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Abstract. This revised paper improves the previous simulation-extractable
zk-SNARK (SE-SNARK) in terms of performance efficiency and the se-
curity. It removes the G2 operation in verification, without degrading
performance and size, and analyze the security of the nested hash colli-
sion more deeply to strengthen the security.
The simulation-extractable zk-SNARK (SE-SNARK) introduces a secu-
rity notion of non-malleability. The existing pairing-based zk-SNARKs
designed from linear encoding are known to be vulnerable to algebraic
manipulation of the proof. The latest SE-SNARKs check the proof con-
sistency by increasing the proof size and the verification cost. In par-
ticular, the number of pairings increases almost doubles due to further
verification.
In this paper, we propose two novel SE-SNARK constructions with a
single verification. The consistency check is subsumed in a single verifi-
cation through employing a hash function. The proof size and verification
time of the proposed SE-SNARK schemes are minimal in that it is the
same as the state-of-the-art zk-SNARK without non-malleability.
The proof in our SE-SNARK constructions comprises only three group
elements (type III) in the QAP-based scheme and two group elements
(type I) in the SAP-based scheme. The verification time in both requires
only 3 pairings. The soundness of the proposed schemes is proven un-
der the hash-algebraic knowledge (HAK) assumption and the collision-
resistant hash assumption.

Keywords: pairing-based zk-SNARK, simulation-extractability, quadratic arith-
metic program, square arithmetic program

1 Introduction

The zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK)
is an effective zero-knowledge proof system to prove a statement without reveal-
ing the witness, where the proof size and the verification cost are succinct. In par-
ticular, the pairing-based zk-SNARKs [Gro16, PHGR13] are well-known for their
constant-sized proof and constant-time verification, which make them a suit-
able choice for various applications including blockchain [BCG+14, DFKP13].
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Especially, the Groth’s protocol [Gro16] is accepted as a current standard for
pairing-based SNARKs, which has a minimal proof size of 3 group elements and
requires 3 pairings in verification.

One main concern in the pairing-based zk-SNARKs is that the proofs are
vulnerable to the algebraic manipulation; since the proof elements possess an
algebraic structure of algebraic encoding, it is possible to create a new proof
from arbitrary proofs without knowing the witness. For instance, in Groth’s
protocol [Gro16] where the simplified version of the proof consists of three el-
ements (Ga, Hb, Gc) satisfying a · b = c, an adversary can forge a new proof by
using a random r while preserving the algebraic relation as (Gar, Hbr−1

, Gc) or
(Ga, Hb+r, Gc+ar).

In order to prevent the malleability, Groth and Maller [GM17] introduced a
simulation-extractability, a security notion for non-malleability of proofs. They
defined a simulation-extractable zk-SNARK (SE-SNARK), and proposed a con-
struction based on the Groth’s zk-SNARK [Gro16] to maintain the proof size
as 3 group elements. However, their construction relies on the representation
of square arithmetic program (SAP), instead of quadratic arithmetic program
(QAP) as in common zk-SNARKs; compared to the QAP, the SAP roughly dou-
bles the circuit size which leads to doubling the common reference string (CRS)
size and proving time. In short, Groth and Maller construction [GM17] sacrifices
the CRS size and proving time to gain simulation-extractability.

To avoid this inefficiency, Bowe and Gabizon [BG18] restored the QAP rep-
resentation in the SE-SNARK by applying an elliptic curve hashing [Ica09] to
the Groth’s protocol [Gro16]. However, they had to pay the price of proof size as
5 elements; 2 additional elements are required to check the consistency of hashed
elements. The proof size can be a crucial cost for size-sensitive blockchains such
as Zcash [BCG+14] where each transaction requires a proof.

Most recently, Lipmaa [Lip19] improved the result further, by proposing an
SE-SNARK for QAP which has a proof size of 4 elements. His construction adds a
special tag and a trapdoor for the simulation-extractability, and compresses them
into a single additional argument which cannot be algebraically manipulated
without the knowledge of witnesses. The result of 4 elements is close enough to
the 3 elements in Groth’s protocol [Gro16], but it is still paying the price of one
additional proof element.

Another crucial price is that all the SE-SNARKs, including the schemes
above [GM17, BG18, Lip19], require an additional check in the verification. In the
algebraic nature of pairing-based zk-SNARKs, the original check for the relation
(i.e. a·b = c in QAP or a2 = c in SAP) is unable to detect algebraic modifications.
It is formally proved in [GM17] that SNARKs from algebraic encoding require
at least 2 verifications to be simulation-extractable, which is reduced to the
hard-decisional NP problem. Hence, the SE-SNARK verifications suffer from
additional pairings; [GM17], [BG18], and [Lip19] all require 2 additional pairings
along with the original relation check which consists of 3 pairings. It almost
doubles the cost of the verification, which is not desirable for applications where
verification occurs frequently in the resource-limited clients.
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In this paper, we propose SE-SNARKs with a single verification, by applying
the hash function to overcome the boundaries of existing SE-SNARKs. The idea
is from the fact that blending the hash function into the encodings can provide
a unique connection between proof elements; it eliminates the requirement for
additional check for algebraic modifications. In [BG18] which also applies a hash
function, an additional verification is still required since the hash output is an
independent element which should be checked afterwards. On the other hand,
if we combine the hash output into the encoding itself (i.e. secret exponents),
the additional check is unnecessary since proof elements are already determined
as a unique tuple. Specifically, in the simplified proof (Ga, Hb, Gc) of Groth’s
protocol [Gro16], let c include the hash values of each input Ga and Hb; then Gc

is determined as a unique element tightly connected to Ga and Hb. In this case,
when Ga or Hb is (algebraically) modified, c should be also modified accordingly
to satisfy the original relation3,4.

