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Abstract. A group-characterizable (GC) random variable is induced
by a finite group, called main group, and a collection of its subgroups
[Chan and Yeung 2002]. The notion extends directly to secret sharing
schemes (SSS). It is known that multi-linear SSSs can be equivalently
described in terms of GC ones. The proof extends to abelian SSSs, a
more powerful generalization of multi-linear schemes, in a straightfor-
ward way. Both proofs are fairly easy considering the notion of dual for
vector spaces and Pontryagin dual for abelian groups. However, group-
characterizability of homomorphic SSSs (HSSSs), which are generaliza-
tions of abelian schemes, is non-trivial, and thus the main focus of this
paper.

We present a necessary and sufficient condition for a SSS to be equiva-
lent to a GC one. Then, we use this result to show that HSSSs satisfy the
sufficient condition, and consequently they are GC. Then, we strengthen
this result by showing that a group-characterization can be found in
which the subgroups are all normal in the main group. On the other
hand, GC SSSs whose subgroups are normal in the main group can eas-
ily be shown to be homomorphic. Therefore, we essentially provide an
equivalent characterization of HSSSs in terms of GC schemes.

We also present two applications of our equivalent definition for HSSSs.
One concerns lower bounding the information ratio of access structures
for the class of HSSSs, and the other is about the coincidence between
statistical, almost-perfect and perfect security notions for the same class.

Key words: homomorphic secret sharing, access structure, information
theory, group theory, group-characterizable random variable

1 Introduction

A secret sharing scheme (SSS) [9,26,36] allows a dealer to share a secret among
a set of participants. The dealer applies a publicly-known probabilistic method
to compute a share for each participant, which is then privately transferred to
him/her. In a perfect SSS, it is required that only certain pre-specified subsets
of participants, called qualified, be able to recover the secret, and others must
gain no information about the secret. The collection of all qualified subsets is
called an access structure.
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The efficiency of a SSS is quantified using a parameter called information
ratio, defined to be the ratio between the largest share size and the secret size.
The information ratio of an access structure is defined as the infimum of the
information ratios of all SSSs for it.

The most common type of SSSs is the class of multi-linear schemes, which
we simply call linear in this paper. In these schemes, the secret is composed of
some finite field elements and the sharing is done by applying some fixed linear
mapping on the secret elements and some randomly chosen elements from the
finite field. A more powerful generalization of linear schemes, called abelian, has
recently been studied in the literature [20,29].

The notion of homomorphic SSS (HSSS), introduced by Benaloh [7] in 1986,
plays a central role in several applications of secret sharing in cryptography (e.g.,
secure multi-party computation [6]). A SSS is called homomorphic if multipli-
cation of the corresponding shares of two secrets results in valid shares for the
product of the secrets. Every abelian (and consequently linear) scheme is homo-
morphic, but it is an open problem if homomorphic SSSs are stronger than the
abelian schemes. This paper has been mainly motivated by our narrow knowl-
edge and lack of understanding surrounding HSSSs, as it will be discussed next.

1.1 Known results about HSSSs

Very little is known about HSSSs. In 1992, Frankel, Desmedt and Burmester [22]
proved that in perfect HSSSs, the secret space is an abelian group. In a subse-
quent work, Frankel and Desmedt [21] showed that when the scheme is ideal
(i.e., all share sizes are the same as the secret size), the share spaces are all iso-
morphic to the secret space, and hence abelian too. Despite several subsequent
attempts [14,17,35,38], characterization of ideal perfect HSSSs remained an open
problem for a long time. Recently, Jafari and Khazaei [29] have shown that any
ideal HSSS can be converted into an ideal linear scheme with the same access
structure. This shows that in the case of ideal access structures, homomorphic
and linear SSSs have the same power. However, for general access structures,
Jafari and Khazaei [29] also showed that HSSSs outperform linear ones [29] (in
terms of the best achievable information ratio). In particular, it was shown in [29]
that a subclass of abelian schemes, called mixed-linear, which are constructed by
combing linear schemes with possibly different underlying finite fields, outper-
form linear ones. It remains an open question whether HSSSs can outperform
abelian or even mixed-linear schemes.

1.2 An equivalent definition for HSSSs

As it was mentioned above, classification of HSSSs has remained a long-standing
open problem. In this paper, we present an equivalent definition in terms of
group-characterizable (GC) SSSs along with two applications.

GC SSSs can be defined in terms of the so-called group-characterizable ran-
dom variables (GCRVs), defined by Chan and Yeung in 2002 [13]. We remark
that RVs and SSSs are essentially equivalent notions (e.g., see [1]). Here we
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present a definition of GC SSS based on the description that was given at the
beginning of the introduction (i.e., as a probabilistic sharing method). In the
following, we use some basic concepts of abstract algebra, which are recalled in
Appendix A.

GC secret sharing. A GC SSS is defined by a finite group pG, ˚q, called the
main group, along with a collection G0, G1, . . . , Gn of its subgroups, as follows.
The secret space is the quotient set G{G0 and the share space of the i’th partic-
ipant is the quotient set G{Gi. To share a secret s0 P G{G0, the dealer chooses a
random g P G such that s0 “ gG0 (there are |G|{|G0| such elements). The shares
are then computed as ps1, . . . , snq “ pgG1, . . . , gGnq; i.e., the i’th participant’s
share is the coset si “ gGi.

Main result. As we mentioned earlier, the class of HSSSs includes the linear
and abelian schemes, which are both GC (we will return to this fact at the end
of this subsection). On the other hand, a GC SSS induced by a main group G
and normal subgroups G0, . . . , Gn in G can easily be shown to be homomorphic.
It is not directly obvious whether HSSSs are GC, and if so, it is not clear if there
are HSSSs that do not have a group characterization with normal subgroups.
The main result of this paper is to show that the two classes are equal; that is,
every HSSS is GC with normal subgroups in the main group.

Our approach. We call two vectors of jointly distributed RVs equivalent if they
differ up to relabeling of the elements of the supports of their marginal distri-
butions. We refer to RVs which are equivalent to some GCRV as inherently GC.
One of the main contributions of this paper is a key theorem which essentially
provides a necessary and sufficient condition for a RV to be inherently GC.

We take the following steps to prove our key theorem. We represent a vector
of jointly distributed RVs by a matrix. Its rows are the elements of the support of
the RV (a distribution on the rows is sufficient to fully describe the RV). We then
associate a group to a matrix, called the automorphism group of that matrix.
It is defined to be the set of all permutations on the rows of the matrix which
result in the same matrix, up to relabeling of the entries of each column. Our key
theorem is then stated as follows (the notions of group action and transitivity of
a group action are standard definitions in abstract algebra and will be recalled
in Appendix B).

Key Theorem: A vector of jointly distributed RVs is inherently GC if and only
if the automorphism group of its matrix representation acts transitively on the
set of its rows.

As an application of the sufficiency condition of the key theorem, we then
show that HSSSs satisfy the mentioned condition. If a RV is inherently GC, the
proof of our key theorem also constructively provides a group-characterization for
it (which might be different from the original one). Some extra effort is required
to show that HSSSs are IGC with normal subgroups (see Section 4.2 for further
details).
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Technicality comparison with linear and abelian RVs. As we mentioned
earlier, linear and abelian SSSs (or equivalently RVs) are GC too. The group-
characterizability of linear RVs was shown by Chan in [12], based on an equiva-
lent definition of linear RVs by Hammer et. al. [25] (Definition 2.1–ii.). In fact,
it can be shown that linear RVs are equivalent to GCRVs whose main groups
are vector spaces. The proof is fairly easy considering the notion of duality for
vector spaces. The abelian RVs were defined by Jafari and Khazaei [29] as a
generalization of Hammer et. al.’s definition of linear RVs (Definition 2.2–ii.).
The generalization relies on the notion of Pontryagin dual for abelian groups.
We will show that abelian RVs are equivalent to GCRVs whose main groups are
abelian. The proof uses the properties of Pontryagin duality and is very similar
to the linear case, without any particular complexity. The complexity for the ho-
momorphic case is essentially due to lack of proper notions of duality for general
(i.e., non-abelian) groups.

