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Abstract. In this paper, we compute an algebraic decomposition of black-

box rings in the generic ring model. More precisely, we explicitly decompose
a black-box ring as a direct product of a nilpotent black-box ring and local

Artinian black-box rings, by computing all its primitive idempotents. The al-

gorithm presented in this paper uses quantum subroutines for the computation
of the p-power parts of a black-box ring and then classical algorithms for the

computation of the corresponding primitive idempotents. As a by-product,

we get that the reduction of a black-box ring is also a black-box ring. The
first application of this decomposition is an extension of the work of Mau-

rer and Raub [26] on representation problem in black-box finite fields to the

case of reduced p-power black-box rings. Another important application is an
IND-CCA1 attack for any ring homomorphic encryption scheme in the generic

ring model. Moreover, when the plaintext space is a finite reduced black-box
ring, we present a plaintext-recovery attack based on representation problem

in black-box prime fields. In particular, if the ciphertext space has smooth

characteristic, the plaintext-recovery attack is effectively computable in the
generic ring model.

1. Introduction

Many researchers have used for more than 20 years algorithms in generic mod-
els as a tool in proving reductions for hardness assumptions. These assumptions
represent the foundation on which the security of public key encryption schemes is
built. Working in generic models is difficult since all the computations are done by
an oracle and very little information is available to the user besides abstract manip-
ulation. Shoup introduced the generic group model in his 1997 seminal paper [30].
Therein and since then, a variety of cryptographic problems have been proven to be
computationally intractable in the generic group model, most notably the Discrete
Logarithm problem, the computational Diffie-Hellman problem [30], as well as the
RSA problem over groups of hidden order [17].

Similarly, generic ring models are used to analyze the hardness of computational
problems defined over rings. For example, it is proved in [23] that computing the
Jacobi symbol of an integer is equivalent to factoring in the generic ring model,
thus providing an example of a natural computational problem which is hard in
the generic ring model but is feasible in the standard model. On the other hand,
Aggarwal and Maurer proved in [4] that breaking RSA is equivalent to factoring in
the generic ring model.

In the generic model, the more you know about the structure that the oracle
computes, the better are the chances to produce algorithms that solve a specific
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problem. In this work, we provide algorithms in the generic ring model that com-
pute the structure of a general ring, thus giving important information to the user.
We also provide concrete applications of our results, which, due to their generic
nature, they can be applied in a plethora of other applications.

Concretely, in the generic ring model, the representation of a ring is given by an
oracle which outputs for an element a string of bits of a certain size; this represen-
tation gives no information about the algebraic structure but only an idea about
its size. The algebraic computations are also performed by an oracle. If a set of
generators for the ring is given, then the ring structure is called black-box ring,
or BBR for short. We shall prove that a BBR can be explicitly decomposed as a
product of a nilpotent ring with a unitary ring. Moreover, by the general theory of
finite commutative unitary rings, one knows that any such ring is isomorphic to a
product of local Artinian rings (each of the local Artinian factors is endowed with
a BBR structure). The main scope of the paper is to provide an algorithm that
computes this decomposition. This algorithm uses certain quantum subroutines
that shall be explicitly mentioned. Concretely, we prove the following:

Theorem 1. Let R be a commutative black-box ring.

(1) There exists a polynomial time quantum algorithm that explicitly computes
an isomorphism of BBR’s:

R ≃ NR ×
∏
p

Rp,

where NR is a nilpotent BBR and each Rp is a p-power BBR with unity
(the product is over a finite set of primes).

(2) If R is a p-power BBR with unity, there exists a classical polynomial time
algorithm that explicitly computes an isomorphism of BBR’s:

R ≃
∏
i

Ri,

where for each i, Ri is a local Artinian ring.

We do so by explicitly computing all primitive idempotents of a BBR (see The-
orem 7). The most involved part is the computation of the primitive idempotents
in the case when R is a unitary commutative BBR with all its residual fields iso-
morphic to a fixed finite field Fq (Section 5.4). We proceed by reducing to the case
where R is a product of isomorphic finite fields (Proposition 5). Furthermore, we
prove first our result in the prime field case using an algorithm which produces with
positive probability orthogonal idempotents. By iterating the process, with over-
whelming probability, we produce the set of all primitive idempotents. The general
case is reduced to the prime field case using an algorithm based on the trace map
and the dual basis.

To present the applications of our main result we say a few words about fully ho-
momorphic encryption (FHE). This is one of the most important and desired tools
of modern cryptography, that allows evaluation of arbitrarily complex programs
on encrypted data, while the data remains encrypted. The notion was suggested
by Rivest, Adleman and Dertouzos in [27], where it was called ”privacy homomor-
phism”.
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Any efficient FHE scheme would have a large number of practical applications
such as: medical applications, financial privacy, consumer privacy in advertising,
forensic image recognition, etc. (see [2]).

In [18], C. Gentry came up with the first concrete construction of such a scheme
based on ideal lattices. Gentry’s approach goes as follows: first, he constructs a
somewhat homomorphic encryption scheme which is an encryption scheme that
supports evaluating low-degree polynomials on plain data via the encrypted data;
next, he ”squashes” the decryption procedure so that it can be expressed as a low-
degree polynomial which is supported by the scheme; and finally, he develops a
bootstrapping technique which allows one to obtain a fully homomorphic scheme.
The first generation of fully homomorphic encryption schemes ([19], [15], [31], [14],
[20]) was constructed following Gentry’s recipe.

A second generation of fully homomorphic encryption schemes started in [9],
where fully homomorphic encryption was established in a simpler way, based on the
learning with errors assumption; the scheme was then improved in [11]. Currently,
perhaps the arguably simplest FHE scheme based on the learning with errors as-
sumption is by Brakerski [10] who builded on Regev’s public key encryption scheme
[28]. The latest advancement in this direction was obtained in [21], where a third
generation of FHE scheme was constructed, achieving great leaps in efficiency.

Another very recent approach aiming for producing FHE was presented in [16],
where the authors based their construction on the finite field isomorphism prob-
lem. All the schemes considered above are based on the method of constructing a
noisy version of the ciphertext (the noise is added to guarantee the security of the
cryptosystem). For this reason, these schemes are called noisy FHE schemes.

In this respect, an important and natural question would be whether one can
actually construct a noise-free FHE scheme (see C. Gentry’s talk at ICM 2022). A
possible approach towards noise-free FHE schemes could be the following setting:
the ciphertext space and the plaintext space both have ring structures, and the de-
cryption algorithm is a ring homomorphism, so that one would call such a scheme a
ring homomorphic encryption scheme. Such a scenario has been considered before
by other authors (see for example [25], p.4). Unfortunately, there are no secure ex-
amples of such primitives in the literature and the results of this paper may explain
why they are hard to find. It is worth mentioning that in the 1996 paper of Boneh
and Lipton [8], an ”algebraically homomorphic encryption scheme” is a ring ho-
momorphic encryption scheme whose plaintext space is the ring of integers modulo
some positive integer n and ciphertext space is a black-box ring. In the simplest
case, the plaintext space is the prime field Fp while the ciphertext space is a black
box field isomorphic to Fp via the decryption map. Consequently, the encryption
map is a one-way permutation, so that the encryption algorithm is deterministic,
which does not meet the today minimal security requirements such as IND-CPA
security. It is shown in [26] that the isomorphism problem (i.e. the problem that
inquires the existence of such one-way permutations) for finite extensions of Fp can
be efficiently reduced to the representation problem for Fp (to represent an element
of Fp means to write it as a polynomial expression, with integer coefficients, in a
given set of generators). More precisely, the isomorphism problem for Fpk is effi-
ciently reducible to the representation problem for Fpk , which in turn is efficiently
reducible to the representation problem for Fp. We mention that the representation
problem for Fp is an important open problem in cryptography (for more details see
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[26]). As a first application of our main theorem, we extend this result to the case
of a product of finite fields, all having the same characteristic p. To be precise,
we show that the representation problem for such a product of fields is efficiently
reducible to the representation problem for Fp.

Another important application of our generic ring model algorithm for the com-
putation of all primitive idempotents is a quantum-classical IND-CCA1 attack for
any ring homomorphic encryption scheme whose plaintext space is not a nilpotent
ring. Moreover, under some assumptions on the plaintext space, we show that a
plaintext-recovery attack can be constructed.

1.1. Organization of the Paper. Section 2 is dedicated to the representation of
finite rings in the generic model; we introduce oracle and black-box rings.

The main theoretical results of this paper are presented in Section 3. Here,
after presenting some preliminary results and notations, we prove the theoreti-
cal decomposition for (not necessarily unitary) commutative rings, and we study
the properties of homomorphisms between finite commutative rings. Moreover, a
Teichmüler lifting result is recalled in the case of finite commutative rings with
isomorphic residual fields.

We start Section 4 by pointing out the algorithm for computing periods in semi-
groups using a modified Shor’s quantum algorithm. This algorithm is applied for
computing the idempotent map in finite commutative rings. For the case of p-power
rings, we show that this map can be computed classically.

In Section 5 we describe the algorithms that compute the primitive idempotents
in the generic ring model. We first compute the unitary part of a ring, then we show
how to decompose a ring with unity as a product of p-power rings. The next step
is to break further any p-power BBR into a product of rings, each of them having
isomorphic residual fields. After we reduce the computation to the case where the
ring is a product of isomorphic finite fields, we finally present a series of algorithms
that compute the primitive idempotents of such a ring.