We construct two versions of SE-SNARK: a QAP-based construction and
an SAP-based construction, both with a single verification which reduces the
verification time from 5 pairings to to 3 pairings compared to the existing
SE-SNARKs [GM17, BG18, Lip19]. Our QAP-based construction achieves a
proof size of 3 elements, which does not require any additional element as
in [BG18, Lip19] or sacrifice CRS size as in [GM17]. Our SAP-based construc-
tion achieves a proof size of 2 elements, which surpasses the proof boundary
of 3 elements in [GM17]. Both of our constructions accomplish simulation-
extractability with a minimal proof size and verification time among the existing
SE-SNARKs [GM17, BG18, Lip19]. The security of our SE-SNARKs is based on
the hash-algebraic knowledge (HAK) assumption from [Lip19] and the existence
of the (algebraic) collision-resistant hash function; the SAP-based scheme re-
quires a collision-resistant function (CR), while the QAP-based scheme requires a
nested collision-resistant hash function (NCR), a variant of the collision-resistant
hash function. Both CR and NCR can be implemented from the standard hash
function such as SHA2. In the security viewpoint, the existence of NCR is at
least weaker than the discrete log assumption in the random oracle model. The
complete version of the constructions is more complicated than the intuition and
described in section 5.

Table 1 compares the size and computation performance of SNARKs, includ-
ing Groth’s zk-SNARK [Gro16] (without simulation-extractability) and various
SE-SNARKs. Our QAP-based SE-SNARK achieves 3 proof elements (type III);
it does not sacrifice any price for simulation-extractability from Groth’s proto-
col [Gro16]. Also, our SAP-based SE-SNARK achieves 2 proof elements (type

3 Since the hash is applied before the encoding, we can adopt any standard hash (e.g.
SHA-256) unlike [BG18] which requires a hash function to map an input into an
elliptic curve.

4 Notice that the boundary of 2 verifications from [GM17] is not applicable to our
construction; the hash output in c prevents the construction from being included in
SNARKs from algebraic encodings.
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Table 1: The comparison of SE-SNARKs, based on arithmetic circuit satisfia-
bility with l element instances, m wires, and n multiplication gates. Since SAP
uses squaring gates, 2n squaring gates and 2m wires are considered instead of n
multiplication gates and m wires; Units: G stands for group elements, E stands
for exponentiations and P stands for pairings.

Circuit |CRS| |π| P time V time Eqs. Security

[Gro16] QAP
(m+ 2n)G1 +

nG2
2G1 + G2 (m+3n)E1 +nE2 lE1 + 3P 1 GGM

[GM17] SAP
(2m+ 4n)G1 +

2nG2
2G1 + G2

(2m+ 4n)E1 +
2nE2

lE1 + 5P 2 XPKE

[BG18] QAP (m+5n)G1+nG2 3G1 + 2G2 (m+3n)E1 +nE2 lE1 + 5P 2 ROM

[Lip19] QAP (m+3n)G1+nG2 3G1 + G2 (m+4n)E1 +nE2 lE1 + 5P 2 HAK

Ours QAP (m+2n)G1+nG2 2G1 + G2 (m+3n)E1 +nE2 (l + 1)E1 + 3P 1 HAK,NCR

Ours SAP (2m+ 6n)G 2G (2m+ 6n)E (l + 1)E + 3P 1 HAK,CR

I), which is more efficient (one less proof element and two less pairings in verifi-
cation) than Groth and Maller’s SAP-based SE-SNARK [GM17].

The rest of this paper proceeds as follows. Section 2 organizes related works
on zk-SNARKs. Section 3 introduces some preliminary backgrounds, and sec-
tion 4 introduces security assumptions. In section 5, we propose a QAP-based
SE-SNARK construction. In section 6, we propose an SAP-based SE-SNARK
construction. In section 7, we conclude.

2 Related Work

In the history of proof systems and verifiable computations, there are various
NIZK arguments with different types which do not leverage QSP (Quadratic
Span Program) or QAP (Quadratic Arithmetic Program) circuits [GKR08, CMT12,
WJB+17, WTTW18, BBB+18, ZGK+18, BSCTV14]. A well-known branch comes
from the sum-check protocol [GKR08], which gains a sublinear proof from the
fiat-shamir transform [FS86]. Nonetheless, they do not support the constant time
verification; the verification time is sublinear to the size of the circuits.

Since Gennaro et al. [GGPR13] introduced the Quadratic Span Program(QSP)
and Quadratic Arithmetic Program(QAP), zk-SNARK gained a constant proof
size and verification. In 2013, Parno et al. [PHGR13] proposed a zk-SNARK
scheme called Pinocchio and provided a first practical implementation of zk-
SNARK. After Pinocchio, many works added and enhanced some functionali-
ties, such as multiple-function control, additional anonymity for the I/O, or proof
scalability [CFH+15, DLFKP16, KPP+14, FFG+16, BBFR15, BSCTV17].

Later, Groth [Gro16] proposed a more efficient zk-SNARK scheme. Compared
with Pinocchio [PHGR13], the proof size was reduced from 8 group elements to
3 group elements. Also the number of pairing operations required to verify the
proof was reduced from 11 to 3. Recently these SNARK protocols are imple-
mented as an open source [KPS18, BSCG+13] to be used in real applications.
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By exploiting the short proof sizes and the short verification times, zk-SNARK
can be used as a key component in various cryptographic applications such as
anonymous cryptocurrencies [BCG+14, KMS+16, GGM16].

Zerocash [BCG+14], one of the anonymous cryptocurrencies based on blockchain
technology, utilized a zk-SNARK to hide transaction information and to provide
an efficient verification process. However, since zk-SNARKs [Gro16, PHGR13] do
not provide simulation-extractability, zerocash has to add extra cryptographic
primitives such as one-time signatures to avoid malleability attacks.

The SE-SNARK scheme [GM17] defines and provides the simulation-extractable
SNARK (SE-SNARK), with a similar notion to the Signatures of knowledge [CL06].
While maintaining an efficient proof size of [Gro16], it can prevent the malleabil-
ity attacks due to the simulation-extractability.