1.3 Applications of our equivalent definition

Unlike linear SSSs, which have been very well studied in the literature, our
understanding of HSSSs is very limited, as we discussed earlier. Here, we mention
some further motivations for studying HSSSs, which turn out easy to answer
thanks to our equivalent definition for HSSSs in terms of GC ones.

‚ Lower-bounds. A notable approach for finding a lower bound on the in-
formation ratio of access structures is to use the so-called Shannon-type
or non-Shanon-type information inequalities (e.g., see [4, 10, 15]). Recently,
Farràs et al. [20] have proposed an improved method using the common in-
formation property of random variables. In [20], it was mentioned that the
obtained lower bound applies not only to linear SSSs but also to abelian ones
because both classes are known to satisfy the common information property.
It is a natural question to ask if their method also applies to any larger
class. We will show that the common information property is satisfied for a
subclass of GC SSSs whose subgroups have some specific property, which we
show to be satisfied by normal subgroups. Consequently, the obtained lower
bound using the common information method also applies to HSSSs (and
even a larger class).

‚ Non-perfect SSS. The most common security notion for SSSs is perfect
security. The following relaxations, in increasing level of security, have been
presented in the literature: partial [30], quasi-perfect [32, Chapter 5], almost-
perfect [16,33] and statistical (a well-known and standard relaxation, proba-
bly first mentioned in [8]). Recently, these security notions were extensively
studied in [30] and two main results were presented. First, the information
ratio of an access structure with respect to all non-perfect security notions
coincides with perfect security for the class of linear schemes. Second, for the
general class of SSSs (i.e., non-linear), information ratio is invariant with re-
spect to all non-perfect security notions, but it remained open whether it
also coincides with perfect security.
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For the class of linear SSSs, it is easy to argue that almost-perfect (and conse-
quently statistical) security coincides with perfect security. This observation
has already been made for statistical security by Beimel and Ishai [3, right
after Definition 2.3]. We will show that the notion of almost-perfect (and
consequently statistical) security also coincides with perfect security for a
subclass of GC SSSs whose secret subgroups are normal in their main groups,
which clearly includes homomorphic ones.

1.4 Paper organization

The paper is organized as follows. The required concepts about RVs and SSSs are
presented in Section 2. In Section 3, we introduce the notion of inherent group-
characterizability of RVs. In Section 4, our key theorem (i.e., the necessary and
sufficient condition for inherent group-characterizability of RVs) is presented
and proved; some applications of the necessary condition are also discussed. Our
equivalent definition for HSSSs in terms of GC SSSs is introduced in Section 5.
Applications of our equivalent definition is given in Section 6. The paper is
concluded in Section 7.

2 Random variables and secret sharing

In this section, we introduce our notation and some basic concepts. For the
reader’s convenience we review the basic definitions of abstract algebra in Ap-
pendix A. We refer to [1] for a survey on the theory of secret sharing.

Notation. For a positive integer n, rns stands for the set t1, 2, . . . , nu. All
random variables (RVs) considered in this paper are discrete with finite support
and we use boldface letters for their representation. The support and Shannon
entropy of a RV x are denoted by supp pxq and H pxq, respectively. The mutual
information of RVs x,y is denoted by Ipx : yq.

2.1 Linear, abelian and group-characterizable RVs

The notion of linear RVs is widely used in the literature and several equivalent
definitions exist for them. Here, we present three such definitions. The equiva-
lence of these definitions is well-known, but for completeness, we present a proof
in Appendix C.

Definition 2.1 (Linear RV) Let F be a finite field. A linear RV can be defined
in any of the following equivalent ways.

i. (Linear maps) For every i P rns, let µi : S Ñ Si be a linear map, where S
and Si’s are all finite-dimensional F-vector spaces. We refer to the joint RV
pµ1psq, . . . , µnpsqq as a linear RV, where s is a uniform RV on S.



6 Kaboli-Khazaei-Parviz

ii. (Dual space [25]) Let T be a finite-dimensional F-vector space and T1, . . . , Tn

be a collection of subspaces of T . Let α be a uniform RV on

T˚ “ tα | α : T Ñ F is a linear functionalu,

i.e., the dual space of T . We refer to pα|T1 , . . . ,α|Tnq as a linear RV. Here,
α|Ti

is the same mapping as α but its domain has been restricted to Ti.
iii. (Affine subspaces) Let U be a finite-dimensional F-vector space, U1, . . . , Un

be a collection of subspaces of U and u be a uniform RV on U . We refer to
pu ` U1, . . . ,u ` Unq as a linear RV. Here, the support of RV u ` Ui is the
set of all affine subspaces parallel to Ui (i.e., tu ` Ui | u P Uu where u ` Ui

is the translation of U by the vector u).

The first definition is usually used in the secret sharing literature for defining
linear SSSs (similar to the definition given in the third paragraph of the intro-
duction). The second definition was introduced by Hammer et. al. [25] and has
been widely used in the information theory literature, specifically in the search
for the so-called linear rank inequalities (e.g., see [18]). Interestingly, this defini-
tion is closely related to definition of SSSs in terms of the so-called (multi-target)
monotone span programs [2,34]. We refer to [30, Section 2.5] for an explanation
of this connection. Also, this definition has been a source of motivation in [29]
for defining abelian RVs. As we will see, the third definition is useful to view the
linear RVs as a subclass of group-characterizable RVs, introduced by Chan and
Yeung in [13].

Abelian RVs in the context of secret sharing has recently emerged in [20,
29]. Similar to the linear case, here we provide three definitions. The proof of
equivalence is very similar to that of the linear case (see Appendix C).

Definition 2.2 (Abelian RVs) Abelian RVs can be defined in the following
equivalent ways.

i. (Abelian homomorphisms) For every i P rns, let µi : S Ñ Si be a group
homomorphism, where S and Si’s are all finite abelian groups. We refer to
the joint RV pµ1psq, . . . , µnpsqq as an abelian RV, where s is a uniform RV
on S.

ii. (Pontryagin dual [29]) Let pH,`q be a finite abelian group and H1 . . . , Hn

be a collection of its subgroups. Let α be a uniform RV on

pH “ tα | α : H Ñ C˚ is a homomorphismu,

called the Pontryagin dual of H, where C˚ is the multiplicative group of
non-zero complex numbers. We refer to pα|H1 , . . . ,α|Hnq as an abelian RV.
Again, α|Hi is the same mapping as α, but with domain restricted to Hi.

iii. (Cosets) Let pG,`q be a finite abelian group and G1 . . . , Gn be a collection
of its subgroups. We refer to the RV pg `G1, . . . ,g `Gnq as an abelian RV,
where g is a uniform RV on G. Here, the support of RV g ` Gi is the set of
all cosets of Gi in G (i.e., tg`Gi | g P Gu, where g`Gi “ tg`h | h P Giu).
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Group-characterizable random variables (GCRVs) can be considered a gen-
eralization of the third definition for both linear and abelian RVs.

