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Abstract. A recent line of research has investigated a new profiling
technique based on deep learning as an alternative to the well-known
template attack. The advantage of this new profiling approach is twofold:
(1) the approximation of the information leakage by a multivariate Gaus-
sian distribution is relaxed (leading to a more generic approach) and (2)
the pre-processing phases such as the traces realignment or the selec-
tion of the Points of Interest (PoI) are no longer mandatory, in some
cases, to succeed the key recovery (leading to a less complex security
evaluation roadmap). The related published works have demonstrated
that Deep Learning based Side-Channel Attacks (DL-SCA) are very effi-
cient when targeting cryptographic implementations protected with the
common side-channel countermeasures such as masking, jitter and ran-
dom delays insertion. In this paper, we assess the efficiency of this new
profiling attack under different realistic and practical scenarios. First,
we study the impact of the intrinsic characteristics of the manipulated
data-set (i.e. distance in time samples between the PoI, the dimension-
ality of the area of interest and the pre-processing of the data) on the
robustness of the attack. We demonstrate that the deep learning tech-
niques are sensitive to these parameters and we suggest some practical
recommendations that can be followed to enhance the profiling and the
key recovery phases. Second, we discuss the tolerance of DL-SCA with
respect to a deviation from the idealized leakage models and provide a
comparison with the well-known stochastic attack. Our results show that
DL-SCA are still efficient in such a context. Then, we target a more com-
plex masking scheme based on Shamir’s secret sharing and prove that
this new profiling approach is still performing well. Finally, we conduct
a security evaluation of a batch of several combinations of side-channel
protections using simulations and real traces captured on the ChipWhis-
perer board. The experimental results obtained confirm that DL-SCA
are very efficient even when a cryptographic implementation combines
several side-channel countermeasures.

Keywords: Deep Learning based Side-Channel Attacks, Data Dimensionality,
Data Scaling, Artificial Noise, Side-Channel Countermeasures, Shamir’s Secret
Sharing, Combination of Countermeasures.



1 Introduction

1.1 Profiling Side-Channel Attacks

Side Channel Attacks (SCA) are nowadays well known and most designers of
secure embedded systems are aware of them. Among the SCA, profiling attacks
play a fundamental role in the context of the security evaluation of cryptographic
implementations. Indeed, the profiling attacks provide a security assessment in
the worst-case scenario. That is, the adversary has full-knowledge access to a
copy of the target device and uses it to characterize the physical leakage. Besides,
the profiling attacks consist of two steps: (1) a profiling step during which the
adversary estimates and characterizes the distribution of the leakage function
and (2) an attack phase during which he performs a key recovery attack on the
target device.

Several profiling approaches have been introduced in the literature. A com-
mon profiling side channel attack is the template attack proposed in [11] which
is based on the Gaussian assumption1. It is known as the most powerful type of
profiling in SCA context when (1) the Gaussian assumption is verified and (2)
the size of the leakage observations is small (typically smaller than 1, 000).

When the Gaussian assumption is relaxed, several profiling side-channel at-
tacks have been suggested including techniques based on Machine Learning
(ML). Actually, ML models make no assumption on the probability density
function of the data. For example, random forest model builds a set of deci-
sion trees that classifies the data-set based on a voting system [24] and Support
Vector Machine (SVM)-based attack discriminates data-set using hyper-plane
clustering [20]. Besides, one of the main drawbacks of the template attacks is
their high data complexity [12] as opposed to the ML-based attacks which are
generally useful when dealing with high-dimensional data [24].

Following the current trend in ML area, recent works have investigated the
use of Deep Learning (DL) models as an alternative to the existing profiling
SCA [7, 9, 27, 36]. The related practical results have demonstrated that these
techniques are very efficient to conduct security evaluations of embedded systems
even when some well-known countermeasures are involved to ensure protection
against SCA. In the following, we provide an overview of deep learning techniques
and then we describe the results derived from the recent investigations on the
use of DL in side-channel context.

1.2 Classification of Deep Learning Techniques

Among DL models, three classes may be distinguished:

– the fully connected networks: are the basic type of neural networks. The
major advantage of fully connected networks is that they are ”structure-
agnostic”. That is, no special assumptions need to be made about the input

1 The Gaussian assumption stipulates that the distribution of the leakage when the
algorithm inputs are fixed is well estimated by a Gaussian Law.
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data. A fully connected network can be described as a function f : Rn → Rm

such that each output depends on the n inputs. The simplest fully connected
neural network is the perceptron [5]. It is a linear classifier that uses a learn-
ing algorithm to tune its weights and minimize a so-called loss function. It is
possible to connect several perceptrons between each other to build a clas-
sifier for more complex data-sets. The resulting fully connected network is
called MultiLayer Perceptron (MLP) [5].

– The features extractor networks: are often used in image recognition and
classification. The goal is to learn higher-level and deep features in data that
are the most useful for the classification and/or target detection. This can be
done via computing a convolution between the data and some filters followed
by a down-sampling operation to keep only the most informative features. A
typical example of features extractor networks is the Convolutional Neural
Network (CNN) [23, 31]. Typically, a CNN is composed of alternating layers
of (1) locally connected convolutional filters and (2) down-sampling, followed
by a fully connected layer that works as a classifier (a.k.a. SoftMax layer).

– The time dependency networks: are a set of neural networks that differs from
the other ones in their ability to process information shared over several time-
steps. Indeed, in a traditional neural network, we assume that all inputs
(and outputs) are mutually independent. However, for some applications,
this assumption is unrealistic2. So, the core idea of this type of networks
is that each neuron will infer its output from both the current input and
the output of previous neurons. This feature is quite interesting in side-
channel context since the leakage is spread over several time samples. The
Recurrent Neural Networks (RNN) [18] and especially the Long-and-Short-
Term-Memory units (LSTM) [21] are the most suitable time dependency
neural networks.

1.3 Existing Works on Deep Learning based Side-Channel Attacks

Several works have investigated the application of DL techniques to conduct
security evaluations of cryptographic implementations. These contributions have
focused mainly on:

– defeating both unprotected and protected symmetric cryptographic
implementations. In the seminal work on the use of DL techniques in SCA
context [27], Maghrebi et al. demonstrated that the Deep Learning based
SCA (DL-SCA) are very efficient to break both unprotected and masked
AES implementations. The authors experienced several types of DL mod-
els (MLP, CNN, LSTM and stacked Auto-Encoders [28]) and the obtained
results highlighted the overwhelming advantage of this profiling technique
compared to the well-known template attack. Later, Cagli et al. proposed
an end-to-end profiling approach based on CNN that is efficient in the pres-
ence of trace misalignment [7]. This property is of a great practical interest

2 For instance, if we want to predict the next word in a sentence then the previous
words are required and hence there is a need to remember them.
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since it helps to streamline the evaluation process as no pre-processing of the
traces is needed. Recently, Prouff et al. revisited different methodologies to
select the most suitable hyper-parameters, i.e. the parameters that define a
DL architecture (e.g. number of layers, number of epochs, etc.), for the CNN
and MLP DL models [36]. More interestingly, the authors published an open
database, named ASCAD, that contains electromagnetic traces of a masked
AES implementation along with the source code of the used neural network
architectures. Nowadays, this database is serving as a common basis for the
side-channel community to progress on this DL-SCA topic.

– Defeating secure asymmetric cryptographic implementations. In [9],
authors presented several profiling SCA against a secure implementation of
the RSA algorithm. Indeed, the targeted implementation relies on a cer-
tified EAL4+ arithmetic co-processor and is protected with the classical
side-channel countermeasures (blinding of the message, blinding of the ex-
ponent and blinding of the modulus). Through their practical experiments,
the authors pinpointed the high potential of deep learning attacks (and in
particular the CNN models) against secure RSA implementations.

– Using the DL-SCA in non-profiling context. Timon suggested in [42]
a methodology to apply DL as a partition based SCA [40]. The core idea
consists in partitioning the collected traces along with their labels according
to a selection function that depends on the key hypotheses. Then, for each
key hypothesis, a DL training (based on CNN or MLP models) is performed
to evaluate the consistency of the obtained partitions. Finally, to recover the
good key value, the author proposed several kinds of metrics that are based
either on the used DL network input layers (i.e. the obtained weights on
the first layer) or the DL training outcomes (i.e. the accuracy and the loss).
The different reported experiments have shown the efficiency of this approach
against higher-order masking implementations compared to the classical non-
profiling SCA (i.e. higher-order Correlation Power Analysis [34]).