Finally, Section 6 presents 3 applications: an extension of a result of [26] on
representation problem for finite fields to the case of a product of finite fields of
equal characteristic. Then, we present a quantum-classical IND-CCA1 attack on
ring homomorphic encryption schemes over generic quasi-unital rings and, in the
case of ring homomorphic encryption schemes over a reduced ring with smooth
characteristic, we present a plaintext-recovery attack in the generic ring model.
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2. Representing finite rings

From the practical point of view it is important to understand how one represents
the elements of a finite ring. As we shall describe below, an element of a ring is
given by a fixed length string of bits. The algebraic operations are assumed to be
accessible, but not explicit (see the definition below). Basically, the only non trivial
information that can be deduced about the ring (unless otherwise specified) is a
bound for the number of elements in the ring and a representation for its neutral
element for addition. In other words, no information about its algebraic structure
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can be deduced from this representation. The following definition is inspired by the
notions of black box groups (introduced by Babai and Szemerédi in [6]) and black
box fields (introduced by Boneh and Lipton in [8]).

Definition 1. A ringlike oracle consists of two components: a validation oracle
and a computational oracle. The validation oracle takes queries strings of length n
over {0, 1} and outputs a validation bit. The computational oracle takes queries of
the form (x, y,+), (x,−), (x, y, ·), where x, y are valid strings and outputs a valid
string. Moreover, the computational oracle outputs a valid string in response to
the zero element query 0. We assume that every component of a ringlike oracle can
be simulated by a deterministic polynomial (in the length n of the representation)
time algorithm. An oracle ring is a ringlike oracle such that the set of valid strings
together with the operations defined by the responses to the above queries forms
a ring. An (n, d)-black-box ring, or BBR for short, is a subring of an oracle ring
generated by a finite set of size d.

By a finite generating set of a (nonunital) ring R, we mean a finite subset
{g1, g2, ..., gd} of R such that any element of the ring can be written in the form
P (g1, g2, ..., gd), where P (X1, ..., Xd) ∈ Z[X1, ..., Xd]+, i.e. P (0, ..., 0) = 0. If R is a
unital ring, then the unity itself can be written as a polynomial with integer coeffi-
cients in the set of generators; however, this expression or its bit representation is
not assumed to be known.

In order to show that a certain (abstract) ring R is an oracle ring, one needs
to construct (or explicitly show the existence of) an oracle representation, i.e. an
oracle as in Definition 1 for which the associated ring is isomorphic to R.

Notice that if R is an oracle ring and I is an ideal of R, one cannot in general
realise R/I as an oracle ring. For example, let I = Nil(R) be the nilradical of
R. Although one can check (using the oracle of R) whether x ∈ Nil(R) for any
x ∈ R, there is no obvious way of realising Rred := R/Nil(R) as an oracle ring.
The solution to this problem will be a key ingredient in our practical applications:

Theorem 2. There is a quantum algorithm that on input an (n, d)-BBR R outputs
a realization of Rred as an (n, d)-BBR. The algorithm runs in time polynomial in
(n, d).

We postpone the proof of this theorem until Section 5.3. The difficulty of the
proof of this theorem is to realize Rred as an oracle ring, and to construct explicitly
the canonical map R → Rred. Once we do that, the image of the generating set
of R can be taken as a set of generators for Rred, which will imply that Rred is
indeed a BBR. In order to represent Rred as an oracle ring, we will need an explicit
computation of the structure of the ring R (see Theorem 4). Then, we can use
a Teichmüler-type lifting procedure to identify Rred with an explicit subset of R,
thus Rred inherits the representation of R. Moreover, we modify the addition on
this subset of R, so that the identification becomes an isomorphism of rings. This
realizes Rred as an oracle ring. In addition, the procedure also outputs an explicit
realization of the map R→ Rred.

3. Finite Commutative Rings

In this section we investigate the structure of (non-unital) finite commutative rings.
Some of the results are known to specialists, but since we couldn’t find them in the
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literature, in the explicit form that we need for our applications, we shall give all
the necessary details.

3.1. Preliminaries. A commutative ring R is called nilpotent if there exist a pos-
itive integer n such that xn = 0 for all x ∈ R. In the case of a finite commutative
ring R, this is equivalent to the existence, for any x ∈ R, of a positive integer m
(that may depend on x) such that xm = 0. We say that a finite commutative ring
is quasi-unital if it is not nilpotent; equivalently, its unital subring is non-trivial
(see Theorem 3).

If R is a commutative ring, then x ∈ R is called an idempotent whenever x2 = x.
Moreover, x ∈ R is called a primitive idempotent if x is a nonzero idempotent
which cannot be written as a sum of two orthogonal nonzero idempotents, i.e. if
x = e1 + e2 with e21 = e1, e

2
2 = e2, and e1 · e2 = 0, then either e1 = 0 or e2 = 0.

If R is a commutative ring then we denote by E(R) := {e ∈ R | e2 = e} the
idempotent semigroup associated to the semigroup (R, ·). If we define addition
in E(R) by: e ⊕ e′ = e + e′ − 2ee′, ∀e, e′ ∈ E(R), then this becomes a ring of
characteristic 2. We shall refer to this ring (E(R),⊕, ·) as being the idempotent
ring of R, or the idempotent F2-algebra of R. It is shown in [7], that if R is a
finite commutative ring then there is a well defined map e : R → E(R), that
is a homomorphism of multiplicative semigroups. More precisely, for x ∈ R, the
sequence {xn}n≥1 is eventually periodic. If we denote by p(x) the period and by

t(x) the tail, then xk·p(x) is an idempotent for all k with k · p(x) ≥ t(x) (for more
details see [7]). We shall denote by e(x) this idempotent. In fact, this is the unique
idempotent belonging to the sequence (indeed, if e1 = xm1 and e2 = xm2 are two
idempotents in the sequence, then e1 = em2

1 = xm1m2 = em1
2 = e2) . Notice that

a finite commutative ring R is nilpotent if and only if E(R) = {0}. We need the
following lemmata:

Lemma 1. In a commutative ring R any two distinct primitive idempotents are
orthogonal.

Proof. Let e, f be two distinct primitive idempotents. Suppose that e ·f ̸= 0. Since
e = ef ⊕ (e ⊕ ef) and e ̸= e ⊕ ef , we get that e = ef . Similarly, f = ef so that
e = f , which is a contradiction. □

Lemma 2. In any quasi-unital ring R there exists primitive idempotents.

Proof. We have seen that E(R) is non-trivial. Let f ∈ E(R) be a nonzero idempo-
tent. If f is primitive, we are done. Otherwise, one can write f as a finite sum of
mutually orthogonal (hence distinct) nonzero idempotents (since f is not primitive
such a sum with two terms exists). Now, choose such a sum f = e1+ . . .+ek, k ≥ 2
of maximal possible length (this is possible because R is a finite ring). We prove
that ei is a primitive idempotent for all i. Suppose the contrary, then for some i
we have ei = ei,1 + ei,2, where ei,1, ei,2 are orthogonal nonzero idempotents. For
j ̸= i we have ej · ei,1 = ej · ei · ei,1 = 0. Similarly, ej · ei,2 = 0. Hence we can write

f = e1 + ...+ ei−1 + ei,1 + ei,2 + ei+1 + ...+ ek,

as a sum of k + 1 mutually orthogonal idempotents, contradicting the maximality
of k. □
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Remark 1. In the above proof, we actually showed that any nonzero idempotent
can be represented as a finite sum of primitive idempotents. In fact, such a repre-
sentation is unique (up to permutations). Indeed, let f = e1 + ...+ ek, where ei is
a primitive idempotent for all i. Let e be a primitive idempotent, since by Lemma
1 e is orthogonal to any other primitive idempotent, we get that e · f = 0 if e ̸= ei
for all i, and e · f = e otherwise; which proves the uniqueness. Moreover, the last
argument shows that the unity (if it exists) is the sum of all primitive idempotents.

The above remark motivates the following definition:

Definition 2. For any nonzero idempotent f we define its support by:

Supp{f} := {e | e · f = e and e is a primitive idempotent}.

For any idempotent f , the equality (shown in Remark 1):

f =
∑

e∈Supp{f}

e,

shall be called the primitive representation of f .

We recall the following result from [7], Proposition 4:

Proposition 1. Let R be a (non-unital) finite commutative ring and let E(R) be
its idempotent ring then:

i) E(R) is an F2−algebra and is isomorphic to Fn
2 for some n.

ii) Any nontrivial ring homomorphism ϕ : E(R) → F2 is the projection on the
i-th coordinate, for some i ∈ {1, ..., n} (here we identify E(R) with Fn

2 via the above
isomorphism).

By Remark 1, if {e1, ..., ek} is the set of primitive idempotents of R then E(R) ≃⊕
i F2 · ei as F2−algebras. The second assertion follows immediately by observing

that there exists a unique primitive idempotent which is sent by ϕ to 1.

Remark 2. If R is a finite commutative ring with unity then it is an Artinian ring,
and the structure theorem for Artinian rings (Theorem 8.7 in [5]) asserts that R is
isomorphic to a product R1 × ... × Rn of local Artinian rings. This isomorphism
gives rise to

E(R) ≃ E(R1 × ...×Rn) ≃ Fn
2

Last proposition shows that even in the case of a non-unital ring R, the idem-
potent algebra is isomorphic to Fn

2 . If R is a ring with unity, since 1 = e1+ ...+ en,
where e1, ..., en are the primitive idempotents of R, then the map R →

∏
i Rei,

x 7→ (xe1, ..., xen) is an isomorphism, so that the rings Ri are in fact isomorphic to
the rings Rei. In particular, the number of local Artinian rings that appear in the
decomposition of R is equal to the number of its primitive idempotents (for more
details see [7]).

We end this section with the following useful lemmas about BBR structures.

