

BlockQuick: Super-Light Client Protocol for Blockchain Validation
on Constrained Devices

Dominic Letz
Exosite LLC

May 27, 2019. Version 0.2

Abstract

Today server authentication is largely handled through Public Key
Infrastructure (PKI) in both the private and the public sector. PKI is
established as the defacto standard for Internet communication through the
world wide web, and its usage in HTTPS, SSL/TLS (Web PKI). However, in
its application to Internet of Things (IoT) devices, using Web PKI
infrastructure for server authentication has several shortcomings, including
issues with validity periods, identity, revocation practice, and governance.
Recently, di�erent approaches to decentralized PKI (DPKI) using
Blockchain technology have been proposed, but so far have lacked
practicality in their application to devices commonly used in IoT
deployments. The approaches are too resource intensive for IoT devices to
handle and even the “light client” protocols have not been resource e�cient
enough to be practical. We present BlockQuick, a novel protocol for a
super-light client, which features reading blockchain data securely from a
remote client. BlockQuick requires less data for validation than existing
approaches, like PoPoW or FlyClient, while also providing e�ective means to
protect against eclipse and MITM attacks on the network. BlockQuick
clients have low kilobyte RAM requirements, which are optimal for IoT
devices and applications with embedded MCUs.

Introduction

Web PKI is the defacto standard for encrypted Internet communication. Today, most
Internet tra�c is being encrypted [mad18] using TLS, which relies on PKI for server
authentication. This authentication uses X.509 certi�cates signed by third parties: the
Certi�cate Authorities (CAs). Since Netscape [res01] brought SSL to the Internet with their
�rst browser in 1995, the certi�cation of servers has been in the hands of third parties. Since

1

https://www.networkcomputing.com/network-security/encrypted-traffic-reaches-new-threshold
https://books.google.com.tw/books?id=zBhrQgAACAAJ

1995, many improvements have been made to Web PKI, however, the following issues
around governance, revocation, and handling of time in certi�cates persist [sch10] [hou16] :

Time. For the IoT, the current recommendations of the CA/Browser Forum to shorten
certi�cate lifetimes [hou16b] are especially heavyweight. In contrast to personal computers,
most IoT devices have more limited connectivity, power, and resources. In many use cases, in
fact, the devices can be o�ine, e.g. in storage or on the shelf, for many years. When an IoT
device connects for the �rst time to the Internet, it needs to establish two things: 1) The
current time 2) Secure connectivity. This poses a chicken or egg problem: without the actual
current time, the device can't validate Web PKI certi�cates in order to securely communicate,
and without Web PKI certi�cate validation, it does not have a trusted source for time.

Previous solutions to this problem often trade-o� security as a work-around. Such as:

- Falling back to read time from non-authenticated time sources [alr18] such as NTP
[wic18] , GPS [kar17]

- Accept insecure time from the same server that is o�ering the certi�cate to be
validated [tsc15]

- Usage of a hard-coded factory build time timestamp when the real-time is not known

This problem is further ampli�ed with ever shorter lived certi�cates. With shorter lived
certi�cates, the certi�cates stored on the device, such as the root certi�cates or cached
endpoint certi�cates, may well have all have expired. This issue is even more serious because
many of today's resource-e�cient IoT devices have very little non volatile storage - often less
than the recommended minimum of Web PKI root certi�cates. Without a trustworthy
understanding of time and potentially expired certi�cates, IoT devices are prone to
man-in-the-middle attacks [sel15] and fake time servers [mal15] .

Multiple Certi�cates. In addition to the issue of time, PKI has, by design, no method to
detect duplicate identities. It is not possible for any peer of the system to know how many
certi�cates represent the same identity. This enables attacks using alternative sets of
certi�cates without the user, the victim, or the certi�cate authority knowing. [gre17]

Governance. There is a third issue stemming from the lack of governance structure of Web
PKI. In Web PKI there are, at the time of writing, 3,625 valid intermediate certi�cates
[cen19] . Each of these certi�cates can be used by their holders to create valid certi�cates for
any domain. Unfortunately, misuse is [kim17] and has been common [ven14] [lav14] .

Revocation. Lastly, revocation is a necessary part of the certi�cate lifecycle and is de�ned in
PKI via CRL and OCSP. Unfortunately, implementations vary especially on IoT devices.
The features to enable the device to detect and respond to revocation are usually missing, and
adoption from service providers to actually announce revoked certi�cates via these
mechanisms is very low [liu15] . For many IoT use cases, Web PKI revocation is unfortunately
non-functional.

