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Abstract

We analyze the digital signatures schemes submitted to NIST’s Post-Quantum Cryptography Stan-
dardization Project in search for subliminal channels.
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1 Introduction

The NIST Post-Quantum Cryptography Standardization Project (PQCSP) [19] is analyzing and testing post
quantum secure public key encryption, key encapsulation mechanism, and digital signature schemes submit-
ted by the cryptographic research community. NIST’s goal is to have a selection of standardized schemes for
future use.

In this paper we analyze the proposed digital signature schemes submitted to PQCSP for subliminal
channels, covert communication channels that uses existing cryptographic protocols to send information,
called subliminal messages, the protocols were not intended for.

Knowledge of subliminal channels is important for those who want to use them and for those who want
avoid them. Privacy concerned users could use subliminal channels to bypass censorship or avoid surveillance.
When constructing secure systems developers might avoid schemes with subliminal channels to prevent, for
example, information leakage or malicious actors secretly breaching their system. It is likely that some of
the digital signatures schemes submitted to PQCSP will be used. It is therefore useful to know about any
subliminal channels present in these schemes.

We use the following model when we look for subliminal channels, where we try to fulfill the goals of the
sender and receiver of the subliminal messages.

Subliminal channel model The subliminal sender wants to communicate discretely with a subliminal
receiver over a channel controlled by an adversary. We shall assume that the subliminal sender is sending
message-signature pairs that the subliminal receiver later can observe.

Hiding information directly in the message is steganography, which is not our current topic of interest.
Therefore we shall assume that the message part of the message-signature pairs will not be under the
subliminal senders’ control. Instead, the subliminal sender generates the signatures and will try to embed
subliminal messages in the signatures.

We assume that the subliminal sender and the subliminal receiver share a key for a suitable symmetric
cryptosystem (that may even be stateful). In particular, this means that the subliminal message to be
embedded will be indistinguishable from random bits.

We may allow the subliminal receiver to know the signing key, but it is better if the receiver does not
need the signing key. The subliminal sender may also be the one generating the key, and in this case we may
allow cheating during key generation.
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The subliminal sender’s goal is to send as much information as possible without detection. That is, except
for the subliminal receiver, anyone who inspects the generated signatures should not be able to decide if they
contain subliminal messages or were generated honestly. This should hold even if the one who inspects the
signatures also chooses the messages to be signed.

We note that even when the subliminal channel is used, the signature scheme should remain secure in the
ordinary sense. (It may seem like this follows from indistinguishability, since if the scheme is insecure when
the subliminal channel is used, a distinguisher would try to break the scheme and distinguish in that way.
However, since checking for subliminal channels is something that we want to do regularly, any subliminal
channel distinguisher must be fast. Which means that it may not have time to run an attack against the
signature scheme.)

1.1 Examples of subliminal channels

One would expect a deterministic signature scheme to be free from subliminal channels. Signatures of the
RSA-FDH scheme [7] have the form SignRSA−FDH = (HFDH(M))d mod n, for an RSA decryption key
d and modulus n. There are no random value to exploit, however, it is possible to use it to send (short)
subliminal messages. Using the halting strategy [22] we can in some sense make a 1 bit subliminal channel.
However, this is a generic attack.

Any sufficiently non-deterministic signature scheme allows a generic subliminal channel. For example, to
send n bits, generate signatures until the first n bits of the signature matches the message. We can generalize
the approach using the leftover hash lemma [35], where we generate signatures until the hash of the signature
matches the message to be sent. This holds for any signature scheme. Of course, the computational cost of
this approach is exponential in n, so this will be a low-bandwidth channel.

It is possible to derandomize signature schemes by replacing the random bits with the output of a pseudo-
random function applied to the message. In general this will not prevent subliminal channels [12]. In most
construction, it is hard to verify that the signature was deterministically generated without knowledge of
the secret key. (Another option is to sign the same message twice. We assume the subliminal sender keeps
track of messages sent.) It is, however, possible to check if there was a subliminal channel present assuming
that the secret value becomes public at a later point.

The PSS message encoding scheme, used with the RSA or Rabin primitive to make a signature scheme [7],
has a subliminal channel that only requires public values to recover the message. Taking RSA as an example,
we have SignPSS−RSA = (0||w||r∗||M)d mod n, for a RSA private key d, modulus n, hash value w, random
value r∗, and message M . Using the RSA public key e we can recover the randomness r∗. Replacing the
random value r∗ with a subliminal message ms we can make a subliminal channel. The Rabin primitive
works in the same way.

A subliminal channel using Schnorr Signatures [49] requires the secret values to recover the message,
which has to be shared with the subliminal receiver. A Schnorr signature has the form SignSchnorr =
(y, e) = (r + se, e), where s is the secret key, e is a hash value, and r is a random value. We can use s to
recover r by computing r = y − se. It is then trivial to replace the randomness with a subliminal message
ms to make a subliminal channel.