Lemma 3. Let R be a commutative (n, d)−BBR and e be an idempotent (given by
its binary representation). Then, the ring S := Re is a commutative (n, d)−BBR.
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Proof. The ring S inherits the oracle ring structure from R. The validation com-
ponent of the oracle structure of S checks first the validity of x using the validation
component of the oracle structure of R and then checks the equality x = x · e. The
computational component of the oracle structure of S uses the computational com-
ponent of the oracle structure of R. It is clear that the computational complexity
of the oracle of S remains polynomial in the length of the representation. Finally, if
G = {g1, ..., gd} is a set of generators of R, then Ge := {g1e, ..., gde} is a generating
set of S. □

Lemma 4. Let Ri, i ∈ 1, k be a finite set of (ni, di)−BBRs. Then, the product∏n
i=1 Ri is a (

∑
i ni,

∑
i di)−BBR.

Proof. Using string concatenation, it is easy to see that such a product of oracle
rings is an oracle ring. The union of all generating sets (viewed inside the product)
is a set of generators for the product. □

3.2. Structural theorem. The aim of this section is the following:

Theorem 3. Any finite commutative ring is a product of a unital subring and a
nilpotent subring. Moreover, the decomposition is unique.

We shall prove this theorem by explicitly describing this decomposition (inside
the ring), while the unicity comes from the properties of its pieces: unital, respec-
tively nilpotent. The reader should be warned of the fact that the nilpotent ring
exhibited in this theorem is also an ideal of the ring, but, in general, is not the
nilradical of the ring. It is rather the maximal nilpotent ideal of the ring which
is an internal direct summand as an ideal. The constructive nature of our proof
allows us to find a computable description of the structure of finite commutative
rings. We prove below the following explicit version of the first part of Theorem 3:

Theorem 4. Let R be a finite commutative ring and let e1, ..., en be its primitive
idempotents. Let ē = ēR := e1 ⊕ ...⊕ en, R̄ := R · ē, and NR := {x ∈ R | xē = 0}.
Then:

(1) R̄ is a unital subring, and NR is a nilpotent ideal.
(2) The map R→ R̄×NR, x 7→ (xē, x− xē) is a ring isomorphism.
(3) Any morphism of rings S → R with S unital, factors through S → R̄ ⊆ R.

Proof. (1) The fact that R̄ is a unital ring is clear. The unit is ē, because xē· ē = xē,
∀xē ∈ R̄. It is clear that ē is also the unit in E(R). The equality x · ē = 0 yields
xn · ē = 0 for any positive integer n, so that e(x) · ē = 0. But now the identity takes
place in E(R) where ē is the unit, thus e(x) = 0, which implies that x is nilpotent.

(2) It is an easy exercise to check that the map µ : R → R̄ × NR defined by
µ(x) := (xē, x−xē) is indeed a ring homomorphism. It is an isomorphism of rings,
its inverse being µ−1(a, b) := a+ b.

(3) Let ϕ : S → R be a morphism of rings with S unital. Notice that e := ϕ(1S) is
an idempotent of R. Then ϕ(x) = ϕ(1S ·x) = ϕ(1S)·ϕ(x) = e·ϕ(x) = ē·e·ϕ(x) ∈ R̄.
Hence, the morphism factors through R̄ ↪→ R. □

Remark 3. The map R 7→ R̄ is a functor from CRngs, that is the category of
commutative rings not necessarily with unity, to its full subcategory CRings con-
sisting of commutative rings with unity, but here the morphisms may not be unital
homomorphisms, as in the case of CRings, the category of commutative rings with



COMPUTING PRIMITIVE IDEMPOTENTS IN FINITE COMMUTATIVE RINGS AND APPLICATIONS9

unity and unital homomorphisms of rings as morphisms. More precisely, it is the
right adjoint of the forgetful functor CRings → CRngs, given by forgetting the
multiplicative identity. The proof of (3) from Theorem 4 shows the right adjoint-
ness.

Proof of Theorem 3. By the previous theorem it remains to show the unicity of the
decomposition in Theorem 3. Let R = R1×R2 with R1 unital and R2 nilpotent. By
the above remark we have R1 ⊆ R̄. On the other hand, ēR = (ēR1

, ēR2
) = (ēR1

, 0) =
1R1

, because R1 is unital and R2 is nilpotent. Since R1 = R ·R1, R1 ⊇ R · ē = R̄,
hence R1 = R̄. Notice that R2 = {x ∈ R | x · 1R1 = 0}, thus R2 = NR. □

3.3. Homomorphisms. The following results describe ring homomorphisms from
a ring to a local ring.

Theorem 5. Let R, S be finite commutative rings with unity. Suppose that S
is a local ring, and consider a nontrivial ring homomorphism φ : R → S. Then,
there exists a unique primitive idempotent e such that φ factors through its local
component, i.e. φ is the composition R→ Re→ S.

Proof. The homomorphism φ induces the homomorphism of rings E(R)→ E(S) ≃
F2, which is defined by a projection as in Proposition 1. In other words, there exists
a unique primitive idempotent e ∈ R such that φ(e) ̸= 0. Of course, φ(e) = 1. Using
the explicit decomposition Theorem 4, we conclude that, indeed, φ factors through
the projection R→ Re. □

We have the following immediate consequence of the last theorem:

Corollary 1. Let R be a finite (non-unital) commutative ring, and let k be a
finite field. Then, for any ring homomorphism φ : R → k, there exists a unique
primitive idempotent e such that φ factors through its local component, i.e. φ is
the composition R→ Re→ k.

Proof. It is enough to prove that NR ⊆ ker(φ), which is obvious. □

3.4. Teichmüler liftings. The following result is known to specialists and estab-
lishes the existence of Teichmüler liftings. We express it in a very explicit way that
shall be used in our applications. Throughout the paper a local ring is assumed to
be a commutative ring with unity.

Theorem 6. Let R be a finite local ring with maximal ideal m and residue field k
of size q. Then for each x̄ ∈ k there exists a unique x ∈ R such that xq = x and x
mod m = x̄. Moreover, if y ∈ R is such that y mod m = x̄, then yq

r

= x for any r
with mr = (0).

Proof. Since R is complete in the m−adic topology, the first part of the theorem is

just an application of Hensel’s lemma: let yi := yq
i

, ∀i ≥ 1, then we have y1 ≡ y
mod m, so that y1 = y +m1, where m1 ∈ m. Then y2 = (y +m1)

q ≡ yq mod m2,
therefore y2 = y1 +m2 with m2 ∈ m2. By induction, yi = yi−1 +mi with mi ∈ mi,
hence yr = yr−1 for any r such that mr = (0). Denoting by x this stationary value,
we get that xq = x and x ≡ y mod m. □

Remark 4. Under the conditions of Theorem 6, we have: e(y) = yq
r(q−1) ∈

{0R, 1R}. Indeed, since the residue field k has size q, we have that yq−1 mod m ∈
{0k, 1k}. Now, using the last theorem we get that yq

r(q−1) ∈ {0R, 1R}.
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We have the following useful consequence of Theorem 6 :

Corollary 2. Let (R,m) be a local ring and let S := {x ∈ R|xq = x}. Then
(S,+S , ·) is isomorphic to the residue field R/m, where x+S y = (x+ y)q

r

, and · is
the usual multiplication on R (here q is the size of the residue field R/m, and r is
the nilpotency index of the maximal ideal).

Proof. Let π : R → R/m be the projection map. By Theorem 6 the restriction
of π to S is a bijection; let ρ : R/m → S be the inverse map. Then, x +S y =
ρ(π(x) + π(y)) and x · y = ρ(π(x) · π(y)) for all x, y ∈ S, which shows that π :
(S,+S , ·)→ (R/m,+, ·) is a ring isomorphism. □

Definition 3. Let R be a finite commutative ring with unity. For a prime p, we
denote by Rp the product of the local Artinian rings that occur in the decomposition
of R, whose residue fields are of characteristic p. Moreover, for a prime p and a
positive integer k, we denote by Rp,k the product of the local Artinian rings having
residue fields isomorphic to Fpk . When R = Rp, we say that R is a p-power ring.

Corollary 3. If R is a p-power (n, d)-BBR whose Artinian local rings have residue
fields isomorphic to a fixed finite field Fq, then Rred is an (n, d)-BBR.

Proof. As in Corollary 2, let S = {x ∈ R|xq = x}. Let R =
∏

i Rei, where (Rei,mi)
are its local Artinian components and let Si be the corresponding subsets of Rei as
in Corollary 2. Then Si = S · ei and S =

∏
i Si. As above, on S we define addition

by the formula x +S y = (x + y)q
r

, where r is the nilpotency index of the ideal∏
i mi (one can take r = ⌊logq |R|⌋, see the proof of Proposition 3). Then (S,+S , ·)

becomes a ring isomorphic to
∏

i(Si,+Si
, ·), which by Corollary 2, is isomorphic

to
∏

i Rei/mi (the fact that S =
∏

i Si and each (Si,+Si
, ·) is a ring shows that

(S,+S , ·) is a ring) . Since the latter ring is isomorphic to Rred, as an abstract ring,
we get that S ≃ Rred. Now it remains to describe the BBR structure of S.

The validation oracle checks for valid strings x that satisfy xq = x. The computa-
tional component of the oracle of S uses the computational component of R to com-
pute (·), respectively (+S) as described above. Remark that, raising to the power
qr can be computed in O((log2(q

r))2) time, and since one can take r = ⌊logq |R|⌋
we get O(n2). Finally, since the composition map ρ ◦ π : R → Rred → S is a
surjective ring homomorphism, if G = {g1, ..., gd} is a set of generators for R then

Gred := {gq
r

1 , ..., gq
r

d } is a set of generators for S. Consequently, we realised Rred

as an (n, d)-BBR. □

4. Computing the map e

In general, there is no polynomial time algorithm that computes the map e :
R → E(R). This can be done using quantum computations as we shall present
below. However, if one knows some additional information about the structure of
the ring, then no quantum computations are required (for example in the case of
p-power rings).