– Using DL as a Point of Interest (PoI) selection method. In several
works [19, 29, 42], researchers tried to answer the question of whether the
DL can be used as a leakage assessment method? Indeed, the question was
answered positively and several methodologies based on different strategies
were suggested: the analysis of the gradient of the loss function used dur-
ing the training [29], the application of the well-known attribution methods
as suggested in [19] and the exploitation of the sensitivity analysis tech-
niques [42]. The different obtained results have shown that DL based PoI
selection method is at least as good as the state-of-the-art leakage assess-
ment methods,e.g. the Signal to Noise Ratio (SNR).

1.4 Contributions

The aforementioned investigations have shown that DL-SCA are an interesting
research avenue to explore. Following this current trend, we propose in this
work to assess the efficiency of DL-SCA under different realistic and practical
scenarios. Mainly, the contributions of this paper are to study the:
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– impact of the distance between the PoI: in Sec. 3, we discuss the impact
of the distance in time samples between the leakages of the mask and the
masked data on the efficiency of DL-SCA. We show that some architectures,
especially the CNN, are sensitive to this practical issue and the correspond-
ing hyper-parameters should be carefully tuned to achieve an efficient key
recovery.

– Impact of the dimensionality of the data: despite their ability to pro-
cess high-dimensional data, we demonstrate in Sec. 4 that targeting a large
area of interest could negatively affects the efficiency of DL-SCA. Moreover,
we provide some practical hints on how to overcome this issue.

– Scaling of the data in DL context: in Sec. 5, we prove through practical
experiment the great interest of scaling the data before performing a DL-
SCA evaluation. Indeed, performing this data pre-processing step would lead
to a good trade-off between computation time and attack efficiency.

– Impact of adding artificial noise: although counter-intuitive, we prove
in Sec. 6 that adding artificial noise can help DL-SCA (based on several
DL models) to avoid over-fitting, i.e. the DL architecture perfectly fits the
training data-set but is not able to generalize its predictions to other data-
sets, and enhance the key recovery phase results. This artificial noise addition
during the training can be seen as a regularization layer similar to the data
augmentation method studied in [7].

– Impact of the leakage model: we discuss in Sec. 7 the efficiency of DL-
SCA when the leakage model deviates from the idealized models (Hamming
weight and value leakage models). The obtained results demonstrate that
DL-SCA are not sensitive to this practical issue. Moreover, the comparison
with stochastic models, when considering unprotected and masked imple-
mentations, shows that both attacks achieve similar results.

– DL-SCA Versus Shamir’s secret sharing: in Sec. 8, we perform DL-
SCA on an implementation of the Shamir’s secret sharing. The obtained
results demonstrate that this countermeasure is vulnerable to DL-SCA and
hence a security designer has to increase the order of sharing to strengthen
the resistance.

– DL-SCA Versus common SCA countermeasures: we assess in Sec. 9
two side-channel countermeasures (shuffling and 1-amongst-N) against DL-
SCA. The simulation and practical experiments prove, as expected, that
these countermeasures are vulnerable to these profiling attacks. Besides, we
discuss the better DL models to consider depending of the effect of the
implemented countermeasure.

– DL-SCA Versus combined SCA countermeasures: in Sec. 10, the DL-
SCA are evaluated in a more realistic context where several countermeasures
are combined to ensure protection. Our practical experiments highlight that
DL-SCA are still efficient in such a context.

Moreover, for all our experiments, along with the commonly used DL models in
profiling SCA context (i.e. MLP and CNN), we consider the LSTM and demon-
strate that this model could be a very interesting alternative in some scenarios.
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To enable the reproducibility of our results, we provide in Appendix A a detailed
description of the used DL architectures. Furthermore, the implementations used
for our practical experiments are publicaly available on GitHub [3].

2 Notations and Evaluation Methodology

2.1 Notations

Throughout this paper, we use the upper-case letter X to denote random vari-
ables and X in bold for random vectors. The corresponding lower-case letter x
is used to denote realizations of X.

2.2 Attacker Profile

Since we are dealing with profiling attacks, we assume an attacker who has full
control of a training device during the profiling phase and is able to measure
the physical leakage during the execution of a cryptographic algorithm (a.k.a.
the training data-set). Then, during the attack phase, the adversary aims at
recovering the unknown secret key, processed by the same device, by collecting
a new set of the physical leakage (a.k.a. the attack data-set). In addition, the
adversary collects an extra data-set called validation data-set (different from
the attack data-set). Indeed, it is worthy to highlight that having a validation
data-set is essential when dealing with DL [17] as it allows the user to detect if
there is an over-fitting effect.

2.3 Deep Learning Architectures Used

For our experiments, we target the CNN and the MLP models which are the most
often used DL models by the SCA community. For the sake of comparison, we
consider the LSTM model as well due to its ability to process information shared
over several time-steps which is very suitable in SCA context. For the CNN, we
use two different architectures: the first one consists of 2 convolutional layers, de-
noted by cnn 2layers, while the second one consists of 3 convolutional layers3,
cnn 3layers. The used MLP and LSTM architectures are denoted receptively
mlp and lstm.

For each experiment, we provide the hyper-parameters of each used DL model
to ease the reproducibility of our results. Regarding the gradient descent opti-
mization method (also called optimizer), we use the adam approach and the
categorical cross-entropy as a loss function for all the experiments performed in
this work. This choice is motivated by the fact that these functions provide good
results in terms of classification and matching.

Finally, our implementations of DL models have been developed with the
Keras library [2] (version 2.2.4) and we run the training using a PC equipped
with 128GB of RAM and a gamer market GPUs Nvidia GTX 1080 Ti.

3 For our experiments, when these two architectures achieve similar results, we only
illustrate one of the two results for clarity reasons on our figures.

6



2.4 Targeted Operation

Regarding the targeted operation, we consider for all the experiments, one or
several AES Sbox outputs of the first round: Z = Sbox[P ⊕ k∗] where P and
k∗ respectively denote the plaintext and the secret key. We motivate our choice
towards targeting this non-linear operation by the facts that it is a common
target in side channel analysis and that it has a high level of confusion.

2.5 Evaluation Metric

For the different experiments (performed using simulations or on real devices)
presented in the sequel, we consider a fixed attack setup. In fact, each attack is
conducted on 100 different sets of traces. Then, we compute the average rank
of the correct key among all key hypotheses (a.k.a. the guessing entropy met-
ric [41]).

3 Impact of the Distance between Masking Leakage and
Masked Data Leakage on the Efficiency of DL-SCA

3.1 Context and Experimental Set-up

In this section, we consider a first-order masked implementation leaking the value
of the manipulated data. Our goal is twofold: (1) assess the efficiency of the DL-
SCA with respect to the distance between the leakages of the mask and the
masked data and (2) suggest some hints on how to tune the hyper-parameters
of the used DL models to enhance the key recovery results in this context.

To do so, we define hereafter our set-up to generate L simulated traces
(Ti)1≤i≤L, of S = 100 time samples each, corresponding to the manipulation of
the mask M and the masked sensitive data Z ⊕M :

Ti[s] =

M +N (0, σ) if s = 1,
Z ⊕M +N (0, σ) if s = the masked data index,
R+N (0, σ) otherwise,

where N (0, σ) denotes a white Gaussian noise of null mean and standard devi-
ation σ = 0.5 and R denotes a random integer in [0, 255]. That is, the mask is
always leaking on the first time sample of each trace. Then, for each possible
index of the masked data leakage (in [20, 100]), we do the following:

1. generate L = 10, 000 traces for the profiling phase, L = 100 traces for the
validation phase and L = 500 traces for the attack phase following the above-
mentioned simulation set-up.

2. Train the different DL models.
3. Perform the key recovery and compute the average rank of the correct key.

The different hyper-parameters of the considered DL models are provided in
Tab. 2 in Appendix A. We stress the fact that the hyper-parameters are kept
fixed for the whole experiment.
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3.2 Experimental Results

The obtained results are shown in Fig. 1 (a). They prove that the distance be-
tween both leakages has an impact on the efficiency of the key recovery results4.
Indeed, the farther the distance is, the worse the key recovery is. In the mean-
time, one can conclude that the MLP in this context is outperforming the other
DL models. This could be explained by the fact that the MLP is a fully con-
nected network and hence all the time samples (including the interesting ones
i.e. the leakages of the mask and the masked data) are combined between each
other which conceal the masking effect. Regarding the CNN, the key recovery ef-
ficiency highly depends on the length of the convolutional filter used with respect
to the distance between the leakages. For instance, the cnn 2layers architec-
ture contains a convolutional filter of length 16 on the first layer (see Tab. 2
in Appendix A). Now, since the minimum distance between the mask and the
masked data leakages is 20 time samples, these leakages are never combined to-
gether and as a consequence, the key recovery will fail as confirmed in Fig. 1 (a).

(a) Basic DL architectures. (b) Enhanced DL architectures.

