
by noting the convergence of throughput of SPDZ2k in the
WAN setting and at 2 threads in the 1 Gbps LAN.

For similar bit-lengths, the efficiency of SPDZ2k and
MASCOT is almost the same. This is expected as our
implementation is closely related to MASCOT. For smaller
bit-lengths, i.e., k = 32, our implementation is significantly
more efficient since it requires far less communication. We
note that the MASCOT implementation is hard-coded for
fields of 128 bits and thus we cannot compare how it
fares with a smaller field. Overdrive performs significantly
better than SPDZ2k in the WAN setting, but the difference
shrinks in a LAN. This is not surprising as Overdrive uses
significantly less communication than MASCOT, and thus
fares much better in a slower network than MASCOT, and
consequently SPDZ2k . SPDZ2k can nonetheless compete
with Overdrive, given a fast enough network; (Fig. 9c)
shows that the low bit setting for SPDZ2k matches Overdrive
performance in a 10 Gbps LAN.

We ran SPDZ2k and MASCOT in batches of 1024 triples,
and Overdrive in low-gear mode [25], the most efficient
mode in the two-party setting. Increasing the thread count
further did not significantly improve the throughput of any
of the protocols we benchmarked.

The amount of preprocessed material needed for the
operations/applications considered in this work can be found
in Table IV. The table includes count of the arithmetic
and bit triples needed for both SPDZ2k and SPDZ, along
with the amount of random bits needed (which require an
arithmetic multiplication triple for both SPDZ2k and SPDZ).
We note the timing column is only an estimate, based on the
time required for triple generation and bit triple generation.
Thus the true time will be slightly larger for both SPDZ2k

and SPDZ, because of the usage of authentication and input
masks. However, these are in the order of a magnitude faster



Table II: Online phase benchmarking of evaluation of decision trees over 1 Gbps network. The factor columns express the runtime improvement factor of
SPDZ2k over SPDZ in FRESCO. Times are in milliseconds per sample.

k = 32, σ = 26 k = 64, σ = 57

Dataset Depth, Num. Features Batch Size SPDZ2k SPDZ Factor SPDZ2k SPDZ Factor

Hill Valley 3, 100 1 21 ms 24 ms 1.2x 26 ms 34 ms 1.3x
Spambase 6, 57 1 48 ms 104 ms 2.2x 56 ms 128 ms 2.3x
Diabetes 9, 8 1 80 ms 215 ms 2.7x 122 ms 443 ms 3.6x

Hill Valley 3, 100 5 6 ms 10 ms 1.7x 7 ms 15 ms 2.1x
Spambase 6, 57 5 14 ms 40 ms 2.9x 17 ms 68 ms 4.0x
Diabetes 9, 8 5 41 ms 185 ms 4.5x 78 ms 376 ms 4.8x

Table III: Online phase benchmarking of SVM evaluation over 1 Gbps network. The factor columns express the runtime improvement factor of SPDZ2k

over SPDZ in FRESCO. Times are in milliseconds per sample.

k = 32, σ = 26 k = 64, σ = 57

Dataset Num. Classes, Features Batch Size SPDZ2k SPDZ Factor SPDZ2k SPDZ Factor

CIFAR 10, 2048 1 82 ms 214 ms 2.6x 99 ms 255 ms 2.6x
MIT 67, 2048 1 379 ms 1318 ms 3.5x 499 ms 1582 ms 3.2x

ALOI 463, 128 1 242 ms 857 ms 3.5x 362 ms 1312 ms 3.6x

CIFAR 10, 2048 5 39 ms 168 ms 4.3x 57 ms 209 ms 3.7x
MIT 67, 2048 5 225 ms 1101 ms 4.9x 294 ms 1428 ms 4.9x

ALOI 463, 128 5 162 ms 741 ms 4.6x 244 ms 1220 ms 5.0x
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Figure 9: Triple generation throughput across different protocols and network settings.

to construct compared to triples. Furthermore, the amount
needed is fewer than the number of triples required and so
the true impact of constructing these will be minuscule. Most
importantly though, the amount required by both SPDZ2k

and SPDZ is almost the same and so the effect on the relative
difference between the two will be insignificant.