2

https://www.schneier.com/academic/paperfiles/paper-pki.pdf
https://tools.ietf.org/html/draft-iab-web-pki-problems-01
http://hou16b/
https://alrawi.github.io/static/papers/alrawi_sok_sp19.pdf
https://aws.amazon.com/blogs/iot/using-device-time-to-validate-aws-iot-server-certificates/
https://zxsecurity.co.nz/presentations/201707_Defcon-ZXSecurity-GPSSpoofing.pdf
https://mailarchive.ietf.org/arch/msg/dtls-iot/hHxQvwoLUCDgW1oianMJYbNJDMI
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEF%20CON%2023%20-%20Jose-Selvi-Breaking-SSL-Using-Time-Synchronisation-Attacks.pdf
https://eprint.iacr.org/2015/1020.pdf
https://www.wired.com/2017/04/hackers-hijacked-banks-entire-online-operation/
https://censys.io/certificates?q=validation.nss.valid%3A+true+AND+parsed.extensions.basic_constraints.is_ca%3A+true
http://www.umiacs.umd.edu/~tdumitra/papers/CCS-2017.pdf
https://www.venafi.com/assets/pdf/wp/Exposing_the_Malicious_Use_of_Keys_and_Certificates.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/12_1_1.pdf
https://securepki.org/paper/imc15.pdf

DPKI. In response to these shortcomings, decentralized public key infrastructure based on
blockchain technology has been proposed [but15] [sin17] [fro14] [pat18] . Deploying a
public key infrastructure on a decentralized blockchain network has the bene�ts of alleviating
all four PKI shortcomings: time, multiple certi�cates, governance, revocation. Though
authors agree on these theoretical bene�ts, adoption of DPKI among IoT devices so far has
been hindered by the absence of practical light client implementations [pac32] [mag18] . In
this paper we want to introduce a new light client protocol that can be added to the
Ethereum [but14] blockchain, allowing DPKI constructions to use Ethereum smart
contracts without e�ectively locking out constrained devices.

Related light clients . In recent work, Bünz et.al. have proposed FlyClient [bun19] ,
introducing a super-light client class of light clients for use in the Ethereum network. The
super-light client needs to download only a logarithmic amount of block headers for
validation, but requires the availability of at least one honest miner. In the context of IoT
devices, this restriction seems unrealistic because many remote devices are easy targets for
network manipulation such as eclipse attacks [hei15] . Individual devices can often be isolated
when attackers intermediate cellular networks [sha15] [mey04] [rij15] or WiFi networks
[van18] and run Man-In-The-Middle (MITM) attacks there [lee19] . Also, this is true for any
mobile device that can be stolen and placed into a maliciously constructed network
containing no honest miners at all. As such, a truly secure light client must have the ability to
identify when no honest miner is available at all, e.g. when the clients' local network has been
manipulated.

Contribution: BlockQuick

We introduce BlockQuick, a new super-light client protocol for Ethereum, and similar
blockchains, that has sublinear - in fact near constant - bandwidth requirements for chain
validation while being resistant to eclipse and MITM attacks. It enables a client to sync up to
a relatively recent block (dependent on a chosen parameter 𝜟 t) using a consensus
reputation table . The amount of data that needs to be synced from blockchain nodes is
independent of the block height (the total number of existing blocks), but depends on the
historic majority change rate of miners within the consensus reputation table. We show that
this means, for blockchains such as Bitcoin and Ethereum, only a �xed amount of data needs
to be synced - Below 50kb for Ethereum and ~20kb for a further modi�ed variant thereof.

3

https://danubetech.com/download/dpki.pdf
https://isrdc.iitb.ac.in/blockchain/workshops/2017-iitb/papers/paper-11%20-%20Decentralized%20PKI%20in%20blockchain%20and%20Smart%20contract.pdf
https://eprint.iacr.org/2014/803.pdf
https://eprint.iacr.org/2018/853.pdf
https://github.com/ethereum/mist/issues/2394
http://www.diva-portal.org/smash/get/diva2:1257195/FULLTEXT01.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://eprint.iacr.org/2019/226.pdf
https://eprint.iacr.org/2015/263.pdf
https://arxiv.org/pdf/1510.07563v1.pdf
https://www.cs.stevens.edu/~swetzel/publications/mim.pdf
https://www.delaat.net/rp/2015-2016/p86/report.pdf
https://papers.mathyvanhoef.com/ccs2018.pdf
http://www.sfu.ca/~dgl3/ENSC427%20Project%20Report.pdf

Blockchain Additions:

The BlockQuick protocol can be added to existing blockchains as long as each mined block
header contains the network peer information of the block miner (Internet address and
public id) and a corresponding cryptographic signature of the header. In case of recoverable
ECDSA signatures, as used in Bitcoin and Ethereum, the public key is already part of the
signature and hence does not need to be an explicit part of the block header.

The additional required consensus rules for full nodes on the network are:

- Each block needs to have a cryptographic signature (and public key, if not included in
the signature).

- Each block needs to contain an inklusion proof in form of a Merkle tree root of all
previous block headers.

- Each miner should be reachable under the Internet address speci�ed in the block.

BlockQuick Client Protocol

A client needs, at a minimum, a single last known blockchain block header hash. In an IoT
use case, this might be a recent block header hash at the time of manufacturing. Additionally,
the client needs either a list of seed nodes or a mechanism such as DNS to look seed nodes up.
These seed nodes do not correspond to a list of trusted nodes - we will see how the protocol is
able to trust data without needing to trust the nodes supplying the data.