Definition 2.3 (Group-characterizable RV [13]) Let pG, ˚q be a finite group,
G1 . . . , Gn be a collection of its subgroups and g be a uniform RV on G. We re-
fer to the RV x “ pgG1, . . . ,gGnq as a group-characterizable random variable
(GCRV), induced by π “ rG : G1, ¨ ¨ ¨ , Gns. Here, gGi is a RV whose support
is the left cosets of Gi in G. We call G the main group and say that π is a
group-characterization for x.

Let x “ px1, . . . ,xnq be a GCRV induced by rG : G1, ¨ ¨ ¨ , Gns and fix a

subset A Ď rns. The support of the RV xA “ pxiqiPA is
!

pgGiqiPA : g P G
)

,

which is a subset of the Cartesian product
ś

iPA

`

G{Gi

˘

. Equivalently, it can
be viewed as the induced random variable f pgq, where f : G Ñ

ś

iPApG{Giq is
defined by g ÞÑ pgGiqiPA. Let GA “

Ş

iPA Gi. Since pgGiqiPA “ phGiqiPA if and
only if g´1h P GA, it follows that |supppxAq| “ |G{GA|.

2.2 Secret sharing schemes

A secret sharing scheme (SSS) is a method by which a distinguished participant,
called the dealer, shares a secret among a set of n participants. Given a secret
x0, the dealer first samples a randomness r according to some pre-specified dis-
tribution. He then employs a fixed and publicly-known mapping µ that takes
the secret and randomness and computes the shares as px1, . . . , xnq “ µpx0, rq,
where xi is the share of ith participant. This definition does not assume a priori
a distribution on the secret space. By considering a probability distribution on
the secret space, a SSS can equivalently be defined as follows.

Definition 2.4 (Secret sharing scheme) A secret sharing scheme (SSS) on
participants set rns is a joint distribution x “ px0,x1, . . . ,xnq, where x0 is the
secret RV with H px0q ą 0 and xi is the share RV of participant i P rns.

Given a SSS x “ px0,x1, . . . ,xnq, the dealer can share a secret x0 P supppx0q

as follows. He samples a tuple px0, x1, . . . , xnq according to the distribution x,
conditioned on the event rx0 “ x0s. The shares are then determined by the
sampled tuple.

A SSS by itself does not convey any notion of security. The most well-known
security notion is that of perfect security, in which the goal of the dealer is
to allow some pre-specified subsets of participants to recover the secret. The
secret must remain information-theoretically hidden from all other subsets of
participants. To formalize this intuition we present the notion of access structure
first.

Definition 2.5 (Access structure) Let rns be a set of participants. We refer
to a non-empty subset Γ Ď 2rns, with H R Γ , as an access structure if it is
monotone; i.e., if A P Γ and A Ď B Ď rns then B P Γ . The elements of Γ are
called qualified and those of 2rnszΓ are called unqualified.
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Definition 2.6 (Perfect realization) We say that a secret sharing scheme
px0,x1, . . . ,xnq is a perfect scheme for an access structure Γ if the following
two conditions hold:

‚ (Correctness) Hpx0|xAq “ 0, for every qualified subset A P Γ and,

‚ (Privacy) Ipx0 : xBq “ 0, for every unqualified subset B R Γ ,

where xA “ pxiqiPA for every A Ď rns.

Information ratio. There is a well-known parameter, called information ratio,
for quantifying the efficiency of SSSs. The information ratio of participant i in
the SSS x “ px0,x1, . . . ,xnq is defined to be Hpxiq{Hpx0q. The information
ratio of a SSS is the maximum (or sometimes the average) of all participants’
information ratios. The information ratio of an access structure is defined as the
infimum of the information ratios of all SSSs that perfectly realize it. Computing
the information ratio of access structures is a challenging problem.

Linear, abelian and GC SSSs. Every class of RVs gives rise to a class of
secret sharing schemes. A SSS x “ px0,x1, . . . ,xnq on n participants is called
GC (resp. linear or abelian) if the RV x is GC (resp. linear or abelian).

3 Inherently group-characterizable random variables

In this section, we introduce the notion of inherently group-characterizable (IGC)
RVs. We usematrix representation of RVs and introduce the concept of relabeling
for defining inherent group-characterizability of RVs.

Matrix representation of RVs. A RV with finite support can be represented
by a matrix by considering the elements in the support of the RV as the rows of
the matrix. We are not concerned about the order of rows. A non-zero probability
must also be assigned to each row, based on the distribution of the RV. We
usually ignore the distribution on the rows and focus on the matrix itself.

Example 3.1 Consider a GCRV induced by rG : G1, ¨ ¨ ¨ , Gns. Clearly, its ma-
trix representation is of the form

»

—

—

—

–

g1G1 g1G2 ¨ ¨ ¨ g1Gn

g2G1 g2G2 ¨ ¨ ¨ g2Gn

...
...

...
gmG1 gmG2 ¨ ¨ ¨ gmGn

fi

ffi

ffi

ffi

fl

,

where all the rows are distinct and tg1, g2, . . . , gmu is some (possibly proper)
subset of G, where m “ |G|{|

Şn
i“1 Gi|. Because, as we mentioned earlier, a

tuple pgG1, . . . , gGnq is equal to phG1, . . . , hGnq if and only if g´1h P
Şn

i“1 Gi.
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From a secret sharing point of view, we do not distinguish between two
jointly distributed RVs whose all marginal distributions are identical up to a
relabeling of the elements of their supports. To capture this notion, we propose
the following definition.

Definition 3.2 (Relabeling) Let M “ rmijsmˆn be a matrix and denote its
j’th column by M j. A relabeling for M is a tuple f “

`

f1, f2, . . . , fn
˘

such
that f j, j P rns, is an injection from the set of distinct elements in M j, to an
arbitrary set. The action f ¨ M is defined by

f ¨ M “ rf1 ¨ M1|f2 ¨ M2| ¨ ¨ ¨ |fn ¨ Mns ,

where f j acts on the j’th column as f j ¨ M j “ rf j pmijqsmˆ1.

Example 3.3 The following matrices are relabelings of each other:

M “

»

—

—

–

a b a
a a b
b b b
b a a

fi

ffi

ffi

fl

, M 1 “

»

—

—

–

# % $
# ˚ &
˚ % &
˚ ˚ $

fi

ffi

ffi

fl

.

In order to work with RVs or SSSs that are essentially GC but do not have
a built-in group-characterization, we present the following definition.

Definition 3.4 (Inherent group-characterizability) A matrix M is called
inherently group-characterizable (IGC) if there exists a relabeling f such that
f ¨ M is the matrix representation of a GCRV.

The above definition was given for matrices, but it clearly can be extended
to RVs and SSSs, which are uniformly distributed on their supports. Therefore,
we can refer to RVs or SSSs as being IGC.

Remark 3.5 (On uniformity) We would like to highlight the following points
concerning the “uniform distribution assumption” that we need on the support
of RVs and SSSs to call them IGC.

‚ RVs which are not uniformly distributed on their supports cannot be GC.
One can extend the notion of GCRVs by allowing the RV g in Definition 2.3
to have an arbitrary distribution on G but with full support. Equivalently,
the new definition calls a RV GC if its matrix representation is GC (even if
the probabilities that are assigned to each row are not all the same).

