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Abstract. Noncommutative cryptography is based on applications of 

algebraic structures like noncommutative groups, semigroups and non-

commutative rings. Its intersection with Multivariate cryptography con-

tains  studies of  cryptographic applications of subsemigroups   and 

subgroups of affine Cremona semigroups  defined overfinite commuta-

tive rings.  Efficiently computed homomorphisms between stable sub-

semigroups of affine Cremona semigroups can be used in tame homo-

morphisms  protocols schemes and their inverse versions. The imple-

mentation scheme with the sequence of subgroups of affine Cremona 

group, which  defines projective limit was already suggested. We pre-

sent the implementation of other scheme which uses two projective lim-

its  which define two different infinite groups and the homomorphism 

between them.   The security of corresponding algorithm is based on a 

complexity of decomposition problem for an element of affine Cremona 

semigroup into product of given generators. These algorithms may be 

used  in postquantum technologies. 

Keywords: Multivariate Cryptography, stable transformation groups and 

semigroups, decomposition problem of nonlinear multivariate map into given 

generators,  tame homomorphisms, key exchange protocols, cryptosystems, al-

gebraic graphs. 

1. On  ideas of Noncommutative Cryptography with platforms of 

transformations of Multivariate Cryptography.    

 

   Post Quantum Cryptography serves for the research of asymmetrical crypto-

graphic algorithms which can be potentially resistant against attacks with the  

usage of quantum computer. The security of currently popular algorithms are 

based on the complexity of the following  well known three  hard problems: 

integer factorisation, discrete logarithm problem, discrete logarithm for ellip-

tic curves. Each of these problems can be solved in polynomial time by Peter 

Shor's algorithm for theoretical quantum computer.  In fact some rather old 

cryptosystems which were suggested in late 70th of the 20 century potentially 
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may have some resistance to attacks on quantum computers  (see for instance 

Mac Eliece cryptosystem [32]).     

 Modern PQC is divided into several directions such as Multivariate Cryptog-

raphy, Nonlinear Cryptography ,  Lattice based Cryptography,  Hash based 

Cryptography, Code based Cryptography, studies of isogenies for superelliptic 

curves,  Noncommutative cryptography and others.  

     The Multivariate Cryptography (see [1], [2], [3])  uses polynomial  maps 

of affine space K n defined over a finite commutative ring into itself as encryp-

tion tools. It exploits the complexity of finding a solution of a system of non-

linear equations from many variables. Multivariate cryptography uses as en-

cryption tools nonlinear polynomial transformations of kind x1  → f1(x1 , x2, … 

, xn), x2, →  f2(x1 , x2, … , xn), … , xn →  fn(x1 , x2, … , xn)), transforming affine 

space Kn, ere  are multivariate polynomials 

usually given in a  standard form, i.e. via a list of monomials in a chosen or-

der.     

     Non-commutative cryptography appeared  with attempts  to apply Combi-

natorial group theory to Information Security. If G is noncom-mutative group 

then correspondents can use conjugations of elements involved in protocol, 

some algorithms of this kind were suggested in [4], [5], [6], [7], where group 

G is given with the usage of generators and relations. Security of such algo-

rithms is connected to Conjugacy Search Problem (CSP) and Power Conjuga-

cy Search Problem (PCSP), which combine CSP and Discrete Logarithm 

Problem and their generalizations. Currently Non-commutative cryptography 

is essentially wider than group based cryptography. It is an active  area of 

cryptology, where the cryptographic primitives and systems are based on al-

gebraic structures like groups, semigroups and noncommutative rings (see  

[8], [9], [10], [11], [12], [13], [14], [15], [16]). This direction of security re-

search has very rapid development (see  [17], [18] and further references in 

these publications). 

      One of the earliest applications of a non-commutative algebraic structures 

for cryptographic purposes was the usage of braid groups to develop crypto-

graphic protocols. Later several other non-commutative structures like Tomp-

son groups and Grigorchuk groups have been  identified as potential candi-

dates for cryptographic post quantum applications. The standard way of 

presentations of  groups and semigroups is the usage of generators and rela-

tions (Combinatorial Group Theory). Semigroup based cryptography consists 

of general cryptographic schemes defined in terms of wide classes of semi-

groups and their implementations for chosen semigroup  families (so called 

platform semigroups). 

    The paper is devoted to some research on the intersection of Non Commu-

tative and Multivariate Cryptographies. We try to use some abstract schemes 

in terms of Combinatorial  Semigroup Theory  for the implementation with 
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platforms which are semigroups and groups of polynomial transformations of 

free modules Kn where K is commutative ring.  

   The most popular form of Multivariate cryptosystem  is the usage of a single 

very special map f in a public key mode. First examples were based on fami-

lies of quadratic bijective transformation fn(see [1], [2], [3]), such choice im-

plies rather fast encryption process.The paper is devoted to other aspects of 

Multivariate cryptography when some subsemigroup of affine Cremona semi-

group of all polynomial  transformations is used instead of a  single transfor-

mation. Let us discuss a case of subsemigroup with single generator. Every-

body knows that Diffie - Hellman key exchange protocol can be formally con-

sidered in general case of any finite group or semigroup G. In the case of 

group G corresponding El Gamal cryptosystem can be introduced. Notice that 

security of this algorithm depends not only on abstract group G but on the 

way of its generation in computers memory. For instance if G=Z*p is multi-

plicative group of large prime field then discrete logarithm problem (DLP) is 

difficult one and guarantees the security of the protocol, if the same abstract 

group is given as additive group of Zp-1 protocol is insecure because DLP will 

be given by linear equation.  

  Notice that the implementation of the idea to use multivariate generator in its 

standard form has to overcome essential difficulties. At first glance Diffie - 

Hellman protocol in affine Cremona semigroup looks as unrealistic one be-

cause of composition of two maps of degree r and s taken in ''general position 

'' will be a transformation of degree rs. So in majority of cases deg(F)=d, d 

>1 implies very fast growth of function  d(r)=deg(Fr). Of course in the case 

of generator in common position not only  degree but a density (total  number 

of monomial terms of the map in its standard forms)   grows exponentially.  

So we have to find special conditions on  subsemigroup of affine Cremona 

group which guarantee the polynomial complexity of procedurę to compute 

the composition of several elements from subsemigroup. Such conditions can 

define a basis of Noncommutative Multivariate Cryptography.  Hopefully at 

least  two conditions of this kind are already known [19] (see further refer-

ences)  and [34]. We consider them in the following section. 

 
2. On stable subsemigroups of Affine Cremona Semigroup,  Eulerian trans-

formations  and  corresponding cryptographic schemes.     

 

Stability condition demands  that degree of each transformation of the sub-

semigroup of affine Cremona semigroup has to be bounded by independent 

constant d. We refer to such subsemigroup as stable subsemigroup of degree 

d.  Examples of known families of stable subgroups of degree  d=3  reader 

can find in [19] (see further refrences) or [33]  Applications of such families 

to Symmetric Cryptograpjy could be found in [35]. Some examples of stable 

families of subgroups of degree 2 are given in [20] ). 
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 Eulerian condition demands that  all transformations of subsemigroup of af-

fine Cremona subgroup are given in a standard form (x1 , x2, … , xn) → (f1(x1 , 

x2, … , xn),  f2(x1 , x2, … , xn), … ,fn(x1 , x2, … , xn)), where each  fi  has density 

1. All transformations of this kind for  General Eulerian Semigroup nGES(K) 

of transformations of kind x1→ϻ1x1
a(1,1)x2

a(1,2) … xn
a(1,n), x2 → ϻ2x1

a(2,1)x2
a(2,2) … 

xn
a(2,n),…, xn →ϻnx1

a(n,1)x2
a(n,2) … xn

a(n,n)  where a(i,j) are positive integers and  

ϻiϵK.      