The next result was presented in [12] (see also [13, 7]), and is an adaptation of
Shor’s algorithm (see [29]).

Proposition 2. There is a quantum algorithm that on input (G, g), where G is an
oracle semigroup of length n representation and g ∈ G is an element, outputs the
period p(g) in time polynomial in n.
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Remark 5. An oracle semigroup is a semigroup whose elements are encoded by
bit strings of length n, and the semigroup operation is performed by an oracle.
The authors of [12] use the notion of black-box semigroup instead of oracle semi-
group. To be consistent to our definitions of oracle/black-box rings in Definition 1,
a black-box semigroup would be an oracle semigroup furnished with a finite set of
generators. However, in the above result, one does not need a set of generators for
the semigroup G.

Corollary 4. There is a quantum algorithm that on input a commutative oracle
ring R and an element x ∈ R, outputs e(x) in time polynomial in the length of the
representation of R.

Proof. Using Proposition 2 one finds first p(g) and then compute k :=
⌈

|R|
p(g)

⌉
. Now,

compute e(g) = gkp(g). Since kp(g) ≤ 2|R| we get that the complexity is polynomial
in log2 |R| ≤ n. □

Interestingly enough, when R is a p-power oracle ring we can do much better.
We have the following:

Proposition 3. There is a classical algorithm that on input a p-power oracle ring
R and an element x ∈ R, outputs e(x) in time polynomial in the length of the
representation of R.

Proof. We show first that the map e can be computed using the following formula:

e(y) = yp
⌊logp |R|⌋(p−1)(p2−1)...(p⌊logp |R|⌋−1).

Let R = R1 × ... × Rm, where each Ri is a local finite ring with maximal ideal
mi, and residue field Ri/mi ≃ Fpki . We may suppose that mNi

i = (0), and that Ni

is the least positive integer with this property. If y = (y1, ..., ym), then by Remark
4 and Remark 2, we obtain that

e(y) = (e(y1), ..., e(ym)) = (y
pk1N1 (pk1−1)
1 , ..., yp

kmNm (pkm−1)
m )

= yp
maxi{kiNi}(p−1)(p2−1)...(pmaxi{ki}−1).

Since Ri ⊃ mi ⊃ m2
i ⊃ ... ⊃ mNi

i = (0) and each mj
i/m

j+1
i is a (non-trivial)

Fpki -vector space, we get |mj
i/m

j+1
i | ≥ pki so that

|Ri| =
Ni−1∏
j=0

|mj
i/m

j+1
i | ≥ pkiNi

Consequently, pkiNi ≤ |Ri| ≤ |R| and ki ≤ kiNi ≤ logp |R| so that

e(y) = yp
⌊logp |R|⌋(p−1)(p2−1)...(p⌊logp |R|⌋−1)

We can efficiently evaluate e(y) by using the square-and-multiply techniques. More
precisely, we need at most (log2 |R|)4 multiplications. □
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5. Computing the primitive idempotents of a ring

The purpose of this section is to prove the following theorem:

Theorem 7. There is a probabilistic algorithm that on input R, a commutative
(n, d)-BBR, outputs all its primitive idempotents in time polynomial in (n, d).

Recall that by Theorem 4 we have a decomposition R ≃ R̄ ×NR, and by Artin
decomposition theorem (see also Remark 2) R̄ ≃

∏
i R̄ei, where ei are the primitive

idempotents of R. Since R̄ei = Rei, we get that R ≃
∏

i Rei ×NR. We note that
the above theorem gives an explicit way for the computation of this decomposition
of R. Our strategy runs as follows:

(1) We first exhibit the unital part of a ring R by computing ēR.
(2) For a unital ring R, we single out a set of primes P and a set of idempotents
{ep | p ∈ P} such that R ≃

∏
p Rep, and Rep is a p-power ring.

(3) For a unital p-power ring R, we compute a finite set of integers S ⊆ Z>0

and a set of idempotents {ep,k | k ∈ S} such that Rep,k is a unital subring
of R whose residue fields are all isomorphic to Fpk and R ≃

∏
k∈S Rep,k.

(4) Finally, for a unital ring R, whose residue fields are all isomorphic to Fpk ,
we compute its primitive idempotents.

Remark 6. Quantum computation is used only to determine NR and each ep
(with p prime), i.e. for steps (1) and (2). For the other two steps: (3) and (4), only
classical computation is needed.

5.1. Computing the unital part. Let R be a non-unital commutative (n, d)-
BBR. In this section we show how to compute the unit of its unital part R̄. Fix
a set of generators G = {g1, ..., gd} of R. Let {e1, . . . em} be the set of primitive
idempotents of R. If e and e′ are idempotents in R we define the operation e∨ e′ =
e ⊕ e′ ⊕ ee′, which is commutative and associative. Notice that if the primitive
idempotent ei occurs in the sum decomposition of at least one of the idempotents
e and e′, then ei also occurs in the decomposition of e ∨ e′.

Theorem 8. Let G = {g1, . . . , gd} be the generating set of a quasi-unital ring R.
Then

ē =

d∨
j=1

e(gj)

is the unit of its unital part R̄.

Proof. Let Rk = Rek, k ∈ 1,m be the local Artinian components of R, and let mk

be their maximal ideals. It is enough to show that, for any k, there exists at least
one i ∈ 1, d such that gi · ek ̸∈ mk. Assume by contradiction that gi · ek ∈ mk for
all i ∈ 1, d. Then the whole generating set G sits inside the kernel of the following
composition of homomorphisms:

R→ R̄→ Rk → Rk/mk,

which is a proper ideal of R, and this is impossible. □

As a consequence we have the following:
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Proposition 4. There is a quantum algorithm that takes as input an (n, d)-BBR
R and outputs the unity of its unital part in time polynomial in (n, d).

Proof. Since by Corollary 4, e(gj) can be computed in time polynomial in n, the
conclusion follows by the formula for ē exhibited in Theorem 8. □

By Lemma 3, if R is an (n, d)-BBR then R̄ is an (n, d)-BBR. Since R̄ is a unital
ring, we may assume from now on that R is a unital commutative BBR. This ends
step (1) of our strategy.

5.2. Computing the p-power parts of a unital ring. The purpose of this
subsection is to show how to compute the decomposition of a unital commutative
ring into its p−power parts, where p is a prime number. Since we don’t need a
system of generators for this decomposition, the next result is valid in the more
general context of unital commutative oracle rings.

Theorem 9. There is a quantum algorithm that on input a unital commutative
oracle ring R together with the binary representation of its unit outputs a set of
primes P and a set of idempotents {ep | p ∈ P} such that R ≃

∏
p Rep, and

Rep is a p-power ring. The algorithm runs in time polynomial in the length of the
representation of R. Moreover, if R is an (n, d)-BBR then each ring Rep is a unital
p-power (n, d)-BBR.

Proof. The algorithm is divided in the following subroutines:

• Use Shor’s quantum algorithm to compute the characteristic of R, which
is the additive period of 1R, i.e. the minimal positive integer N such that
N · 1R = 0 (see Proposition 2).

• Use Shor’s quantum factoring algorithm to compute the prime factorization
of N =

∏
p p

αp (see [29]). Set P := {p | αp ≥ 1}.
• Use the extended Euclidean algorithm to compute integers {up}p∈P such

that N
pαp | up and

∑
p up = 1.

• Set ep := up · 1R.
• Output P and {ep | p ∈ P}.

Notice that all of the above subroutines of the algorithm run in time polynomial in
the length representation of R. From

∑
p up = 1 and pαp | uq for q ̸= p we deduce

that pαp | (1−up), hence N | up(1−up). This shows that ep−e2p = (up−u2
p)·1R = 0,

i.e. ep is an idempotent for each p. For distinct p, q ∈ P we have that up · uq is

divisible by the product N
pαp · N

qαq = N · N
pαpqαq , hence by N . Since N ·1R = 0, we get

that ep · eq = upuq · 1R = 0. Moreover, since
∑

p up = 1 we get that
∑

p ep = 1R,

therefore R ≃
∏

p Rep. Notice that the additive period of ep is pαp so that any
residue field of Rep has characteristic p, therefore Rep is a p-power ring for each
p ∈ P. Finally, the last assertion of the theorem is an immediate consequence of
Lemma 3. □

This ends step (2) of our strategy so that from now on we may assume that R
is a p-power BBR. As mentioned in Remark 6 all the remaining subroutines are
classical.

5.3. Computing the idempotents ep,k. Step (3) is achieved in the following:
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Theorem 10. There is a classical algorithm which takes as input a p-power (n, d)-
BBR R and outputs a finite set of integers Tp ⊆ Z>0 and a set of idempotents
{ep,k | k ∈ Tp} such that Rep,k is a unital subring of R, whose residue fields are all
isomorphic to Fpk , and R ≃

∏
k∈Tp

Rep,k. The algorithm runs in time polynomial

in (n, d).