‚ To the best of our knowledge, all known optimal perfect SSSs are uniform
(and even strongly-uniform which is a more demanding property, see Sec-
tion 4.3). Here, a SSS for an access structure is called optimal if there is
no other SSS for the same access structure which decreases the information
ratio of some participant without increasing it for the others. In particular,
all well-known classes of SSSs (e.g., linear, abelian and homomorphic), are
usually defined to be uniform by default. It is an open problem if non-uniform
SSSs can outperform the uniform ones with respect to information ratio.
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4 A necessary and sufficient condition for inherent
group-characterizability

In this section, we present a key theorem which provides a necessary and sufficient
condition for a matrix to be IGC. First, we introduce the required tools and
definitions in Section 4.1. Then, we present our key theorem and its proof in
Section 4.2. Some applications of the key theorem are discussed in Section 4.3.

4.1 Automorphisms group of a matrix and its properties

Our main tool for determining the inherent group-characterizability of a given
matrix is the notion of group automorphism of a matrix. To define this notion,
we need to define two actions on matrices. The reader may recall the notion of
group action, given in Appendix B.

Definition 4.1 (Permutation action) Let M be a matrix with m rows and
σ P Sm, where Sm is the symmetric group of order m. The action σ ¨M is defined
to be a matrix with m rows whose i’th row is the σ piq’th row of M .

Definition 4.2 (Reordering action) A relabeling
`

f1, f2, . . . , fn
˘

of a ma-
trix M is called a reordering if each f j is a permutation on the set of distinct
elements of M j, the j’th column of M .

Notice that a reordering of a matrix does not introduce new entries and only
exchanges entries of each column. Sometimes, reordering of a matrix behaves
the same way as permuting the rows. This is a motivation for the following
definition.

Definition 4.3 (Automorphisms group of a matrix) Let M be a matrix
with m rows. The set of all automorphisms of M is defined as follows,

AutpMq “ tσ P Sm : σ ¨ M “ f ¨ M, for some reordering f of Mu.

Each element of AutpMq is called an automorphism.

By Proposition 4.5, AutpMq is a subgroup of Sm. It is also easy to verify
that the reordering that corresponds to an automorphism σ is unique, which we
denote by fσ. Conversely, the automorphism that corresponds to a reordering is
unique if the matrix does not have duplicate rows, which we assume to be the
case throughout the paper.

Example 4.4 Below we present a matrix M along with all its automorphisms
and their corresponding reorderings (e is the identity permutation):

M “

»

—

—

–

a b a
a a b
b b b
b a a

fi

ffi

ffi

fl

,
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σ1 “ e fσ1 “ pe, e, eq

σ2 “ p1 2qp3 4q fσ2 “ pe, pa bqpa bqq

σ3 “ p1 3qp2 4q fσ3 “ ppa bq, e, pa bqq

σ4 “ p1 4qp2 3q fσ4 “ ppa bq, pa bq, eq .

Some properties of automorphisms and relabelings are given in the following
proposition, which will be used later.

Proposition 4.5 The following statements are true for a matrix M :

i) For every permutations σ and relabelings f , we have f ¨ pσ ¨ Mq “ σ ¨ pf ¨ Mq.
ii) If σ, τ P AutpMq, then we have σ ˝τ P AutpMq. Additionally, fσ˝τ “ fτ ˝fσ.
iii) If σ P AutpMq, then σ´1 P AutpMq. Additionally, fσ´1 “ f´1

σ .
iv) AutpMq is a subgroup of Sm.
v) For every relabeling f , we have Aut pf ¨ Mq “ AutpMq.
vi) For every τ P Sm, we have Aut pτ ¨ Mq “ τ ˝ AutpMq ˝ τ´1.
vii) For every A Ď rns, we have AutpMq “ Aut

`

MA
˘

X Aut
`

M rnszA
˘

, where
MA is the sub-matrix with columns indexed by elements in A.

Proof. All statements are easy to prove. For example we prove part (vi).

σ P Aut pτ ¨ Mq ðñ Df s.t. σ ¨ pτ ¨ Mq “ f ¨ pτ ¨ Mq

ðñ Df s.t. pσ ˝ τq ¨ M “ τ ¨ pf ¨ Mq

ðñ Df s.t.
`

τ´1 ˝ σ ˝ τ
˘

¨ M “ f ¨ M

ðñ τ´1 ˝ σ ˝ τ P AutpMq

ðñ σ P τ ˝ AutpMq ˝ τ´1

[\

4.2 The key theorem

We now present and prove our key theorem which provides a necessary and
sufficient condition for a matrix to be IGC. The reader may recall the notion of
transitivity of a group action, given in Appendix B.

Theorem 4.6 (Key theorem) A matrix M is IGC if and only if the group
AutpMq acts transitively on the set rms, where m is the number of rows of M .

Proof. (Only-if part) First assume that the matrix M “ rmijsmˆn is itself GC
and induced by rG : G1, ¨ ¨ ¨ , Gns. We show that for every i, j P rms, there exists
a σ P AutpMq such that σpiq “ j.

Observe that for a given g P G, the (left) multiplication of g by entries of M ,
i.e., rgmijs, is a row-permutation of M . Denote its corresponding permutation by
σg P Sm. Therefore, σg ¨ M “ rgmijs. On the other hand, rgmijs is a relabeling
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of M for fg “ pf1
g , . . . , f

n
g q, where f j

g : G{Gj Ñ G{Gj sends xGj to gxGj .
Therefore, fg ¨ M “ rgmijs and hence σg P AutpMq.

Let pxiG1, . . . , xiGnq and pxjG1, . . . , xjGnq be the i-th and j-th rows of M ,
respectively. Let g “ xjx

´1
i and σ “ σg. Since σ ¨M “ σg ¨M “ rgmijs, the i-th

row of σ ¨ M is the j-th row of M . That is, σpiq “ j.
Now let M be an IGC matrix. Thus, there exists a GC matrix M 1 and a

relabeling f such that M “ f ¨ M 1. By Proposition 4.5 (part v)), AutpMq “

AutpM 1q, from which the claim follows.
(If part) Let M “ rmijsmˆn and H “ AutpMq act transitively on the set

rms. For every j P rms, let

Hj “ tσ P H : f j
σ pm1jq “ m1ju ,

where fσ “
`

f1
σ , f

2
σ , . . . , f

n
σ

˘

is the corresponding reordering of σ. Let MH be
the matrix representation of rH : H1, ¨ ¨ ¨ ,Hns. It is enough to show that M is
a relabeling of MH and, therefore, M is IGC. For every j P rns, define F j from
the set of elements of M j

H to the set of elements of M j by F j pσHjq “ mσp1qj .
We claim that F “ pF 1, . . . , Fnq is a relabeling. First notice that F j , j P rms, is
well-defined and one-to-one; because:

σHj “ τHj ðñ τ´1 ˝ σ P Hj

ðñ f j
τ´1˝σ

pm1jq “ m1j

ðñ

´

`

f j
τ

˘´1
˝ f j

σ

¯

pm1jq “ m1j

ðñ f j
σ pm1jq “ f j

τ pm1jq

ðñ mσp1qj “ mτp1qj

ðñ F jpσHjq “ F jpτHjq.

It remains to show that F j is onto. Let mij be an arbitrary element of M j . Since
the action of H on rms is transitive, for all i P rms, there is a σ P H such that
σ p1q “ i. Therefore, F jpσHjq “ mσp1qj “ mij . [\

The above proof provides a systematic way of finding a group characterization
for an IGC matrix M . We remark that if M itself is GC, the constructed group
characterization might differ from the original one. For completeness and ease
of reference, below we present a proposition which was essentially proved in the
“if part”.