      First cryptosystems of Nonlinear Multivariate Cryptograpjy in terms of 
nGES(K) are suggested in [34].  

  The discrete logarithm problem is the special simplest case of the word 

decomposition problem for semigroups. Let S’  be a subsemigroup  of S   gen-

erated by  elements  g1, g2, …, , gt. The word problem (WP) of finding the de-

composition of  gϵS into product of generator gi is difficult, i. e. polynomial 

algorithms  to solve it with  Turing machine or Quantum Computer are un-

known. The idea to apply  this problem in Cryptography was considered in 

[36] where some general schemes to use WP for constructuons of algorithms 

of Noncommutative Cryptography were suggested. Of course the complexity 

of the problem depends heavily of  choice of S and the way of presentation of 

semigroup. In the cases of families of  affine Cremona semigroups  or S= 

nGES(K) problem WP is computationally infeasible with a Turing machine" 

and with Quantum Computer. 

We are working on implementations of the following formal schemes of  

usage the complexity of WP. Tame map means computable in polynomial 

time from parameter m. 

TORIC TAHOMA CRYPTOSYSTEM.  

Let K be a commutative ring, subgroups nG of   nGES(K) act naturally on 

(K*)n,  mS(n, K) is a subsemigroup of  mGES(K) such that there is a tame ho-

momorphisn ∆=∆(m,n) of  mS(n, K)  onto nG. We assume that m=m(n) where 

m>n and consider  the following toric tahoma cryptosystem: 

Alice takes b1 , b2, … , bs , s>1 from  mS(n, K)  and a1 , a2, … , as  where , 

ai=∆(bi)
 -1.  She takes gϵ mEG(K) and hϵnEG(K) and forms pairs (gi, hi) =(g -1bi 

g , h -1 ai h) , i=1, 2,..., s and sends them to Bob. 

He writes the word  w(z1, z2 ,..., zs) in the alphabet z1, z2 ,..., zs together with 

the reverse word w’(z1, z2 ,..., zs)  formed by characters of w written in the re-

verse order. He computes element b=w(g1, g2 ,..., gs)  via specialization  zi=gi 

and a=w’(h1, h2 ,..., hs) via specialization zi=hi. Bob keeps a for himself and 

sends b to Alice. She computes a -1  as  h -1∆(gbg-1)h. 

Alice writes  her message (p1 , p2, … , pn) and sends ciphertext a -1(p1 , p2, 

… , pn)  to Bob. He decrypts with his function a. Symmetrically Bob sends his 

ciphertext a(p1 , p2, … , pn) to Alice and she decrypts with a -1. 

The problems of constructions of large subgroups G of  nGES(K), pairs (g, 

g-1), g ϵG, and tame Eulerian homomorphisms ϻ:G→H, i. e. computable in 



5 

 

polynomial time t(n) homomorphisms of subgroup G of  nGES(K) onto  H< 

mGES(K) are motivated by tasks of Nonlinear Cryptography. 

The first platforms for this scheme and some other abstract schemes are 

suggested in [34]. 

   If we change semigroup mGES(K) for affine Cremona semigroup S(Km) 

we obtain the following AFFINE TAHOMA CRYPTOSYSTEM on stable 

transformations. 

    Let K be a commutative ring, stable subgroups nG of S(Kn) act naturally 

on Kn and  mS(n, K) be a subgroup of S(Km) such that there is a tame homo-

morphisn ∆=∆(m,n) of  mS(n, K)  onto nG . We assume that m=m(n) where 

m>n . 

Alice takes b1 , b2, … , bs , s>1 from  mS(n, K)  and a1 , a2, … , as  where , 

ai=∆(bi)
 -1.  She takes gϵC(Q m) and hϵC(R n) where R and Q are extensions of 

the commutative ring K  and forms pairs (gi, hi) =(g -1bi g , h -1 ai h) , i=1, 2,..., 

s and sends them to Bob. We assume that g=g’T , h=h’T’ where  semigroup  

<g’, mS(n, K) > generated by g’ and elements of  mS(n, K) and group <h’ ,G>  

are stable semigroups of degree d and TϵAGLn(R), T’ϵAGLm(Q).  

As in the  previous algorithm Bob writes the word  w(z1, z2 ,..., zs) in the al-

phabet z1, z2 ,..., zs together with the reverse word w’(z1, z2 ,..., zs)  formed by 

characters of w written in the reverse order. He computes element b=w(g1, g2 

,..., gs)  via specialization  zi=gi and a=w’(h1, h2 ,..., hs)  via specialization zi=hi. 

Bob keeps a for himself and sends b to Alice. She computes a -1  as  h -1∆(gbg-

1)h. 

Alice writes  her message (p1 , p2, … , pn) from Rn and sends ciphertext a -1 

(p1 , p2, … , pn)  to Bob. He decrypts with his function a. Symmetrically Bob 

sends his ciphertext a(p1 , p2, … , pn) to Alice and she decrypts with a -1   (see 

[21]). Let nTC(K,R,Q) stand for affine Tahoma cryptosystem as above.  

In [20] quadratic stable subsemigroups  with correspondent homomorphims 

are suggested as platforms  of this scheme. Some other schemes are also im-

plemented there with these platforms. Some cubical platforms were suggested 

in [21]. 

   Only one family of platforms were investigated via computer implemen-

tation. Paper [31]  is devoted to implementations of Affine Tahoma  scheme 

with platforms of cubical stable groups. They were defined via families of 

linguistic graphs  which form projective limits and the standard homomor-

phisms between two members of this sequences. So we have pairs (Gn , ∆n ) 

where Gn <S(Kn), ∆n  is a homomorphism of Gn onto Gm,  m=m(n)  such that 

projective limits  lim (Gn ),  n →∞ and lim(∆(Gn )), n →∞  coincide with the 

same infinite transformation group G.  

This article is devoted to another computer experiment with  the new plat-

form which uses the same groups Gn  but different tame homomorphisms  ῃn . 

In the new scheme lim(Gn),  n →∞  equals to G, but lim(ῃn(Gn)), n →∞ coin-

cides with  the image of homomorphism of G with an infinite kernel. 
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We believe that option to vary tame homomorphisms in the chosen se-

quence of semigroup makes the task of cryptanalytic much more difficult. 

We use projective limits D(K) and A(K) of the  well known graphs D(n, K) 

[22], [23]  and A(n,K ) (see [24] and further references)  defined over arbitrary 

finite commutative rings.   Walks on the graphs D(K) and A(K) allow to de-

fine groups GD(K) and GA(K) of cubic transformations of infinite dimension-

al affine space over K.  Group GA(K) is a homomorphic image of GD(K), 

both groups can be obtained as projective limits of sequences GAn(K) and 

GDn (K),n=1, 2,… of finite cubical stable groups. We suggest key exchange 

protocols based on homomorphisms of GDj(K) ontp GAi(K) for some i and j. 

 Computer simulations demonstrate an interesting effect of density stabili-

sation of generated cubical maps. The time execution tables for algorithms of 

generation of maps and numbers of monomial terms are given. They demon-

strate the feasibility of algorithms. The method of generation allows to con-

struct for each bijective transformation of the free module over K its inverse 

map. Multivariate nature of collision maps allows to use these algorithms for 

the safe exchange of multivariate transformations. Various deformation rules 

can be used for this purpose (see formal schemes of [21] and [19], [20]).  