Recently, Bowe and Gabizon [BG18] put an effort to make Groth’s scheme [Gro16]
simulation-extractable by utilizing random oracle model, with additional hash
in proofs and verification. However, the proof size and verification equations
in their scheme is 5 group elements and 2 equations which is inefficient com-
pared to [GM17]. And the security is proven in random oracle model. Lipmaa
proposes a simulation-extractable SNARK scheme without using random oracle
model [Lip19]. The security of the proposed scheme is proven under a new se-
curity assumption called subversion algebraic knowledge (SAK) assumption in
which if an adversary A outputs a group element then A should know each ex-
ponent of known group elements or randomly generated group elements to build
the group element. In the proposed scheme, the proof size is reduced to 4 group
elements and 2 verification equations are required while QAP is supported.

3 Preliminaries

3.1 Notation

We denote the security parameter with λ ∈ N. For functions f, g : N → [0; 1] we
write f(λ) ≈ g(λ) if |f(λ)−g(λ)| = λ−ω(1). A function f is negligible if f(λ) ≈ 0. We
implicitly assume that the security parameter is available to all participants and

the adversary. If S is a set, x
$← S denotes the process of selecting x uniformly

at random in S. If A is a probabilistic algorithm, x ← A(·) denotes the process
of running A on some proper input and returning output x.

We define that transA includes all of A’s inputs and outputs, including random
coins for an algorithm A. We use games in security definitions and proofs. A game
G has a main procedure whose output is the output of the game. The notation
Pr[G] denotes the probability that the output is 1.

3.2 Relations

Given a security parameter 1λ, a relation generator R returns a polynomial time
decidable relation R ← R(1λ). For (φ,w) ∈ R we say that w is a witness to the
instance φ being in the relation. We denote with Rλ the set of possible relations
that R(1λ) might output.
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3.3 Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

Definition 1. A zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARK) for R is a set of four algorithms Arg = (Setup,Prove,Vfy, SimProve)

working as follows:

– (crs, τ ) ← Setup(R): the setup algorithm is a PPT algorithm which receives
a relation R ∈ Rλ as input and outputs a common reference string crs and
a simulation trapdoor τ .

– π ← Prove(crs,φ,w): the prover algorithm is a PPT algorithm which receives
a common reference string crs as input for a relation R and (φ,w) ∈ R and
outputs a proof π.

– 0/1← Vfy(crs,φ,π): the verifier algorithm is a deterministic polynomial time
algorithm which receives a common reference string crs, an instance φ and
a proof π as input and outputs 0 (reject) or 1 (accept).

– π ← SimProve(crs, τ ,φ): the simulator is a PPT algorithm which receives a
common reference string crs, a simulation trapdoor τ and an instance φ as
input and outputs a proof π.

It satisfies completeness, knowledge soundness, zero-knowledge, and succinctness
as following:

Perfect Completeness: Perfect completeness states that a prover with a wit-
ness can convince the verifier for a given true instance. For all λ ∈ N, for all
R ∈ Rλ and for all (φ,w) ∈ R : Pr[(crs, τ ) ← Setup(R);π ← Prove(crs,φ,w) :

Vfy(crs,φ,π) = 1] = 1.

Computational Knowledge Soundness: Computational knowledge sound-
ness says that the prover must know a witness and the witness can be efficiently
extracted from the prover by a knowledge extractor. Proof of knowledge requires
that there must exist an extract χA given the same input of A outputs a valid
witness for every adversarial prover A generating an accepting proof. Formally,
we define AdvsoundArg,A,χA(λ) = Pr[GsoundArg,A,χA(λ)] where the game GsoundArg,A,χA is defined
as follows.

MAIN GsoundArg,A,χA(λ)

R←R(1λ)

(crs, τ)← Setup(R)

(φ, π)← A(crs)

ω ← χA(transA)

assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

An argument system Arg is computationally considered as knowledge sound if
there exists a PPT extractor χA for any PPT adversary A, such that AdvsoundArg,A,χA(λ) ≈
0.
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Perfect Zero-Knowledge: Perfect zero-knowledge states that the system does
not reveal any information except the truth of the instance. This is modelled by a
simulator which can generate simulated proofs using some trapdoor information
without knowing the witness. Formally, we define AdvzkArg,A(λ) = 2Pr[GzkArg,A(λ)]−
1 where the game GzkArg,A is defined as follows:

MAIN GzkArg,A(λ)

R←R(1λ)

(crs, τ)← Setup(R)

b← {0, 1}

b′ ← AP
b
crs,τ (crs)

return 1 if b = b′ and

return 0 otherwise

P bcrs,τ (φi, wi)

assert(φi, wi) ∈ R
πi ← Prove(crs, φ, w) if b = 0

πi ← SimProve(crs, τ, φ) if b = 1

return πi

The argument system is perfectly zero-knowledge if for all PPT adversaries A,
AdvzkArg,A(λ) = 0.

Succinctness: Succinctness states that the argument generates the proof of
which size is polynomial in the security parameter, and of which the verifier’s
computation time is polynomial in the security parameter and in the instance
size.

Definition 2. A simulation-extractable SNARK system (SE-SNARK) for R is
a zk-SNARK system (Setup, Prove, Vfy, SimProve) with simulation-extractability
as following:

Simulation-Extractability [GM17]: Simulation-extractability states that for
any adversary A that sees a simulated proof for a false instance cannot modify the
proof into another proof for a false instance. Non-malleability of proofs prevents
cheating in the presence of simulated proofs. Formally, we define Advproof−extArg,A,χA (λ) =

Pr[Gproof−extArg,A,χA (λ)] where the game Gproof−extArg,A,χA is defined as follows:

MAIN Gproof−extArg,A,χA (λ)

R←R(1λ);Q = ∅
(crs, τ)← Setup(R)

(φ, π)← ASimProvecrs,τ (crs)

ω ← χA(transA)

assert (φ, π) /∈ Q
assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

SimProvecrs,τ (φi)

πi ← SimProve(crs, τ, φi)

Q = Q ∪ {(φi, πi)}
return πi

An argument is simulation-extractable if for any PPT adversary A, there exists
a PPT extractor χA such that Advproof−extArg,A,χA (λ) ≈ 0.
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We note that simulation-extractability implies knowledge soundness, since
simulation-extractability corresponds to knowledge soundness where the adver-
sary is allowed to use the simulation oracle SimProve.