Fig. 1: Evolution of the correct key rank (y-axis) when increasing the distance
between the mask and the masked data leakages (x-axis).

To confirm our claim for the CNN and to investigate which are the hyper-
parameters that can enhance the key recovery results for the MLP and the
LSTM, we repeat the experiment using the same generated traces while tuning
the hyper-parameters of the DL architectures as follow:

– increase the length of the convolutional filter on the first layer for the cnn 2layers
(from 16 to 32), and

– increase the number of neurons (a.k.a. units) in lstm and mlp.

4 and also on the accuracy and the loss metrics. The corresponding values are not
reported in this paper for clarity reasons.
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The new DL architectures are denoted respectively cnn 2layers bis, lstm bis,
and mlp bis and the complete description of their respective hyper-parameters
is detailed in Tab. 4 in Appendix A. The new obtained results are shown in
Fig. 1 (b). They confirm our expectations. Indeed, the key recovery is enhanced
for the new used DL architectures compared with the previous ones5. For in-
stance, when using the cnn 2layers bis it is possible to recover the good value
of the key when the distance between both leakages is at most 23 time samples.

3.3 Takeaway Messages

In this section, we provide some practical hints to consider to enhance either the
attack efficiency or the resistance of a cryptographic implementation.

From an Adversary’s Perspective. Regarding the CNN architecture, the
convolutional filter (in particular on the first layer) should be designed such
that its length covers the most interesting PoI to enable the combination of the
corresponding leakages. Regarding MLP and LSTM, increasing the number of
units can enhance the training and hence the key recovery phase. However, this
may lead to an over-fitting effect and/or a heavy computation burden during the
training phase. So, an adversary has to tune carefully this parameter to mitigate
these issues. Another approach would consist in increasing either the number of
traces used for the profiling or the number of epochs.

From a Security Developer’s Perspective. To strengthen the resistance
of masked implementations against DL attacks, one solution would consist in
spacing out the leakages of the mask and the masked data. For instance, this
can be done by inserting some fake (or genuine) computations that do not involve
the usage of the mask and/or by adding some random delays.

4 Impact of the Data Dimensionality on the Efficiency of
DL-SCA

4.1 Context and Experimental Set-up

In this section, our goal is to answer the question of whether the dimensionality
of the collected traces has an impact on the efficiency of DL-SCA. In fact, it has
been demonstrated in several papers (e.g. [7, 27]) that one of the main interest of
DL-SCA is their ability to process high-dimensional data without any application
of the well-known dimensionality reduction techniques (PCA, LDA, KDA [8])
to select a small portion of PoI. To evaluate the tolerance of DL-SCA to the
data dimensionality, we consider a first-order masked implementation leaking

5 Please note also that the accuracy using these new DL architectures is enhanced as
well.
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the value of the manipulated data. For this experiment, to generate L simulated
traces (Ti)1≤i≤L, of S time samples each, we use the following protocol:

Ti[s] =

M +N (0, σ) if s = 1,
Z ⊕M +N (0, σ) if s = 4,
R+N (0, σ) otherwise,

where N (0, σ) denotes a white Gaussian noise of null mean and standard devia-
tion σ = 0.5 and R denotes a random integer in [0, 255]. That is, the mask and
the masked data are always leaking at the same time samples (the first and the
fourth time samples respectively). Now, the idea is to increase the length of the
traces S in [20, 100] and for each length value we perform the following:

1. generate L = 10, 000 traces for the profiling phase, L = 100 traces for the
validation phase and L = 500 traces for the attack phase following the above-
mentioned simulation protocol.

2. Train the different DL models.
3. Perform the key recovery and compute the average rank of the correct key.

The different hyper-parameters of the considered DL models are provided in
Tab. 2 in Appendix A.

(a) Basic DL architectures. (b) Enhanced DL architectures.

Fig. 2: Evolution of the correct key rank (y-axis) when increasing the traces
length.

4.2 Experimental Results

The obtained results are shown in Fig. 2 (a). The used DL models have different
tolerance to the data dimensionality increase. Indeed, one can see that the MLP
is less sensitive compared to the CNN and the LSTM. However, when the number
of the non-informative points increases (i.e. when the trace length is greater
than 75 time samples with only two informative time samples), the key recovery
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fails for all the considered DL models. This leads us to answer positively the
question regarding the tolerance of DL-SCA to the data dimensionality. Indeed,
the shorter the traces are, the better the attack results are.

There is now the new question arising of whether it is possible to tune the
hyper-parameters of the DL architectures to enhance the key recovery results
even in the presence of high-dimensional data? To answer this question, we con-
sider the same enhanced DL architectures described in the previous section and
whose hyper-parameters are described in Tab. 4 in Appendix A. That is, we re-
perform the experiment when using a CNN network with a bigger convolutional
filer (cnn 2layers bis) and an MLP and LSTM (lstm bis and mlp bis) with
more neural units. The new results are plotted in Fig. 2 (b).

Regarding the CNN architecture, increasing the length of the convolutional
filter slightly increases the attack efficiency. This is expected since, in this con-
text, increasing the convolutional filter size will add more non-informative sam-
ples in the processing which do not help the training and the key recovery phases.
However, increasing the number of units (as done for the MLP and the LSTM
architectures) allows increasing the attack efficiency when the number of the
non-informative points increase. Indeed, these enhanced architectures allow a
better analysis of the processed data.

4.3 Takeaway Messages

Following our experiments, we describe hereafter some practical recommen-
dations that should be followed to either enhance the DL-SCA results or to
strengthen the resistance of a cryptographic implementation against these at-
tacks.

From an Adversary’s Perspective. Despite the ability of DL-SCA to pro-
cess high-dimensional data, the adversary has to target a reduced area of interest
for the training and the attack. This actually can be done through a good in-
spection of the traces shape to identify the most relevant patterns. In addition,
the knowledge of the implementation source code, when available, is of great
interest since it allows the adversary to precisely locate the suitable window for
the attack. When the adversary cannot select a small area of interest, another
option is to wisely increase the number of units (and/or layers) used for the
DL architectures to avoid over-fitting effects and/or heavy computation time. In
addition, applying a PoI selection method can be emphasized in this case.

From a Security Developer’s Perspective. To enhance the security of a
cryptographic implementation, the developer has to hide the sensitive operations
so that the adversary is unable to distinguish clearly the area of interest when
inspecting the traces. This can be achieved for example by applying the well-
known 1-amongst-N countermeasure, i.e. executing the sensitive computation
randomly amongst (N − 1) fake computations (a.k.a. dummy computations)
identical to the genuine one. In such a context, the adversary has to select a
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large window to perform his attack. In Sec. 9.1, we assess the security of this
countermeasure with respect to DL-SCA.

Another parameter which can affect the efficiency of DL-SCA is the sampling
rate used during the acquisition of the data. Indeed, this parameter has a direct
impact on the dimensionality of the data to be processed during the training and
the attack phases. We keep the study of the sensitivity of DL-SCA with respect
to a variation of the sampling rate as future work.

5 Importance of Data Scaling in DL Context

5.1 Context and Experimental Set-up

Data pre-processing is a crucial step for any data analysis, especially for deep
learning analysis. In fact, this step can ease the difficulty of modeling and there-
fore enhance the outputted results. In several works and tutorials related to
DL techniques (e.g. [43]), scaling the data-sets before feeding them to the DL
architectures is highly recommended. Indeed, different scaling methods can be
used [43]: the min-max scaling, the variance scaling, ‖.‖2 normalization, etc. The
most common scaling method used in DL context is the min-max method, that
is, having data whose values are within the range of 0 and 1. In this section, our
goal is to provide some evidences that scaling the data can ease significantly the
classification.

To do so, we consider the ASCAD database presented in [36]. Indeed, the
authors in [36] have presented a large variety of benchmarks that have been
performed to find the suitable hyper-parameters for a CNN and an MLP that
guarantee a good trade-off between the SCA-efficiency and the training time.
At the end of these benchmarks, authors end up with two architectures that are
described in the following:

– the cnn best is composed of 5 convolutional layers each followed by an
average pooling layer, 2 dense layers (of 4, 096 units each) and a SoftMax
layer.

– The mlp best is composed of 5 dense layers (of 200 units each) and a
SoftMax layer.

The attack results obtained when running the above architectures confirmed
their efficiency in breaking a masked AES implementation (and even when a ran-
dom delay is inserted to de-synchronize the traces). However, one can remark
that the proposed architectures are too complex (many layers and many units are
used) with respect to the obvious leakage detected by the authors when perform-
ing the SNR leakage assessment method. Moreover, when analyzing the different
Python scripts provided by the authors in [4] to run the training and the attack
phases, we notice that no data scaling was performed before experimenting their
benchmarks.