 
3. Some basic definitions. 

 

 Let us consider basic algebraic objects of multivariate cryptography, which 

are important for the choice of appropriate pairs of maps  f, f -1  in both cases 

of public key approach or idea of asymmetric algorithms with protected en-

cryption rules.  Let us consider the totality SFn(K) of all rules  of kind: x1→ f1( 

x1, x2, …, xn),   x2→ f2(x1, x2, …, xn), ..., xn → fn(x1, x2, …, xn) acting on the af-

fine space Kn, where fi , i =1, 2,..., n are elements of  K[x1, x2, …, xn] with nat-

ural operation of composition. We refer to this semigroup as semigroup of 

formal transformation SFn(K) of free module  Kn.    In fact it is a totality of all 

endomorphisms of ring  K[x1, x2, …, xk] wth the operation of their superposi-

tion. Each rule f from SFn(K)  induces transformation t(f) which sends tuple  

(p1 , p2, … , pn)  into (f1(p1 , p2, … , pn),  f2(p1 , p2, … , pn), … ,fn(p1 , p2, … , 

pn)). Affine Cremona semigroup S(Kn) is a totality of all transformations of 

kind t(f). The canonical homomorphism t→t(f) maps infinite semigroup 

SFn(K) onto finite semigroup S(Kn)  in the case of finite commutative ring K.  

We refer to pair (f, f') of elements  SFn(K)  such that ff' and f'f are two cop-

ies of identical rule xi→ xi, i =1, 2,..., n as pair of invertible elements. If (f, f') 

is such a pair, then product t(f)t(f')  is an identity map. Let us consider the 

subgroup CFn(K)  of all invertible elements of SFn(K) (group of formal maps). 

It means f is an element of CFn(K) if and only if there is f' such that ff' and f' f 

are identity maps. It is clear that the image of a restriction of t on CFn(K)  is 
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affine Cremona group  Cn(K) of all transformations of  Kn onto Kn for which 

there exists a polynomial inverse.  

We say that a family of subsemigroups Sn of SFn(K) (or S(Kn)) is stable of 

degree d if maximal degree of elements from  Sn is an independent constant d, 

d > 1. If K is a finite commutative ring then stable semigroup has to be a fi-

nite set.   

Condition d>1 is natural because of elements from the group AGLn(K) of 

all affine bijective transformations, i. e. elements of affine Cremona group of 

degree 1.  

 

4. On linguistic graphs and related semigroups of affine transformations. 

       
     The missing definitions of graph-theoretical concepts which appear in this 

paper can be found in [21]. All graphs we consider are simple graphs, i.e. un-

directed without loops and multiple edges. Let V(G) and E(G) denote the set 

of vertices and the set of edges of G respectively.  

        When it is convenient we shall identify G with the corresponding anti-

reflexive binary relation on V(G), i.e. E(G) is a subset of V(G)◦V(G) and write 

v G u for the adjacent vertices u and v (or neighbours). We refer to |{ x ϵ 

V(G)| xGv }| as degree of the vertex v.  

       The incidence structure is the set V with partition sets P (points) and L 

(lines) and symmetric binary relation I such that the incidence of two elements 

implies that one of them is a point and another one is a line. We shall identify 

I with the simple graph of this incidence relation or bipartite graph. The pair  

x,  y ,  x ϵ P, yϵ L such that  x I y  is called a  flag of incidence structure I. 

        Let K be a finite commutative ring. We refer to an incidence structure 

with a point set P=Ps,m=Ks+m and a line set L=Lr,m=Kr+m as linguistic inci-

dence structure Im  if point   x=(x1, x2,…, xs, xs+1, xs+2, …,  xs+m) is incident to 

line  y=[y1, y2, … , yr , ,yr+1, yr+2 , …, yr+m ] if and only if the following rela-

tions hold 

        a1xs+1+b1yr+1=f1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

 a2xs+2+b2yr+2=f2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  , yr, yr+1) 

                                … 

 amxs+m+bmyr+m=fm ( x1, x2 ,… , xs, xs+1,…, xs+m, y1, y2, …  , yr, yr+1, …,  yr+m) 

 

where  aj, and bj , j=1,2,,,,m are not zero divisors, and fj are multivariate poly-

nomials with coefficients from K [22]. Brackets and parenthesis allow us to 

distinguish points from lines. 

   The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  x  (line [y])  is defined as 

projection of an element (x) (respectively [y]) from a free module on its initial 
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s (relatively r) coordinates. As it follows from the definition of linguistic inci-

dence structure for each vertex of incidence graph there exists unique neigh-

bour of a chosen colour. We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, x2 ,… , 

xs+m) and ρ([y])=(y1, y2, …  , yr) for [y]=[y1, y2, …  , yr+m] as the colour of the 

point and the colour of the line respectively. For each b ϵ Kr and p=(p1, p2 ,… , 

ps+m)  there is a unique neighbour of the point [l]=Nb(p) with the colour b. 

Similarly for each cϵKs and line l=[l1, l2 ,… , lr+m]  there is a unique neighbour 

of the line (p)= Nc([l]) with the colour c. The triples of parameters s, r, m de-

fines type of linguistic graph. 

We consider also linguistic incidence structures defined by infinite number 

of equations. Let M = {m1, m2,… , md} be a subset of {1, 2, …, m} (set of 

indexes for equations). Assume that equations indexed by elements from M of 

following kind  

 am1xm1 + bm1ym1 = fm1 (x1, x2 ,  …, xs , y1, y2, …  , yr) 

 am2xm2 + bm2ym2 = fm2 (x1, x2, … , xs, xm1, y1, y2, …  , yr,, ym1) 

… 

amdxmd + bmdymd  = fmd (x1, x2, … , xs, xm1, xm2,… , xm d-1, y1, y2, …  , yr,, ym1, 

ym2, ,… , ym d-1,) are define other linguistic incidence structure IM. Then the nat-

ural projections δ1,: (x)→(x1, x2, … , xs, xm1, xm2,… , xmd) and δ2:[y]→[y1, y2, … , 

yr, ym1, ym2,… , ymd] of free modules define  the natural homomorphism δ of in-

cidence structure I onto IM.. We will use same symbol ρ for the colouring of 

linguistic graph IM.. 

It is clear, that δ is colour preserving homomorphism of incidence struc-

tures (bipartite graphs).  We refer to δ as symplectic homomorphism and 

graph IM as symplectic quotient of linguistic graph I. In the  case of linguistic 

graphs defined by infinite  number of equations we may consider symplectic 

quotients defined by infinite  subset M (see [23], where symplectic homomor-

phism was used for the cryptosystem construction).   

We consider more general concept of linguistic homomorphism ξ of lin-

guistic  incidence systems P, L, I(K) and  induced by linear projections δ of P  

and δ’ : of L defined  via deleting of some coordinates of colour tuples  

( x1, x1, …, xs) and  [y1, y2, …, yr] together with simultaneous deleting of xi+r 

and yi+s for i from some subset of  {1, 2,…, m} . The image of ξ is a linguistic 

graph of type s1 , r1 , m1   where s1≤s, r1≤r, m1 ≤ m. 

In the case of linguistic graph Γ the path consisting of its vertices v0, v1, v2, 

…,vk  is uniquely defined by initial vertex v0, and colours ρ(vi,), i=1, 2,..., k . 