When knowledge soundness and simulation-extractability are applied for a
succinct argument, extractors are inherently non-black-box. As in [GM17] we
assume the relationship generator is benign5, such that the relation (including
the potential auxiliary inputs) is distributed in such a way that the SNARK can
be simulation-extractable.

4 Bilinear Groups and Assumptions

A bilinear group generator BG receives a security parameter as input and outputs
a bilinear group (p,G1,G2,GT , e, G,H). G1, G2, GT are groups of prime order p
with generator G ∈ G1, H ∈ G2, and a bilinear map e : G1 × G2 → GT is a
non-degenerative bilinear map (i.e. e(Ga, Hb) = e(G,H)ab and e(G,H) generates
GT ).

4.1 Power Knowledge of Exponent Assumption

We define q-power knowledge of exponent assumption.

Definition 3 (q-PKE assumption). [Gro10] The q-power knowledge of ex-
ponent assumption holds for G1, G2 if for all A there exists a non-uniform PPT
extractor χA such that

Pr


(p,G1,G2,GT , e, G,H)← BG(1λ);x

$← Zp;
σ ← (p,G1,G2,GT , e, G, {Gx

i

}qi=1, H, {H
xi}qi=1);

(Ga, Hb)← A(σ); (a0, . . . , aq)← χA(transA) :

a = b ∧ b 6=
∑q
i=0 aix

i

 ≈ 0.

4.2 Hash-Algebraic Knowledge Assumption

Lipmaa proposes a new knowledge assumption called hash-algebraic knowledge
(HAK) assumption [Lip19], which simply gives an adversary an additional ability
to hash any element from the algebraic group model. In algebraic knowledge
assumption, one assumes that each PPT algorithm is algebraic in the following
sense. Assume that there are unknown exponents. Let xi be a polynomial using
the unknown exponents. Let Gx be a vector of Gxi . Similarly, let Gy be a vector

5 The non-falsifiable knowledge of exponent assumption is a necessary ingredient
in building a SNARK with witness extraction. In Bitansky’s analysis [BCI+13,
BCPR16], there are some counter examples and observations; auxiliary inputs may
affect the extraction of the witness in extractable one-way functions. However they
also observe that the extractability still holds with respect to common auxiliary in-
put that is taken from specific distributions that may be conjectured to be “benign”,
e.g. the uniform distribution.
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of Gyi where yi is a polynomial using the unknown exponents. If the adversary
A’s input includes Gx and no other elements from the group G1 and A outputs
group elements Gy, then A knows matrices N , such that Gy = GNx. Formally,
a PPT algorithm A is algebraic (in G1) if there exists an efficient extractor
χA, such that for any PPT sampleable distribution D, AdvakG1,D,A(λ) ≈ 0, where

AdvakG1,D,A(λ) := Pr[Gx $← D;Gy ← A(Gx);N ← χA(transA) : y 6= Nx]. A group
G1 is algebraic if every PPT algorithm A that obtains inputs from G1 and outputs
elements in G1 is algebraic.

Furthermore, Lipmaa pointed out that the restriction that adversaries are
algebraic is not valid in situations where the adversary can create new random
group elements by say using elliptic curve hashing [Ica09]. So he models this
capability by allowing the adversary to create additional group elements Gq for
which she does not know discrete logarithms of exponent qi or vector q. It is
required that Gq (but not necessarily q) can be extracted from the adversary,

such that y = N·

(
x

q

)
. In addition, Gq must be sampled from a public distribution

D′.
A PPT algorithm A is called as hash-algebraic (in G1) if there exists a PPT

extractor χA, s.t. for any PPT sampleable distribution D and any distribution
D′ with min-entropy ω(log λ), AdvhakG1,D,D′,A(λ) :=

Pr

 Gx $← D;Gy ← A(Gx);

(N, Gq)← χA(transA) : y 6= N

(
x

q

)
∧ (Gq ∼ D′)

 ≈ 0.

Finally, we define the following D −HAK assumption in G1:

Definition 4 (D −HAK assumption in G1 [Lip19]). For each PPT A that
obtains inputs, distributed according to the distribution D, there exists an extrac-
tor that outputs Gq and N such that Gq ∼ D′ for some distribution D′ of high
min-entropy. More precisely, AdvhakGι,D,D′,A(λ) ≈ 0 for each PPT adversary A and
each distribution D′ of min-entropy ω(log λ).

4.3 Nested Collision-Resistant Hash Function

We define collision-resistance and nested collision-resistance of a hash function.

Definition 5 (collision-resistance). H : X → Y is a collision-resistant hash
function if for all PPT adversary A, AdvCRH (A) :=

Pr[(x, x′)← A(X ,H) : (x 6= x′) ∧ (H(x) = H(x′))] ≈ 0

Specifically for our purpose, we define a nested collision-resistant hash func-
tion where it is hard to find non-trivial ~x for given functions f(~x) and g(~x) such
that H(f(~x)) = g(~x). Formally, it is defined as follows:
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Definition 6 (Nested collision-resistance). H : Fn → {0, 1}l is a nested
collision-resistant hash function if for all PPT adversary A, AdvNCRH (A) :=

Pr
[
~x← A(H,Hin, f) : H(Hin(~x)) = f(~x)

]
≈ 0

except trivial cases, where Hin(~x) is a collision resistant hash and f(~x) is an
algebraic function.

The trivial cases occur when ~v exists such that Hin(~v) = ~W , f(~v) = f(~v;H( ~W ))

= H( ~W ) for given constant ~W . Note that f(~v;H( ~W )) is a function including H( ~W )

as constant coefficient for variables ~v.

Lemma 1. For given (H,Hin(~x), f(~x)) where H is a random oracle, there is no
PPT A such that AdvNCRH (A) is non-negligible.