Consensus Reputation Table. The consensus reputation table is not centrally provided to
clients but is constructed on each client based on the last known block header. For example,
in a Proof-of-Work (PoW) system the client can construct the consensus reputation table by

4

reading 100 previous block headers from the last known state of the blockchain. All past
block headers of the blockchain can be validated on the client using the parent block
checksum alone. Thus, clients can even fetch these block headers from untrusted nodes as the
data can be validated using the existing block header and its contained parent block hash.
Once the client has those past block headers fetched and validated, it creates the Consensus
Reputation Table from the information in the headers as follows:

The proposed light client protocol establishes a reputation system on the mining
nodes in the network. The reputation of each mining node corresponds directly to
the percentage of blocks that each mining node contributed compared to all mining
nodes in a given time frame. The time frame is the consensus group’s history length
parameter 𝜟 t , with units in the number of blocks. In a PoW consensus, the
percentage of mined blocks during the last 𝜟 t blocks corresponds to their
proportional computational proof power among all participants. A miner who
mined and signed 10% of the𝜟 t recent blocks thereby shows to have 10% of the total
computational power during that time frame, generalized for other consensus
algorithms we call this their consensus share .

As such, clients can cache a list of most reputable miners together with the most
recent known good block for a quicker update mechanism. Each miner thereby is
stored as a triplet of the peer's public key, its address, and its consensus share. The
client needs to store at least N reputable miners so that the sum of their consensus
share is >50% but should store more up to 𝜟 t miners, depending on local storage
allowance.

Simple Connection Algorithm

If the client has an existing cached list of last miners, it tries to reach enough miners such that
the sum of their consensus share is at least >50% in the Quick Update process:

Quick Update - For each miner M in the client's miner list:

(1) Client connects to the miner and fails if not found or not matching the stored public
key.

(2) Client downloads most recent block headers from the miner.
(3) If the client successfully reached enough miners corresponding to >50% consensus

share the client can stop.

5

Slow Update - If less than 50% of the consensus share could be connected to the device
assumes that a "long period of time" has passed and falls back to this slower update
sub-routine:

(1) The client de�nes the current consensus group as the 𝜟 t last blocks from it's last
known blocks. Based on this consensus group, the consensus share of each peer in
that consensus group is calculated. E.g. if
𝜟 t = 100 and miner A created 25 of the last 100 blocks his consensus share is 25%.
The data is either cached on the client or can be downloaded from any peer,
validating the block-header data based on the existing block header hash on the client.

(2) Then the client downloads the most recent block headers from any peer
(3) The client further fetches incrementally the whole missing link of block-headers

between last known block-header and the most recent header.
(4) For each block-header in the range, starting at the last known block-header, the client

assigns a score based on the known consensus share of the block miner or zero if the
block miner is not known.
For example, in the above picture, block 1 mined by miner E receives a score of 0,
since its corresponding miner E is not part of the previous consensus group.

(5) The score value of each new block is then increased once per miner from the known
consensus group having a block in the following block list. The logic is that when a
miner B created and signed a block on this candidate branch of the blockchain, it
meant the miner must have trusted this branch.
So when the client sees block 2 mined by miner B, it receives a positive score of 25%
and the score of block 1 is also increased to 25% - because it has now been con�rmed
by a miner who represents 25% of the consensus group.

(6) If no block reaches the threshold score of >50%, the device will disconnect and
assume manipulation.

6

(7) With each found block above the 50% threshold, the consensus group is updated to
now include that block, allowing the consensus shares to adjust over time, mirroring
the shift in the consensus group in the real world when miners shut down their
operation or new miners start operation.

(8) Finally, when the >50% threshold has been established for some new blocks, but
cannot be established for further blocks (e.g. because there are not enough further
blocks), the client repeats the Quick Update process based on the new current
consensus group. If the quick update process succeeds, the most recent block above
the 50% threshold is now stored as the new most recently known block on the device.

During the execution of this algorithm, the client might encounter multiple di�erent
versions of the blockchain, potentially malicious forks and outdated versions. But unless an
attacker manages to gain more than 50% of the consensus share by their private keys, the
client will not accept a wrong chain. However, for outdated-but-valid blocks, it is important
that the client always executes the Quick Update after a Slow Update in order to validate with
multiple miners that this is still the most recent version of the blockchain.

The present algorithm allows a device to follow the blockchain through gradual changes of

the consensus group as long as the impact of the change within the 𝜟 t last blocks is below
50% of consensus share.

Sublinear Sync Size

The presented solution enables IoT devices to establish trust in a recent blockchain block, by
operating on block headers and verifying the miner signatures. In existing blockchains, such
as Ethereum and Bitcoin, an inclusion proof for previous blocks is given with the previous
block hash of each block. Validating this inclusion proof though requires iterating all blocks
linearly in this order. Given the current size of the Ethereum headers, especially for a device
that has been o�ine for an extended period of time, the incremental check would take too
much time and bandwidth to be realistic. E.g. given 3 years since the last known block, an

7

average block header size of 500 bytes, and assuming one header every 15 seconds, a total of
6,307,200 blocks (~3gb) would need to be downloaded and checked by an IoT device. This is
not feasible for the vast majority of IoT devices.