Let us concentrate on linguistic graphs of type 1,1, m .  Let N(a,v)  be the 

operator of taking neighbour of the vertex v with colour  aϵK. We refer to 
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sequences (f1 , f2 ,…, fs) with f1  ϵ K[x1 ] of even length s as symbolic strings. 

On the totality S1,1 (K) of such sequences we consider the product 

(f1, f2, … , fs)(g1, g2, …, gr)=(f1 , f2  ,…,fs , g1 (fs(x1)), g2(fs (x1 ),…, gr (fs (x1 ))).  

Proposition 1.  Elements of S1,1 (K) with defined product form a semi-

group.  

If Q is an extension of the ground commutative ring K then linguistic graph 

I(Q) and  can be defined via the same set of equations. Let us take Q=K[x1, 

x2,…, xn] and consider infinite linguistic graph I’=I(K[x1, x2,…, xn]) with parti-

tion sets P’ and L’ isomorphic to variety K[x1, x2,…, xn]
n. For each symbolic 

string (f1, f2, … , fs)  from S1,1 (K)  and consider the symbolic computation C(f1, 

f2, … , fs)  which is a walk  in I’ with starting point X=(x1, x2,…, xn) are generic 

elements of the commutative ring K[x1, x2,…, xn], other elements of the walk 

are X1=N(f1, X), X2=N(f2, X1), …, Xs=N(fs, Xs-1). Notice that operators N(fi, Xi-1) 

are computed in the graph I’.  

It is easy to see that Xs =(fs(x1), g2(x1, x2), …, gn(x1, x2, …, xn)), where gi 

ϵK[x1, x2, …, xi]. The rule (x1 →fs(x1), x2 →  g2(x1, x2),  …,  xn→gn(x1, x2, …, 

xn)) defines the map from  S(Kn) into itself . We denote this map as ∆I(K)(f1, f2, 

… , fs) and refer to it as a map of symbolic computation. 

Proposition 2.  A map ∆I(K) from S1,1(K) into  s(Kn)  sending symbolic 

string (f1, f2, … , fs) to ∆I(K)(f1, f2, … , fs)  is a homomorphism of S1,1(K) into 

s(Kn) . 

We refer to the image PS(I(K)) of homomorphism of proposition 2 as 

semigroup of symbolic point to point computations and refer to ∆I(K) as  lin-

guistic compression (lc) homomorphism. We define a semigroup  LS(I(K)) of 

line to line computations via simple change of points for lines in I and I’. 

Proposition 3. A symplectic homomorphism δ of linguistic graphs   1I(K) 

and 2I(K) of type (1, 1, n) induces canonical homomorphism of  PS(1I(K)) 

onto PS(2I(K)). 

Let us consider subsemigroup Σ(K) of S1,1(K) generated by symbolic shift-

ing strings of kind (x1+a1, x1+a2, …., x 1+as) , where ai, i=1,2,…,s are ele-

ments of K. We identify tuple C=(x1+a1, x1+a2, …., x 1+as) with its code <a1, 

a2, …., as>. 

Proposition 4.  For each linguistic graph I(K) of type (1, 1, n-1) the image 

Σ(I(K))  of  Σ(K)  under the linguistic compression homomorphism  of  onto 

PS(I(K)) is a subgroup of affine Cremona group. 

In fact for invertibility of  ∆(f1, f2,…, fs)ϵPS(I(K))  the bijectivity of  fs is a 

sufficient and necessary condition. We refer to Σ (I(K))  as group of walks on 

points of linguistic graph I(K).  

Let  C=(x1+a1, x1+a2, …., x 1+as) be a shifting symbolic string from the 

semigroup Σ(K). We refer to Rev( C)=(x1-as+as-1, x1-as+as-2, … , x1-as+a1 , x1-

as)as revering string for x. 
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 Lemma  Let ∆=∆I(K) be linguistic compression map from  S1,1(K)  onto 

PS(I(K)) and x ϵ Σ (K). Then inverse map for ∆(x) coincides with ∆(Rev(x)). 
 

5. Stable groups of cubical maps defined in terms of linguistic graphs and 

their homomorphisms. 

 

   Let K be a commutative ring. We define A(n, K) as bipartite graph with 

the point set P=Kn and line set L=Kn (two copies of a Cartesian power of K are 

used). We will use brackets and parenthesis to distinguish tuples from P and 

L. So (p)=(p1, p2, … , pn)ϵPn and [l]=[l1,  l2, … , ln]ϵLn . The incidence relation 

I=A(n,K) (or corresponding bipartite graph I) is given by condition  pI l if and 

only if the equations of the following kind hold. 

p2 - l2=l1p1,  p3 -  l3= p1 l2, p4 - l4 = l1p3,  p5 - l3 = p1 l4, … , pn - ln= p1 ln-1 for 

odd n and pn - ln = l1 pn-1 for even n. 

Let us consider the case of finite commutative ring K, |K|=m. As it instant-

ly follows from the definition the order of our bipartite graph A(n, K) is 2mn. 

The graph is m-regular. In fact the neighbour of given point p is given by 

above equations, where parameters p1, p2,…, pn are fixed elements of the ring 

and symbols l1, l2,…, ln  are variables. It is easy to see that the value for l1 

could be freely chosen. This choice uniformly establishes values for  l2,  l3, … 

, ln . So each point has precisely m neighbours. In a similar way we observe 

the neighbourhood of the line, which also contains m neighbours. We intro-

duce the colour ρ(p) of the point  p and the colour ρ(l) of line l as parameter p1 

and l1  respectively. 

It means that graphs A(n, K) with colouring ρ belong to class of Γ linguistic 

graphs of type (1, 1, n-1). 

Let GA(n,K)=Σ(A(n,K)) stands for the group of walks on points of A(n,K).   

We have a natural homomorphism GA(n+1, K) onto GA(n, K) induced by 

symplectic homomorphism ∆ from A(n+1, K) onto A(n, K) sending point (x1, 

x2, …, xn, xn+1) to (x1, x2, …, xn)  and line [x1, x2, …, xn, xn+1]  to  [x1, x2, …, xn]. 

It means that there is well defined projective limit A(K) of graphs A(n, K) and 

groups GA(K) of groups G(n, K) when n is growing to infinity. As it stated in 

[25] case of K=Fq, q>2 infinite graph A(Fq) is a tree. Some properties of infi-

nite groups GA(K) of transformation of infinite dimensional affine space over 

commutative ring K the reader can find in [24]. 

Other family D(n, K)  of linguistic graphs  of type (1,1, n-1)  defined over 

the commutative ring K  were defined in [23] but its definition in the case of 

K=Fq  was known earlier. In fact graphs D(n,q)=D(n, Fq) are widely known 

due to their applications in Extremal Graph Theory,  in Theory of LDPC 

codes and Cryptography. Graphs D(n, K) are bipartite with set of vertices 
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V=PUL, |P∩ L|=0 . A subset of the vertices P is called the set of points and 

another subset L is called the set of lines. Let P and L be two copies of Carte-

sian power Kn, where n≥ 2 is an integer. Two types of brackets are used in 

order to distinguish points from lines. It  has a set of vertices (collection of 

points and lines), which are  n-dimensional vectors over K:(p) = (p1, p2 , p3, 

p4, . . . , pi, pi+1, pi+2, pi+3, . . ., pn), [l] = [l1, l2, l3, l4, . . . , li, li+1,li+2,li+3, . . ., ln]. 