Intuitively, we believe that these complex architectures are a direct conse-
quence of not considering the scaling data step. To confirm this claim, we consider
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the synchronized traces of ASCAD database (chosen for simplicity reasons) and
we perform the following:

– select 1, 000 traces from the attack data-set to build our validation data-set
and use the remaining ones for the attack.

– Scale the traces of the training, validation and attack data-sets. The applied
method consists of removing the mean of the traces and then applying the
min-max approach.

– Run the training and the key recovery when considering 3 “simple” DL
architectures:
• a CNN that is composed of 3 convolutional layers, one dense layer, and

a SoftMax layer.
• An MLP that consists of 2 dense layers (of 20 and 50 units respectively)

and one SoftMax layer.
• An LSTM that contains 2 LSTM layers (of 26 units each) and a SoftMax

layer.

The complete description of the hyper-parameters of the aforementioned archi-
tectures is provided in Tab. 3 in Appendix A.

5.2 Experimental Results

The results of our investigation are plotted in Fig. 3. For the sake of comparison,
we add the results obtained for the cnn best and the mlp best architectures
when running the Python scripts provided in [4].

Fig. 3: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when targeting the ASCAD database.

From Fig. 3, one can conclude that when an appropriate scaling of the data
is performed, the attack results obtained with our “simple” DL architectures
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are as efficient as the ones obtained with the complex architectures provided
in [36]. This result confirms that scaling the data allows to ease the classification
and hence to avoid heavy computation time during the training while preserving
efficient matching results.

We stress the fact that our goal was not to find the optimal “simple” DL
architectures to consider for the ASCAD database but was more to pinpoint the
importance of data scaling in DL context.

5.3 Takeaway Messages

From an adversary’s perspective, it is crucial to scale the data as this would
lead to a good trade-off between computation time and DL-SCA efficiency. This
step is of great interest especially in the context of a Common Criteria security
evaluation where the time required to perform the attack has an impact on its
final rating [1].

6 Impact of the Noise on the Efficiency of DL-SCA

6.1 Context and Experimental Set-up

Recently, Kim et al. have demonstrated in [22] that adding artificial noise to the
input data can be beneficial to the performance of the CNN network as it acts as
a regularization term and hence prevents over-fitting. Doing so, the authors have
enhanced their DL-SCA efficiency when targeting different data-sets (ASCAD,
DPA contest v4). The idea consists in either adding a Gaussian noise tensor in
the batch normalization layer applied on the input data during the training or
adding it directly to the input data.

6.2 Simulation Set-up and Results

Following these investigations, we study in this section if this result can be
generalized to other types of DL models (i.e. MLP and LSTM). To do so, we use
exactly the same simulation set-up described in Sec. 4 with the following two
major differences:

1. the length of the simulated traces is a fixed (S = 25 time samples) and,
2. we reduce the number of attack traces to L = 10.

The idea behind is to force the DL-SCA (based on the 4 selected DL archi-
tectures) to fail in recovering the correct value of the key. Then, by adding an
artificial noise during the training, the goal is to confirm if this feature can
enhance the key recovery phase.

To add the noise, we use the GaussianNoise(stddev) layer from Keras li-
brary [2], where stddev is the standard deviation of the artificial noise. This
layer is described in [2] as a useful practice to mitigate over-fitting and can be
seen as a form of the data augmentation method. For our experiment, this layer
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is added after the first layer6 of each used DL architectures as described in Tab. 5
in Appendix A. It is worthy to highlight that our approach is a different from
the one followed in [22] in the sense that the noise is neither added after a batch
normalization layer nor the traces are artificially modified; we simply use a noise
layer provided by Keras library to handle this specific usage.

The experiment consists in increasing the artificial noise standard deviation
stddev in [0.1, 1] and then to perform the training of the DL architectures and
the key recovery. The obtained results are depicted in Fig. 4.

Fig. 4: Evolution of the correct key rank (y-axis) according to an increasing
standard deviation of the added artificial noise.

The results prove that for some values of the artificial noise standard de-
viation stddev in {0.1, 0.2, 0.3} the attack results are enhanced for the 4 DL
architectures used. More interestingly, when stddev = 0.1, it is possible to break
the masked implementation within 10 traces while when this feature is deac-
tivated (i.e. stddev = 0) the key is not recovered. These results are not only
in-line with those described in [22] but also demonstrate that adding artificial
noise enhances the training and the key recovery outcomes of MLP and LSTM
architectures as well.

6.3 Practical Set-up and Results

To validate the simulation results, we consider a real-world context by targeting
the ASCAD database [36]. The idea consists in selecting some DL architectures
for which either the attack results were not as efficient as the ones evaluated
in Sec. 5 (whose results are illustrated in Fig. 3) or an over-fitting effect was

6 Other options can be considerd regading the position of the noise layer in the used
DL architectures. Our choice is motivated by simplicity reasons.
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observed. Then, the goal is to enhance their efficiency when adding an artificial
noise. The different hyper-parameters of the targeted DL architectures without
and with artificial noise addition are available respectively in Tab. 6 and Tab. 7
in Appendix A. We stress the fact that the traces from the ASCAD database
were scaled following the same method described in Sec. 5.

Fig. 5: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when targeting the ASCAD database.

The obtained DL-SCA results are plotted in Fig. 5. They demonstrate that
adding artificial noise can significantly enhance the data classification and con-
sequently the key recovery results.

6.4 Takeaway Messages

To enhance the DL-SCA, it is highly recommended to add Gaussian noise during
the training especially when an over-fitting effect is detected. More generally
speaking, adding some regularization layers (e.g. dropout, batch-normalization,
noise) or applying data augmentation method as highlighted in [7] is of great
interest to avoid over-fitting and to guarantee a good training which results in
an efficient key recovery phase.

7 Impact of the Leakage Model on the Efficiency of
DL-SCA and Comparison with the Stochastic Models

7.1 Context and Experimental Set-up

In SCA context, it is often assumed that a device leaks information following
the Hamming weight or the value of the processed data. This assumption is
quite realistic and many security analyses in the literature have been conducted
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following this model [6, 32]. However, this assumption is not complete in real
hardware [26], due to small load imbalances, process variations, routing, etc. For
instance, authors in [26] have characterized, using a stochastic approach (a.k.a.
Linear Regression Analysis) [14, 37, 38], the leakage of four AES Sbox outputs
when implemented in three different devices. The obtained results prove that
the leakage is very unbalanced for each Sbox output and hence the Hamming
weight and the value leakage models are unsound in practice.

So far, the authors of the published papers related to DL-SCA have only
considered these two leakage models [7, 27]. To the best of our knowledge, they
never studied the real-world scenario where the leakage model deviates from
these idealized models. In this section, our goal is to assess the efficiency of the
DL-SCA in such realistic context. To do so, we select four types of leakage model
functions7 denoted (f) that are listed in the following:

– Hamming weight leakage model: f(x) =
∑

([x&(1� i) > 0 for i in [1, n]]),
– value leakage model: f(x) = x,

– 1st-order random leakage model: f(x) = α0 +
n∑

i=1

αi · xi,

– 2nd-order random leakage model: f(x) = α0+
n∑

i=1

αi ·xi+
n∑

i1,i2=1
i1<i2

αi1,i2 ·xi1 ·xi2 ,

where x is an n-bit value, xi is its ith bit value and the coefficients αi are random
real values uniformly picked from the interval [-1, 1].

Moreover, we target an unprotected and a first-order masked implementa-
tion. Our experimental set-up to generate the corresponding simulated traces
(Ti)1≤i≤L, of S = 20 time samples each, is described in the following:

– unprotected implementation:

Ti[s] =

{
f(Z) +N (0, σ) if s = 9,
f(R) +N (0, σ) otherwise,

– masked implementation:

Ti[s] =

f(M) +N (0, σ) if s = 9,
f(Z ⊕M) +N (0, σ) if s = 15,
f(R) +N (0, σ) otherwise,

where N (0, σ) denotes a white Gaussian noise of null mean and standard devi-
ation σ = 0.5 and R denotes a random integer in [0, 255].

Now, for each considered leakage model function and targeted implementa-
tion, we execute the following process:

1. generate L = 20, 000 traces for the profiling phase, L = 100 traces for the
validation phase and L = 1, 000 traces for the attack phase following.

7 Please note that we use the same leakage models as those studied in [13].
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2. Train the different DL models. It is worthy to highlight that for each used
DL architecture, we consider two strategies for the data labeling during the
training phase. The first one consists in labeling the profiling traces with
respect to the value of the sensitive data. The second strategy is to label
the traces according to the Hamming weight of the sensitive value. The
corresponding DL architectures, called HW-DL architectures in the sequel,
are denoted by the suffix “ HW”. The goal behind is to check what is the
most suitable data labeling strategy to adopt for a given leakage model
function.