To address this, there are two necessary adjustments to Ethereum. First, merkelized inclusion
proofs can be utilized as described by Crosby and Wallach [cro09] and Bünzel et.al. later
[bun19] . With this addition in a new historyRoot �eld in each block, a client can validate the
inclusion of any previous block based on the Merkle proof. The Merkle inclusion proof has
only a logarithmic size. By using it, the device can skip all headers in between the devices last
known block and the current most recent block.

Secondly, when a device connects to a miner, it not only requests the most recent block
header, but it also provides its last known block header and 𝜟 t . This information allows the
server/miner to determine whether there has been a “Majority Change” in the consensus

group between the last known state on the client and current state of the blockchain. The
server/miner can then calculate the minimum number of block headers that the device needs
to synchronize.

Using this approach, the number of blocks that needs to be fetched, even after a long period,
is massively reduced. From any point in the blockchain known to the device, the server/miner

8

http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
https://eprint.iacr.org/2019/226.pdf

node only needs to provide a Merkle proof to a recent block, plus the N following blocks
required for the device to con�rm these blocks based on its known, consensus group. So, in
the example of bridging three years or 6,307,200 blocks, the device would fetch a Merkle
inclusion proof of the logarithmic size of the total blockchain. We estimate an upper worst
case using the [cro09] binary Merkle tree and 50 years, or 105 million blocks. The Merkle
proof would thus require log 2 (105,000,000) = ~26 nodes @ 32 byte each for SHA-256,
totaling 832 bytes for the inclusion proof. Additionally, the most recent𝜟 t block headers are
required to build the new consensus group and to validate the approval of the current
consensus group. At 500 bytes per header, and 𝜟 t = 100, those headers accumulate to 50kb,
totaling the required data transfer at ~51kb.

Majority Change. Over the lifetime of a blockchain, the consensus group will have
incremental changes. New miners come online and old miners stop their participation in the
network. Over an extended period of time, this means that the consensus group that has been
known to the device, and the consensus group of the current longest chain, might be
signi�cantly di�erent. At some point, the di�erence might be so large that the last known
consensus group won't be su�cient to con�rm the recent blocks with >50% con�dence
because there are not enough known signatures present after a certain point in the chain. In
this case, the device would not be able to accept the most recent 𝜟 t blocks directly as they
can't be con�rmed by its last known consensus group. In this case, the server needs to provide
additional blocks around the time of the consensus group change in order to allow the client
to reconstruct the gradual change of the consensus group. E�ectively, this provides a �rst
incremental sync to a new blockchain state that is still con�rmable by the device’s last known
consensus group. If necessary, there can be an arbitrary amount of these incremental steps.

Given a blockchain state A known to the device, and a consensus group G a at that point, then
there can be a blockchain state B behind which >50% of the members of G a , by consensus
share, are not participating in the network anymore (not producing and signing blocks
anymore). If such a blockchain state B exists, then the miner/server needs to provide the
device the blockchain state immediately before B that was still signed by more than 50% of
the devices known consensus group by consensus share. It is this amount of >50% consensus
group changes that determine the total size of data required for the proof. For each majority
change of the consensus group, there is at least one inclusion proof to that block, as well as
𝜟 t blocks around this change, necessary for the client to update its consensus group.

In a highly volatile blockchain, this could degrade to be linear to blockchain length, meaning
that every 𝜟 t blocks a majority of the consensus group by consensus share has changed.
However, when looking at all past blocks of Ethereum as a reference we can determine that
while major changes in the consensus group were frequent within at the beginning of the
blockchain, with growing adoption, the change of the consensus group has slowed down.
During the last 5 million blocks there was no major consensus group change anymore, which
means that a device would not need to sync any intermediate states.

9

http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf

Block Header Shelling

As discussed above, the total needed data transfer size using the BlockQuick algorithm
linearlily depends on three factors: 1) block header size 2) consensus group history length𝜟 t
and 3) consensus change rate. While the consensus change rate is dependent on the economy
of the blockchain and consensus protocol, the consensus group history length is de�ned by
the client, based on security requirements.

The block header size is dependent on the chain implementation. In the case of current
Ethereum [woo19] , the header size is around 500 byte. However, Ethereum block-header
size can be optimized by partitioning the full header into two parts: 1) An outer block header
shell and 2) an inner full block header. The outer block header shell is reduced to only
include the information required to validate using the BlockQuick algorithm: parentHash ,
nonce , difficulty , number , ipAddress , historyRoot , shellSignature as well as a 256 bit hash of the
inner full block header (fullHeaderHash). The second partition - the full block header does
not need to be transferred to the client during validation until the client is able to con�rm a
block. The client will need the full block header only from the most recent con�rmed block
to access stateRoot , transactionRoot, et cetera to perform further application-speci�c
functions.

In the case of PoW, as pictured above, the relevant signature and di�culty are captured in the
shell. This header partitioning applied on Ethereum would further cut the maximum
required data by more than half. Using the same type of calculation as before, but now with
block header size = 189, a consensus group history length 𝜟 t = 100, and no consensus
majority change, we estimate 20kb of total sync size on average.