The point (p)  is incident with the line [l] , if the following relations between 

their coordinates hold: l2-p2=l1p1, l3-p3=l2p1, l4-p4=l1p2,  li-pi=l1pi-2,  li+1-pi+1=li-

1p1, : li+2-pi+2=lip1: li+3-pi+3=l1pi+1 where i≥5. Connected component of edge-

transitive graph D(n,q) is denoted by CD(n,q)  [22]. Notice that all connected 

components of the natural projective limit D(q) of graphs D(n,q), n→∞  are q-

regular trees. Let D(K) stands for the projective limit of graphs D(n,K) 

Let us denote as GD(n,K) and GD(K) the groups  Σ(D(n,K) ) and Σ(D(K)) 

of walks on points of  graphs D(n, K) and D(K) respectively. For the descrip-

tion of certain symplectic quotients we will use the alternative description of 

graphs D(K). It is based on the connections of these graphs with Kac-Moody 

Lie algebra with extended diagram A1.The vertices of D(K) are infinite di-

mensional tuples over K. We write them in the following way (p) = (p0,1, p1,1, 

p1,2,  p21, p22, p’22,  p23,  … , pi,i, p’i,i  , pi,i+1, pi+1,i, …), [l] = [l1,0, l1,1 ,l1,2,,  l21, l22, 

l’22, l23,  … ,li,i, l’i,i  ,li,i+1, li+1,i, …]. We assume that almost all components of 

points and lines are zeros. The condition of incidence of point (p) and line [l] 

( (p)I[l])  can be written via the list of equations below. 

li,i - pi,i =l1,0 pi-1,i; l’i,i – p’i,i = li,i-1 p0,1; li,i+1 – pi,i+1 =li,i p0,1;li+1,i - pi+1,i =l1,0 

p’i,i . This four relations are defined for i≥1, (p’1,1 = p1,1,  l’1,1 = l1,1). 

Similarly, we can define the projective limit A(K) of graphs A(n,K), n>1. 

We can describe the bipartite infinite graph A(K) on the vertex set consist-

ing on points and lines (p) = (p0,1, p1,1, p1,2,  p21, p22,,  p23,  …, pi,i  , pi,i+1,… ), 

[l] = [l1,0, l1,1 ,l1,2,,  l21, l22, l23,  … ,li,i , li,i+1, …] such that point (p) is incident 

with the line [l] ((p)I[l], if the following relations between their coordinates 

hold: li,i - pi,i =l1,0 pi-1,i; li,i+1 – pi,i+1 =li,i p0,1. 

It is clear that the set of indices A={(1; 0), (0; 1), (1; 1), (1; 2),  (2; 2), (2; 

3), … , (i-1, i), (i, i) } is a subset in  D={(1, 0), (0; 1), (1, 1), (1, 2), (2; 2), (2, 

2)’,…, (i- 1, i); (i; i - 1); (i, i); (i, i)’,…). So graph A(K) is a symplectic quo-

tient of linguistic incidence structure D(K). Let us use symbol Ψ for the corre-

sponding symplectic homomorphism. For each positive integer m ≥2 we con-

sider subsets M=Am  and M=Dm containing of first m-2  elements of A’=A-

{(1, 0), (0,1)} and D’=D-{(1, 0), (0,1)}  with respect to the above orders  and 

obtain  symplectic quotients IM of D(K) and A(K).One can check that corre-
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sponding quotients are isomorphic to  graphs D(m, K) and A(m,K).  The inves-

tigation of pair Am , Dm leads to following statement [23]. 

Proposition 5. For each n ≥ 4 there are a symplectic homomorphisms of 

D(2n,K) onto A(m, k), 2 ≥ m ≥ n+1  and D(2n+1, K) onto A(m,K), 2≥  m ≥ 

n+2. Notice that D(n,K)=A(n,K) for n =2,3. 

Proposition 6.  Groups GD(K) and GA(K) are stable cubical transfor-

mations of  infinite dimensional  affine space over commutative ring K. 

Corollary.  GD(n, K) and GA(n,K) are stable cubical subgroups of Cremo-

na group C(Kn). 

6. On Three Gates Bridge diagram and algorithms of Noncommutative cryptog-

raphy for stable transformation groups.       

      

      Let us consider the following Three Gates Bridge diagram. 

 

    Σ(R)  ←               Σ(Q) ←                    Σ(Q) →     Σ (K)  

        ↓                                   ↓                       ↓                ↓ 

 GA(m,R) ←       GA(m,Q) ←         GD(n, Q)→GD(n,K) 

 

    Commutative rings K and R are finite extensions of basic commutative ring 

 Q.  Left and rights arrows of the first row of the diagram corresponds to natu 

 ral embedding  of Σ(Q) into Σ(R) and   Σ(K). The middle row between two 

 copies of  Σ(Q) corresponds to identity isomorphism. 

Left and rights arrows of the second row of the diagram corresponds to nat-

ural embeddings of GA(m,Q) into  GA(m,R)  and GD(n,Q) into CD(n,K) . The 

middle row between GD(m,Q) and GA(m,Q) corresponds to homomorphism 

of these groups induced by symplectic homomorphism of linguistic graphs 

D(n, Q) and A(m, Q) described in Proposition 5.   

Vertical arrows of the diagram correspond to linguistic compression homo-

morphisms of S1,1(R) onto PS(I(R)), I(R)=A(m,R) restricted onto Σ(R) , S1,1(Q) 

onto PS(I(Q)), I(Q)=A(m,Q) restricted onto  Σ (Q) , S1,1 (Q) onto PS(D(n,Q)) 

restricted onto Σ(Q) , S1,1(K) onto PS(D(n,K)) restricted onto  Σ (K). As it fol-

lows from the definitions Three Gates Bridge diagram is commutative dia-

gram. 

6.1  Tahoma word protocol. 

Alice sets pairs of graphs D(n, Q) and its symplectic image A(m,Q). She 

chooses ring extensions R and K . This information defines Three Bridge Dia-

gram. She selects strings Ci=<  iα1 , 
iα2,…, iα t(1)>, i=1, 2, …, r from Σ(Q) and  

elements B=<β1 ,β2, …, βs> from Σ(K) and D=<γ1, γ2 , …, γk,> from Σ(K). Al-
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ice computes Rev(B) and Rev (D). She takes affine transformations T1 ϵAGLn 

(K) and T2  from AGLm (K). 

Alice forms strings Bi=Rev(B)CiB and Di=Rev(D)CiD, i=1,2,…,r in Σ (K) 

and Σ (R). She computes images CBi   and CDi  of linguistic compression  

homomorphism  ∆D(n,K) 

 and ∆A(m,K) on elements Bi  and Di . Finally Alice computes elements T1
-

1CBi T1 =Gi  and Fi =T2 
-1CDi T2  which are elements of affine Cremona 

groups C(Kn) and C(Rm ).   

Alice keeps the  pairs (Gi , Fi ) and computes additionally for herself H=T1
-

1∆D(n,K)(Rev(B)), H-1=∆D(n,K)(B)T1 and Z=T2
-1∆DA(m,K)(Rev(D)), Z -1= 

∆A(m,K)(D)T2 . 

The homomorphism δ: GD(n, Q)→ GA(m,Q)  of the diagram is tame, i.e. 

its image can be computed in polynomial time in variable n. The triple (GD(n, 

Q), GA(m,Q),  δ)  can be considered as a platform of Tahoma protocol intro-

duced in [21], word tahoma stands for abbreviation of tame homomorphism. 

Tahoma word prototocol exchange scheme: Alice uses (Gi , Fi) and pairs 

(H, H-1) and (Z,  Z -1) from affine Cremona groups C(Kn) and C(Rm ) as start-

ing data of the following protocol (steps S1-S4) 

S1. Alice sends pairs (Gi , Fi), i=1,2,…,r to Bob. 