Proof. Since H is a random oracle, A should ask a query to compute H(Hin(~x))

for ~x. Since Hin is collision resistant, A obtains a different Hin(~x) value for each
~x. Note that if A can obtain Hin(~x) such that Hin(~x) = Hin(~x′) where ~x′ are
queried for Hin(~x′), then A finds a collision in Hin. Therefore, when A ask a
query H(Hin(~x)) for each ~x, A receives a different value. Hence A should query
1
ε

times to find H(Hin(~x)) = f(~x) regardless of a function (~x) where ε = 1
2l

which
is negligible. Therefore, every PPT A has negligible probability.

5 QAP-based SE-SNARK Scheme

In this section, we propose our first SE-SNARK construction based on the
quadratic arithmetic program (QAP) representation, which achieves a proof size
of 3 elements and a single verification. Before presenting the formal construc-
tion, we briefly explain the main idea behind the scheme to achieve simulation-
extractability without an additional check in section 5.1. Then we introduce the
formal definition of QAP in section 5.2, and present the formal construction in
section 5.3.

5.1 Main Idea

As an example of how standard zk-SNARK can be modified, suppose for an
instance φ that (A,B,C) (= (Ga, Hb, Gc)) are three group elements in a proof
that satisfies the verification equations of Groth’s zk-SNARK [Gro16]. Then

e(A,B) = e(Gα, Hβ)e(G
f(φ)
γ , Hγ)e(C,Hδ) (1)

for a known polynomial f in φ and some secret α, β, γ, δ.
There are two methods to generically randomize a proof A,B,C that satisfies

(1). An adversary can set either

A′ = Ar;B′ = B
1
r ;C′ = C (2)
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or
A′ = A;B′ = BHrδ;C′ = ArC. (3)

In the proposed approach, we devise a new way to neutralize the two attacks
using the hash of A and B in C. The verification equation is required to detect
the changes of A and B. We insert multiplications of a and hash of A, and b and
hash of B in c. Hence, an adversary should know a and b to change A and B in
the revised proof.

The left pairing function in (1) changes to e(AGδH(A,B), B), and C is revised
to satisfy (1) as following:

C′ = C ·GbH(A,B)

where A = Ga, B = Hb, and H is a nested collision-resistant hash function like
SHA.

According to the revised C′, the verification is revised by adding proper
additional terms to A and B as follows:

e(A ·GδH(A,B), B) = e(Gα, Hβ)e(G
f(φ)
γ , Hγ)e(C′, Hδ)

If A,B change to A′, B′ then C′ should be revised to
C′·Gb(H(A′,B′)−H(A,B)). However, since only Ga and Hb are available in the original
proof, and Gb is only computable if a witness is known, an adversary cannot forge
the proof.

5.2 Quadratic Arithmetic Programs

In our SE-SNARK, we will formally adopt the quadratic arithmetic programs
(QAP) [GGPR13, Gro16] in a relation R, which is as follows:

R = (p,G1,G2,GT , e, l, {ui(X), vi(X), wi(X)}mi=0, t(X))

The bilinear group (p,G1,G2,GT , e) defines the finite field Zp, 1 ≤ l ≤ m, and
the polynomials ui(X), vi(X), wi(X) represent each linearly independent polyno-
mial set in the QAP with the definition below:

m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), vi(X), wi(X) have a strictly lower degree than n, which is the
degree of t(X). By defining s0 as 1, the following definition describes the relation
R.

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :
m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)
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We say R is a relation generator for the QAP, given the relation R with field
size larger than 2λ−1.

5.3 Construction

– (crs, τ) ← Setup(R): Select generators G
$← G1, H

$← G2, hash function H :

{0, 1}∗ → Zp and parameters α, β, γ, x
$← Zp, such that t(x) 6= 0, and set

τ = (G,H,α, β, γ, x)

crs =


R,H, G,Gα, Gβ , H,Hβ ,

{Gγx
i

, Hγxi , Gγ
2t(x)xi}n−1

i=0 , {G
γwi(x)+βui(x)+αvi(x)}li=0,

{Gγ
2wi(x)+βγui(x)+αγvi(x)}mi=l+1


– π ← Prove(crs, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w as

(sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the QAP, choose

r, s
$← Zp and compute π = (A,B,C) = (Ga, Hb, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

b =β + γ

m∑
i=0

sivi(x) + s

c =

m∑
i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x) + sa+ rb− rs

+ bH(A,B)

.
– 0/1 ← Vfy(crs, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,B,C) ∈ G1 ×

G2×G1. Set s0 = 1 and accept the proof if and only if the following equation
is satisfied:

e(AGH(A,B), B) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)

– π ← SimProve(crs, τ, φ) : Choose µ, ν
$← Zp and compute π = (A,B,C) such

that
A = Gµ, B = Hν ,

C = Gµν−αβ+h1ν−γ
∑l
i=0 si(γwi(x)+βui(x)+αvi(x))

(4)

where h1 = H(A,B).

5.4 Security Proof

Theorem 1. The QAP-based SE-SNARK protocol is a non-interactive zero-
knowledge argument of knowledge with perfect completeness and perfect zero-
knowledge. It is simulation-extractable (implying it also has knowledge sound-
ness) provided that the HAK (hash-algebraic knowledge) assumption holds, and
a nested collision-resistant hash exists.



Simulation-Extractable zk-SNARK with a Single Verification 13

Proof. Perfect Completeness: We demonstrate that the prover can compute
the proof (A,B,C) as described from the common reference string. Let h1 = H(A)

and h2 = H(B). The prover can compute the coefficients of

h(X) =
(
∑m
i=0 siui(X))(

∑m
i=0 sivi(X))− (

∑m
i=0 siwi(X))

t(X)
=

n−2∑
j=0

h̃jX
j .

Now, the proof elements can be computed as follows:

A = Gα
n−1∏
j=0

(Gγx
j

)uj ·Gr

B = Hβ
n−1∏
j=0

(Hγxj )vj ·Hs

C =

m∏
i=l+1

Gsi(γ
2wi(x)+βγui(x)+αγvi(x)) ·AsB′(r+h1) ·G−rs ·

n−1∏
j=0

(Gγ
2t(x)xj )h̃j

where B′ = Gβ
∏n−1
j=0 (Gγx

j

)vj ·Gs.
This computation provides us the proof elements specified in the construction

A = Gα+γ
∑m
i=0 siui(x)+r

B = Hβ+γ
∑m
i=0 sivi(x)+s

C = G
∑m
i=l+1 si(γ

2wi(x)+βγui(x)+αγvi(x))+γ
2t(x)h(x)+sa+rb−rs+bh1 .