1.2 Our contributions

We modify the proposed digital signature schemes submitted to PQCSP to reliably send subliminal messages,
typically by exploiting any random values, while keeping the signatures valid. We show how to insert and
recover subliminal messages and give an overview of the subliminal bandwidth of each channel found.

1.3 Related work

Simmons motivated his work on the subliminal channel with the prisoners’ problem [50], where two prisoners
wish to plan their escape and the warden allows them to send signed message if he can read the content of the
messages. The problem for the prisoners is to communicate covertly using their monitored communication
channel, to plan their escape. The problem of the warden is to discover and prevent the existence of
subliminal channels, to prevent prisoners escaping. Using digital signatures Simmons showed that such
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channels exist [51–53], and since then more have been found in various digital signature schemes [4, 12, 38, 57].
Of subliminal channels in post-quantum secure digital signature schemes: Hartl et al. showed how to insert
subliminal messages in signature schemes based on the multivariate quadratic polynomial problem [31].
Kwant et al. constructed a backdoor (Kleptography [56]) in the NTRU and the pqNTRUsign digital signature
scheme, which can be used as a subliminal channel, and a subliminal channel in the NTRU scheme [37].

Desmedt made the first attempt of making a subliminal-free authentication and signature scheme [21],
and since then more schemes have been constructed to prevent subliminal channels [11, 12, 25, 53, 54]. Di-
vertible protocols [10, 14, 15, 43] are separable by an unnoticeable third party (a warden) sitting in between
two communicating principals (the prisoners), where the third party can rerandomize messages to remove
any subliminal channel. Cryptographic reverse firewalls [17, 42] can, in theory, be used to prevent sublim-
inal channels and existing constructions are based on Decisional Diffie–Hellman and use rerandomization
techniques to remove subliminal messages, which are not suitable for post-quantum secure schemes.

1.4 Notation

We try to follow the notation given in each signature scheme as much as we can, where we describe each
scheme’s notation when they are introduced. We denote the subliminal message in plain ms or in bold ms

to fit with the notation of each scheme. Let sgn(x) denote the sign of x and is equal to 1 if x ≥ 0 or equal to
−1 if x < 0. When the distribution of random elements are not specified, other than that they are random,
we assume it is uniform.

1.5 Overview

In Section 2 we briefly describe each scheme submitted to NIST’s Post-Quantum Cryptography Standard-
ization Project and show the subliminal channel(s) we have found. In Section 3 we summarize and give a
table of each channel’s subliminal bandwidth.

2 Proposed digital signature schemes

2.1 Ideas

While we analyze many different schemes, many ideas are reused for many different schemes and we discuss
some of the theory here.

In addition to the public and secret channels described in Section 1.1 we also note the following subliminal
channels. Some scheme use random values that are included in the clear, which can be used to embed
encrypted subliminal messages. A few lattice based schemes use a large random value to hide a small secret
value, where we can insert information in the higher order digits of the random value.

Some signature schemes require the signatures to have a specific form. By using nondeterministic en-
cryption we can simply encrypt the subliminal messages many times until we get a signature of the desired
form. This will reduce the available bandwidth, but the cost is usually just a few bits, especially if stateful
encryption is used.

The random elements used in the signature scheme are sampled according to some distribution. For
non-uniform distributions we can sometimes do rejection sampling on the randomness used to encrypt the
subliminal message such that the output is close to the desired distribution.

2.2 CRYSTALS – Dilithium

The Dilithium signature scheme is based on Fiat-Shamir with Aborts [39] where the security is based on the
shortest vector problem. The scheme uses the polynomial ringsR = Z[X]/〈Xn+1〉 andRq = Zq[X]/〈Xn+1〉,
for an integer n. An element x ∈ R, and x ∈ Rq, is denoted in plain, and vectors and matrices are denoted
in bold. An element in B60 ⊂ R has 60 coefficients that are either −1 or 1 and the rest are 0.

Signatures have the form
SignDilithium = (z,h, c),
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Table 1: CRYSTALS – Dilithium parameters and subliminal message bounds for high order digits subliminal
channel.

Parameter set
Parameter Description I II III IV

n degree 256 256 256 256
l dimension 2 3 4 5
γ1 randomness bound 523776 523776 523776 523776
β bound 375 325 275 175

‖ms‖∞ message bound 523 523 523 523
|r′i| masking value [375, 624] [325, 674] [275, 724] [175, 824]

where z = y + cs1, y ∈ Rlq is uniformly random, s1 ∈ Rlq is part of the secret key, h is a Boolean vector
used to recover high-order bits, and c ∈ B60 is the hash of the message digest and the higher-order bits of a
public matrix multiplied by the vector y. The vector z has max norm ‖z‖∞ ≤ γ1 − β − 1.