10

https://ethereum.github.io/yellowpaper/paper.pdf

Summary

Empirical studies [lec11] have shown that misused private keys and stolen certi�cates are the
most common risks in the PKI. We propose a new secure blockchain client that makes it
feasible for all applications to implement DPKI solutions, replacing or complementing
[bal17] Web PKI, while eliminating the risks introduced by third parties. By adopting the
proposed approach, IoT devices are enabled to securely read blockchain information,
including the current timestamp and registered DPKI information about domains,
certi�cates, and ownership. Further using Ethereum Merkle proofs against the full block
headers stateRoot allows the clients to validate each of these pieces of information against the
last known good block.

We've shown a novel method to allow constrained devices typical to the IoT space to
consume blockchain based data. This is the �rst building block to enable a more secure DPKI
leveraging blockchain-based smart contracts. Devices are enabled to fetch block time and
arbitrary state data from the Blockchain. In comparison to existing clients for the Ethereum
network, we can demonstrate the magnitude of the impact:

Node Type Trust Model Storage Bandwidth Duration

geth --syncmode=full Decentralized ~220GB 1 >90GB 2 days

geth --syncmode=fast Decentralized ~130GB 3 >90GB 2 hours

geth --syncmode=light Decentralized ~1.2GB 3 ~1.2GB 3 minutes

BlockQuick Decentralized ~20kb 3 ~20kb 3 sub-second

Trad. Web PKI Client Centralized ~20kb - 500kb 4 ~5kb 3 sub-second

Although our solution is still larger than the typical handshake size of a traditional centralized
Web PKI Client, it becomes feasible to execute on most hardware that is capable of Web PKI
handshakes.

1 Retrieved from https://etherscan.io/chartsync/chaindefault on May 10th 2019
2 Estimated based on total block sizes https://etherscan.io/chart/blocksize on May 15th 2019
3 As measured on May 10th 2019
4 Range from minimal four AWS IoT certi�cates (20kb) and max all Mozilla NSS certi�cates (500kb) as of May
10th 2019

https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/

11

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2012-04-1/NET-2012-04-1_02.pdf
http://ceur-ws.org/Vol-1816/paper-16.pdf
https://etherscan.io/chartsync/chaindefault
https://etherscan.io/chart/blocksize
https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/

Potential Attacks

Chain Forks and Network Splits. In Ethereum, Bitcoin and other existing PoW networks,
a fork chain can be created by a few malicious miners or even by a software bug. In the case of
a fork chain, a blockchain client must still be able to connect to the blockchain, and to detect
which of the forks is authoritative, and which of the forks should be ignored. From the
perspective of a client device using the BlockQuick algorithm, the deciding factor is always
the consensus share that each block can achieve.

It is for this reason that the threshold for accepting a block in BlockQuick is >50% of the
known consensus share. This ensures that, from the device perspective during a network
split, there is either no authoritative network or just one. For example, say there is a large
network split e.g. due to atlantic network cables failing. In this case we have two new
networks A and B. Each active miner and client sees either network A or network B,
depending on their geographic location. Given a consensus reputation table from just before
the fork we know that the consensus share S of the sum of all miners from A and all miners
from B must have been 100%:

∑

m ∈ A
Sm + ∑

m ∈ B
Sm = 1

From there it follows that there can be no split between A and B such that both sides share is
bigger than 50%. We can di�erentiate three cases:

0.5 .5α : ∑

m ∈ A
Sm > → ∑

m ∈ B
Sm < 0

Network A is authoritative with more
50% consensus share, clients will accept its
blocks. Network B is a fork, and no block
from B will be accepted by a client.

0.5 .5β : ∑

m ∈ A
Sm < → ∑

m ∈ B
Sm > 0

Network B is authoritative with more 50%
consensus share, clients will accept its
blocks. Network A is a fork, and no block
from B will be accepted by a client.

0.5 .5γ : ∑

m ∈ A
Sm = → ∑

m ∈ B
Sm = 0

Neither network A nor network B can
reach more than 50% consensus share and
thus no network is authoritative.

While case is unlikely (exactly 50% of the miners would need to be both sides of a split), the γ
scenario of exactly 50% consensus share on both sides can be made at mathematically
impossible by choosing an odd number for 𝜟t . E.g. choosing 𝜟t = 101 would not allow a

12

50%/50% split (A=51 vs B=50 or vice versa in the worst case), making only one network the
authoritative survivor.

Eclipse Attacks. Eclipse attacks as discussed by Heilman et.al. [hei15] were directed at
node-to-node communication within full-nodes of the Bitcoin peer to peer network. For
remote clients as found in super-light client use cases, network uplinks are typically even
more scarce. A mobile IoT device will usually have a single uplink to the Internet, such as a
cellular network or via WiFi networks in its vicinity. In these cases, eclipsing all connections
that the device has to the outside world becomes much easier. Lee et.al [lee19] showed how,
in a WiFi network, a device can be spoofed using crafted ARP packets, therebye routing all
data tra�c through the attacker. This way of monopolizing all network connections to the
device allows for advanced manipulation, such as presenting the device with multiple
di�erent non-authoritative blockchain variants. PoW light clients, such as Ethereum geth
that validate based on longest chain / highest di�culty, are prone to these attacks because
they can only successfully choose "the best" chain given a set of alternatives. But, when all
presented alternative chain versions are non-authoritative, the client will still accept one of
them. The same is true for FlyClient as proposed by Bünz et.al. [bun19] - here a heuristic
comparison of presented alternative chains is done. In the result, the FlyClient can decide
which of these alternatives is most likely the correct chain. These clients can successfully solve
the decision problem on which of presented alternatives is most likely the authoritative chain,
but they fail to identify an abort criteria, when none of the presented chain versions are
authoritative.