Here we show that the verification equation holds.

e(AGh1 , B) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)

Taking discrete logarithms, checking the verification equation is equivalent to
showing that

(a+h1) · b

=(α+ γ

m∑
i=0

siui(x) + r) · (β + γ

m∑
i=0

sivi(x) + s) + bh1

=αβ + γ2(

m∑
i=0

siui(x))(

m∑
i=0

sivi(x)) +

m∑
i=0

si(βγui(x) + αγvi(x))

+ rb+ sa− rs+ bh1

=αβ +

m∑
i=0

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x)

+ rb+ sa− rs+ bh1

=αβ + γ

l∑
i=0

si(γwi(x) + βui(x) + αvi(x)) +
m∑

i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x))

+ γ2t(x)h(x) + rb+ sa− rs+ bh1

=αβ + γ

l∑
i=0

si(γwi(x) + βui(x) + αvi(x)) + c
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where A = Ga, B = Hb and C = Gc.

Note that since the vector (sl+1, . . . , sm) is a valid witness for the instance
(s1, . . . , sl), (

∑m
i=0 siui(X))(

∑m
i=0 sivi(X)) =

∑m
i=0 siwi(X) + h(X)t(X) for all X ∈

Zp.

Zero-Knowledge: For the zero-knowledge, notice that the construction al-
ready provides the simulation SimProve which always produces verifying proofs.
It can be observed that we obtain the same distribution over the real proof and
the simulated proof, with the choice of random r, s in real proofs and the choice
of random µ, ν in simulated proofs.

simulation-extractability: Assume that adversary A succeeds to forge a
proof (A,B,C).

Our common reference string consists of group generators G, H raised to
exponents that are polynomials in Xα, Xβ, Xγ , Xx evaluated on secret values
α, β, γ, x. Moreover, whenever A queries the simulation oracle, it gets back a
simulated proof of (Ai, Bi, Ci)

q
i=1, which is a set of three group elements that

can be computed by raising G,H to polynomials in indeterminates Xα, Xβ, Xγ ,
Xx, Xµ1 , Xν1 , . . . , Xµq , Xνq where we plug in randomly generated µ1, ν1, . . . , µq, νq
for the latter ones.

By D − HAK, given a proof π = (Ga, Hb, Gc), we can extract a(X), b(X),
and c(X) where X is an indeterminates vector. Note that Xλj (Xρj ) denotes an
indeterminate to obtain Gλj (Hρj ) which is a randomly created group element by
an adversary in G1 (G2) where λj (ρj) is unknown. Then the possible a(X), b(X),
and c(X) are as follows:

a(X) = a0 + aαXα + aβXβ +
∑n−1

i=0
aγxiXγX

i
x +

∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x

+

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

asi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

q∑
j=1

aλjXλj +

q∑
j=1

aAjXµj

+

q∑
j=1

aCj (XµjXνj −XαXβ −Xγ
l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h1Xν1)
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b(X) = b0 + bβXβ +
∑n−1

i=0
bγxiXγX

i
x +

q∑
j=1

bρjXρj +

q∑
j=1

bBjXνj

c(X) = c0 + cαXα + cβXβ +
∑n−1

i=0
cγxiXγX

i
x

+
∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

q∑
j=1

cλjXλj +

q∑
j=1

cAjXµj

+

q∑
j=1

cCj (XµjXνj −XαXβ −Xγ
l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h1Xνj )

a(X), b(X), and c(X) should satisfy the following verification equation.

(a(X) + h1)b(X)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)
(5)

We will now show that in order to satisfy the formal polynomials equations
above, either the adversary must recycle an instance and a proof, or alternatively
χA manages to extract a witness.

First, suppose we have some aAk 6= 0. Since there is no XβXµk in the right
form, bβ = 0. Moreover, since there is no XγXµk or XρjXµk in the right form,
bγxi = 0 and bρj = 0. Consequently, b(X) = b0 + bBkXvk . If bBk=0 then cCk = 0

due to no XµkXν , and there is XαXβ in the right form. However since there is
no XαXβ in the left form, bBk 6= 0.

Since there is no XαXνk in the right form, aα = 0. Since there are only XαXνk ,
Xνk , and XµkXνk related with Xνk in the right form, a(X) = a0 + aAkXµk .

Plugging this into (5) gives us,

(a0 + aAkXµk + h′1)(b0 + bBkXvk )

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)

where h′1 = H(Ga0+aAkµk , Hb0+bBk
νk ) = H(Ga0A

aAk
k , Hb0B

bBk
k ).

The only way this is possible is by setting

c(X) = c0 + cAkXµk + cCk (XµkXνk −XαXβ + h1Xνk

−Xγ
l∑
i=0

sk,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

Since there is no XαXβ in the left form, cCk = 1.
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Finally, we obtain the following equation.

(a0 + aAkXµk + h′1)(b0 + bBkXνk ) = c0 + cAkXµk +XµkXνk + h1Xνk

Since aAkbBk = 1, there is (a0 +h′1)bBkXνk in the left form, and there is h1Xνk

in the right form, (a0+h′1)bBk = h1, h′1 = −a0+aAkh1, andH(Ga0A
aAk
k , Hb0B

bBk
k ) =

−a0 + aAkH(Ak, Bk). Since H is nested collision-resistant, and Ga0A
aAk
k , Hb0B

bBk
k

are collision resistant pedersen hash functions in which collisions solve DlogG(Ak)

or DlogH(Bk), it is hard to find non trivial a0, aAk , b0, and bBk . Hence a0 = 0,
aAk = 1, b0 = 0, and bBk = 1 by Lemma 1. Note that Hashin(x1, x2, x3, x4) =

(Gx1Ax2k , H
x3 , Bx4k ), and f(x1, x2, x3, x4) = −x1 + x2H(Ak, Bk).