C. Communication

Table V shows theoretical communication complexity for
the online phase as well as preprocessing.

For the online costs, we see a large reduction in com-
munication due to our use of binary multiplications for
comparison and equality. The improvements range from
42x to 85x. For pre-processing, we include the theoretical
communication complexity for the SPDZ2k offline phase

based on vOLE (and hence correlated OT) and Overdrive
for SPDZ. Though we reduce communication by using
bit-triples for bit-wise multiplication, the communication
complexity of our preprocessing is still muchs larger than
Overdrive. This is because the communication complexity of
an Overdrive triple is less than that of a bit-triple using the
most efficient TinyOT preprocessing [37]. As such, adapting
the Overdrive preprocessing to the ring setting is promising
future work. Notably, if we run preprocessing on a network
with enough bandwidth, we outperform both MASCOT and
Overdrive for all applications and tested values of k (cf.
Table IV); our SPDZ2k specific protocol optimizations allow
us to use fewer random bits, more efficient bit-triples based
on TinyOT, and thus fewer expensive multiplication triples.
Thus, while raw triple preprocessing for SPDZ2k is slower



Table IV: Costs of the preprocessing for different operations/applications. Timings are estimates based on triples/random bits needed and are based on a 4
threads execution on a LAN supporting up to 10 Gbps. For SPDZ, Overdrive [25] is used. For bit triple generation the optimized TinyOT protocol by

Wang et al. [37] is used.

SPDZ2k , k = 32, σ = 26 SPDZ, k = 32, σ = 26 (64 bit field)
# triples # bit-triples # random bits time (ms) # triples # bit-triples # random bits time (ms)

Comparison 0 60 33 1.43 60 0 58 4.04
Equality 0 31 33 1.34 31 0 58 3.04

DTree (diabetes) 5460 15300 8415 571 20760 0 14790 1216
SVM (aloi) 63332 27720 15246 3055 91052 0 26796 4030

SPDZ2k , k = 64, σ = 57 SPDZ, k = 64, σ = 57 (128 bit field)
# triples # bit-triples # random bits time (ms) # triples # bit-triples # random bits time (ms)

Comparison 0 124 65 7.22 124 0 121 14.9
Equality 0 63 65 7.04 63 0 121 11.2

DTree (diabetes) 5460 31620 16575 2417 37080 0 30855 4124
SVM (aloi) 63332 57288 30030 10006 120620 0 55902 10714

Table V: Total theoretical communication complexity counted in (kilo-, mega-, giga-) bytes for the two-party case. Values for SPDZ are based on
Overdrive in Low Gear [25]. For bit triples we use the optimized TinyOT protocol of Wang et al.[37]. The communication of comparison and equality do

not include authenticating input overhead since we assume amortized execution and exclude setup and initialization communication.

k = 32, σ = 26 k = 64, σ = 57

SPDZ2k SPDZ (64 bit field) SPDZ2k SPDZ (128 bit field)

Preprocessing Online Preprocessing Online Preprocessing Online Preprocessing Online

Comparison 627 KB 46 B 148 KB 1.89 KB 3.58 MB 94 B 508 KB 7.78 KB
Equality 486 KB 24 B 107 KB 1.01 KB 3.08 MB 48 B 366 KB 3.97 KB

DTree (Diabetes) 209 MB 131 KB 40.8 MB 705 KB 1.10 GB 262 KB 110 MB 2.37 MB
SVM (ALOI) 908 MB 1.44 KB 139 MB 3.24 MB 4.06 GB 2.88 MB 341 MB 8.29 MB

than Overdrive, we still outperform it for more advanced
operations and real-world applications.