S2. Bob takes formal alphabet  A={ z1, z2,…, zr }  and writes a word 

w=u1,u2,…, uk  where ui ϵA. He computes the specializations g and f for w of 

kind  uj=Gi and uj=Fi  if u uj  coincides with zi,   i=1,2,…,r  in groups <G1, 

G2,..,Gr> < GD(n,K) and <F1, F2,…,Fr>< GA(m,R) respectively.   

S3. Bob send g to Alice and keeps f for herself. 

S4. Alice computes f1=Hg H -1, f2=δ(f1) and gets collision map  f as Zf2 Z -1. 

Remark. Adversary has to find the decomposition of f  into Generators G1, 

G2,…, Gr. The polynomial algorithms to solve this problem in ordinary Turing 

machine or Quantum computer are unknown. 

6.2  Inverse Tahoma word protocol. 

Alice changes Fi onto their inverses computed via elements 

*Di=Rev(D)(Rev(Ci))D,  *CDi=∆A(m,K)(*D) and *Fi= T2 
-1*CDiT2. 

         Alice sends pairs (Gi , *Fi ) to Bob.    

As in previous algorithm he takes formal alphabet  A={ z1, z2,…, zr }  and 

writes a word w=u1,u2,…, uk  where ui ϵA. He computes the specializations g 

or w of kind  uj=Gi and  if  uj  coincides with zi,   i=1,2,…,r  in groups <G1, 

G2,..,Gr> < GD(n,K).  Bor forms the reverse word *w=uk,uk-1,…, u.1  After that 

he substitutes *Fi and computes corresponding word f in group <F1, 

F2,…,Fr>< GA(m,R). 
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Bob send g to Alice. She computes f1=HgH -1,  f2=δ(f1) and gets map  f -1as 

Zf2 Z -1. 

Correspondents can exchange information in secure way. Alice writes mes-

sage  (p)=(p1, p2,…,p m),  pu ϵ R computes cipherext  f -1(p)=(c) and sends it to 

Bob. He decrypts with his map f. In his turn Bob uses f as encryption map and 

Alice decrypts with her f -1. 

6.3  Group enveloped Diffie Hellman protocol based on homomor-

phism of GD(K) onto GA(K). 

      Alice uses (Gi , Fi), i=1, …, r and pairs (H, H-1) and (Z,  Z -1) from affine 

Cremona groups C(Kn) and C(Rm ) as in 4.1  together with *Fi  considered in 

6.2. She takes also  *Gi computed via elements *Bi=Rev(B)(Rev(Ci))B,  

*CBi=∆D(m,K)(*B) and *Gi= T1 
-1*CBiT1.. Alice takes string C from Σ(Q) and 

positive integer kA. She computes symbolic string Cd , d=kA in Σ(Q) and 

∆D(m,K)(Rev(B)CB) and  ∆A(m,K)(Rev(D) CdD). Finally Alice constructs G= T1
-

1∆D(m,K)(Rev(B)CB)T1 and GA = T2
-1∆A(m,K)(Rev(D) CdD)T2. 

      She sends (Gi , Fi), (*Gi , *Fi),   i=1, …, r to Bob together with G and GA. 

Bob selects positive  integer l=kB and word w=u1,u2,…, uk   as in algorithm 

6.1. He forms *w=uk,uk-1,…, u.1  similarly to 6.2. 

       Bob computes the specializations g or w of kind  uj=Gi and  if  uj  coin-

cides with zi,   i=1,2,…,r  in the sub group <G1, G2,..,Gr> of  GD(n,K). He 

computes g-1 as specialization of *w such that  uj=*Gi if uj  coincides with zi,   

i=1,2,…,r .Similarly Bob computes the specialization h of w of kind u= uj=Fi  

if uj  coincides with zi  and h-1 with appropriate specialization of *w . 

He computes element U=g-1Glg and sends it to Alice but keeps for himself  h-

1Gl
Ah=W. 

        Alice can recover the collision map W via computations of W1=HUH-1,  δ 

(W1)=W2, W3= W2
d and W= ZW3Z -1. 

Remark. Adversary has to find the decomposition of U  into generators G, 

G1, G2,…, Gr  in rhe affine Cremona group.  

6.4  Inverse group enveloped Diffie - Hellman protocol. 

    This algorithm uses same data.  Alice computes GA = T2
-1∆A(m,K)(Rev(D) 

CdD)T2. but instead of computation of G as T1
-1∆D(m,K)(Rev(B)CB)T1 she com-

putes G as  T1
-1∆D(m,K)(Rev(B)(Rev(C)B)T1, i. e. changes G for its inverse.  

So Bob gets pair (GA, G) and complete same steps as in the case of algo-

rithm 6.3. In this new version he gets same W but new element U is an inverse 

of the map from previous version. 

Alice computes W1=HUH-1,  δ (W1)=W2, W3= W2
d and W4= ZW3Z -1, but 

obtained W4 is the inverse of W. 
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So in algorithm 6.4 correspondents elaborate mutually inverse maps W 

(Bob) and W -1 (Alice).  Alice writes message  (p)=(p1, p2,…,p m),  pu ϵ R 

computes cipherext  W -1(p)=(c) and sends it to Bob. He decrypts with his 

map W. In his turn Bob uses W as encryption map and Alice decrypts with her 

W -1. 

So like in the case of 6.2 Alice and Bob can exchange messages in a secure 

way. 

6.5  General complexity estimates for the protocols. 

Let us assume that Alice is going to use the homomorphism between 

D(n,Q) and A(m,Q) for m<n and m=O(n).  Rings K and R are finite extensions 

of Q. So we can assume that cost of arithmetic operation in these  commuta-

tive rings is O(1). We will count number arithmetical operations of commuta-

tive ring K which she need to generate an element of g=G(n, K) which corre-

sponds to symbolic computation with the key of length O(1). 

Without loss of generality we may assume that correspondents are involved 

with Inverse Tahoma Protocol. Counting steps of recurrent process of maps 

generation  via the  semigroup compression homomorphisms  gives us O(n) 

operations. Alice chooses already computed affine transformations T and T-1. 

Alice forms elements b1, b2, … ,br from G(n, K) together with their inverses 

and homomorphic images µ '(bi), i=1, 2,..., r from G(m, K) in time O(n). She 

takes T-and  T-1 from  AGLn(K) and forms ai= T-biT-1 and  a’i= T(bi-1)T-1  in 

time O(n7).  

Bob receives the list of pairs ai,  a’i ,  i=1, 2,..., r. He computes chosen 

word of kind a=ai1
k1ai2

k2..., ait
kt   for chosen finite parameter t and integers ki, 

i=1, 2,...,t in time O(n13) operations and sends it to Alice. Bob writes his mes-

sage  p=(p1, p2, ,..., pm). To form ciphertext he applies to p transformation a'it  

with multiplicity kt, a'it-1 with multiplicity kt-1, ..., a'i1 with multiplicity k1 and 

forms ciphertext c. It takes him O(n3)  elementary operations. Alice computes 

cubical b=aT with O(n5) operations. After she gets d= T-1b in time O(n7). Al-

ice easily gets µ(d) and computes e=T1d and f=e T1 
-1. She computes p as f(c). 

The last step cost her O(n3) elementary ring operations. 

Remark. The complexity of algorithm execution is O(n13). More accurate 

evaluation in terms of number d of monomial terms in the standard form of   

cubical maps gives us  complexity  Cd4n-3 , where C  is independent constant. 