BlockQuick addresses Eclipse Attacks, and speci�cally the extreme case when a single actor
monopolizes all connections, using the 50% consensus threshold. Let's assume an attacker
constructs a forked blockchain with 10 blocks of wrong data entries. The authoritative
version of the PoW chain would, in this case, grow quickly longer than this forked wrong
chain. However, devices without a direct connection to the authoritative longer PoW chain
would not be able to see the di�erence. In BlockQuick however, the PoW di�culty and
length are not the primary deciding factors. Instead devices will iterate the blocks, in this case
the 10 new blocks that the device is not aware of, and run the Slow Update mechanism. In
each new block the device validates the cryptographic signature of the miner and compares
these with the known miner identities in its consensus reputation table . Only if a block
receives a consensus score of >50% is it accepted by the client. Receiving a chain with a lower
total score results in an abort. Since all 10 new blocks from the example have been crafted and
signed by the attacker, they, on their own, would not receive any reputation score and
therefore would not cross the >50% threshold required for the client to accept these new
blocks. Furthermore, since this is a forked chain, there are no other miners who would
contribute on-top of this fork. Thus there are also no other later signatures that would
increase the reputation score. Without additional signatures from existing reputable miners
in the blockchain, it does not matter how much longer the attackers fork chain becomes (10s,
100s or 1000s of blocks), their reputation score will stay 0% and the BlockQuick client won't

13

https://eprint.iacr.org/2015/263.pdf
http://www.sfu.ca/~dgl3/ENSC427%20Project%20Report.pdf
https://eprint.iacr.org/2019/226.pdf

accept them. As a result, the attacked client device would reject the o�ered blockchain as
non-authoritative and close the connection.

Discussion

Blockchain Time Source. As Adam Langley pointed out [lan14] , today, secure time
mechanisms have a circular dependendency between knowing the time and having the ability
to interpret secure certi�cate validity dates. With BlockQuick there is now - for the �rst time
we believe - a protocol to break this circular dependency. In our approach, the trust anchor
that is stored on a computing device is a cryptographic hash of the last known good block
header (SHA-3-256 / KECCAK-256 in current Ethereum). The bene�t of using a
cryptographic hash instead of a public/private key pair is that there is no individual entity
that can be attacked to gain access to a private key part, and no third party that could go
rogue with a private key.

BlockQuick can only be used for a rough understanding of time, however. Its precision is
enough to validate certi�cates, but not precise enough for many other tasks. Ethereum, for
instance, has a 15 second block interval - this is the minimum latency for our calculation.
Clients can never con�rm up to the most recent block - In the worst case, blocks are 2

Δt
required past the next con�rmed block, which in the case of 𝜟t = 100 would lead to a mean
latency of (15*100/2) = 750 seconds. For clients which need higher accuracy, it still solves the
initial circular dependency on checking certi�cate validities. With this rough understanding
of time, clients can now connect to a time server using standard PKI validation to improve
the accuracy and trust-level of the retrieved time. Authoritatively accurate time servers could
in fact be registered in blockchain data directly, using certi�cate pinning as discussed below.

Certi�cate Pinning. We have presented the foundation for constrained devices to securely
read recent blockchain data. We propose to solve aforementioned PKI issues by
complementing Web PKI with pinning certi�cates in a distributed blockchain, such as
Ethereum. Pinning a certi�cate is a means of storing a certi�cate hash which then can be used
to validate the concrete identity of a certi�cate. This combination solves the aforementioned
problems of PKI: Time, Revocation, and Multiple Identities as the blockchain storage
becomes the authoritative registry for the currently valid certi�cate for any entity. For
Governance there are alternatives in development such as ENS [joh19] but the description of
a complete solution in the form of a smart-contract structure is an ongoing research area.

Too-fast consensus share changes. The BlockQuick algorithm detects wrong blockchain
branches based on the consensus group score. When the score does not grow above the
threshold of 50%, the algorithm discards the branch. This puts a limit on the maximum
change rate of a consensus group. If any block exists immediately after which the majority of
the consensus group has changed (e.g. 51% of all miners suddenly stop mining), the
BlockQuick algorithm would not consider the chain authentic. Should there be a
catastrophic event leading to such a sudden loss of the majority, the blockchain would

14

https://groups.google.com/a/chromium.org/forum/#!msg/security-dev/oj2xXq3CF0E/f7BtsfkVhe8J
https://buildmedia.readthedocs.org/media/pdf/ens/latest/ens.pdf

e�ectively stop for the client. This is a new theoretical limitation directly resulting from the
design. Our testing on Ethereum history though showed that neither chain ever had such an
event so far. It is future work to closely investigate the likelihood of such an event.