D. Applications

In tables II and III we show online benchmarking results
of Protocols ΠDecTree and ΠSVM from Sec. V. The tables
show the online execution time of these protocols when
obliviously classifying data, both using SPDZ and SPDZ2k .
For both decision tree and SVM evaluation, we measure
evaluation time for a single data point, and the amortized
time of evaluating multiple points in batches of 5 (since a
service will likely classify more than a single data point).

1) Decision Trees: Table II shows online times for obliv-
ious evaluation of some binary data models by De Cock
et al. [29], based on datasets from the UCI repository4.
The models are used to identify hills vs. valleys on 2-D
graphs (Hill Valley), diabetes in women of Pima Indian
decent (Diabetes) and spam vs. non-spam e-mail based on
textual content (Spambase). We chose these models as they
contain a large variation in the amount of features.

We see a noticeable, relative improvement of SPDZ2k

over SPDZ in all the models we benchmarked, which further
increases with the depth of the tree. As expected, batched
evaluation yields better throughput; the batched runs also

4UC Irvine Machine Learning repository https://archive.ics.uci.edu/ml/
datasets.html.

result in a bigger performance improvement for SPDZ2k

over SPDZ. This shows that comparisons, which are needed
for each node of the tree, become the bottleneck. This holds
for both SPDZ and SPDZ2k . Still, the impact is much greater
for SPDZ as a depth increase from 3 to 9 results in a relative
slowdown of up to 25x, whereas for SPDZ2k the slowdown
is at most 18x. We thus see how important an efficient
realization of an operation like comparison is for the real-
world setting of decision trees. Finally, comparing k = 32
with k = 64 we see that the smaller ring gives up to a 1.9x
improvement for SPDZ2k and 2.0x for SPDZ, showing the
importance of flexibility in domain size.

2) SVMs: Table III show oblivious evaluation of image
classification models constructed by Makri et al. [30], and
a model with few features but many classes5. The models
by Makri et al. are built on the datasets CIFAR-10 [46]
and MIT-67 [47] where Inception-v3 is used for feature
extraction [48]. We chose these models to get a difference
in number of classes and features. We see a large relative
improvement of SPDZ2k over SPDZ. This holds even for
a the smallest amount of classes, and thus smallest amount
of comparisons as well. This indicates that the comparison
is the main bottleneck in the SVM execution in both
systems, as this factor is close to the direct improvement

5The model aloi at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
datasets/multiclass.html#aloi.

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#aloi
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#aloi


of comparison in SPDZ2k relative to SPDZ, as shown in
Tables I. It is interesting that this holds even for few classes
and many features, as shown by the Cifar row in the batched
setting.

VIII. CONCLUSIONS

In this work we showed how to compute basic func-
tionality like comparison, equality, bit decomposition and
truncation when working in the ring Z2k , thus overcoming
issues such as zero-divisors and lack of invertibility that arise
in this setting.

We confirmed experimentally the conjecture from [18]
that secure computation over the ring Z2k provides many
advantages in the online phase, with only slight increase in
offline cost. In particular we saw up to a 5-fold improvement
in computation for various tasks, and up to a 85-fold reduc-
tion in online communication costs for secure comparison,
as compared to the field setting.

In the future, we plan to explore other applications
of SPDZ2k , e.g., neural network evaluation, where share
conversions are known to help [17]. It also important to
close the performance gap between SPDZ2k pre-processing
and Overdrive; SHE-based techniques present a promising
venue.

IX. APPENDIX

A. Carry

This subprotocol computes the carry bit of an addition
between a ∈ Z2` and b ∈ Z2` , when the initial carry-in
bit is set to u ∈ {0, 1}. That is, it computes the function

Carry`(a, b, u) :=

(
a+ b+ u

?
≥ 2`

)
. We will use a variant

where a and u are public, and the parties have access to the
bits of b in secret-shared form, [b0]2, . . . , [b`−1]2. The proto-
col works by simply running a binary circuit on SPDZ2k us-
ing AND triples. A circuit with 2`−2 AND gates and depth
log(`) can be constructed using standard methods, see for
instance CarryOutL as described in [22]. We denote this pro-
tocol by [v]2 = ΠCarry(a0, . . . , a`−1, [b0]2, . . . , [b`−1]2, u).