3. Perform the key recovery and compute the average rank of the correct key.
For the sake of comparison, we perform the template attack (for the traces
generated according to Hamming weight and value leakage models) and the
stochastic attack (for the traces generated according to the first and second-
order random leakage model).

The different hyper-parameters of the considered DL architectures are pro-
vided in Tab. 2 and Tab. 8 in Appendix A.

7.2 Experimental Results: Unprotected Implementation

The obtained results for the unprotected implementations are shown in Fig. 6.
From this figure, the following observations could be emphasized:

– as expected, when the device leaks following the Hamming weight or the
value leakage models, both template attack and DL-SCA achieve good results
during the key recovery phase.

– When the leakage model deviates from the idealized models (Hamming
weight or value), the DL-SCA still succeed to recover the good value of
the key. Interestingly, when the random leakage function is quadratic (i.e.
2nd-order), the obtained results for the DL-SCA are much better (in terms
of number of traces required to succeed the attack) compared to the scenario
where the random leakage function is linear (i.e. 1st-order). This could be
explained by the fact that the quadratic combinations of the bit-coordinates
of the sensitive data are more informative than the linear ones which helps
the DL architectures to better discriminate and classify the data during
the training. Overall, one can conclude that DL-SCA are not sensitive to a
leakage function deviation from the idealized models.

– When the random leakage function is linear, the stochastic attack slightly
outperforms the DL-SCA. However, when the random leakage function is
quadratic, both attacks are of the same effectiveness.

– Regardless of the leakage model used to generate the traces, labeling the
data according to the value of the sensitive variable is more efficient than
applying the Hamming weight labeling strategy. Indeed, it is clear from Fig. 6
that when using the HW-DL architectures, the good key value is recovered,
but more traces are needed (compared to the value data labeling strategy).
Besides, using the Hamming weight reduces the number of classes to predict
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(a) Hamming weight leakage. (b) Value leakage.

(c) First-order random leakage. (d) Second-order random leakage.

Fig. 6: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when targeting an unprotected implementation.

(from 256 to 9 in our case). As a consequence, the classification of the data
is less complex (only a few numbers of epochs are required for the training
phase). However, this has an impact on the efficiency of the network to
discriminate the good value of the sensitive data during the attack phase.
This observation is in-line with the results obtained in [36] where the authors
compared these two labeling strategies on the ASCAD database.

7.3 Experimental Results: First-Order Masked Implementation

The obtained results for the masked implementation are shown in Fig. 7. In the
following, we provide a summary of the observations emerged from the analysis
of the experiment outcomes:

– DL-SCA (and template attack) require more traces to recover the correct
value of the key when the device leaks the Hamming weight of the data
compared to the case where it leaks the value. This result is expected since
the profiling attacks are more discriminating when the number of labels/-
classes is greater.
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(a) Hamming weight leakage. (b) Value leakage.

(c) First-order random leakage. (d) Second-order random leakage.

Fig. 7: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when targeting a masked implementation.

– As already observed for the unprotected case, when the random leakage
function is quadratic, the obtained results for the DL-SCA are much better
compared to the scenario where the random leakage function is linear.

– Similarly, when the random leakage function is linear, the stochastic attack
highly outperforms the DL-SCA. However, when the random leakage func-
tion is quadratic, the DL-SCA using the value labeling strategy outperform
the stochastic attack and the DL-SCA based on the HW-DL architectures.

7.4 Takeaway Messages

From the previous experiment, one can conclude that the DL-SCA are not very
sensitive to a leakage model deviation from the idealized models especially when
the real leakage model function contains quadratic combinations of the bit coor-
dinates of the sensitive data. Moreover, labeling the data according to the value
of the sensitive variable is the best choice regardless of the leakage model of the
targeted device.
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8 DL-SCA Versus Shamir’s Secret Sharing

8.1 Context and Experimental Set-up

In side-channel context, the most classical countermeasure consists in applying
Boolean masking. That is, the sensitive variable Z is split into d shares ai such
that Z = a1 ⊕ · · · ⊕ ad to ensure a dth-order security. The simplicity of the
Boolean masking is an advantage from an implementation complexity point of
view but, on the flip side, it helps the attacker: the information on the shared
data is relatively easy to rebuild from the observed shares. Starting from this
remark, Prouff and Roche in [35] and Goubin and Martinelli in [16] proposed
independently to apply Shamir’s Secret Sharing (SSS) instead of Boolean mask-
ing: the core principle of SSS is to split any sensitive variable Z into n > 2d+ 1
shares ai which correspond to the evaluation, in n distinct non-zero public ele-
ments, of a random degree-d polynomial with constant term Z [39]. We denote
this sharing by (n, d)-SSS in the sequel. The dth-order security property comes
as a direct consequence of the so-called collusion resistance of Shamir’s sharing
which essentially ensures that at least d+ 1 evaluations (a.k.a. shares ai) must
be involved to recover Z.

In this section, our goal is mainly to evaluate the resistance of SSS against DL-
SCA. To perform this security assessment, we consider two experiment scenarios:
the first one consists in generating simulated traces while for the second one we
use real acquisitions captured on the ChipWhisperer (CW) platform [30]. The
details of both experiments and the corresponding results are described in the
following sections.

8.2 Simulation Set-up and Results

For our simulation set-up, we consider two implementations protected respec-
tively with a (3, 1)-SSS and a (5, 2)-SSS. Both implementations leak the value of
the manipulated data. Besides, the corresponding simulated traces (Ti)1≤i≤L,
of S time samples each, are generated as follow:

Ti[s] =


select a random polymial PZ(X) = Z +

d∑
i=1

µiX
i,

PZ(as) +N (0, σ) if s in [1, n],
R+N (0, σ) otherwise,

where n is the number of shares (i.e. n = 3 for (3, 1)-SSS and n = 5 (5, 2)-SSS),
as denotes the sth public point, and PZ(X) is a random polynomial of degree
d (with d = 1 for (3, 1)-SSS and d = 3 for (5, 2)-SSS) and whose coefficients µd

and µ1≤i<d are randomly generated in [1, 255] and [0, 255] respectively. For our
simulation, the number of samples per trace is S = 10 and the noise standard
deviation is σ = 0.5. For (3, 1)-SSS, the used public points set is {86, 23, 115}
while for the (5, 2)-SSS we select the set {86, 23, 115, 107, 189} (denoted set #1
in the sequel). For both targeted implementations, we perform the following:
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1. generate L = 256, 000 traces for the profiling phase, L = 1, 000 traces for
the validation phase and L = 2, 000 traces for the attack phase.

2. Train 3 different DL models: the cnn 2layers, the mlp and the lstm whose
hyper-parameters are detailed in Tab. 2 in Appendix A.

3. Perform the key recovery and compute the average rank of the correct key.

Fig. 8: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when targeting a (3, 1)-SSS and a (5, 2)-SSS.

The obtained attack results are depicted in Fig. 8. They demonstrate that DL-
SCA are very efficient to break SSS implementation. More interestingly, the
LSTM architecture outperforms the CNN and the MLP. This observation high-
lights, again, that the LSTM is an interesting neural network to consider in a
side-channel evaluation especially when the sensitive data leakage is the combi-
nation of several shares leaking on different time samples of the traces (as it is
the typical case of SSS). Finally, as expected the (5, 2)-SSS offers a higher resis-
tance against DL-SCA compared to the (3, 1)-SSS. This is in-line with the rule:
the higher the sharing (masking) order, the more secure the implementation is.

8.3 Practical Set-up and Results

To confirm the simulation results, we conduct some practical attacks on the
ChipWhisperer platform. Mainly, we implement a (5, 2)-SSS on an 8-bit AVR
microprocessor ATxmega128d3 and we acquire power-consumption traces thanks
to the ChipWhisperer-Lite (CW1173) basic board. We collect 256, 000 traces for
the profiling phase, 1, 000 traces for the validation phase and 2, 000 traces for
the attack phase. Then, we use the same DL architectures selected during our
simulation to run the training and the attack phases. Moreover, and for the sake
of comparison, we perform a Higher-Order Template Attack (HOTA) following
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the procedure described in [10, 25]. The obtained average rank of the correct key
for each attack is described in Fig. 9.

Fig. 9: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when targeting a (5, 2)-SSS implemented on the CW
board.

As expected, the obtained results for DL-SCA with the real traces are in-line
with those obtained with the simulation. Moreover, the DL-SCA outperform
the HOTA. This observation is not surprising given that the DL-SCA are out-
performing (or at least as efficient as) the first-order template attack when the
Boolean masking is involved as protection against SCA.