 Studies of parameter d is presented in the next section. Computer simula-

tions demonstrate that in the case  of finite fields of characteristic 2 parameter 

d=O(n3) and algorithm can be executed in time O(n9). 

Simulations allow us to get similar bound in the cases of arithmetical  and 

Boolean rings.  



16 

 

 

7. APPENDIX 1. On safe exchange of symbolic transformations 
 

The symbolic nature of collision map can be used for task that differs from 

exchange of keys. We refer to it as the usage of DH deformation symbolic 

rules. 

Let Alice have a free module Kn over commutative ring K. She has a subset 

Ω of Kn  and polynomial  map f:Kn → Kn such the restriction of f|Ω is an in-

jective map from Ω onto f(Ω)=Γ. Additionally Alice has an algorithm to solve 

in polynomial time equation  x=b with respect to unknown x from Ω and b 

from  Ω. 

Alice and Bob use tahoma word protocol or symbolic Diffie-Hellman pro-

tocol to elaborate the collision map g acting on Kn. After this step Alice sends 

Ω and transformation h=f+g to Bob. Now Bob can get f as h-g. He writes 

plaintext p from Ω and sends ciphertext c=f(x). Alice uses her data for the 

decryption. 

Remark 7.1.  

Notice that new algorithm is still asymmetrical because Bob can encrypt 

but not decrypt. The encryption rule is known to trusted customer (Bob) but 

adversary has no access to it. In fact such access is protected by word problem 

in semigroup of transformations of Kn or discrete logarithm problem in corre-

sponding affine Cremona semigroup.  

Other deformations. 

Alice and Bob agree (via open channel) on a deformation rule D(f) for mul-

tivatiate rule f from affine Cremona semigroup. For example, it can be multi-

plication, i.e. f  is the rule xi → fi (x1, x2, …, xn ) ,i=1, 2,..., n and g is the rulexi 

→gi(x1 , x2, …, xn ),i=1, 2,..., n and Alice sends tuple of polynomials figi , i=1, 

2,..., n. Bob uses division to restore f. Instead of addition deformation rule 

(sending of xi → fi(x1, x2, …, xn ) +gi (x1, x2, …, xn ),i=1, 2,..., n)Alice can use 

deformation with adding an element  K[x1, x2, …, xn]
n obtained from g via the 

usage of s-time conducted derivation   δs, where δ =  d/ x1+ d/d x2 + ... + d/d xn 

(rule xi → f i (x1 , x2 , …, xn) +δsgi (x1, x2, …, xn ),i=1, 2,..., n).The last defor-

mation is interesting because in many cases we can achieve the equality of 

degrees for f and D(f). It is easy to continue this list of possible deformation 

rules.  

Remark 7.2. 

Let us assume that Ω=Kn. So f=f(n) is a bijection. Assume that degrees of 

nonlinear maps f(n)  are bounded by constant d . Let us assume that the adver-

sary has option to intercept some pairs plaintext - ciphertext (leakage from 

Bob's data). In case of interception of O(nd) adversary has chance for a suc-

cessful linearisation attack and get the map f. For example if d=3 then lineari-

sation attack cost is O(n10). After that adversary has to find the inverse func-

tion for f like in the case of multivariate public key. 
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To prevent ''transition to knowledge'' of an encryption multivariate map Al-

ice (or Bob) can arrange a new session with protocol and a transmission of 

new deformed encryption rule for which secret data for decryption is known. 

Remark 7.3. 

The technique of linearisation attacks on nonbijective maps or maps fn. of 

unbounded degree and low density is not well developed yet. 

 
8.  APPENDIX 2. Graphs A(n,q) and D(n,q), digital condenced  matters phys-

ics effect. 

 

We can substitute graph A(n, K) for other linguistic graph L of type (1,1, n-

1)  defined over the commutative ring K and rewrite the content of section 5. 

We use graphs A(n,K) and well known linguistic graph D(n,K)  of this type to 

implement all algorithm of previous section. Graphs D(n, K) are bipartite with 

set of vertices V=PUL, |P∩ L=0|. A subset of the vertices P is called the set 

of points and another subset L is called the set of lines. Let P and L be two 

copies of Cartesian power Kn,  where n≥ 2 is an integer. Two types of brackets 

are used in order to distinguish points from lines. It  has a set of vertices (col-

lection of points and lines), which are n-dimensional vectors over K:(p) = (p1, 

p2 , p3, p4, . . . , pi, pi+1, pi+2, pi+3, . . ., pn), [l] = [l1, l2, l3, l4, . . . , li, li+1,li+2,li+3, . 

. ., ln]. The point (p)  is incident with the line [l] , if the following relations 

between their coordinates hold: l2-p2=l1p1, l3-p3=l2p1, l4-p4=l1p2,  li-pi=l1pi-2,  

li+1-pi+1=li-1p1, : li+2-pi+2=lip1: li+3-pi+3=l1pi+1 where i≥5. Connected component 

of edge-transitive graph D(n,q) is denoted by CD(n,q)  [22]. Notice that all 

connected components of the natural projective limit D(q) of graphs D(n,q), 

n→∞ infinite graph D(q) are q-regular trees.  

Let us denote as G’(n,K) the group of elements of kind g=ἠ(C) of irreduci-

ble computation computation C =(a1, a2 , … , at) in the case of graphs D(n,K). 

We present time of generation (in ms) of element g from G(n,K) and G’(n, 

K)   in the cases of graphs A(n,K) and D(n,K) and number M(g) of monomial 

terms for g. 

We refer to parameter t as length of word. We can see the ‘’condensed mat-

ters physics’’ digital effect. If t is ’’sufficiently large’’, then M(g) is independ-

ent from t constant c.  It means that the density of cubical collision map in all 

algorithm is simply c 

We have written a program for generating of elements and for encrypting 

text using the generated public key. The program is written in C++ and com-

piled with the gcc compiler. We used an average PC with processor Pentium 

3.00 GHz, 2GB memory RAM and system Windows 7. We have implemented 

three cases: 

1. T and T1 are identities, 
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2. T and T1 are  maps of kind x1→ x1+ a2x2+a3x3+ … +atxt,,  x2→ x2, x3→x3, 

…, xt→ xt, ai≠0, i=1,2,…,t (linear time of computing for T and T1), where 

t=n and t=m, respectively. 

3. T= Ax+ b, T1= A1x+ b1; matrices A, A1 and 

Vectors b, b1 have mostly nonzero elements. 

The tables 1-6 present the number of monomials depending on the number 

of variables (n) and the password length in all three cases and both families of 

graphs D(n,K) and A(n,K), where K is a finite field of characteristic 2. The 

tables 7-12 present the time (in milliseconds) of the generation of public key 

monomials depending on the number of  variables n and the length of the 

word in all three cases and both families of graphs D(n,K) and A(n,K). In 

[29],[30 ] and [31] this similar program for program the case when K is Bool-

ean ring were used for investigation of classical Diffie - Hellman protocol for 

cyclic group <g> and corresponding El Gamal cryptosystem. Currently we 

expand this computer package on the case of commutative rings Zm, where m 

is power of 2. 
Illustrative example.  

Let Alice selects the graph  ,n=64 and its canonical ho-

momorphism onto graph A(32, K), which induces canonical homomorphism ∆ 

of G(64, K) onto G(32,K). She takes two irreducible elements  of ∑=∑(K), 

α=(a1, a2, ..., a16) and β=(b1, b2, …, b16) of pseudorandom kind, use homo-

morhism ή’ = ή’64 of ∑ into G(64, K) and gets elements a=ή’(α) and b= ή’(β). 