B. Binary Addition

Sometimes we want to compute the actual result of a
binary addition between a ∈ Z2k and b ∈ Z2k , instead of
just the carry bit. A naive addition circuit has a linear depth
and number of AND gates, but to reduce the depth we can
instead use a recursive method which gives a logarithmic
depth circuit with k log k AND gates. When a is public and
the bits of b are secret-shared, the resulting protocol needs
log k rounds and k log k secure ANDs. This is the same as
the CarryAddL protocol from [22].

C. Probabilistic Truncation

In this section we describe a protocol for computing
[b] from [a], where b is an approximation of

⌊
a
2d

⌋
. With

probability at least 1− 2`−k the error in the approximation
is at most 2−d, where `� k is the bit-length of the number
being truncated.

This protocol is taken from [17], which suits our set-
ting since it does not require division by powers of 2.
The protocol works by opening a masked version of a,
c = (a− r) mod 2k. This masked value can be truncated in
the clear to get

⌊
c
2d

⌋
, and then the truncation of r (which is

shared since the parties have shares of the bits of r) can be
added to get shares of

⌊
a
2d

⌋
. However, there is naturally an

additive rounding error.
The protocol is stated in detail in Fig. 10. The proof of

correctness is similar to [17], and given in the full version.

Protocol Πd
TruncP

INPUT: Shared value [a], with a ∈ Z2k .
OUTPUT: Shared value [b], where b ≡k

⌊
a
2d

⌋
.

1) Call [r0], . . . , [rk−1]← ΠRandBit(). Let [r] =
∑k−1
i=0 [ri]2

i.
2) Compute c ← Open([r] − [a]). Let c′ = c mod 2d and

[r′] =
∑k−1
i=d [ri]2

i−d.
3) Output [b]← −

⌊
c
2d

⌋
+ [r′].

Figure 10: Protocol for truncating a value by d bits probabilistically

Proposition IX.1. On input [a] with a ≤ 2`, protocol
Πd

TruncP securely computes [b] where, with probability at
least 1− 2`−k, b =

⌊
c
2d

⌋
− v for some v ∈ {0, 1}.

Proof: Security follows from the fact that a is masked
by r. Now, for correctness, notice that since c = (r −
a) mod 2k, it holds that c = (r mod 2k) − a + 2ku with
u = Carryk(c, a), where Carryk(x, y) is the k-th carry bit
when adding x and y. In particular, c mod 2d = (r mod
2d)−(a mod 2d)+2dv where v = Carryd(c, a). Now, by re-
calling that for all x ∈ Z+ it holds that

⌊
x
q

⌋
= x−(x mod q)

q ,
we can see that the output b satisfies

b =− c− (c mod 2d)

2d
+ r′

=− r − (r mod 2d)

2d
+

(a mod 2k)− (a mod 2d)

2d

− 2k−du+ v + r′

=− r′ +
⌊
(a mod 2k)/2d

⌋
− 2k−du+ v + r′

=
⌊
(a mod 2k)/2d

⌋
− 2k−du+ v,

so the error in the approximation is −2k−du+ v. Moreover,
it is not hard to see that u can also be calculated as (r mod

2k)
?
< a, so the probability that u = 1 is the probability that

the random value r mod 2k is strictly smaller than a, and
since a ≤ 2`, this probability is upper bounded by 2`−k.



1) Deterministic Truncation: The previous protocol al-
lows us to calculate shares of

⌊
a/2d

⌋
, but it is probabilistic

in two aspects. First, there is the bad event in which
Carryk(c, r) = 1, in which makes the error in the truncation
to be around 2k−d; fortunately this event happens with at
most probability 2`−k. However, there is also the event
in which (using the notation from the previous section)
v = Carryd(c, a) = 1, in which case we get an error
of 1 in the result. Based on these observations we can
obtain different truncation protocols that provide different
guarantees about the result, with different costs.