Proof. Let G = {g1, . . . , gd} be a set of generators for the ring R. The algorithm
runs as follows:

Algorithm 1: Compute ep,k

1: ēp,0 := 1R
2: Tp = ∅; E = ∅
3: k = 0
4: while ēp,k ̸= 0
5: k = k + 1
6: for i = 1 to d do
7: ei,k := e(gi · ēp,k−1 − gp

k

i · ēp,k−1)
8: end for
9: ēp,k =

∨d
i=1 ei,k

10:ep,k = ēp,k−1 − ēp,k
11: If ep,k ̸= 0 then
12: Tp = Tp ∪ {k}
13: E = E ∪ {ep.k}
14: end if
15: end while
16: return Tp, E

Let us note first that the algorithm terminates for some k smaller or equal to
n. Indeed, if ep,k ̸= 0 for some k then, since Rep,k is a subring of R we get that
|Rep,k| ≤ |R|. On the other hand, any residue field of Rep,k has size at most the
size of Rep,k, i.e. p

k ≤ |Rep,k| ≤ |R| ≤ 2n so that k ≤ n. It is clear that algorithm
runs in time polynomial in (n, d).

We need to show that, for each k ≥ 1, all residue fields of the local Artinian
components of Rep,k are isomorphic to Fpk . For this, it is enough to prove by
induction on k that ēp,k is the sum of all primitive idempotents whose residue fields
are isomorphic to Fpm withm ≥ k+1. The case k = 0 follows from Remark 1. Since
the computation of ēp,k takes place in Rēp,k−1 and using the step of induction, we
get that ēp,k is a sum of primitive idempotents whose residue fields are of size at
least pk. We show first that a primitive idempotent f with residue field of size pk

does not occur in the primitive decomposition of ēp,k. Assuming the contrary, then

there exist an i ∈ 1, d such that ei,k · f = f , equivalently e(gi · f − gp
k

i · f) = f .
On the other hand, since the residue field of Rf is Fpk we have that gif ≡

(gif)
pk

= gp
k

i f mod mf , so that

0 = e(gif − gp
k

i f) = e(gi − gp
k

i )f = f,
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which is a contradiction (here mf is the maximal ideal of the local Artinian ring
Rf). Hence ēp,k is a sum of primitive idempotents with corresponding residue
fields isomorphic to Fpm with m > k. Moreover, ēp,k is the sum of all primitive
idempotents with corresponding residue fields isomorphic to Fpm for some m > k.
Let f be a primitive idempotent with corresponding residue field isomorphic to
Fpm for some m > k. Since {g1f mod mf , ..., gdf mod mf} generates Rf/mf

and Rf/mf is isomorphic to Fpm for some m > k, there exist an i such that

gie−(gie)
pk ̸∈ mf (otherwise the set {g1f mod mf , ..., gdf mod mf} is a subset of

Fpgcd(k,m) , which is a strict subfield of Fpm). Therefore, we get that e(gi−gp
k

i )f = f ,
which proves our claim. In particular, we proved that Rep,k = Rp,k as in Definition
3.

Since 1R is the sum of all primitive idempotents and each one of them occurs in
the primitive decomposition of exactly one of the ep,k’s, we get that

∑
k ep,k = 1R

and any two ep,k’s are orthogonal. In particular, this proves that R ≃
∏

k∈Tp
Rep,k.

□

Now we have all the necessary ingredients to give the proof of Theorem 2.

Proof of Theorem 2. : We recall that there is a quantum algorithm that on input
R, a commutative (n, d)-BBR, outputs a realization of R̄ as a commutative (n, d)-
BBR (Proposition 4, Lemma 3). Since Rred ≃ R̄red as rings, we may assume that
R is a unital (n, d)-BBR. By Theorems 9 and 10 there is a quantum algorithm
that on input a unital commutative (n, d)-BBR outputs a set of primes P, a set of
positive integers Tp for each p ∈ P, and a set of idempotents {ep.k | p ∈ P, k ∈ Tp}
such that R ≃

∏
p,k Rep,k and all the residue fields of Rep,k are isomorphic to Fpk .

Recall from Corollary 3 that, for each pair (p, k), the following subset of R

Sp,k = {x ∈ Rep,k | xpk

= x},
together with x+p,k y = (x+ y)p

kn

and x ·p,k y = x · y is a ring oracle structure for
(Rep,k)

red. Consider now the following subset of R:

S = {x ∈ R | (x · ep,k)p
k

= x · ep,k ∀p ∈ P,∀k ∈ Tp}.
Observe that the map S →

∏
p,k Sp,k defined by x 7→ (x ·ep,k)p∈P,k∈Tp

is a bijection

with inverse (xp.k)p∈P,k∈Tp
7→
∑

p.k xp,k. This bijection becomes an isomorphism

of rings if we endow S with the following ring structure: x ·S y := x · y (the usual
multiplication on R), while x+S y :=

∑
p,k(x · ep,k +p,k y · ep,k).

Since R ≃
∏

p,k Rep,k, we have that Rred ≃
∏

p,k(Rep,k)
red ≃

∏
p,k Sp,k ≃ S.

Therefore S is an oracle ring realization of Rred. In particular, the length of the
representation is n. Let {g1, ..., gd} be a set of generators for R, then the set

{h1, ..., hd} with hi :=
∑

p,k(giep,k)
pkn

, ∀i ∈ 1, d is a set of generators for S, due to

the surjectivity of the ring homomorphism R → Rred. This shows that Rred is an
(n, d)-BBR. □

5.4. Computing the primitive idempotents. Step (3) of our strategy was com-
pleted in the previous subsection. It remains to discuss the last step, that is to show
how to compute the primitive idempotents of a p-power (n, d)-BBR R whose residue
fields are all isomorphic to Fq = Fpk . According to the next proposition we can

work with Rred, instead of R. Indeed, we have the following result:
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Proposition 5. Let R be a p-power ring (n, d)-BBR whose residue fields are all
isomorphic to a fixed finite field Fq, and let S be the (n, d)-BBR as in Corollary 3,
then R and S have the same primitive idempotents.

Proof. Let e be an idempotent of R, then since eq = e we have that e ∈ S and
in addition e is also an idempotent of S because the multiplication in S coincides
with the multiplication of R. The converse also holds trivially. Since the two sets
of idempotents have the same cardinality, we deduce that R and S have the same
number of primitive idempotents (see Proposition 1). To close the proof we show
that any primitive idempotent of R is also a primitive idempotent of S. Let e be
a primitive idempotent of R. Suppose that e is not a primitive idempotent of S.
Then we can write e as e = e1 +S e2 with e1 · e2 = 0, where e1, e2 are idempotents
of S, hence also of R. We obtain that e = (e1 + e2)

qn = e1 + e2, which yields that
either e1 = 0 or e2 = 0, because e is a primitive idempotent of R. □

As a consequence, throughout the rest of this section we assume additionally
that R is a reduced ring, hence R is a product of isomorphic finite fields.

5.4.1. Computing the primitive idempotents when k = 1. We are in the case R ≃∏
i Rei with Rei ≃ Fp,∀i. Let G = {g1, . . . , gd} be a generating set of R. We

distinguish two cases:

• The case p = 2. In this case, R is an idempotent ring of characteristic 2, i.e.
R ≃ Fm

2 for some m ≤ n. We shall use the following notation for X a subset of a
ring R, and r an element of R:

Xr := {xr|x ∈ X}.

Algorithm 2 Compute the primitive idempotents of R = Re2,1

1: X0 := {1}
2: for i = 1 to d do
3: Xi := Xi−1gi

⋃
Xi−1(1− gi)

4: end for
5: return Xd \ {0}

Notice that for each i, Xi consists of elements which are mutually orthogonal, so
that it has no more than m+1 elements, thus the algorithm runs in time polynomial
in n. Moreover, we claim that Xd \ {0} is the set of all primitive idempotents of
R. Notice that each f ∈ Xd \ {0} is a product of d elements of R, where the
ith factor is either equal to gi or to 1 − gi. This means that either gif = 0 or
(1 − gi)f = 0 ⇔ gif = f , for all i ∈ 1, d. Therefore Gf = {0, f} generates Rf , so
that Rf = Gf as sets, which is possible only if f is primitive. An easy induction
argument show that

∑
f∈Xi

f = 1, ∀i ∈ 0, d, so that
∑

f∈Xd\{0} = 1. In particular,

we obtain that Xd \ {0} is the set of all primitive idempotents of R.

• The case p ≥ 3. Since R ≃ Fm
p for some m < n, then any nonzero x ∈ R can

be written uniquely as x =
∑

f∈F (x) xf · f , xf ∈ Fp, where F (x) is a finite set of

mutually orthogonal idempotents satisfying
∑

f∈F (x) f = 1 and xf ̸= xg, for all f ̸=
g with f, g ∈ F (x). We shall call this expression the step representation of x. In the
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first part of this subsection we show that there exists a probabilistic polynomial time
algorithm that computes (with overwhelming probability) the step representation
of any nonzero element of R. Then, we find the primitive idempotents by applying
this subroutine to the generating set.

Consider the following algorithm with input x ∈ R and r ∈ {0, 1, ..., p− 1}:

Algorithm 3 A(x, r)

1: Compute x(r) := (x−r·1R)p−1+(x−r·1R)
p−1
2

2
2: return: {x(r), 1− x(r)}

The algorithm A(x, r) returns a set consisting of two idempotents with sum equal
to 1. Indeed, if x =

∑
f∈F (x) xf · f is the step representation of f , then

x(r) =
∑

f∈F (x)

(xf − r)p−1 + (xf − r)
p−1
2

2
· f,

and
(xf−r)p−1+(xf−r)

p−1
2

2 ∈ {0, 1}, for all f ∈ F (x). If x is an integer multiple of
the unit, i.e. F (x) = {1R}, then the algorithm always returns the set {0R, 1R}.
Otherwise, the following proposition predicts that for any two distinct idempotents
f, g ∈ F (x), the algorithm returns two idempotents that separate them (i.e. either
Supp{f} ⊆ Supp{x(r)}, Supp{g} ∩ Supp{x(r)} = ∅ or vice versa) for at least one
third of all possible values of r.