Alice forms string h=(h1, h2, …, ht). t=16  and the reverse string rev(h)=(-

ht+ht-1, -ht+ht-2, …, -ht+h1, -ht) for which n= ή’(h)=n and n’= ή’(rev(h)).  

She takes affine transformation T of the vector space Fq
64 , q=232 and its in-

verse T-1 and forms elements a1=Tnan’T-1  and   b1=Tnbn’T-1. 

Alice takes d=(d1, d2_, …, dt) and the pair  m=ή’32(d), m’= ή’32 (rev(d)).  

She forms a2=Sm ή’32(α)m’S-1=Sm ή’32(α)m’S-1 and  b2=Sm ή’32(β)m’S-1 where 

S is the bijective affine transformation of 32 dimensional vector space. She 

sends pairs (a1, a2), (b1, b2), to Bob. Let us assume that Alice uses transfor-

mation T and S of kind 3. It means that cubical transformations a1  and b1  are 

given by lists with 399424 monomial terms  and transformations a2, b2 are 

given by their 50720 monomial terms (see table  6). 

Bob takes word w= xs1yr1 xs2yr2 … of some lengths k, k≥ 3 (even or odd), 

where s1, s2,…and r1, r2, …are positive integers. 

He substitutes  a1 and b1 instead of x and y  (or y and x) and compute corre-

sponding transformation c from affine Cremona semigroup  of 64 dimensional 

vector space over finite field Fq. The cubical transformations c is presented by 

its 388424 monomial terms. Bob substitutes the collision map c’ via substitu-

tion of  a2  and  b2 in word w instead of x and y. Collision element c’ is given 

by the list of its 50720 monomials. 
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Bob sends the transformation c to Alice. She computes c1 = T-1n’cnT which 

contains 1810 (monomial terms) (see table 4). Alice computes c2=∆( c1) given 

by 770 terms. She reconstructs the collision map as Sm c2 m’S-1. 

 

 

Fig. 1. Number of monomial terms of the cubic map induced by the graph ( ) (graph 

, ), case I. 

 



20 

 

Fig. 2. Number of monomial terms of the cubic map induced by the graph ( ) (graph 

, ), case II 

 

Fig. 3. Number of monomial terms of the cubic map induced by the graph ( ) (graph 

, ), case III 
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Fig. 4. Number of monomial terms of the cubic map induced by the graph ( ) (graph 

, ), case I 

 

Fig. 5. Number of monomial terms of the cubic map induced by the graph ( ) (graph 

, ), case II 
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Fig. 6. Number of monomial terms of the cubic map induced by the graph ( ) (graph 

, ), case III 

Table 1. Number of monomial terms of the cubic map induced by the graph , case I 

    

 length of the word 

 16 32 64 128 256 

16  145   145   145   145   145 

32  544   545   545   545   545 

64  1584   2112   2113   2113   2113 

128  3664   6240   8320   8321   8321 

 

Table 2. Number of monomial terms of the cubic map induced by the graph , case II 

    
 length of the word 

 16 32 64 128 256 

16  3649   3649   3649   3649   3649 

32  41355   41356   41356   41356   41356 

64  440147   529052   529053   529053   529053 

128  3823600   6149213   7405944   7405945   7405945 

 

Table 3. Number of monomial terms of the cubic map induced by the graph , case III 

    
 length of the word 

 16 32 64 128 256 

16  6544   6544   6544   6544   6544 

32  50720   50720   50720   50720   50720 

64  399424   399424   399424   399424   399424 

128  3170432   3170432   3170432   3170432   3170432 

 

Table 4. Number of monomial terms of the cubic map induced by the graph , case I 

    
 length of the word 

 16 32 64 128 256 

16  250   250   250   250   250 
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32  770   1010   1010   1010   1010 

64  1810   3074   4066   4066   4066 

128  3890   7202   12290   16322   16322 

 

Table 5. Number of monomial terms of the cubic map induced by the graph , case II 

    
 length of the word 

 16 32 64 128 256 

16  5623   5623   5623   5623   5623 

32  53581   62252   62252   62252   62252 

64  454375   680750   781087   781087   781087 

128  3607741   6237144   9519921   10826616   10826616 

 

Table 6. Number of monomial terms of the cubic map induced by the graph , case III 

    

 length of the word 

 16 32 64 128 256 

16  6544   6544   6544   6544   6544 

32  50720   50720   50720   50720   50720 

64  399424   399424   399424   399424   399424 

128  3170432   3170432   3170432   3170432   3170432 

 

Table 7. Generation time for the map (ms) , case I 

    
 length of the word 

 16 32 64 128 256 

16  12   24   32   52   100 

32  64   140   292   592   1192 

64  1044   2261   4833   9985   20270 

128  15821   33846   74340   160213   331895 

 

Table 8. Generation time for the map (ms) , case II 

    

 length of the word 
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 16 32 64 128 256 

16  28   48   100   212   420 

32  284   648   1372   2816   5712 

64  3229   8397   19454   41568   85783 

128  55075   139366   357361   824166   1758059 

  

Table 9. Generation time for the map (ms) , case III 

    
 length of the word 

 16 32 64 128 256 

16  76   140   268   524   1036 

32  1224   2328   4541   8968   17828 

64  21889   40417   77480   151592   299844 

128  453798   812140   1526713   2946022   5792889 

 

Table 10. Generation time for the map (ms) , case I 

    

 length of the word 

 16 32 64 128 256 

16  4   12   24   48   96 

32  56   132   288   600   1232 

64  996   2100   4644   10068   20933 

128  15645   33489   74244   167454   364707 

 

Table 11. Generation time for the map (ms) , case II 

    

 length of the word 

 16 32 64 128 256 

16  20   60   128   260   540 

32  308   788   1776   3760   7716 

64  3193   8858   23231   53196   113148 

128  54031   137201   368460   950849   2164037 

 



25 

 

Table 12. Generation time for the map (ms) , case III 

    

 length of the word 

 16 32 64 128 256 

16  76   148   288   576   1148 

32  1268   2420   4700   9268   18405 

64  22144   40948   78551   153784   304240 

128  460200   819498   1532277   2970743   5836938 

 

9. Conclusion.  

We propose Post Quantum Cryptography information security solutions 

based on the complexity of the following problem Cremona Semigroup Word 

Decomposition (CSWD). 

Thus we hope that introduced algorithms can be considered as serious can-

didates to be postquantum cryptographical tools. We believe that future stud-

ies of cryptanalitics confirm that CSWD problem remains unsolvable on ordi-

nary Turing Machine and Quantum Computer under the condition of stability 

of platform S.  Hope that the idea of an alternative disclosure of hidden ho-

momorphism will attract attention of cryptanalytics. 

Complexity estimates for both correspondents demonstrate possibility of 

current usage of algorithms. Computer simulations demonstrate an interesting 

fase transition effect, which allow to predict the density of the collision maps 

of key exchange protocols and their inverse forms.  This effect also demon-

strates feasibility of proposed cryptographic schemes. Direct and inverse pro-

tocols to elaborate collision multivariate transformation of free module Kn of 

predictable density can be used together with stream cipher working with data 

written in alphabet K or passwords written in this alphabet. 

Correspondents can use collision maps to add them to part of password or-

part of plaintext or part of ciphertext. There is an option to deformate part of 

passwords, plaintext and ciphertext by outcomes of inverse protocols. 
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