ΠTruncP1(d): The truncation is exact with probability
1−2`−k. For this the parties use bit-decomposition (Section
IX-D) and the carry protocol (Section IX-A) to compute
[v]← Carryd(c, [a]) and define the output of the truncation
to be [b]− [v].

ΠTruncP2(d): With probability 1, the truncation has an
error of at most 1. To achieve this the parties use bit-
decomposition and the carry protocol to compute [u] ←
Carryk(c, [a]) and define the output of the truncation to be
[b] + 2k−d[u].

ΠTruncD(d): The truncation is exact with probability
1. This is essentially a combination of the two cases
above. This is obtained by letting the parties using bit-
decomposition and the carry protocol twice to get [u] ←
Carryk(c, [a]) and [v] ← Carryd(c, [a]), and let the output
be [b] + 2k−d[u]− [v].

D. Bit-Decomposition
This protocol allows the parties to obtain

([a0], . . . , [am−1]) from [a], where a =
∑k−1
i=0 ai2

i

and m ≤ k. This protocol is taken from [22], and it is
described in Fig. 11.

Protocol ΠBitDec

INPUT: Shared value [a].
OUTPUT: Shared values [a0], . . . , [ak−1], where a =∑k−1
i=0 ai2

i ∈ Z2k .
1) Call [r0], . . . , [rk−1] ← ΠRandBit() and compute [r] =

[
∑k−1
i=0 ri2

i].
2) Let c← Open([a]− [r]).
3) Call [r0]2, . . . , [rk−1]2 ← ΠA2B([r0], . . . , [rk−1]).
4) Use the binary addition protocol from Section IX-B to

output (c0, . . . , ck−1) + ([r0]2, . . . , [rk−1]2), getting as
output [a0]2, . . . , [ak−1]2.

5) Output [a0], . . . , [ak−1] = ΠB2A([a0]2, . . . , [ak−1]2).

Figure 11: Protocol for bit-decomposing a shared value

Correctness is clear since r+c = r+(a−r) mod 2k ≡k a.

E. Bit-wise Comparison
To compare bitwise-shared values a =

∑k−1
i=0 ai2

i and
b =

∑k−1
i=0 bi2

i the parties execute the protocol in Fig. 12.
Security is obvious. To argue the correctness of the

protocol, consider b′ =
∑k−1
i=0 (1− bi) · 2i and notice that

a < b⇔ a−b < 0⇔ a+(2k−b) < 2k ⇔ a+(b′+1) < 2k.

Protocol ΠBitLT

INPUT: Shared bits [a0]2, . . . , [ak−1]2, [b0]2, . . . , [bk−1]2.

OUTPUT: Shared value [u]2, where u = a
?
< b with a =∑k−1

i=0 ai2
i and b =

∑k−1
i=0 bi2

i.
1) Compute [b′i]2 = 1− [bi]2 for i = 0, . . . , k − 1.
2) Return 1−ΠCarry([a0]2, . . . , [ak−1]2, [b

′
0]2, . . . , [b

′
k−1]2, 1).

Figure 12: Protocol for comparing bitwise-shared values

Therefore, a
?
< b is equal to 1 if and only if adding a with

b′, when the carry bit is set, does not result in a carry. This
is precisely what is done in the protocol.

X. PROTOCOLS AND FUNCTIONALITIES FOR DECISION
TREE AND SVM EVALUATION

Fig. 13 presents the ideal functionality for decision tree
evaluation, which is realised by the protocol in Fig. 14.
Fig. 15 contains the ideal functionality for SVM evaluation,
whilst the protocol for implementing this is in Fig. 17, and
the arg-max subroutine in Fig. 16. The arg-max protocol is
based on a work by Toft [49].

Functionality FDecTree

Initialization: The functionality is initialized by (Init, d, n, k)
from P1 and P2.

Compute: On input (Input, T ) from P1 and (Input,x) from
P2 where T = (t,v,z) with t ∈ Zm2k ,v ∈ Zmn ,z ∈ Z2d

2k

and x ∈ Zn2k , return T (x) = z to P2.