Selection of 𝜟 t . Increasing the size of 𝜟 t also increases linearly how much data has to be
fetched for validation. A larger size of𝜟 t reduces consensus group �uctuations stored on the
devices, but also keeps consensus shares of nodes up that have not produced blocks in a long
time. Higher �uctuation can lead, in the worst case, to a consensus share change that is at too
fast a rate for the devices to follow. Implementations thus may choose di�erent 𝜟 t values as
appropriate. Additionally, the blockchain consensus may be extended to enforce changes
rates of less than 50% within a given 𝜟 t timeframe. This might also render small 𝜟 t values
practical. It is future work to investigate this further.

References

[alr18] Alrawi, O. and Lever, C. and Antonakakis, M. and Monrose, F. SoK: Security
Evaluation of Home-Based IoTDeployments , 2018

[bal17] Baldi, M. and Chiaraluce, F. and Frontoni, E. and Gottardi, G. and Sciarroni, D.
and Spalazzi, L. Certi�cate Validation through Public Ledgers and Blockchains ,
2017

[bun19] Bünz, B. and Ki�er, L. and Luu, L. and Zamani, M. FlyClient: Super-Light Clients
for Cryptocurrencies , 2019

[but14] Buterin, V. Ethereum , 2014
[but15] Allen, C. and Brock, A. and Buterin, V. and Callas, J. and Dorje, D. and Lundkvist,

C. and Kravchenko, P. and Nelson, J. and Reed, D. and Sabadello, M. and Slepak,
G. and Thorp, N. and Wood, H.T. Decentralized Public Key Infrastructure , 2015

[cen19] Censys NSS Certi�cate Report , 2019
[cro09] Crosby, S.A. and Wallach, D.S. E�cient Data Structures for Tamper-Evident

Logging , 2009
[fro14] Fromknecht, C. and Velicanu, D. and Yakoubov, S. A Decentralized Public Key

Infrastructure with Identity Retention , 2014
[gre17] Greenberg, A. How Hackers Hijacked a Bank’s Entire Online Operation , 2017
[hei15] Heilman, E. and Kendler, A. and Zohar†, A. and Goldberg, S. Eclipse Attacks on

Bitcoin’s Peer-to-Peer Network , 2015
[hou16] Housley, R. and O'Donoghue, K. Problems with the Public Key Infrastructure

(PKI) for the World Wide Web , 2016
[hou16b] Housley, R. and O'Donoghue, K. Problems with the Public Key Infrastructure

(PKI) for the World Wide Web: 3.2.1. Short-lived Certi�cates , 2016
[joh19] Johnson, N. ENS Documentation , 2019
[kar17] Dave/Karit Using GPS Spoo�ng to Control Time , 2017
[kim17] Kim, D. and Kwon, B.J. and Dumitras, T. Certi�ed Malware: Measuring Breaches

of Trust in the Windows Code-Signing PKI , 2017

15

https://alrawi.github.io/static/papers/alrawi_sok_sp19.pdf
https://alrawi.github.io/static/papers/alrawi_sok_sp19.pdf
http://ceur-ws.org/Vol-1816/paper-16.pdf
https://eprint.iacr.org/2019/226.pdf
https://eprint.iacr.org/2019/226.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://danubetech.com/download/dpki.pdf
https://censys.io/certificates?q=validation.nss.valid%3A+true+AND+parsed.extensions.basic_constraints.is_ca%3A+true
http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
https://eprint.iacr.org/2014/803.pdf
https://eprint.iacr.org/2014/803.pdf
https://www.wired.com/2017/04/hackers-hijacked-banks-entire-online-operation/
https://eprint.iacr.org/2015/263.pdf
https://eprint.iacr.org/2015/263.pdf
https://tools.ietf.org/html/draft-iab-web-pki-problems-01
https://tools.ietf.org/html/draft-iab-web-pki-problems-01
https://tools.ietf.org/html/draft-iab-web-pki-problems-01#section-3.2.1
https://tools.ietf.org/html/draft-iab-web-pki-problems-01#section-3.2.1
https://buildmedia.readthedocs.org/media/pdf/ens/latest/ens.pdf
https://zxsecurity.co.nz/presentations/201707_Defcon-ZXSecurity-GPSSpoofing.pdf
http://www.umiacs.umd.edu/~tdumitra/papers/CCS-2017.pdf
http://www.umiacs.umd.edu/~tdumitra/papers/CCS-2017.pdf

[lan14] Langley, A. Expired HTTPS certi�cates and incorrect clocks , 2014
[lav14] Delignat-Lavaud, A. and Abadi, M. and Birell, A. and Mironov, I. and Woober, T.

and Xie, Y. Web PKI: Closing the Gap betweenGuidelines and Practices , 2014
[lec11] Lechner, A. Low Probability, High Stakes: A look at PKI , 2011
[lee19] Lee, D. and Kwok, E. and Yee, D. KRACK - The Destruction of WiFi: A

simulation of KRACK attack , 2019
[liu15] Liu, Y. and Tome, W. and Zhang, L. and Cho�nes, D. and Levin, D. and Maggs, B.