Consequently, a(X) = Xµk and b(X) = Xνk . Since ui(Xx)li=1 are algebraicly
independent, we see for i = 1, . . . , l that si = sk,i. In other words, the adversary
has recycled the k-th instance π = πk and the proof (A,B,C) = (Ak, Bk, Ck). The
same conclusion is obtained if bBk 6= 0.

Next, suppose for all j = 1, . . . , q that aAj = bBj = 0. Then cCj = cAj = 0 since
there is no Xµj in the left form. Since there is XαXβ in the right form, aαbβ = 1.

In the right form of (5), there are only Xβ, XβXγ , XβXα, and Xβui(Xx) related
with Xβ, a(X) = a0 + aαXα +

∑n−1
i=0 aγxiXγX

i
x. b(X) = b0 + bβXβ +

∑n−1
i=0 bγxiXγX

i
x

since there is no XαXρj in the right form. We are now left with

c(X) = c0 + cαXα + cβXβ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

In (5),

(aαXα + a0 +

n−1∑
i=0

aγxiXγX
i
x + h′1)(bβXβ + b0 +

n−1∑
i=0

bγxiXγX
i
x)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ c0 + cαXα + cβXβ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XβXγX
i
x now

give us bβ
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx) in the left form. In addition, the terms
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involving XαXγX
i
x provide aα

∑n−1
i=0 bγxiX

i
x =

∑m
i=0 sivi(Xx) in the left form. The

terms involving X2
γ produce

Xγ

m∑
i=0

siui(Xx) ·Xγ
m∑
i=0

sivi(Xx) = X2
γaαbβ(

n−1∑
i=0

aγxiX
i
x)(

n−1∑
i=0

bγxiX
i
x)

= X2
γ(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)

Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means (sl+1, . . . , sm) is a

witness for the instance (s1, . . . , sl) (the extracted witness may be one of many
possible valid witnesses).

6 SAP-based SE-SNARK Scheme

In the previous section, we propose an efficient SE-SNARK scheme with three
group elements as a proof. Now it is interesting to observe whether it is possible
to build a similar SE-SNARK scheme with two group elements if adopting Type
I pairing instead of Type III pairing. Since each multiplication gate a · b = c can
be transformed to (a+ b)2 − (a− b)2 = 4c as a square arithmetic program (SAP),
it is possible to get a 2-element for boolean circuit satisfiability by changing a
multiplication gate to two squaring gates.

6.1 Square Arithmetic Programs

In the SE-SNARK with two group elements, we will work with square arithmetic
programs (SAP) R, with the definitions adopted from [GM17].

R = (p,G,GT , e, l, {ui(X), wi(X)}mi=0, t(X))

The bilinear group (p,G,GT , e) defines the finite field Zp, 1 ≤ l ≤ m, and the
polynomials ui(X), wi(X) represent each linearly independent polynomial set in
the SAP with the definition below:

(

m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), wi(X) have a strictly lower degree than n, which is the degree
of t(X). By defining s0 as 1, the following definition describes the relation R.

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :

(

m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)
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We say R is a relation generator for the SAP, given the relation R with a
field size larger than 2λ−1.

6.2 Construction

In this section, we propose a scheme with two group elements as a proof in a
symmetric group using SAP.

– (crs, τ)← Setup(R): Select a generator G
$← G, hash functionsH : {0, 1}∗ → Zp,

and parameters α, γ, δ, x
$← Zp, such that t(x) 6= 0, and set

τ = (G,α, γ, δ, x)

crs =


R,H,G,Gα, Gδ, Gαδ,

{Gγx
i

, Gγ
2t(x)xi , Gγδx

i

}n−1
i=0 , {G

γwi(x)+2αui(x)}li=0,

{Gγ
2wi(x)+2αγui(x)}mi=l+1


– π ← Prove(crs, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w as

(sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the SAP, pick

r
$← Zp and compute π = (A,C) = (Ga, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

c =

m∑
i=l+1

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

– 0/1 ← Vfy(crs, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,C) ∈ G×G. Set
s0 = 1 and check that

e(AGδH(A), A) = e(Gα, Gα)e(G
∑l
i=0 si(γwi(x)+2αui(x)), Gγ)e(C,G)

Accept the proof if and only if the test passes.

– π ← SimProve(crs, τ, φ) : Pick µ← Zp and compute π = (A,C) such that

A = Gµ, C = Gµ
2−α2+δµH(A)−γ

∑l
i=0 si(γwi(x)+2αui(x))

6.3 Security Proof

Theorem 2. The SAP-based SE-SNARK protocol is a non-interactive zero-
knowledge argument of knowledge with perfect completeness and perfect zero-
knowledge. It is simulation-extractable (implying it also has knowledge sound-
ness) provided that the D − HAK assumption holds and a collision-resistant
hash function exists.
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Proof. Perfect Completeness: First, we state that the prover can compute
the proof (A,C) as described from the common reference string. The prover can
compute the coefficients of

h(X) =
(
∑m
i=0 siui(X))2 − (

∑m
i=0 siwi(X))

t(X)
=

n−2∑
j=0

hjX
j .