Figure 13: Functionality for evaluating decision trees

A. Offline Micro-benchmarks

From the micro-benchmark in Fig. 18 we see that these
two optimizations alone can cut preprocessing time in half.
These benchmarks are done using network supporting com-
munication up to 10 Gbps. The high bandwidth ensures that
the execution will be computationally bounded, as shown in
Sec. VII-B, and so that the relative improvements don’t get
distorted by not having enough network bandwidth.

Reducing the Number of Consistency Checks in Corre-
lated OT: We further optimize the correlated OT protocol
by reducing the number of consistency checks. The protocol
of [42] performs one check between every pair of OT inputs,
for a total of k2 checks. We apply an optimization from [44]
(which [42] is based on, but does not use) which reduces
the number of checks to µ · k for a small constant µ. This
greatly reduces the computational costs of the protocol, for
a small sacrifice in security: based on the analysis in [44],
using µ = 3 should result in losing no more than 9 bits of
statistical security. In Fig. 19 we show a micro-benchmark of
the effect of using µ = 3 instead of µ = 10, which would
be the default without the optimization. The optimization
reduces the triple generation time by up to 40%.



Protocol ΠDecTree

INPUT: T = (t,v,z) with t = (t1, . . . , tm) ∈ Zm2k ,v =

(v1, . . . , vm) ∈ Zmn ,z = (z1, . . . , z2d) ∈ Z2d

2k from P1 and
x = (x1, . . . , xn) ∈ Zn2k from P2.

1) Let [tj ] ← Input(tj , P1) for each j ∈ [m]. Similarly let
[zj ] ← Input(zj , P1) for each j ∈ [1, 2d] and [cj,i] ←
Input(cj,i, P1) for each i ∈ [1, n] and j ∈ [1,m] where
cj,vj = 1 and cj,i = 0 for i 6= vj .

2) The parties compute [cj ] =
∑n
i=1[cj,i] for j ∈ [1,m].

3) The parties then let cj ← Open([cj ]) and verify that cj =
1 for j ∈ [1,m]. If this is not the case for any j ∈ [1,m]
then output Abort.

4) The parties the compute [c̄j,i] = [cj,i] · (1− [cj,i]) and let
c̄j,i ← Open([c̄j,i]) for all i ∈ [1, n] and j ∈ [1,m].

5) The parties verify that all c̄j,i = 0 for all i ∈ [1, n] and
j ∈ [1,m], if not they output Abort.

6) Let [xi]← Input(xi, P2) for all i ∈ [1, n].
OUTPUT: Nothing to P1 and T (x) = z to P2.

1) Compute [fj ] = ΠLT

((∑n
i=1[cj,i] · [xi]

)
, [tj ]

)
for j ∈

[1,m].
2) For l ∈ [1, d], let jl denote the l’th bit of the index j

(letting j1 be the least significant bit). Then for j ∈ [1, 2d]
compute

[fj ] =
∏
l∈[d]

{
(1− [fb(j+m)/2lc]), if jl = 0

[fb(j+m)/2lc], if jl = 1

3) Compute [z] =
∑2d

j=1[zj ] · [fj+m] and then let z ←
Open([z], P2).

Figure 14: Protocol for evaluating decision trees

Functionality FSVM

Initialization: The functionality is initialized by (Init, q, n, k)
from P1 and P2.

Compute: On input (Input,S) from P1 and (Input,x) from
P2 where S = (F , b) with F ∈ Zq×n

2k
, b ∈ Zq

2k
and

x ∈ Zn2k , return S(x) = z to P2.

Figure 15: Functionality for evaluating SVMs

XI. MEMORY USAGE

Supplementary to our peformance benchmarks for the
online and preprocessing phases, we also measured peak
memory usage.

For the online phase, none of our benchmarks exceeded 6
GB in memory usage; this is well below the available RAM
in our experimental setup (16 GB) and our max. heap size
JVM setting (15 GB). As such, memory does not present a
bottle-neck. Peak memory usage was consistently lower for
SPDZ2k than SPDZ (up to a 1.4 factor improvement) across
all benchmarks.