Proposition 6. Let x ∈ R be such that x ̸= a · 1R for any a ∈ Fp, and let
f, g ∈ F (x) be two distinct idempotents. Then, the probability that the algorithm
A(x, r) returns a set consisting of two idempotents that separate f and g is at least
1
2 −

1
2p ≥

1
3 , when r is chosen uniformly at random from the set {0, 1, ..., p− 1}.

Proof. Let us first observe that we may assume F (x) = {f, g}, i.e. x = xf ·f+xg ·g.
If χ((xf − r)(xg − r)) = −1 then it is easy to see that the algorithm returns two

idempotents that separate f and g (here χ(a) = a
p−1
2 , a ∈ Fp is the Legendre

symbol). To count how many r’s have this property, we count first how many r’s
satisfy χ((xf − r)(xg − r)) = 1. This is equal to:

∑
r ̸=xf ,xg

1 + χ((xf − r)(xg − r))

2
=

p− 2

2
+

1

2

∑
r ̸=xf ,xg

χ((xf − r)(xg − r))

=
p− 2

2
+

1

2

∑
r ̸=xf ,xg

χ

(
xf − r

xg − r

)
=

p− 2

2
+

1

2

∑
s̸=0,1

χ(s) =
p− 3

2
,

where the second to the last equality follows from the fact that the map r 7→ xf−r
xg−r

is a bijection from Fp \{xf , xg} to Fp \{0, 1}, and the last equality is a consequence
of
∑

s∈F×
p
χ(s) = 0, for any nontrivial character. Thus, the required probability is

at least 1
p

(
p− 2− p−3

2

)
= 1

2 −
1
2p . □
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The following probabilistic algorithm, which uses A(x, r) as a subroutine, outputs
F (x) with overwhelming probability, for any input x ∈ R .

Algorithm 4 Equal(x,M)

1: X0 := {1}
2: for i = 1 to M do
3: Pick r uniformly at random from {0, 1, ..., p− 1} and run A(x, r)
4: Xi :=

⋃
y∈A(x,r) Xi−1y

5: end for
6: return: XM \ {0}

We have the following estimation:

Proposition 7. For every x ∈ R \ {0}, the algorithm Equal(x,M) outputs F (x)
with probability at least 1−

(
n
2

)
( 23 )

M .

Proof. According to Proposition 6, the probability that there exist two distinct
idempotents of F (x) that are not separated in any of the M runs of A(x, r) is at

most
(|F (x)|

2

)
( 23 )

M . Since the number of idempotents in F (x) is less than or equal to
the number of primitive idempotents, and that is at most n, the result follows. □

Remark 7. Notice that if one chooses M = ⌈ 2n+100
log2 3−1⌉, then the probability that

the algorithm Equal(x) outputs F (x) is at least

1−
(
n

2

)(
2

3

)M

≥ 1−
(
n
2

)
22n+100

≥ 1− 1

2n+100
≥ max

(
1− 1

2100
, 1− 1

2n

)
.

In other words, the algorithm outputs F (x) with overwhelming probability for every
n, and, in addition, the probability is exponentially close to 1 as n→∞. Of course,
if p is small (i.e. p is polynomial in n) we can modify Equal(x) by running A(x, r)
for all r ∈ 0, p− 1. In that case the output is F (x) and the algorithm becomes a
deterministic polynomial time algorithm.

Now, we are proceeding similarly to the case p = 2 to compute the primitive
idempotents:

Algorithm 5 Compute the primitive idempotents of R = Rep,1

1: X0 := {1}
2: for i = 1 to d do
3: Run Equal(gi), and let F̄ (gi) be the output
4: Xi := F̄ (gi) ·Xi−1

5: end for
6: return: Xd \ {0}

where for two subsets X,Y ⊆ R, X · Y := {x · y|x ∈ X, y ∈ Y }.
By Proposition 7, in the above algorithm the equalities F̄ (gi) = F (gi) hold for

all i ∈ 1, d with probability at least 1 − d
(
n
2

)
( 23 )

M . In this case, the output of
the algorithm is the set of all primitive idempotents. Indeed, since gi · f ∈ Fpf ,
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∀i ∈ 1, d, ∀f ∈ F (gi), we get that gi · f ∈ Fpf , ∀i ∈ 1, d, ∀f ∈ Xd \ {0}. Suppose
that there exist an idempotent f ∈ Xd \{0} that is not primitive, then we can write
f as a sum of primitive idempotents f = e1 + ... + ek, k ≥ 2. Since {g1f, ..., gdf}
is generating Rf , we get that Rf ≃ Fpf , which is a contradiction because Fpf is

not isomorphic to
∏k

i=1 Fpei. We proved that Xd \ {0} consists only of primitive

idempotents. Multiplying the equalities
∑

f∈F (gi)
f = 1 for all i ∈ 1, d, we get that∑

f∈Xd\{0}

f = 1,

so that Xd \ {0} is the set of all primitive idempotents (see Remark 1). As before,
if, for example, one chooses M = ⌈ 2n+d+100

log2 3−1 ⌉ then the algorithm outputs the set of

all primitive idempotents with probability at least max
(
1− 1

2100 , 1−
1
2n

)
and runs

in time polynomial in (n, d).

5.4.2. Computing the primitive idempotents when k ≥ 2. In this section, we assume
that R ≃

∏
i Rei, where for all i ∈ 1, n, Rei ≃ Fpk with k ≥ 2. We shall denote

by πi : R → Rei ≃ Fpk the projection onto the ith- component. If x ∈ R, then
xp is obtained by acting with the Frobenius automorphism of Fpk on each prim-

itive component of x. Moreover, if sj represents the jth− elementary symmetric

polynomial in k variables, then computing (−1)jsj(x, xp, . . . xpk−1

) will produce on
each primitive component the coefficient of Xk−j of the characteristic polynomial
of that component (over Fp). It is well known that, since the characteristic polyno-
mial of some number in Fpk is just a power of its minimal polynomial, we get that
two numbers in Fpk have the same characteristic polynomial if and only if they are

Galois conjugates. Notice also that for any x ∈ R and every j ∈ 1, k:

sj(x, x
p, . . . , xpk−1

) ∈
∏
i

Fpei.

The following algorithm takes as input a nonzero element x and outputs a set
of mutually orthogonal idempotents, such that, for each one of them, the primitive
components of x that correspond to the primitive idempotents in its support are
Galois conjugates.

Algorithm 6 Conj(x)

1: F := {1}
2: for i = 1 to k
3: Compute uj(x) := sj(x, x

p, . . . xpk−1

)
4: Ej := Equal(uj(x))
5: F = Ej · F
6: end for
7: return: F \ {0}

Now we collect all the idempotents returned by applying Conj to the generating set:

Algorithm 7 ConjG
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1: F := {1}
2: for i = 1 to d
3: Xi := Conj(gi)
5: F = Xi · F
6: end for
7: return: F \ {0}

If f is in the output of Conj G then the primitive components of gif are Galois
conjugates, for all i ∈ 1, d. Therefore, by Lemma 3, if we replace R by Rf and G
by Gf , we reduce to the case in which the primitive components of any element
of the generating set are Galois conjugates. For the rest of this section we shall
assume that this is the case.

Before we give the algorithm for this final case, we need to discuss and recall the
theoretical background needed. To this end, it is convenient to introduce the set
GalConj(R) consisting of all elements of R for which their primitive components
are Galois conjugates. We have the following characterization of this set:

Lemma 5. An element x ∈ R is in GalConj(R) if and only if Fp[x] is a field.

Proof. Observe that the restriction π1|Fp[x]
: Fp[x] → Fpk is injective when x is in

GalConj(R), so that Fp[x] is a field. Conversely, let xi := πi(x) and xj := πj(x)
be two distinct primitive components of x ∈ R, and let Q(X) be the minimal
polynomial of xi over Fp. We get that the ith and jth components of Q(x) ∈ R are
0 and Q(xj), respectively. If Q(xj) ̸= 0, then Q(x) were a zero divisor in R, so that
it wouldn’t be invertible in R, consequently also not in Fp[x]. So Q(xj) = 0, which
proves that xi and xj are Galois conjugates. □

For any x ∈ GalConj(R), we define the degree of x by:

k(x) := [Fp[x] : Fp] = [Fp[πi(x)] : Fp],∀i.
It is clear that k(x) = min{j ∈ N|xpj

= x}, and if R is an (n, d)-BBR then k(x) ≤ n.

Lemma 6. Let x, y ∈ GalConj(R) with gcd(k(x), k(y)) = 1, then Fp[x, y] is a field.