8.4 Impact of the used Public Points Set on DL-efficiency

In [10], the authors exhibited a very interesting property regarding the effective-
ness of the SSS scheme. Indeed, they demonstrated through several simulations
and practical experiments (when performing the HOTA) that the choice of the
public points in Shamir’s secret sharing scheme has an impact on the counter-
measure strength.

In this section, our goal is to validate this property, through simulations,
when applying DL-SCA (rather than HOTA). To do so, we repeat the experience
done for the (5, 2)-SSS in Sec. 8.2 when considering different sets of public points
which are listed hereafter.

– set #2 = {78, 104, 66, 56, 85} and
– set #3 = {125, 246, 119, 104, 150}.

The simulation results are plotted in Fig. 10. The obtained results with DL-
TA confirm the property highlighted by the authors in [10] using HOTA. From
Fig. 10, it is quite obvious that the choice of the public points in SSS plays a
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Fig. 10: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when considering three different sets of public points.

role in the security level (and the efficiency) of this countermeasure. It is worth
to note also that the efficiency order of the different DL architectures used is
invariant with respect to the set of public points used. That is, the lstm is the
best model followed by the mlp and the cnn 2layers.

8.5 Takeaway Messages

The different simulations and practical experiments conducted in this section
have demonstrated that the SSS is vulnerable to DL-SCA. From an adversary’s
perspective, the LSTM architecture in particular (and the time dependency neu-
ral networks in general) is very suitable to break an SSS implementation. This is
due to its ability to discriminate and to predict data that depend on some shares
leaking sequentially over time. Now, from a security developer’s perspective, to
strengthen the resistance of an SSS implementation, a strategy would consist in
(1) choosing carefully the set of public points to use, (2) increasing the degree
of the sharing, (3) adding some fake operations (e.g using a fake polynomial to
evaluate the public points).

9 DL-SCA against Common SCA Countermeasures

9.1 DL-SCA against 1-amongst-N Countermeasure

The 1-amongst-N is commonly used to protect cryptographic implementations
against SCA. The idea consists in executing the sensitive operation randomly
amongst (N − 1) other fake computations. In this section, we assess the resis-
tance of the countermeasure against DL-SCA through simulation and practical
experiments with the CW board.
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Simulation Set-up and Results To protect the Sbox operation using the
1-amongst-N countermeasure, several options are available. The Sbox input of
the fake computations is:

– the XOR result of a fake key and a genuine plaintext,
– the XOR result of the genuine key and a fake plaintext, or
– the XOR result of a fake key and a fake plaintext.

In our simulations, we consider N = 8 (i.e. one genuine computation and
7 fake computations) and we target these several fashions of implementing the
1-amongst-N countermeasure to pinpoint which one better resists DL-SCA. The
simulation protocol used to generate L traces (Ti)1≤i≤L, of S = 8 time samples
each, is described hereafter:

Ti[s] =


select a random integer R in [1, 8]
for s in [1,8]:
Z +N (0, σ) if s = R,
Zfake +N (0, σ) otherwise,

where Zfake denotes the fake computation generated using one of the options
described above. To perform our attack, we generate L = 200, 000 traces for
the profiling phase, L = 500 traces for the validation phase and L = 1, 000
traces for the attack phase. The used DL architectures are detailed in Tab. 2 in
Appendix A. We provide in Fig. 11 (a) the obtained results. From this figure,
one can conclude that the 1-amongst-N is vulnerable to DL-SCA. Indeed, few
number traces are needed to break this countermeasure. Moreover, our results
demonstrate that using fake keys and fake plaintexts for the dummy computa-
tions slightly improves the resistance of this countermeasure against DL-SCA.

(a) Simulation. (b) CW board.

Fig. 11: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when considering the 1-amongst-N countermeasure.

Another parameter which plays an import role in improving the security of
this countermeasure is definitely the number of computations N . To assess the
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impact of this parameter on the resistance of the 1-amongst-N countermeasure
against DL-SCA, we repeat our simulation when increasing N (only for the case
where fake keys and plaintexts are used to generate the fake computations). The
results of this experiment are shown in Fig. 12.

Fig. 12: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when increasing the number of fake computations.

As expected, increasing the number of dummy operations increases the resis-
tance of the 1-amongst-N countermeasure against DL-SCA. Hence, the security
designer has to choose the appropriate value of N that guarantees a good secu-
rity performance trade-off. From an adversary’s perspective, CNN seems to be
the best architecture to choose when such countermeasure is involved to ensure
protection against DL-SCA.

Experimental Results on CW To validate our simulation results in a real-
world scenario, we implement the AES AddRoundkey and SubSytes operations
of the first round protected with this 1-amongst-N countermeasure when N = 4.
The source code of this implementation is available on GitHub [3] to ease the
reproducibility of our results by the SCA community. Then, we acquire 128, 000
traces for the profiling, 1, 000 traces for the validation and 5, 000 traces for the
attack phase. The Python script used for the acquisition is also available on
GitHub [3]. The different DL architectures we considered for our evaluation on
the CW board are denoted by the suffix “ CW” and are provided in Tab. 9 in
Appendix A.

The practical results of our evaluation are plotted in Fig. 11 (b). These results
are in-line with those obtained with simulation in the sense that the 1-amongst-N
countermeasure is vulnerable to DL-SCA. Indeed, the different DL architectures
achieve good training which results in a good key recovery phase (few traces are
required to discriminate the good key value).
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9.2 DL-SCA against Shuffling Countermeasure

Recently, authors in [44] have demonstrated that the shuffling countermeasure
is vulnerable to DL-SCA. More interestingly, the authors have emphasized the
interest of using CNN networks, compared to MLP ones, when the temporal
position of the leakage varies (from one execution to another) due to the use of
the shuffling countermeasure. Our purpose in this section is to assess if the LSTM
architecture can outperform the CNN in such context. To do so, we perform some
simulations and practical experiments on the CW board.

Simulation Set-up and Results In this section, we consider that the sensitive
data is a vector of 8 AES Sbox outputs of the first round (denoted Z). The
simulation set-up used to generate L traces (Ti)1≤i≤L, of S = 8 time samples
each, is described hereafter:

Ti[s] =

Sh t = sh([1, . . . , 8])
for s in [1,8]:

Z[Sh t[s]] +N (0, σ),

where sh is a permutation function, Sh t is the shuffled table and Z[i] is the
ith AES Sbox output. By following this set-up, we generate L = 200, 000 traces
for the profiling phase, L = 500 traces for the validation phase and L = 1, 000
traces for the attack phase. The used DL architectures are detailed in Tab. 2
in Appendix A. Moreover, for the attack phase, we target two Sbox outputs
(the first and the forth one). The results of our investigations are shown in
Fig. 13 (a). They confirm the results obtained in [44] in the way that the DL-
SCA (regardless of the used DL architecture) defeat shuffling countermeasure.
However, these obtained results do not allow us to conclude regarding the most
appropriate DL model to use against this countermeasure. Indeed, the efficiency
of the used DL models is quite similar. To address this question, we conduct a
practical security evaluation of the shuffling countermeasure when implemented
on the CW board.

Experimental Results on CW Regarding our practical setup, we acquire
128, 000 traces for the profiling, 1, 000 traces for the validation and 5, 000 traces
for the attack phase. For this experiment, we only target the output of the first
Sbox. The different hyper-parameters of the considered DL architectures are
provided in Tab. 10 in Appendix A.

From the results plotted in Fig. 13 (b), one can see that it is more interesting
to consider CNN networks when shuffling is involved as protection. Indeed, this
observation is in-line with the conclusion drawn in [44]. Besides, the LSTM
architecture is not performing well compared to the CNN as more traces are
needed to recover the good key value. This could be explained by the fact that
the LSTM method exploits the information of several time samples to classify
the data. In the context of shuffling, the position of the relevant time samples
(related to the leakage of the targeted byte) varies from one trace to another. We
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(a) Simulation. (b) CW board.

Fig. 13: Evolution of the correct key rank (y-axis) according to an increasing
number of traces (x-axis) when considering the shuffling countermeasure.

believe that this behavior (i.e. effect of the shuffling countermeasure) decreases
the effectiveness of the LSTM network to classify and discriminate the useful
computation. We keep the study on how to improve the efficiency of the LSTM
network in this context as future work.

10 DL-SCA on Combined Countermeasures

In a practical Common Criteria security evaluation [1], the assessed crypto-
graphic implementations are often protected with a combination of several side-
channel countermeasures. To the best of our knowledge, the only combination
of countermeasures evaluated so far with respect to DL-SCA is masking with
jitter [7, 36]. In this section, our goal is to evaluate the efficiency of DL-SCA on
several combinations of side-channel countermeasures that are listed hereafter:

– shuffling and masking,
– shuffling and 1-amongst-N ,
– masking and 1-amongst-N and,
– shuffling, masking and 1-amongst-N .