Proposition 4.7 Let M “ rmi,jsmˆn be a matrix and H be a subgroup of
AutpMq that acts transitively on the set rms. Then, rH : H1, ¨ ¨ ¨ ,Hns is a group-
characterization of M , where

Hj “ tσ P H : f j
σ pm1jq “ m1ju ,

and
`

f1
σ , f

2
σ , . . . , f

n
σ

˘

is the (unique) reordering that corresponds to σ.
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Corollary 4.8 For an inherently group-characterizable matrix M with m rows,
it holds that m divides |AutpMq|.

Proof. Let H “ AutpMq and H1, . . . , Hn be as in Proposition 4.7. Since M is
IGC, the matrix representation of π “ rH : H1, ¨ ¨ ¨ ,Hns, which we denote by

Mπ, is a relabeling of M . We know that Mπ has |H|

|
Şn

i“1 Hi|
rows. On the other

hand, M is a relabeling of Mπ and, hence, they have the same number of rows.
Therefore, m divides |H|. Since H is a subgroup of AutpMq, m divides |AutpMq|

too. [\

4.3 Applications of the key theorem

Recall that our key theorem provides a necessary and sufficient condition for a
matrix to be IGC. The sufficiency condition is useful for constructing a main
group and some subgroups for an IGC matrix (see Proposition 4.7). In the next
section, we present an application of this result to homomorphic SSSs.

The necessary condition, on the other hand, helps us to give examples of
RVs which are not IGC. In a follow-up work [31], we have used this part of the
theorem to show the existence of ideal perfect SSS which are not IGC (refer
to [31] for motivations of this result). Below, we mention another application to
what we call strongly-uniform RVs.

On strongly-uniform RVs. We say that a jointly distributed RV px1, . . . ,xnq

is strongly-uniform if, for all A Ď rns, the marginal distribution xA “ pxiqPA is
uniformly distributed on its support. Such random variables have been studied
in [11]1. GCRVs are clearly strongly-uniform. We show that the converse is not
necessarily true. Consider the following matrix with six rows and uniform dis-
tribution on each row. The corresponding RV is clearly quasi-uniform. However,
since AutpMq “ te, p1 6qp2 5qp3 4qu, by Corollary 4.8, it is not IGC (because
6 ∤ |AutpMq|).

M “

»

—

—

—

—

—

—

–

1 1 1
2 1 2
3 2 3
1 2 2
2 3 3
3 3 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Strongly-uniform RVs are interesting in the context of SSSs because it is an
open problem if there are optimal perfect SSSs which are not strongly-uniform.
See the second part of Remark 3.5.

1 In [11], they have been called quasi-uniform, but we prefer the terminology strongly-
uniform as it is clear from the context.
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5 An equivalent definition for homomorphic SSSs

In this section, we use our key theorem (Theorem 4.6) to present an equivalent
definition for homomorphic SSSs in terms of GC ones.

5.1 Homomorphic SSSs

A homomorphic SSS is a scheme with the following properties. First, the secret
space and all share spaces are groups. Second, multiplying the corresponding
shares of two secrets results in valid shares for the product of the secrets. Third,
the scheme is uniformly distributed on its support (see Remark 3.5). This no-
tion can be extended to RVs and matrices. Below, we present the definition for
matrices.

Definition 5.1 (Homomorphic matrix) Let M be a matrix such that the set
of elements in each column has a group structure. We call M homomorphic if
the product of every pair of rows α “ pα1, . . . , αnq and β “ pβ1, . . . , βnq, defined
by αβ “ pα1β1, . . . , αnβnq, is also a row of the matrix.

Now, consider a GC SSS which is induced by rG : G0, G1, ¨ ¨ ¨ , Gns and as-
sume that each subgroup Gi is normal in the main group G. Consequently, each
quotient G{Gi is a group and it is easy to see that the scheme is homomorphic.

Proposition 5.2 (Normal ùñ Homomorphic) Every GC SSS with normal
subgroups in the main group is homomorphic.

In the following subsection we show that the converse of the above proposition
is true.

5.2 Homomorphic SSSs are IGC with normal subgroups

In this subsection, we prove the following theorem.

Theorem 5.3 (Homomorphic ùñ Normal) Every homomorphic SSS is IGC
with normal subgroups in the main group.

Using the sufficient condition of our key theorem (Theorem 4.6), we first show
that a homomorphic matrix is IGC. However, the theorem does not guarantee
the existence of a group-characterization with normal subgroups. To handle this
issue, we introduce the notion of inner automorphisms group for homomorphic
matrices which helps us to find a group-characterization with normal subgroups.

Existence of a group-characterization. Let M “ rmijsmˆn be a homomor-
phic matrix and β be a row of M . It is easy to see that the mapping α ÞÝÑ βα,
on the set of rows of M , is a permutation. Let σβ P Sm denote the corresponding
permutation. We show that σβ is an automorphism of M . That is, there exists
a reordering f such that f ¨ M “ σβ ¨ M . Let β “ pβ1, β2, . . . , βnq. Since βj and
mij are elements of the same group, their product is well-defined. Let
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f j
β pmijq “ βjmij , (5.1)

which is obviously a permutation. Therefore, f “

´

f1
β , f

2
β , . . . , f

n
β

¯

is a reordering

that satisfies σβ ¨ M “ rβjmijs “ f ¨ M . Thus, σβ P AutpMq.
Now, let αi and αj be the i’th and j’th rows of M , respectively, and β “

αjα
´1
i . It is clear that σβ piq “ j. Hence, AutpMq acts transitively on the set

rms. Therefore, by Theorem 4.6, M is IGC.

Inner automorphisms group. In order to show the existence of a group-
characterization with normal subgroups, we introduce the notion of inner auto-
morphisms group of a homomorphic matrix. Let M be a homomorphic matrix
with m rows and β be a row of M . Let σβ P Sm correspond to the permutation
α ÞÝÑ βα, on the set of rows of M . We call σβ an inner automorphism of M and
define the set of inner automorphisms of M as

InnpMq “ tσβ : β is a row of Mu .

Finding a normal characterization. Clearly, InnpMq is a subgroup of AutpMq.
Also, based on our previous discussion, InnpMq acts transitively on the set rms,
because σβ ’s belong to InnpMq. By Proposition 4.7, rH : H1, ¨ ¨ ¨ ,Hns is a group-
characterization for M , where H “ InnpMq and

Hj “ tσ P H : f j
σ pm1jq “ m1ju

where fσ “
`

f1
σ , f

2
σ , . . . , f

n
σ

˘

is the reordering that corresponds to the permuta-
tion σ P H and pm11, . . . ,m1nq is the first row of M .

We show that rH : H1, ¨ ¨ ¨ ,Hns is a normal characterization; that is, for all
j P rns, the subgroup Hj is normal in H “ InnpMq. By Equation (5.1), we have:

Hj “ tσβ : β is a row of M and βj “ eu ,

where β “ pβ1, . . . , βnq.
For proof of normality, we need to show that for every σα P InnpMq and

σβ P Hj , we have σα˝σβ˝σ´1
α P Hj . It is clear that σα˝σβ˝σ´1

α “ σα˝σβ˝σα´1 “

σαβα´1 . The claim then follows because αβα´1 is a row ofM and its j’th element
is identity (since βj “ e).

6 Applications of our equivalent definition

Except a few results about homomorphic SSSs (HSSSs), which was reviewed
in the introduction (Section 1.1), our knowledge about theses schemes is very
limited. In this subsection, we will provide two applications of our equivalent
definition for HSSSs to achieve some new results about them. We need some
preliminaries for this section that will be introduced in Section 6.1. Applications
will be mentioned in Sections 6.2 and 6.3
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6.1 Preliminaries

Let us recall the definition of product of two subgroups. For subgroups H,K of
a group pG, ˚q, their product is defined to be K ˚ H “ tk ˚ h : h P K,h P Hu.
Trivially, K ˚ H contains both K and H. The set K ˚ H is not necessarily a

subgroup and its size is given by the product formula: |K ˚ H| “
|K||H|

|kXH|
. The

product of two subgroups H,K is a group if and only if they are commuting ;
that is, H ˚ K “ K ˚ H.