For the offline phase, SPDZ2k and MASCOT memory
usage was below half a gigabyte. While Overdrive’s memory
usage was much higher (4̃GB for k = 64) it still fell well
below the available RAM (16GB) of our machines.

Protocol ΠArgMax [49, 13.1.1]

Computes ArgMax([c1], . . . , [cq]) → (([f1], . . . , [fq]), [g])
where f1, . . . , fq ∈ {0, 1} and g = max(c1, . . . , cq).

1) If q = 2:
a) [d1] = ΠLT([c2], [c1]) and [d2] = 1 − [d1] and [g] =

[d1] · ([c1]− [c2]) + [c2].
b) Return (([d1], [d2]), [g]).

2) Else if q = 3:
a) [d′1] = ΠLT([c2], [c1]) and [g′] = [d′1]·([c1]−[c2])+[c2].
b) [d′2] = ΠLT([c3], [g′]) and [g] = [d′2] ·([g′]− [c3])+[c3].
c) [d1] = [d′1] · [d′2] and [d2] = [d′2]− [d′1] · [d′2] and [d3] =

1− [d1]− [d2].
d) Return (([d1], [d2], [d3]), [g]).

3) Else, let(
([d1], . . . , [dbq/2c]), [g1]

)
← ArgMax([c1], . . . , [cbq/2c]),(

([dbq2c+ 1], . . . , [dq]), [g2]
)
←

ArgMax([cbq/2c+1], . . . , [cq]):
a) [d] = ΠLT([g2], [g1]) and [g] = [d] · ([g1]− [g2]) + [g2].
b) [fj ] = [d] · [dj ] for j ∈ [1, bq/2c] and [fj ] = (1− [d]) ·

[dj ] for j ∈ [bq/2c+ 1, q].
c) Return (([f1], . . . , [fq]), [g]).

Figure 16: Protocol for finding largest element

Protocol ΠSVM

INPUT: S = (F , b) with F = (F1, . . . , Fq) ∈ Zq×n
2k

, b =
(b1, . . . , bq) ∈ Zq

2k
from P1 and x = (x1, . . . , xn) ∈ Zn2k from

P2.
1) P1 inputs the values F , b using Input(·, P1) to get sharings

[F ] = ([F1], . . . , [Fq]) and [b] = ([b1], . . . , [bq]) such that
([fj,1], . . . , [fj,n]) = [Fj ] for all j ∈ [1, q].

2) P2 inputs the values (x1, . . . , xn) = x using Input(·, P2)
to get sharings [x1], . . . , [xn].

OUTPUT: P1 learns nothing and P2 learns z ∈ Z2k .
1 For all i ∈ [1, n] and all j ∈ [1, q] the parties compute

[cj ] = [bi] +
∑
i∈[1,n][fj,i] · [xi] for all j ∈ [1, q].

2 Use ΠArgMax in 16 to compute (([f1], . . . , [fq]), [g]) ←
ArgMax([c1], . . . , [cq]).

3 Compute fj ← Open([fj ]) for all j ∈ [1, q] and return the
value j · fj 6= 0.

Figure 17: Protocol for evaluating SVMs

XII. PROOFS OF SOME PROPOSITIONS

Proof of Lemma III.1: Suppose the adversary causes
incorrect values x′1, . . . , x

′
m, r

′
1, . . . , r

′
σ to be authenticated

in the [·]2 sharings, and write x′i = xi + δi mod 2 and r′i =
ri + εi mod 2. If all consistency checks pass then from the
j-th check we have εj +

∑m
i=1 χi,j · δi = 0. Since each χi,j

is uniformly random and independent of δi, εj , if any δi 6= 0
then this holds with probability at most 1/2 for a single j.
Taking all σ checks into account, it follows that the outputs
are correct with probability at least 1− 2−σ .