and Mislove, A. and Schulman, A. and Wilson, C. An End-to-End Measurement
ofCerti�cate Revocation in the Web’s PKI , 2015

[mad18] Maddison, J. Encrypted Tra�c Reaches A New Threshold , 2018
[mag18] Magnusson, S. Evaluation of Decentralized Alternatives to PKI for IoT Devices ,

2018
[mal15] Malhotra, A. and Cohen, I.E. and Brakke, E. and Goldberg, S. Attacking the

Network Time Protocol , 2015
[mey04] Meyer, U. and Wetzel, S. A Man-in-the-Middle Attack on UMTS , 2004
[pac32] Unknown Blockchain takes way too long to sync·issue #2394·ethereum/mist , 2017
[pat18] Patsonakis, C. and Samari, K. and Roussopoulos, M. and Kiayias, A. Towards a

Smart Contract-based, Decentralized, Public-Key Infrastructure , 2018
[res01] Rescorla, E. SSL and TLS: Designing and Building Secure Systems , 2001
[rij15] Rijsbergen, K.v. The e�ectiveness of a homemade IMSI catcher build with YateBTS

and a BladeRF , 2015
[sch10] Schneier, B. Ten Risks of PKI: What You’re not BeingTold about Public Key

Infrastructure , 2010
[sel15] Selvi, J. Breaking SSL using time synchronisation attacks , 2015
[sha15] Shaik, A. and Borgoankar, R. and Asokan, N. and Niemi, V. and Seifert, J.P.

Practical attacks against privacy and availability in 4G/LTE mobile communication
systems , 2015

[sin17] P, S. and Singh, D.K. Privacy based decentralized Public Key Infrastructure (PKI)
implementation using Smart contract in Blockchain , 2017

[tsc15] Tschofenig, H. [Dtls-iot] Secure Time (again) , 2015
[van18] Vanhoef, M. and Piessens, F. Release the Kraken: new KRACKs in the 802.11

Standard , 2018
[ven14] Vena� Broken Trust: Exposing the Malicious Use of Digital Certi�cates and

Cryptographic Keys , 2014
[wic18] Wicker, G. Using Device Time to Validate AWS IoT Server Certi�cates , 2018
[woo19] Wood, G. Ethereum Yellow Paper , 2019

16

https://groups.google.com/a/chromium.org/forum/#!msg/security-dev/oj2xXq3CF0E/f7BtsfkVhe8J
https://www.ndss-symposium.org/wp-content/uploads/2017/09/12_1_1.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2012-04-1/NET-2012-04-1_02.pdf
http://www.sfu.ca/~dgl3/ENSC427%20Project%20Report.pdf
http://www.sfu.ca/~dgl3/ENSC427%20Project%20Report.pdf
https://securepki.org/paper/imc15.pdf
https://securepki.org/paper/imc15.pdf
https://www.networkcomputing.com/network-security/encrypted-traffic-reaches-new-threshold
http://www.diva-portal.org/smash/get/diva2:1257195/FULLTEXT01.pdf
https://eprint.iacr.org/2015/1020.pdf
https://eprint.iacr.org/2015/1020.pdf
https://www.cs.stevens.edu/~swetzel/publications/mim.pdf
https://github.com/ethereum/mist/issues/2394
https://eprint.iacr.org/2018/853.pdf
https://eprint.iacr.org/2018/853.pdf
https://books.google.com.tw/books?id=zBhrQgAACAAJ
https://www.delaat.net/rp/2015-2016/p86/report.pdf
https://www.delaat.net/rp/2015-2016/p86/report.pdf
https://www.schneier.com/academic/paperfiles/paper-pki.pdf
https://www.schneier.com/academic/paperfiles/paper-pki.pdf
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEF%20CON%2023%20-%20Jose-Selvi-Breaking-SSL-Using-Time-Synchronisation-Attacks.pdf
https://arxiv.org/pdf/1510.07563v1.pdf
https://arxiv.org/pdf/1510.07563v1.pdf
https://isrdc.iitb.ac.in/blockchain/workshops/2017-iitb/papers/paper-11%20-%20Decentralized%20PKI%20in%20blockchain%20and%20Smart%20contract.pdf
https://isrdc.iitb.ac.in/blockchain/workshops/2017-iitb/papers/paper-11%20-%20Decentralized%20PKI%20in%20blockchain%20and%20Smart%20contract.pdf
https://mailarchive.ietf.org/arch/msg/dtls-iot/hHxQvwoLUCDgW1oianMJYbNJDMI
https://papers.mathyvanhoef.com/ccs2018.pdf
https://papers.mathyvanhoef.com/ccs2018.pdf
https://www.venafi.com/assets/pdf/wp/Exposing_the_Malicious_Use_of_Keys_and_Certificates.pdf
https://www.venafi.com/assets/pdf/wp/Exposing_the_Malicious_Use_of_Keys_and_Certificates.pdf
https://aws.amazon.com/blogs/iot/using-device-time-to-validate-aws-iot-server-certificates/
https://ethereum.github.io/yellowpaper/paper.pdf