Let px1, . . . ,xnq be a GCRV induced by a tuple rG : G0, G1, . . . , Gns. As we
mentioned at the end of Section 2.1, for every subset A Ď rns, the marginal RV

xA “ pxiqiPA is uniformly distributed on its support
!

pgGiqiPA : g P G
)

which

has |G{GA| elements, where GA “
Ş

iPA Gi. Therefore, HpxAq “ log |G|

|GA|
.

By definitions of conditional entropy and mutual entropy, the following rela-
tions then easily follow:

HpxA|xBq “ log
|GB |

|GAXB |
, (6.1)

IpxA : xBq “ log
|G|

|GA ˚ GB |
, (6.2)

where the latter is obtained by using the product formula |GA ˚GB | “
|GA|¨|GB |

|GAXGB |
.

6.2 Lower bound on the information ratio of HSSS

Determining the information ratio of access structures is a challenging open
problem in theory of SSS, even for restricted classes of interest. A notable ap-
proach for finding a lower bound on the information ratio is to use the so-called
Shannon-type or non-Shanon-type information inequalities (e.g., see [4, 10, 15]).
Recently, Farràs et al. [20] have used the common information (CI) property
of random variables to derive lower bounds on the information ratio of access
structures. The derived lower bounds apply to any class of SSSs that satisfies
the CI property. In particular, it applies to the class of linear and abelian SSSs,
which are known to satisfy the CI property, as it was explicitly mentioned in [20].
In the following we show that the CI property is satisfied by a subclass of GC
SSSs whose subgroups have some particular property. Then, we show that nor-
mal subgroups satisfy that property, and consequently, HSSSs are included in
this subclass (because by our equivalent definition HSSSs are GC with normal
subgroups). We conclude that every lower bound achieved using the CI method
applies to the class of HSSSs too. In particular, this observation has the following
negative consequence.

A negative consequence. The information ratios of several small access struc-
tures, including some on five participants and several graph-access structures
on six participants are still open for general SSSs. But the exact value of their
information ratios have been determined for the class of linear schemes. This



On Group-Characterizability of Homomorphic SSSs 17

project was initiated in [28, 37]; see [20, 24] for the latest status and references
therein for the history of progress. Our result shows that one cannot hope to
improve the upper-bounds by constructing HSSSs for them; because the lower-
bounds achieved by the CI method are already met by optimal linear schemes
for all the mentioned access structures.

The remaining part of this subsection is devoted to show that homomorphic
RVs satisfy the CI property. Let us start by a formal definition of CI.

Definition 6.1 (Common information) We say that a pair of jointly dis-
tributed RVs px,yq satisfies the common information (CI) property if there ex-
ists a RV z such that Hpz|xq “ Hpz|yq “ 0 and Hpzq “ Ipx : yq. We say that
a vector px1, . . . ,xnq of jointly distributed RVs satisfies the CI property if for
every pair of (not necessarily disjoint) subsets A,B Ď rns, the joint distribution
pxA,xBq satisfies the CI property.

The following proposition introduces a subclass of GCRVs that satisfies the
CI property. Recall the notation GA “

Ş

iPA Gi and refer to Appendix A for the
definition of commuting subgroups.

Proposition 6.2 (GCRVs with CI) Let x “ px1, . . . ,xnq be a GCRV in-
duced by rG : G1, ¨ ¨ ¨ , Gns such that for every pair of subsets A,B Ď rns, the
subgroups GA and GB are commuting. Then, the RV x satisfies the CI property.

Proof. Fix some A,B Ď rns. We show that there exists a RV x0 that captures
the common information of xA and xB . That is, Hpx0|xAq “ Hpx0|xBq “ 0 and
IpxA : xBq “ Hpx0q.

By (6.1), we have Hpx0|xAq “ log |GA|

|GAXG0|
“ log |GA|

|GA|
“ 0. Similarly, we

have Hpx0|xBq “ 0. By (6.2), IpxA : xBq “ log |G|

|GA˚GB |
. Since GA and GB are

commuting subgroups, their product is a subgroup too, say G0, which contains

both GA and GB. Therefore, IpxA : xBq “ log |G|

|G0|
. Now consider the GCRV

px0,xAq induced by rG : G0, GAs. Also, Hpx0q “ log |G|

|G0|
. Therefore, x0 satisfies

the required conditions. [\

The following corollary then follows easily.

Corollary 6.3 Homomorphic RVs satisfy the CI property.

Proof. Since homomorphic RVs are equivalent to GCRVs with normal sub-
groups, it is sufficient to show that GCRVs with normal subgroups satisfy the
property mentioned in Proposition 6.2. That is, for every pair of subsets A,B Ď

rns, the subgroups GA and GB are commuting. But this is clear because the
intersection of normal subgroups is also normal, and any normal subgroup com-
mutes with any other subgroup. [\

6.3 On statistical and almost-perfect HSSSs

Several well-known non-perfect security notions for SSSs have been introduced in
the literature. We refer to [30] for an extensive study of such notions. Two notable
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examples are statistical and almost-perfect security notions. In this subsection,
we will show that perfect, almost-perfect, and statistical security notions all
coincide for a subclass of GC SSSs whose secret subgroup (G0q is normal in
the main group (G). By our equivalent definition for HSSSs, this class trivially
contains the homomorphic ones.

Security definitions. The statistical security is a well-known and standard
relaxation of perfect security, probably first mentioned in [8]. Here, we recall a
definition from [30] (a similar definition can be found in [3]). A function ε : N Ñ

R is called negligible if εpkq “ k´ωp1q.

Definition 6.4 (Statistical security) Let tΠkukPN be a family of SSSs, where
Πk “ pxk

0 ,x
k
1 , . . . ,x

k
nq, and Γ be an access structure on n participants. We say

that tΠku is a statistical family for Γ (or tΠku statistically realizes Γ ) if:

1. The secret length grows at most polynomially in k; that is, log2 |supppxk
0q| “

Opkcq for some c ą 0.
2. For every qualified set A P Γ , there exists a reconstruction function ReconA :

supppxk
Aq Ñ supppxk

0q such that for every secret s in the support of xk
0 , the

error probability PrrReconApxk
Aq ‰ s|xk

0 “ ss is negligible in k;
3. For every unqualified set A P Γ , for every pair of secrets s, s1 in the support

of xk
0 , the statistical distance

1
2

ř

x |Prrxk
A “ x|xk

0 “ ss´Prrxk
A “ x|xk

0 “ s1s|

is negligible in k.

The almost-perfect SSSs have recently been studied by Csirmaz [16] in the
context of duality. Csirmaz defines almost-perfect security in terms of the so-
called almost entropic polymatroids. Here, we present an equivalent definition in
terms of a family of SSSs.

Definition 6.5 (Almost-perfect security) Let tΠkukPN be a family of SSSs,
where Πk “ pxk

0 ,x
k
1 , . . . ,x

k
nq, and Γ be an access structure on n participants.

We say that tΠku is an almost-perfect family for Γ if:

1. lim
kÑ8

Hpxk
0 |xk

Aq “ 0 for every qualified set A P Γ ;

2. lim
kÑ8

Ipxk
0 : xk

Bq “ 0 for every unqualified set B R Γ .