Proof of Lemma IV.1: It is clear that x2 ≡` 1 if and
only if (x−1)(x+1) ≡` 0 so 2` divides (x−1)(x+1). The
case x = ±1 is trivial, so we may assume that x 6= ±1. Let
2u and 2v be the largest power of 2 dividing the non-zero
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running on 4 threads on a 10 Gbps network with difference amounts of

correlation checks with our MMO and large domain hashing
optimizations applied.

integers x−1 and x+1 respectively, then 2u+v is the largest
power of 2 dividing x2−1, so u+v ≥ `. On the other hand,
since 2min(u,v) divides both x+ 1 and x− 1, it also divides
(x + 1) − (x − 1) = 2 and therefore min(u, v) ∈ {0, 1}.
Thus, either u = 0, u = 1, v = 0 or v = 1. If u = 0 then
v ≥ ` and therefore x+ 1 ≡` 0. If u = 1 then v ≥ `− 1, so
x+ 1 ≡`−1 0. A similar analysis follows if v = 0 or v = 1,
which finishes the proof.

Proof of Proposition IV.1: We begin by arguing cor-
rectness. In step 5 the value e = a2 mod 2k+2 is opened.
Then, notice that (c−1a)2 ≡k+2 c

−2a2 ≡k+2 e
−1e ≡k+2 1,

so c−1a ≡k+1 ±1 due to Lemma IV.1. Moreover, since c is
taken to be the smallest square root of e and a is one of such
roots, which was chosen at random, we conclude that c−1a
is congruent modulo 2k+1 to either −1 or +1 with equal
probability. Clearly, this implies that c−1a+ 1 is congruent
modulo 2k+1 to either 0 or 2 with equal probability.

Now, the key point to observe is that, due to the fact
that [a] was computed as 2[u] + 1, and due to the way the
addition of shared values in SPDZ2k works (see Section
II-B), we have that both the shares of [a] and the shares
of its MAC corresponding to party Pj are even for j > 1,
and odd for j = 1. Then, since c−1 is odd it follows by
a similar argument that dj , tj ∈ Z2k+s+1 , the shares of

the value [c−1a + 1] and its MAC, are all even, so the
division by 2 used in the protocol is well defined. Notice
that

∑
j d

j ≡k+2 c
−1a+ 1 and

∑
j t
j ≡k+s+1 α ·

(∑
j d

j
)

,

so
∑
j
dj

2 ≡k+1
c−1a+1

2 and
∑
j
tj

2 ≡k+s α ·
(∑

j
dj

2

)
. In

particular,
∑
j b
j is congruent modulo 2k to 0 or 1 with equal

probability, so bj , hj indeed define authenticated shares of a
bit over Z2k , with shares over Z2k+s , as desired.

As for security, notice that the only possibility of an
attack is that the adversary causes a selective abort, therefore
biasing the resulting bit. Fortunately this is not possible
since, right before step 5, the value a looks uniformly
random to the adversary.

Proof of Proposition IV.2: To argue correctness, we
begin by showing that a′ = a mod 2k−1. To see this, notice
that a ≡k−1 c′−r′, and that c′−r′ ∈ {−2k−1, . . . , 2k−1−1}.
Therefore, c′ − r′ is the remainder of a when divided by
2k−1 if and only if c′ − r′ ≥ 0, and otherwise it is equal to
this remainder, minus 2k−1. This can be written in a more
compact way as c′−r′ = (a mod 2k−1)−u2k−1, where u =

c′
?
< r′, which implies that a mod 2k−1 = c′−r′+u2k−1 =

a′. We can see then that d = a − a′ = 2k−1ak−1, so e =
2k−1(ak−1⊕ b) and therefore ek−1 = ak−1⊕ b. Thus, ak−1
can be computed as ak−1 = ek−1⊕ b = ek−1 + b− 2ek−1b.

Finally, to argue security we show that none of the opened
values reveal anything about a. The value c does not leak
information since the random mask r is used. On the other
hand, we saw above that d = 2k−1ak−1, so the mask 2k−1b
completely hides this value when e is opened.
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