To do so, we present in the following our security evaluation based on both
simulations and practical experiments on the CW board8.

10.1 Simulation Set-up and Results

For our simulation, we consider that the sensitive data is a vector of 8 AES Sbox
outputs of the first round (denoted Z). The set-up to generate the simulated
traces for each combination of countermeasures is provided in Tab. 1.

8 For the 1-amongst-N countermeasure, we choose N = 8 and N = 4 for the simula-
tions and the experiments on the CW board respectively.
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Shuffling and masking Shuffling and 1-amongst-N

Ti[s] =


Sh t = sh([1, . . . , 8])
for s in [1,8]:

M[s] +N (0, σ)
for s in [9,16]:

Z[Sh t[s]]⊕M[Sh t[s]] +N (0, σ)
Ti[s] =



Sh t = sh([1, . . . , 8])
for j in [1, . . . , 8] :

choose R in [(j − 1) · 8 + 1, j · 8]
for s in [(j − 1) · 8 + 1, j · 8]

choose Zfake in [0, 255]
if s = R :

Z[Sh t[j]] +N (0, σ)
else:
Zfake +N (0, σ)

Masking and 1-amongst-N Shuffling, masking and 1-amongst-N

Ti[s] =



for j in [1, . . . , 8] :
choose R in [(j − 1) · 8 + 1, j · 8]
for s in [(j − 1) · 8 + 1, j · 8]

choose Zfake in [0, 255]
if s = R :

Z[j] +N (0, σ)
else:
Zfake +N (0, σ)

Ti[s] =



Sh t = sh([1, . . . , 8])
for s in [1,8]:

M[s] +N (0, σ)
for j in [1, . . . , 8] :

choose R in [(j − 1) · 8 + 1, j · 8]
for s in [(j · 8 + 1, (j + 1) · 8]

choose Zfake in [0, 255]
if s = R :

Z[Sh t[j]]⊕M[Sh t[j]] +N (0, σ)
else:
Zfake +N (0, σ)

Table 1: Simulation set-up to generate the traces of several combinations of
side-channel countermeasures.
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For each targeted implementation, we generate 200, 000 traces for the pro-
filing phase, 500 traces for the validation phase and 1, 000 traces for the attack
phase. As usual, for our evaluation, we target 3 different DL models whose hyper-
parameters are listed in Tab. 2 in Appendix A and two key bytes (the first and
the forth ones).

The results of our simulations are provided in Fig. 14. The obtained re-
sults demonstrate that the DL-SCA are efficient even when several side-channel
countermeasures are combined together to strengthen the resistance of the imple-
mentation. Moreover, it is obvious from Fig. 14 that when masking is combined
with other countermeasures the corresponding implementation offers a better
resistance against DL-SCA.

(a) Shuffling and masking. (b) Shuffling and 1-amongst-N .

(c) Masking and 1-amongst-N . (d) Shuffling, masking and 1-amongst-N .

Fig. 14: Simulation results: evolution of the correct key rank (y-axis) according to
an increasing number of traces (x-axis) when combining several countermeasures.
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10.2 Experimental Results on CW Board

To assess the efficiency of DL-SCA in defeating a combination of countermea-
sures in a real-world context scenario, we evaluate the implementation of several
combinations on the CW board. We kindly recall the reader that these imple-
mentations, as well as the Python scripts used for the acquisition, are publicaly
available on GitHub [3] to ease the reproducibility of our results. Moreover, the
different hyper-parameters of the considered DL architectures are provided in
Tab. 11 (for shuffling and masking), Tab. 12 (for shuffling and 1-amongst-N),
Tab. 13 (masking and 1-amongst-N) and Tab. 14 (for shuffling, masking and
1-amongst-N) in Appendix A. Regarding the combinations involving masking,
we perform a leakage assessment by applying the t-test [15] to validate that no
first-order leakage of the sensitive data occurs.

(a) Shuffling and masking. (b) Shuffling and 1-amongst-N .

(c) Masking and 1-amongst-N . (d) Shuffling, masking and 1-amongst-N .

Fig. 15: Experimental results: evolution of the correct key rank (y-axis) according
to an increasing number of traces (x-axis) when combining several countermea-
sures.
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The outcomes of the experiment are plotted in Fig. 15. From this figure, the
following observations could be emphasized:

– the practical results on the CW board confirm the simulation ones. Indeed,
the DL-SCA are efficient even when a combination of side-channel counter-
measures is involved to ensure protection.

– When shuffling is implemented, the CNN seems to be more efficient than the
MLP and LSTM ones. This result is in-line with the one obtained in Sec. 9.2
where only shuffling countermeasure is used to protect the implementation.

– Similarly, when no shuffling is implemented, the LSTM and the MLP are
more interesting than the CNN.

10.3 Takeaway Messages

From an adversary’s perspective, we conclude that when the leakage is time-
invariant, the MLP and LSTM are the best models to consider. In the flip side,
when shuffling or jitter-based countermeasures are involved [7, 36], the CNN
networks are of great interest. Finally, we emphasize the fact that our goal was
not to find the optimal DL architectures when considering these combinations
of countermeasures but was more to demonstrate that DL-SCA are efficient in
such a context. Moreover, we recall that the reported DL architectures in this
work are not a “one-size-fits-all” modeling. In fact, the DL architecture should
be defined with respect to the characteristics of the targeted data-set.

From a security designer’s perspective, we believe that increasing the number
of fake operations (for the scheme that combines the three studied countermea-
sures) along with inserting some random delays (and/or activating jitter) would
strengthen the resistance of a cryptographic implementation with respect to
DL-SCA.

11 Conclusion

In this paper, we assessed the efficiency of DL-SCA under different realistic and
practical scenarios. First, we studied the impact of the intrinsic characteristics
of the manipulated data-set (i.e. distance in time samples between the PoI, the
dimensionality of the area of interest and the pre-processing of the data) on the
effectiveness of DL-SCA to recover the key of a cryptographic implementation.
We argue through several simulations and practical experimentation that DL-
SCA are sensitive to these characteristics and security analysts have to carefully
design their DL architectures to maximize their efficiency. Second, we evaluated
the tolerance of DL-SCA with respect to the leakage model function and the
addition of artificial noise. Our results have proven that the DL-SCA are not
sensitive to a variation of these parameters and more interestingly this variation
can result in a more efficient attack. Then, we assessed the SSS countermeasure
against DL-SCA. As expected, this side-channel protection is vulnerable to DL-
SCA. Finally, we studied the effect of combining several countermeasures to
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resist these profiling attack. Our investigations have demonstrated that DL-SCA
are still efficient to break them. For all the performed experiments, we provided
some recommendations and practical hints to either enhance the efficiency of the
DL-SCA (from an adversary’s perspective) or to strengthen the resistance of the
cryptographic implementations against these attacks (from a security developer’s
perspective).

As a future work, we plan to assess the DL-SCA efficiency against the tar-
geted combinations of side-channel countermeasures when implemented on mod-
ern CPUs.
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A Hyper-parameters of the used DL architectures
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cnn 2layers

nb epoch = 100
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers

nb epoch = 100
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 16, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp

nb epoch = 100
batch size training = 128
Dense(20, activation=”relu”, input shape=(nb samples,))
Dense(50, activation=”relu”)
Dense(256, activation=”softmax”)

lstm

nb epoch = 100
batch size training = 128
LSTM(26, input shape=(nb samples,1), return sequences=True)
LSTM(26)
Dense(256, activation=’softmax’)

Table 2: Hyper-parameters of the basic DL architectures used in this work.
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cnn 3layers

nb epoch = 50
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 16, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(50, activation=”relu”)
Dense(256, activation=”softmax”)

mlp

nb epoch = 50
batch size training = 128
Dense(20, activation=”relu”, input shape=(nb samples,))
Dense(50, activation=”relu”)
Dense(256, activation=”softmax”)

lstm

nb epoch = 50
batch size training = 128
LSTM(26, input shape=(nb samples,1), return sequences=True)
LSTM(26)
Dense(256, activation=’softmax’)

Table 3: Hyper-parameters of the used DL architectures in Sec. 5.
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cnn 2layers bis

nb epoch = 100
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

mlp bis

nb epoch = 100
batch size training = 128
Dense(20, activation=”relu”, input shape=(nb samples,))
Dense(50, activation=”relu”)
Dense(256, activation=”softmax”)

lstm bis

nb epoch = 100
batch size training = 128
LSTM(60, input shape=(nb samples,1), return sequences=True)
LSTM(60)
Dense(256, activation=’softmax’)