Why are non-perfect SSSs important? Here, we mention one motivation for
studying non-perfect security notions. We refer to [30] for further motivations.
There is a natural notion for dual of an access structure and it is a long-standing
open problem whether the information ratios of dual access structures are the
same with respect to perfect security [27]. Building on a result by Kaced [33],
Csirmaz showed that the answer is negative for the almost-perfect security no-
tion. Therefore, it is important to understand if the information ratio of an
access structure is invariant with respect to different security notions. It is a
challenging open problem whether the best achievable information ratio for an
access structure is the same for non-perfect and perfect SSSs. If this turns out to
be the case for almost-perfect security, the original open problem for dual access
structures is resolved too.
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What we know. For a specific class of SSSs, the almost-perfect security notion
is weaker than the statistical security. Recently, it has been proved in [30] that
for the general class of SSSs (i.e., non-linear), information ratios of an access
structure with respect to almost-perfect and statistical security are equal (but
it is an open problem whether it remains invariant for perfect security too). For
the class of linear SSSs, it is easy to argue that almost-perfect (and consequently
statistical) security coincides with perfect security. This observation has already
been noticed for statistical security by Beimel and Ishai [3, right after Definition
2.3]. Extending this observation to the class of abelian schemes is fairly easy2.
But proving coincidence for any class beyond abelian SSSs (particularly, the
homomorphic class using the traditional definition) is not that straightforward.

Main result. The following proposition states that almost-perfect, statistical
and perfect security notions all coincide for a subclass of GC SSSs whose secret
subgroup is normal in the main group. In Appendix D, we provide some technical
discussion on the proof and also on the size of the discovered class.

Proposition 6.6 (Normal secret subgroup) Let Γ be an access structure
and tΠkukPN be a family of GC SSSs that almost-perfectly or statistically re-
alizes Γ , such that the secret subgroup of every scheme Πk is normal in its main
group. Then, for every sufficiently large k, the scheme Πk perfectly realizes Γ .

Proof. The proof follows by the following observation. Let Π “ px0,x1, . . . ,xnq

be an arbitrary group-characterizable secret sharing scheme induced by groups
rG : G0, G1, . . . , Gns. Let A Ď t0, 1, . . . , nu. By (6.1), if HpxA|xBq ą 0, then the
quantity must be at least one; because GAXB is a (proper) subgroup of GB and,

hence, its order divides |GB|; i.e., the ratio |GB |

|GAXB |
is at least two. However, in

general, the analogous statement is not true for the mutual information since
GA ˚ GB is not necessarily a subgroup of G to ensure that its size divides |G|.
Nevertheless, if one of these subgroups is a normal subgroup in G, then GA ˚GB

is a subgroup of GB and, therefore, IpxA : xBq must be at least one if it is
positive. This argument shows that if tΠkukPN almost-perfectly realizes an access
structure, then for every sufficiently large k, Πk must be a perfect scheme for
it. [\

By our equivalent definition for HSSS, not only the secret subgroup, but also
all share subgroups are normal in the main group. The following corollary then
follows.

Corollary 6.7 (Homomorphic) Let Γ be an access structure and tΠkukPN be
a family of homomorphic SSSs that almost-perfectly or statistically realizes Γ .
Then, for every sufficiently large k, the scheme Πk perfectly realizes Γ .
2 Let px0,x1, . . . ,xnq be an abelian SSS induced by subgroups G0, G1, . . . , Gn of an
abelian group G as defined in Definition 2.2–ii.. It can be shown that for every
subset A of participants we have Ipx0 : xAq “ log |G0 X GA|, where GA “

ř

iPA Gi.
If this quantity has a negligible difference with either Hpx0q (for qualified A) or 0
(for unqualified A), then the difference must be zero. That is, the scheme must be
perfect.
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7 Conclusion and discussion

We believe that GCRVs provide a rich tool that may deepen our understating
of SSSs. This concept was introduced in information theory literature in 2002.
However, to the best of our knowledge, it has not grabbed the attention of
cryptographers, particularly those with interests in theory of SSS.

Well-known classes of SSSs (i.e., linear, multi-linear, abelian and homomor-
phic) are now known to be special cases of GC SSSs. But the technicality of the
proof for the homomorphic case, which was shown in this paper, is incomparable
with the others.

In particular, we presented an equivalent definition for homomorphic SSSs in
terms of GC schemes with normal subgroups in the main group. We also demon-
strated the potential of our equivalent definition in enhancing our understanding
of homomorphic SSSs, by considering two concrete examples.

We remark that our equivalent definition for homomorphic SSSs was based
on the proof of our key theorem (a necessary and sufficient condition for a RV
to be GC). It is interesting to see if our key theorem finds other applications. In
the paper, we used it to show the existence of quasi-uniform random variables
which are not inherently GC. In a follow-up work [31], as another application,
we have shown the existence of ideal perfect SSSs which are not inherently GC.

On duality for non-abelian groups. Our proof for equivalence of two dif-
ferent definitions for homomorphic SSSs, compared to the linear and abelian
schemes, is rather more complex. What makes the proof more involved is the
lack of a proper notion for the dual of general (i.e., non-abelian) groups. The
notion of dual of a vector space and Pontryagin dual of an abelian group leads
to a useful definition for linear RVs (Definition 2.1–ii.) and abelian RVs (Defi-
nition 2.2–ii.) which makes the proof for these two classes of RVs fairly easy. A
similar situation also arises with dual SSSs, which we will discuss next. It is an
interesting problem to see if advanced concepts from abstract algebra, such as
unitary group representation [5], can be used to achieve new results, which we
leave for the future.

SSSs and duality. There is a well-known notion for the dual of an access
structure defined by Jackson and Martin in [27]. It is a long-standing open
problem if the information ratios of dual access structures are the same with
respect to perfect security. The equality is known to hold for linear SSSs [19,27]
and has recently been extended to abelian schemes by Jafari and Khazaei in [29],
and also to ideal homomorphic schemes in the same paper. However, it is an open
problem if the result can be extended to all homomorphic SSSs. The difficulty
stems from the issue that we discussed earlier; i.e., lack of a proper notion of
duality for general non-abelian groups.
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A Basics of abstract algebra

For the reader’s convenience, we recall the basic concepts from group theory
which are used in this paper. They can be found in any standard textbook in
abstract algebra, e.g.32], [23].

Group. A group is a tuple pG, ˚q where G is a set and ˚ is a binary operation
on G that satisfies the group axioms: closure (i.e., a ˚ b P G for every a, b P G),
associativity (i.e., a ˚ pb ˚ cq “ pa ˚ bq ˚ c for all a, b, c P G), identity (i.e., there
exists an element e P G called the identity such that a ˚ e “ e ˚ a “ a for every
a P G) and invertibility (i.e., for every a P G there exists an element a´1 P G
such that a ˚ a´1 “ a´1 ˚ a “ e).

Subgroup. A subset H of a group G is called a subgroup of G if it satisfies the
group axioms under the operation of G. By Lagrange’s theorem, the order of a
subgroup H of group G divides the order of G; i.e., |H| | |G|.

Coset and quotient set. Given a group G and a subgroup H, and an element
g P G, one can consider the corresponding left coset: aH :“ tah : h P Hu. The
set of all left cosets of a subgroup H in a group G is called the quotient set,
denoted by G{H. In particular, |G{H| “ |G|{|H|. The left cosets of a subgroup
partition the group.