Proof. For any i ∈ {2, ..., n}, there exist integers ui, vi such that xi = xpui

1 , and yi =

yp
vi

1 (as before xj = πj(x), yj = πj(y), ∀j). Since (k(x), k(y)) = 1, by the Chinese
Remainder Theorem, there exist an integer Ni such that Ni ≡ ui (mod k(x)),

and Ni ≡ vi (mod k(y)), so that xi = xpNi

1 , and yi = yp
Ni

1 . Consequently, the
restriction of π1 to Fp[x, y] is injective, hence Fp[x, y] is a field. □

The rest of this section is heavily influenced by the results of [26], where R is
just a finite field. The main arguments are there, we just verified that they can be
extended to our case. First of all we show that there exists ḡ ∈ GalConj(R) with
k(ḡ) = k. The following algorithm is called combine gen in [26] , we shall make
it suitable for our situation:

Algorithm 8: combine gen(a, b)

1: Let a, b ∈ GalConj(R)
2: Find ka|k(a) and kb|k(b) such that:
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gcd(ka, kb) = 1, lcm(ka, kb) = lcm(k(a), k(b))

3: Find a′ ∈ Fp[a], b
′ ∈ Fp[b] such that k(a′) = ka, k(b

′) = kb.
4: return: a′ + b′

This algorithm takes as input two elements a, b ∈ GalConj(R) and returns an
element x ∈ GalConj(R) with k(x) = lcm(k(a), k(b)). Step 2 and Step 3 are
explained in [26], and the arguments also work in our case because Fp[a],Fp[b]
are fields. Notice that a′, b′ ∈ GalConj(R), and since gcd(ka, kb) = 1 we get that
Fp[a

′, b′] is a field, by Lemma 6. Since Fp[a
′+b′] is a subfield of Fp[a

′, b′], by Lemma
5, we get that a′ + b′ ∈ GalConj(R). Obviously Fp[a

′, a′ + b′] = Fp[a
′ + b′, b′] =

Fp[a
′, b′] so that:

lcm(k(a′), k(a′ + b′)) = lcm(k(a′ + b′), k(b′)) = lcm(k(a′), k(b′)) = k(a′) · k(b′).

We get that k(a′ + b′) = k(a′) · k(b′) = lcm(k(a), k(b)).

The purpose of the following algorithm is to find an element ḡ ∈ GalConj(R)
with Fp[ḡ] ≃ Fpk .

Algorithm 9: Computing ḡ

1: Let {g1, ..., gd} be a generating set for R.
2: Set ḡ := g1
3: for i = 2 to d do
4: ḡ := combine gen(ḡ, gi)
5: end for
6: return: ḡ

It is clear that k(ḡ) = lcm(k(g1), ..., k(gd)) and ḡ ∈ GalConj(R). Since Fpk is
generated as a ring by {π1(g1), ..., π1(gd)}, lcm(k(g1), ..., k(gd)) = k. In other words
k(ḡ) = k, i.e. Fp[ḡ] ≃ Fpk .

By the well-known dual basis theorem [24], there exist an Fp-basis h1, ..., hk of

Fp[ḡ] such that trF
pk

/Fp
(ḡihj) = δi+1,j , where trF

pk
/Fp

(x) := x+xp+ ...+xpk−1

, for

any x ∈ R (see [26] for the calculation of the dual basis inside the black-box field
Fp[ḡ]).

Now, we use this dual basis to compute the primitive idempotents of R = Rep,k.

Algorithm 10 Compute the primitive idempotents of Rep,k, k ≥ 2

1: for i = 1 to d do
2: Compute trFq/Fp

(gihj), ∀j
3: Let Xi :=

∏
j Equal(trFq/Fp

(gihj))
4: end for

5: return: F :=
(∏

i Xi

)
\ {0}
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Proposition 8. The above algorithm takes as input and (n, d)-BBRR = (Rep,k)
red

with generating set consisting only of elements from GalConj(R) and outputs the
set of all primitive idempotents of R. Moreover, the algorithm runs in time poly-
nomial in (n, d).

Proof. By Proposition 7, we have that
∑

f∈F f = 1, so that it remains to prove
that each f ∈ F is primitive; equivalently, the ring Rf has no zero divisors. For
any f ∈ F , we claim that gif ∈ Fp[ḡ]f for all i ∈ 1, d. Assuming the claim, then

the ring generated by {gif |i ∈ 1, d} is a subring of the field Fp[ḡ]f , so that it has

no zero divisors. On the other hand, {gif |i ∈ 1, d} generates Rf , consequently Rf
has no zero divisors.

To prove the claim, notice first that by Proposition 7 we have:

trF
pk

/Fp
(gihj)f ∈ Fpf, ∀i, j.

Let xi := gif −
∑k

j=1 trFpk
/Fp

(gihj)f · ḡj−1,∀i ∈ 1, d, then

trF
pk

/Fp
(xihj) = trF

pk
/Fp

(gihjf)− trF
pk

/Fp

(
k∑

ℓ=1

trF
pk

/Fp
(gihℓ)fḡ

ℓ−1hj

)

= trF
pk

/Fp
(gihj)f −

k∑
ℓ=1

trF
pk

/Fp
(gihℓ)f · trF

pk
/Fp

(ḡℓ−1hj)

= trF
pk

/Fp
(gihj)f − trF

pk
/Fp

(gihj)f = 0.

If e is any primitive idempotent that occurs in the sum decomposition of f then
trF

pk
/Fp

(xihj)e = trF
pk

/Fp
(xie ·hje) = 0. This, together with the fact that {hje|j ∈

1, d} is a basis of Re ≃ Fpk , implies that xie = 0; hence xi = 0,∀i. We get that:

gif =

k∑
j=1

trFq/Fp
(gihj)f · ḡj−1 ∈ Fp[ḡ]f, ∀i ∈ 1, d,

which ends the argument.
□

6. Applications

6.1. The Representation Problem. In this subsection, we extend the results of
[26] to the case of a reduced p-power BBR. More precisely, the authors of [26] study
the Representation Problem (see the next definition) for a black-box field, and we
consider the same problem for a BBR that is isomorphic to a finite product of finite
fields, all of a fixed characteristic p. As in [26], we have the following:

Definition 4. (Representation Problem) Consider an (n, d)-BBR R and a generat-
ing set G = {g1, ..., gd} of it. For any x ∈ R, finding a polynomial P (X1, ..., Xd) ∈
Z[X1, ..., Xd]+ such that x = P (g1, ..., gd) is called the representation problem for
the black-box ring R.

We state the following extension of Theorem 1 from [26]:
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Theorem 11. The representation problem for a reduced p-power (n, d)-BBR is
efficiently reducible to the representation problem for Fp.

Proof. The results of sections 5.3 and 5.4 show how to compute (classically) the
primitive idempotents of the reduced p-power BBR in terms of the generating set,
more precisely as polynomials in the elements of the generating set. Hence, we
reduce the representation problem for a reduced p-power BBR to the representation
problem for each of its local Artinian components. Now, since each local Artinian
component is a finite field of characteristic p, the theorem follows from Maurer and
Raub’s result, which asserts that the representation problem for a black-box field
of characteristic p is efficiently reducible to the representation problem for Fp. □

Since the representation problem for Fp with p small (i.e. p is polynomial in n) is
clearly solvable, we have the following:

Corollary 5. If R is a reduced p-power (n, d)-BBR and p is small then the repre-
sentation problem for R is efficiently solvable.

Remark 8. We refer the reader to [26] for the connection between the represen-
tation problem and the extraction and isomorphism problems for black-box fields.
As in [26], our result shows that the extraction and isomorphism problems for a
reduced p-power BBR are efficiently reducible to the representation problem for Fp.

6.2. Homomorphic Encryption.

6.2.1. Definitions. The homomorphic encryption schemes in their generality were
treated by different authors and many treaties. We refer to [22] for a comprehensive
treatment of the subject and also to [3] for a treatment of their security behavior.
Let us define ring homomorphic encryption schemes and explore their properties.
Since a ring homomorphic encryption scheme is a certain type of a homomorphic
encryption scheme, we introduce first this concept. In what follows, λ will indicate
the security parameter.

Definition 5. A public key encryption scheme consists of three PPT algorithms

E = (KeyGen,Enc,Dec)

as follows:

• Key Generation. The algorithm (pk, sk) ← KeyGen(1λ) takes a unary
representation of the security parameter and outputs a public encryption
key pk and a secret decryption key sk.

• Encryption. The algorithm c← Enc(pk,m) takes the public key pk and a
single message m and outputs a ciphertext c.

• Decryption. The algorithm m⋆ ← Dec(sk, c) takes the secret key sk and a
ciphertext c and outputs a message m⋆.

A public key encryption scheme is assumed to be correct, i.e. it satisfies the
following property:
Correct Decryption: The scheme E is correct if for all m ∈M and keys (sk, pk)
in the support of KeyGen(1λ),

Pr[Dec(sk,Enc(pk,m)) = m] = 1,

where the probability is over the randomness of Enc.
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A public-key homomorphic encryption scheme is a public-key encryption scheme
with an additional PPT evaluation algorithm Eval, such that KeyGen outputs an
additional evaluation key evk besides sk and pk. More precisely, we have:

• Homomorphic Evaluation. The algorithm cf ← Eval(evk, f, c1, ..., cℓ) takes
the evaluation key evk, a circuit f :Mℓ → M (M is the message space)
from a set of circuits C, and a set of ℓ ciphertexts c1, ..., cℓ, and outputs a
ciphertext.

A public-key homomorphic encryption scheme is assumed to satisfy the following
properties:
Correct Evaluation: The scheme E correctly evaluates all circuits in C if for all
keys (sk, pk, evk) in the support of KeyGen(1λ), for all circuits f : Mℓ → M,
f ∈ C , and for all mi ∈M, 1 ≤ i ≤ ℓ, it holds that

Pr[Dec(sk,Eval(evk, f, (ci)
ℓ
i=1)) = f((mi)

ℓ
i=1)] = 1,

where ci ← Enc(pk,mi), ∀i ∈ 1, ℓ, and the probability is over the randomness of
Enc and Eval.
Compactness: The scheme E is compact, if there exists a polynomial s = s(λ)
such that the output length of Eval is at most s bits long, regardless of f or the
number of inputs.

We say that a public-key homomorphic encryption scheme is a fully homomorphic
encryption scheme (FHE) scheme if the scheme correctly evaluates all possible
boolean circuits f :Mℓ →M.

Definition 6. An arithmetic circuit over a ring R is defined similarly to a standard
boolean circuit, except that each wire carries an element of R and each gate can
perform an addition or multiplication operation over R (for a more formal definition
see Definition 4.1. in [1]).