It can now compute the proof elements as

A = Gα
n−1∏
j=0

(Gγx
j

)uj ·Gr

C =

m∏
i=l+1

Gsi(γ
2wi(x)+2αγui(x)) ·A′H(A) ·G−r

2

·
n−1∏
j=0

(Gγ
2t(x)xj )hj

where let A′ = GαδAδ = Gαδ
∏n−1
j=0 (Gδγx

j

)uj ·Gδr.
This computation provides us the proof elements specified in the construction

A = Gα+γ
∑m
i=0 siui(x)+r

C = G
∑m
i=l+1 si(γ

2wi(x)+2αγui(x))+γ
2t(x)h(x)+2ra−r2+δaH(A)

Here we show that the verification equation holds.

e(AGδH(A), A) = e(Gα, Gα)e(G
∑l
i=0 si(γwi(x)+2αui(x)), Gγ)e(C,G)

Taking discrete logarithms, this is equivalent to showing that

(a+δH(A)) · a = a2 + δaH(A)

=(α+ γ

m∑
i=0

siui(x) + r)2 + δaH(A)

=α2 + γ2(

m∑
i=0

siui(x))2 + 2αγ

m∑
i=0

siui(x) + 2ra− r2 + δaH(A)

=α2 +

m∑
i=0

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

=α2 + γ

l∑
i=0

si(γwi(x) + 2αui(x))

+

m∑
i=l+1

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

=α2 + γ
l∑
i=0

si(γwi(x) + 2αui(x)) + c

where A = Ga, and C = Gc.
Note that since the vector (sl+1, . . . , sm) is a valid witness for the instance

(s1, . . . , sl), (
∑m
i=0 siui(X))2 =

∑m
i=0 siwi(X) + h(X)t(X) for all X ∈ Zp.
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Zero-Knowledge: The zero-knowledge is similar to the proof in 5.4; the Sim-
Prove in the algorithm provides the proof simulation, which is sufficient for the
zero-knowledge.

simulation-extractability: By D −HAK assumption, there is an extractor
and a(X), and c(X) are extracted as following:

a(X) = a0 + aαXα + aδXδ + aαδXαXδ +
∑n−1

i=0
aγxiXγX

i
x

+
∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

aγδxiXγXδX
i
x

+

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

asi(X
2
γwi(Xx) + 2XαXγui(Xx))

+

qQ1∑
j=1

aλjXλj +

q∑
j=0

aAjXµj

+

q∑
j=0

aCj (X
2
µj −X

2
α +XδXµjH(Aj)−Xγ

l∑
i=0

sj,i(Xγwi(Xx) + 2Xαui(Xx)))

c(X) = c0 + cαXα + cδXδ + cαδXαXδ +
∑n−1

i=0
cγxiXγX

i
x

+
∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

+

qQ1∑
j=1

cλjXλj +

q∑
j=0

cAjXµj

+

q∑
j=0

cCj (X
2
µj −X

2
α +XδXµjH(Aj)−Xγ

l∑
i=0

sj,i(Xγwi(Xx) + 2Xαui(Xx)))

Then by the verification equation, the following equation should hold.

(a(X)+δH(A)) · a(X) = X2
α +Xγ

l∑
i=0

si(Xγwi(Xx) + 2Xαui(Xx)) + c(X) (6)

We will now show that in order to satisfy the formal polynomials equations
above, either the adversary must recycle an instance and a proof, or alternatively
a witness is extracted. First, suppose we have some aAk 6= 0. Since there are only
Xµk , XµkXδ, and X2

µk related with Xµk and there is no X2
δ in the right form,

a(X) = a0 + aAkXµk . Plugging this into (6) gives us,

(a0 + aAkXµk +XδH(A))(a0 + aAkXµk )

= X2
α +Xγ

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx)) + c(X)
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The only way this is possible is by setting

c(X) = c0 + cδXδ + cAkXµk + cCk (X2
µk −X

2
α+

XδXµkH(Ak)−Xγ
l∑
i=0

sk,i(Xγwi(Xx) + 2Xαui(Xx)))

Since there is no X2
α in the left form, cCk = 1. In addition, since there

is a2AkX
2
µk in the left form, a2Ak = cCk = 1, and aAk = 1 or −1. If we con-

sider XδXµk then aAkH(A)XδXµk = H(Ak)XδXµk . Hence aAkH(A) = H(Ak),
and aAkH(Ga0A

aAk
k ) = H(Ak). Assume that aAk = −1. Let c = −H(Ak) and

z = Ga0A
aAk
k . Since Ak is given, c is a given value. The problem is to find a

preimage of c such that H(z) = c, which is hard for collision resistant hash.
Therefore aAk = 1. The problem is to find a0 such that H(Ga0Ak) = H(Ak). Since
it is hard to find Ga0Ak 6= Ak, a0 = 0. Since ui(Xx)li=1 are linearly independent,
we see for i = 1, . . . , l that si = sk,i. In other words, the adversary has recycled
the k-th instance π = πk and proof (A,C) = (Ak, Ck).

Next, suppose for all j = 1, . . . , q that aAj = 0. Then cCj = cAj = 0 since there
is no Xµj in the left form. Since there is X2

α in the right form, a2α = 1. In the
right form, there are only Xα, X2

α, XαXγ , XαXδ, and Xαui(Xx) related with Xα
and there is no X2

δ , a(X) = a0 + aαXα +
∑n−1
i=0 aγxiXγX

i
x. We are now left with

c(X) = c0 + cαXα + cδXδ + cαδXαXδ

+

n−1∑
i=0

cγxiXγX
i
x +

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

In (6),

(aαXα + a0 +
∑n−1

i=0
aγxiXγX

i
x +H(A)Xδ)(aαXα + a0 +

∑n−1

i=0
aγxiXγX

i
x)

= X2
α +Xγ

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx))

+ c0 + cαXα + cδXδ + cαδXαXδ

+

n−1∑
i=0

cγxiXγX
i
x +

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XαXγX
i
x now

give us aα
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx). Finally, the terms involving X2

γ produce

(Xγ

m∑
i=0

siui(Xx))2 = X2
γ(

n−1∑
i=0

aγxiX
i
x)2 = X2

γa
2
α(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)
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Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means that (sl+1, . . . , sm) is

a witness for the instance (s1, . . . , sl) (the extracted witness may be one of many
possible valid witnesses).

7 Conclusion

In this paper, we propose two simulation-extractable succinct non-interactive ar-
guments of knowledge (SE-SNARK) constructions, which achieve minimal proof
size and a single verification. Our first construction is based on the quadratic
arithmetic program (QAP) representation, with a proof size of 3 group elements
(type III). The other construction is based on the square arithmetic program
(SAP) representation, with a proof size of 2 group elements (type I). The se-
curity of our schemes are proven under the hash-algebraic knowledge (HAK)
assumption and the (functional) collision-resistant hash function.
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