Normal subgroup and quotient group. A subgroup N of a group G is
called normal if it is invariant under conjugation by members of G; that is,
gNg´1 “ N for all g P G. Indeed, for a normal subgroup N of G, the quotient
set G{N admits a natural group structure, called the quotient group. The group
operation is defined by paNq ˚ pbNq “ pa ˚ bqN which can be shown to be well-
defined. The intersection of a collection of normal subgroups of a group G is also
a normal subgroup of G.

Group homomorphism/isomorphism. Given two groups pG, ˚q and pH, ¨q,
a group homomorphism from G to H is a mapping ϕ : G Ñ H such that for all
a, b P G it holds that ϕpa ˚ bq “ ϕpaq ¨ ϕpbq. A bijective group homomorphism is
called an isomorphism.

B Group action

We recall the notion of group action for readers who are less familiar with ab-
stract algebra, along with an example.

Definition B.1 (Group action) (Left) action of the group G on the set X is
a function ¨ : G ˆ X Ñ X with the following properties

1. For all x P X and for the identity element e P G, we have e ¨ x “ x.
2. For all x P X and g, g1 P G, we have g1 ¨ pg ¨ xq “ pg1gq ¨ x.



24 Kaboli-Khazaei-Parviz

An action of group G on X is transitive if for all x, y P X there exists some
g P G for which g ¨ x “ y.

Notice that if a group G acts on a set X, then each subgroup of G acts on
X naturally.

Example B.2 Here are some examples of group actions:

‚ Each subgroup of a group naturally acts on the group. The action is simply
the group operation, which is not necessarily transitive. In particular, each
group acts on itself transitively.

‚ Let G be a group, H be a subgroup of G and G{H be the set of left cosets of
H in G. For g P G and xH P G{H, g ¨ pxHq “ pgxqH is a transitive action;
because for x, y P G if g “ yx´1 then g ¨ pxHq “ yH.

‚ Let X be an arbitrary set. Any collection of functions on X, specially the set
of all permutation on X denoted by SX , acts on X. The action of a function
f on an element x P X is simply f ¨x “ f pxq. This action is not necessarily
transitive but it is so for SX .

C On equivalent definitions for linear and abelian RVs

In this section, we show that all three definitions for the linear (resp. abelian)
RVs given in Definition 2.1 (resp. Definition 2.2) are equivalent. We only present
the proof for the linear RVs. The proof for the abelian ones go through the same
lines by working with abelian groups instead of vector spaces.

Equivalent (isomorphic) random variables. We say that two RVs x “

px1, . . . ,xnq and y “ py1, . . . ,ynq are equivalent (or isomorphic) if there exists
a tuple f “ pf1, f2, . . . , fnq of mappings fi : supppxiq Ñ supppyiq such that
pf1px1q, . . . , fnpxnqq and py1, . . . ,ynq are identically distributed.

C.1 Linear Maps ðñ Affine subspaces

(Linear Maps ùñ Affine subspaces) Recall the definition by “linear maps”
and consider the linear RV x “ pµ1psq, . . . , µnpsqq, defined by linear maps µi :
S Ñ Si and a uniform RV s on S. We show that x is equivalent to some linear RV
y in terms of “affine subspaces”. Let U be the vector space consisting of all tuples
pµ1psq, . . . , µnpsqq with s P S and let Ui be the subspace of elements of U whose
i’th component is zero. Then we have an onto linear map U Ñ Si that sends
pµ1psq, . . . , µnpsqq to µipsq. By definition, the kernel of this map is Ui. Hence, we
have an isomorphism fi : Si Ñ U{Ui. More generally, for a subset A Ď t1, . . . , nu,
one can show that we have the isomorphism fA : SA Ñ U{UA, where fA “

pfiqiPA, SA “
À

iPA Si and UA “
Ş

iPA Ui. Therefore,
`

f1pµ1psqq, . . . , fnpµnpsqq
˘

and y “ pu ` U1, . . . ,u ` Unq are identically distributed, where u is a uniform
RV on U .
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(Affine subspaces ùñ Linear maps) Recall the definition by “affine sub-
spaces” and consider the linear RV x “ pu ` U1, . . . ,u ` Unq, defined by the
vector space U , a subspace collection U1, . . . , Un and a uniform RV u on U . Let
µi : U Ñ U{Ui be the canonical projection defined by u ÞÑ u`Ui, where U{Ui’s
are the quotient subspaces. Clearly, x “ pµ1puq, . . . , µnpuqq, which corresponds
to the definition by “linear maps”.

C.2 Dual space ðñ Affine subspaces

(Dual space ùñ Affine subspaces) Recall the definition by “dual space”.
Let α be a uniform RV on T˚ and T1, . . . , Tn be a collection of subspaces of
T . Denote the induced RV by x “ pα|T1 , . . . ,α|Tnq. Let Ui be the kernel of the
map T˚ Ñ Ti

˚ defined by α ÞÑ α|Ti . Clearly, x “ pα ` U1, . . . ,α ` Unq. That
is, x corresponds to the definition by “affine subspaces” where U1, . . . , Un is a
collection of subspaces of U “ T˚.

(Affine subspaces ùñ Dual space) Recall the definition by “affine sub-
spaces” and consider the linear RV x “ pu ` U1, . . . ,u ` Unq, defined by the
vector space U , the subspace collection U1, . . . , Un and the uniform RV u on
U . Let T “ U˚ and Ti be a subspace of T that vanishes on Ui; that is,
Ti “ tα P U˚ : αpxq “ 0 for every x P Uiu.

Let y be the RV induced by T and the subspace collection T1, . . . , Tn ac-
cording to the definition by “dual space”. The same transformation that was
introduced above for “Dual space ùñ Affine subspaces” takes y to x isomorphi-
cally.

D Some technical discussion on proof of Proposition 6.6

Recall that the proof of Proposition 6.6 relied on the following observation. For
given subgroups G0, GB of a finite group G, if G0 is a normal subgroup in G,

then G0 ˚ GB is a subgroup of G and, therefore, Ipx0 : xBq “ log |G|

|G0˚GB |
must

be one if it is arbitrarily close to one.
This argument does not go through for the (general) class of GC schemes

(i.e., when G0 is not necessarily a normal subgroup in G). In general, one can
construct an example where the ratio |G|{|G0 ˚ GB | is arbitrarily close to one.
Let G be the group of order ppp ` 1q generated by two elements a of order p
and b of order p`1 where p is a given prime number. The only relation between
a and b is ab “ bpa. Then it is easy to check that if we take G0 and GB to be
the subgroups of order p generated by a and bab´1, respectively, then G0 ˚ GB

will be a subset of order p2 and hence the ratio is 1 ` 1{p which can be made
arbitrarily close to one.

Nevertheless, this argument does not show that almost-perfect and perfect
security notions do not coincide for the class of group-characterizable schemes
(it just shows that the above proof does not work). More importantly, even if
the two notions do not coincide for this class of schemes, their corresponding
information ratios might still coincide. Both problems remain open.
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How large is the discovered class. GC SSSs cover a large class of non-
linear schemes. It is large enough to be “complete” for a non-perfect security
notion called quasi-perfect [32, Chapter 5]. That is, the information ratio of
an access structure with respect to quasi-uniform security can be computed by
only considering the group-characterizable secret sharing schemes. This is quite
non-trivial and follows by a surprising property of group-characterizable random
variables [13, Theorem 4.1]. Quasi-perfect security is weaker than almost-perfect
security for a specific class of schemes. However, for the general class of SSSs as
well as the linear class, the quasi-perfect and almost-perfect information ratios
are equal [30]. It is an open problem if GC SSSs are complete for almost-perfect,
statistical or perfect security notions. It is an interesting open problem how much
the normality condition of the secret subgroups shrinks the class of GC schemes.
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