Table 4: Hyper-parameters of the enhanced DL architectures in Sec. 3 and Sec. 4.
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cnn 2layers

nb epoch = 100
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
GaussianNoise(stddev)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers

nb epoch = 100
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
GaussianNoise(stddev)
MaxPooling1D(pool size=3)
Convolution1D(8, 16, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp

nb epoch = 100
batch size training = 128
Dense(20, activation=”relu”, input shape=(nb samples,))
GaussianNoise(stddev)
Dense(50, activation=”relu”)
Dense(256, activation=”softmax”)

lstm

nb epoch = 100
batch size training = 128
LSTM(26, input shape=(nb samples,1), return sequences=True)
GaussianNoise(stddev)
LSTM(26)
Dense(256, activation=’softmax’)

Table 5: Hyper-parameters of the used DL architectures in Sec. 6.
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cnn 2layers w noise

nb epoch = 50
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(20, activation=”relu”)
Dense(256, activation=”softmax”)

cnn 3layers w noise

nb epoch = 50
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 16, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(20, activation=”relu”)
Dense(256, activation=”softmax”)

mlp w noise

nb epoch = 50
batch size training = 128
Dense(10, activation=”relu”, input shape=(nb samples,))
Dense(5, activation=”relu”)
Dense(256, activation=”softmax”)

lstm w noise

nb epoch = 50
batch size training = 128
LSTM(12, input shape=(nb samples,1), return sequences=True)

LSTM(5)
Dense(256, activation=’softmax’)

Table 6: Hyper-parameters of the DL architectures in Sec. 6 (without adding the
artificial noise layer).
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cnn 2layers w noise

nb epoch = 50
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(20, activation=”relu”)
GaussianNoise(stddev=0.2)
Dense(256, activation=”softmax”)

cnn 3layers w noise

nb epoch = 50
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 16, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(20, activation=”relu”)
GaussianNoise(stddev=0.2)
Dense(256, activation=”softmax”)

mlp w noise

nb epoch = 50
batch size training = 128
Dense(10, activation=”relu”, input shape=(nb samples,))
GaussianNoise(stddev=0.3)
Dense(5, activation=”relu”)
Dense(256, activation=”softmax”)

lstm w noise

nb epoch = 50
batch size training = 128
LSTM(12, input shape=(nb samples,1), return sequences=True)
GaussianNoise(stddev=0.25)
LSTM(5)
GaussianNoise(stddev=0.25)
Dense(256, activation=’softmax’)

Table 7: Hyper-parameters of the enhanced DL architectures in Sec. 6 (with
adding the artificial noise layer).
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cnn 2layers HW

nb epoch = 100
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(9, activation=”softmax”)

cnn 3layers HW

nb epoch = 100
batch size training = 128
Convolution1D(8, 32, padding=’same’, input shape=(nb samples,1), activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 16, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(9, activation=”softmax”)

mlp HW

nb epoch = 100
batch size training = 128
Dense(20, activation=”relu”, input shape=(nb samples,))
Dense(50, activation=”relu”)
Dense(9, activation=”softmax”)

lstm HW

nb epoch = 100
batch size training = 128
LSTM(26, input shape=(nb samples,1), return sequences=True)
LSTM(26)
Dense(9, activation=’softmax’)

Table 8: Hyper-parameters of the used DL architectures in Sec. 7.
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cnn 2layers cw

nb epoch = 100
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers cw

nb epoch = 100
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 4, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp cw

nb epoch = 100
batch size training = 128
node=nb samples
layer nb=5
Dense(node, input dim=nb samples, activation=’relu’)
for i in range(layer nb−2):

Dense(node, activation=’relu’)
BatchNormalization()

Dense(256, activation=’softmax’)

lstm cw

nb epoch = 100
batch size training = 128
LSTM(nb samples, input shape=(nb samples,1), return sequences=True)
BatchNormalization()
LSTM(100)
Dense(256, activation=’softmax’)

Table 9: Hyper-parameters of the used DL architectures in Sec. 9.1.
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cnn 2layers cw

nb epoch = 200
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers cw

nb epoch = 200
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 4, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp cw

nb epoch = 200
batch size training = 128
node=nb samples
layer nb=4
Dense(node, input dim=nb samples, activation=’relu’)
for i in range(layer nb−2):

Dense(node, activation=’relu’)
BatchNormalization()

Dense(256, activation=’softmax’)

lstm cw

nb epoch = 100
batch size training = 128
LSTM(nb samples, input shape=(nb samples,1), return sequences=True)
BatchNormalization()
LSTM(nb samples, return sequences=True)
LSTM(50)
Dense(256, activation=’softmax’)

Table 10: Hyper-parameters of the used DL architectures in Sec. 9.2.

46



cnn 2layers cw

nb epoch = 20
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers cw

nb epoch = 20
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 4, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp cw

nb epoch = 20
batch size training = 128
node=nb samples
layer nb=4
Dense(node, input dim=nb samples, activation=’relu’)
for i in range(layer nb−2):

Dense(node, activation=’relu’)
BatchNormalization()

Dense(256, activation=’softmax’)

lstm cw

nb epoch = 20
batch size training = 128
LSTM(nb samples, input shape=(nb samples,1), return sequences=True)
BatchNormalization()
LSTM(nb samples, return sequences=True)
LSTM(400)
Dense(256, activation=’softmax’)

Table 11: Hyper-parameters of the used DL architectures in Sec. 10 (for evalu-
ating shuffling and masking countermeasures on CW board).
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cnn 2layers cw

nb epoch = 500
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers cw

nb epoch = 500
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 4, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp cw

nb epoch = 500
batch size training = 128
node=nb samples
layer nb=5
Dense(node, input dim=nb samples, activation=’relu’)
for i in range(layer nb−2):

Dense(node, activation=’relu’)
Dropout(0.01)
BatchNormalization()

Dense(256, activation=’softmax’)

lstm cw

nb epoch = 500
batch size training = 128
LSTM(nb samples, input shape=(nb samples,1), return sequences=True)
BatchNormalization()
LSTM(200)
Dense(256, activation=’softmax’)

Table 12: Hyper-parameters of the used DL architectures in Sec. 10 (for evalu-
ating shuffling and 1-amongst-N countermeasures on CW board).
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cnn 2layers cw

nb epoch = 50
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.4)
Dense(256, activation=”softmax”)

cnn 3layers cw

nb epoch = 50
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”relu”)
Dropout(0.2)
MaxPooling1D(pool size=2)
Convolution1D(8, 4, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dropout(0.1)
Dense(256, activation=”softmax”)

mlp cw

nb epoch = 50
batch size training = 128
node=5000
layer nb=5
Dense(node, input dim=5000, activation=’relu’)
for i in range(layer nb−2):

Dense(node, activation=’relu’)
Dropout(0.01)
BatchNormalization()

Dense(256, activation=’softmax’)

lstm cw

nb epoch = 100
batch size training = 128
LSTM(nb samples, input shape=(200,1), return sequences=True)
BatchNormalization()
LSTM(200, return sequences=True)
BatchNormalization()
LSTM(100)
Dense(256, activation=’softmax’)

Table 13: Hyper-parameters of the used DL architectures in Sec. 10 (for evalu-
ating masking and 1-amongst-N countermeasures on CW board).
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cnn 2layers cw

nb epoch = 50
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
Dropout(0.002)
BatchNormalization()
MaxPooling1D(pool size=2)
Convolution1D(8, 8, padding=’same’, activation=”tanh”)
Flatten()
Dropout(0.01)
Dense(256, activation=”softmax”)

cnn 3layers cw

nb epoch = 100
batch size training = 128
Convolution1D(8, 16, padding=’same’, input shape=(nb samples,1), activation=”relu”)
MaxPooling1D(pool size=3)
Convolution1D(8, 8, padding=’same’, activation=”relu”)
MaxPooling1D(pool size=2)
Convolution1D(8, 2, padding=’same’, activation=”tanh”)
MaxPooling1D(pool size=2)
Flatten()
Dense(256, activation=”softmax”)

mlp cw

nb epoch = 50
batch size training = 128
node=5000
layer nb=6
Dense(node, input dim=5000, activation=’relu’)
for i in range(layer nb−2):

Dense(node, activation=’relu’)
Dropout(0.001)
BatchNormalization()

Dense(256, activation=’softmax’)

lstm cw

nb epoch = 50
batch size training = 128
LSTM(2000, input shape=(1,nb samples), return sequences=True)
BatchNormalization()
LSTM(2000, return sequences=True)
BatchNormalization()
LSTM(2000)
Dense(256, activation=’softmax’)

Table 14: Hyper-parameters of the used DL architectures in Sec. 10 (for evalu-
ating shuffling, masking and 1-amongst-N countermeasures on CW board).
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