In this work we will consider only the following type of homomorphic encryption
schemes:

Definition 7. A ring homomorphic encryption (RHE) scheme is an encryption
scheme such that the message and the ciphertext spaces are finite rings, the ad-
dition and multiplication on these spaces can be performed by polynomial time
algorithms, and the decryption algorithm is a homomorphism of rings for any se-
cret key outputted by the key generation algorithm.

More precisely, in Definition 7 we assume the existence of two representations:

Rλ
ıR
↪→ {0, 1}nR(λ) and Sλ

ıS
↪→ {0, 1}nS(λ), where nR(λ), nS(λ) are polynomials in

the security parameter λ (here Rλ and Sλ are the ciphertext space and the message
space), such that Decλ(sk, ·) : ıR(Rλ) → ıS(Sλ) is a deterministic polynomial
time algorithm, and Encλ(pk, ·) : ıS(Sλ) ⇝ ıR(Rλ) is a probabilistic polynomial
time algorithm. Notice that since Dec is a homomorphism of rings a RHE correctly
decrypts any arithmetic circuit, so that a RHE is a homomorphic encryption scheme
for the set of all arithmetic circuits (for compactness, observe that the output of
Eval is always at most nR(λ) bit long). We note here that the evaluation key of
an RHE scheme may consists of the necessary parameters needed to define the two
operations on the ciphertext space.

The main motivation for the study of RHE schemes comes from the fact that
if the plaintext space of a RHE scheme is a quasi-unital ring (see section 3), then
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the RHE scheme gives rise to a FHE scheme. By Theorem 3 and Proposition
1 the plaintext space Sλ contains a non-zero idempotent, say e, so that one can
construct an F2-structure inside Sλ. Indeed, the set {0, e} together with addition
x ⊕ y = 2(x + y) − (x + y)2 and usual multiplication from S is a ring isomorphic
to F2. To show that the encryption scheme with message space {0, e} and with
encryption and decryption enherited from the RHE scheme is a fully homomorphic
encryption scheme, one defines the Eval algorithm as follows: replace any gate of
a boolean circuit with the corresponding small degree polynomial (i.e. the XOR
gate is replaced by ⊕ and the AND gate by the usual multiplication) and use the
operations on the ciphertext space. The fact that Dec is a homomorphism of rings
shows that the scheme correctly evaluates any boolean circuit.

We briefly recall the security notion that we consider in this paper, that is
indistinguishability under chosen-ciphertext attack (IND-CCA1) for public key en-
cryption schemes (see [25]). To define it we introduce first the following two-phase
experiment in which A is a polynomial time adversary.

ExprIND-CCA1

:

- Phase One: Generate the keys (pk, sk, evk) ← KeyGen(1λ). Give A access to
a decryption oracle and run A on input (pk, evk). The adversary A proposes two
messages m0 and m1.
- Phase Two: Choose at random a bit i, and compute c← Enc(pk,mi). Give c to
A, and let A continue its computation without access to the decryption oracle.
- Let m′ be A’s output. Output 1 if m′ = mi and 0 otherwise.

Let us point out that the above experiment is relative to a fixed encryption
scheme. The experiment can be run on encryption schemes which are not homo-
morphic by letting the evaluation key to be the empty set.

Definition 8. An encryption scheme E is IND-CCA1 secure if for any polynomial
time adversary A, the advantage of A satisfies:

AdvIND-CCA1 [A](λ) :=
∣∣∣∣Pr [ExprIND-CCA1

[A](1λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

We extend the above definition so that we include adversaries who have access
to quantum computation only in Phase One of the IND-CCA1 experiment. This
naturally leads to the notion of quantum-classical IND-CCA1 secure scheme. From
a practical point of view this notion seems reasonable, given the nowadays restrictive
access to quantum computing facilities.

In what follows, we shall assume that the ciphertext space of a ring homomor-
phic encryption scheme is an (n, d)-BBR (where n and d are polynomials in the
security parameter). In particular, the attacks that we construct on RHE schemes
do not depend on the knowledge of the addition or multiplication algorithms of the
ciphertext space.

6.2.2. IND-CCA1-attack on ring homomorphic encryption schemes over quasi-unital
rings. The aim of this subsection is to present the following cryptanalysis result:

Theorem 12. If the plaintext space of a ring homomorphic encryption scheme is
a quasi-unital ring, then the scheme is not quantum-classical IND-CCA1-secure.
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Proof. Suppose that R and S are the ciphertext space, and respectively the plain-
text space of a ring homomorphic encryption schemes, and that S is a quasi-unital
ring. By this assumption and the fact that the decryption map is a surjective homo-
morphism, we get that R is a quasi-unital BBR. In Phase One, the adversary uses
the algorithms from Section 5 to find the primitive idempotents of R (notice that
the time complexity of this computation is polynomial in the security parameter).
Then, it starts decrypting the primitive idempotents using the decryption oracle,

until he finds a nonzero decryption, say f
Dec7−→ m. Now, the adversary A proposes

the messages m and 0, which ends Phase One of the IND-CCA1 experiment.
If c← Enc(m) is any encryption of m, then

Dec(cf) = Dec(c) ·Dec(f) = m ·m = m,

so that Dec(e(cf)) = m. This, together with the fact that e(cf) is either equal
to f or to 0 (because f is a primitive idempotent), yields that e(cf) = f . The
argument also shows that if c is an encryption of 0 then e(cf) = 0.

Consequently, in Phase Two of the IND-CCA1 experiment, the adversary com-
putes e(cf) and outputs m if e(cf) = f and 0 otherwise. Notice that since Rf is a
p-power oracle ring, by Proposition 3, e(cf) is computed classically in polynomial
time. It is clear that the adversary decrypts correctly with probability equal to 1
any given ciphertext.

□

6.2.3. Decrypting ciphertexts in RHE schemes over reduced rings of smooth char-
acteristic. In this subsection, we investigate a plaintext-recovery attack on ring ho-
momorphic encryption schemes, whose plaintext spaces are reduced rings of smooth
characteristic. This means that the plaintext space is a product of fields, such that
each field that occurs in the product has small (that is polynomial in the security
parameter) characteristic. More precisely, we shall investigate the following type
of plaintext-recovery two-phase attack (called quantum-classical plaintext-recovery
attack).
- In the first phase, the adversary receives the public key and access to a decryption
oracle. In this phase, the adversary is allowed to do computation using classical
and quantum PPT algorithms.
- In the second phase, after receiving a ciphertext from the challenger, the adver-
sary is allowed to use only classical PPT algorithms in order to find the decryption
of the ciphertext.

We say that a quantum-classical plaintext-recovery attack is successful if it de-
crypts correctly with probability equal to 1.

Theorem 13. Let E be a ring homomorphic encryption scheme whose plaintext
space S is a reduced ring of smooth characteristic, then there is a successful quantum-
classical plaintext-recovery attack.

Proof. Let R be the ciphertext space of E . We have the following commutative
diagram:

R R̄ Rej Rred
j

S S Sfj

·ēR

Dec Dec Dj

ρj◦πj

Ψj

=
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where Rej is a local Artinian component of R, and fj = Dec(ej). Also, Dj is
the restriction of the decryption map to Rej , and Rred

j is the associated BBR
structure of the residue field of Rej (cf. Corollary 3). We recall that each primitive
idempotent of S gives rise to a unique primitive idempotent of R which decrypts to
it (cf. Corollary 1), so that the map Dj : Rej → Sfj in the diagram refers to such
a pair. Since Sfj is a field, Dj factors over the projection map ρj ◦πj : Rej → Rred

j

(see the proof of Corollary 2), so that we get the map Ψj in the diagram. Notice
that Ψj is an isomorphism of fields. Since injectivity is clear, it remains to prove
surjectivity. Let s ∈ S and r ← Enc(s), then Dec(r) = s so that Dj(rej) = sfj ;
therefore Dj is surjective, and the same holds for Ψj .

Now we describe the plaintext-recovery attack. First of all, since the ciphertext
space is an (n, d)-BBR a finite set G of generators for R is given. The adversary
A uses the decryption oracle to decrypt the elements of G (we point out that this
is the only time when the decryption oracle is needed). Then A computes the
primitive idempotents of R, and decrypts each one of them using its polynomial
expression in terms of the generating set. Now, the adversary records the pairs
{(ej , fj = Dec(ej))|j ∈ J}, where ej , fj are both primitive idempotents of R and
S, respectively (some of the primitive idempotents of R do not appear in this set
because they decrypt to 0). Let us note that the map Ψj is efficiently computable.
Indeed, the set Gej generates Rej , so that ρj ◦πj(Gej) is a generating set for Rred

j ,
and we know how Ψj maps the elements of this set, because we know the values of
Dj on Gej . Now, the result of Maurer and Raub ([26], Theorem 1) shows how to
represent each element of Rred

j in terms of this generating set, therefore we know
how to compute the map Ψj (for more details see Section 3.3 of loc.cit.). Finally,
the adversary uses the following formula satisfied by the decryption map:

Dec(c) =
∑
j∈J

Ψj(cej),∀c ∈ R

□

Remark 9.
• In general, under the assumptions of the last theorem, the above argument shows
that decryption map may be computed correctly when the representation problem
is solvable for any prime divisor of the characteristic of the plaintext space.
• Under the assumptions of the last theorem, if R and S are unital with known
characteristics, then the above plaintext-recovery attack can be performed using
only classical algorithms.
• Since our strategy for the plaintext-recovery attack uses in an essential way the
computation of idempotents, we cannot deduce any information about the nilpotent
part. This is the reason why we had to assume in the last theorem that the plaintext
is a reduced ring.
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