2.2.1 Subliminal channel using secret values

Assume that the sender and receiver both know the secret key sk = (ρ,K, tr, s1, s2, t0). The sender can
replace the random value y with a subliminal message ms, that is, let SignDilithium = (z,h, c), where
z = ms + cs1. With the secret key the receiver can retrieve the subliminal message as ms = z− cs1. We can
re-encrypt the subliminal messages if the produced signature is not a valid signature.

2.2.2 Subliminal channel using high order digits

The scheme requires that ‖cs1‖∞ ≤ β and ‖z‖∞ ≤ γ1 − β − 1. We can insert a subliminal message in the
high order digits of y if β is small compared to the coefficients of y.

Proof of concept For the proposed parameters, the coefficients of the random value have at most six
digits and the coefficients of the error term ‖cs1‖∞ have at most three digits. By bounding the randomness
‖y‖∞ ≤ γ1 − 2β − 1 we should be able to send subliminal messages with three digit coefficients. Let
y = 1000ms + r′ and

z′ = 1000ms + r′ + cs1,

where ms ∈ Rlq and r′ ∈ Rlq. The bounds on the coefficients of ms and the coefficient interval of the masking
randomness r′ are in Table 1. Note that each coefficient of r′ need to have the same sign as the subliminal
message, sgn(r′i) = sgn(msi) for all i ∈ {1, . . . , n}, for the message recovery to be correct. The subliminal
message ms is bounded such that ‖z′‖∞ ≤ γ1−β−1, and the coefficients of the masking value r′ are chosen
such that 0 ≤ ‖r′ + cs1‖∞ ≤ 999. The receiver computes⌊

z′

1000

⌋
to recover the subliminal message ms. When we encrypt the subliminal message we can re-encrypt it if
the produced signature does not meet the requirements of the signature algorithm. We should also pick the
masking values r′ such that ‖z′‖∞ ≤ γ1 − β − 1.

2.3 DME

The DME signature scheme is based on multivariate polynomials. The scheme uses the field Fp where vectors
are denoted in plain lowercase.

Signatures have the form
SignDME = (x, z0, h1),
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where z0 ∈ FN1
p is a message, h1 : {1, . . . , N1} → {1, . . . , e · n ·m} is a map used to add a random padding

to the messages, and x = F−1(z0) ∈ FN1
p . If z0 is not in the image of F , pad z0, using h1, to get z ∈ Im(F )

and set x = F−1(z). The values N1, e, n, and m are parameters. A verifier computes z = F (x), discards the
padding to get z′0, and verifies that z′0 = z0.

2.3.1 Subliminal channel using public values

Anyone with the public key can recover z = F (x) and, specifically, the random padding which can be
replaced with a subliminal message. The scheme offer two parameter sets where up to 16 and 32 bits are
added to messages, respectively. If the padded message z is not in the image of F , for a chosen padding, we
can re-encrypt the subliminal message until we find a z which is.

2.4 DRS

The DRS signature scheme is a variation of the scheme by Plantard et al. [47], where both schemes are
based on GGH [30]. The security of the scheme is based on the guaranteed distance decoding problem. The
scheme uses a diagonal dominant lattice L(P ), with public basis P that has large coefficients. An element
x ∈ L(P ) is an integer vector.

Signatures have the form
SignDRS = (k, v, w),

where k satisfies kP = v − w, v ∈ Zn is the hash of the message, and w ∈ Zn is a reduced vector of v that
satisfies w ≡ v mod L(S) and ‖w‖∞ < D. The public basis P has big coefficients and is constructed from
the secret basis S using unimodular matrices U , and D is a max norm bound.

2.4.1 No channel found

We were unable to find a subliminal channel in the DRS signature scheme.

2.5 DualModeMS

The DualModeMS scheme has two layers, an inner and an outer. The inner layer is a Matsumoto-Imai
multivariate construction [40] based on FHEv, and the outer layer modifies the output of the inner layer by
using the method of Szepieniec, Beullens, and Preneel [55]. The scheme uses the fields F2 and Fn2 , where
vectors are denoted in bold lower case, matrices are denoted in bold uppercase and polynomials are denoted
in capital plain letters.

The output of the inner algorithm is

s = (φ(Z),v)× S−1,

where φ(Z) is a root represented as a binary vector, S is an invertible n+ ν × n+ ν matrix, and v ∈ Fν2 are
the random vinegar variables. A signature of the DualModeMS scheme has the form

SignDualModeMS = (s1, . . . , sσ,h, openpaths),

where the si’s are output of the inner algorithm, h is a random set of linear combination of the public key,
and openpaths is a set of Merkle tree paths used to compute the public key.

2.5.1 Subliminal channel using public values

For a chosen vector s′, that contains a subliminal message in the last ν bits, we can find a vector v = s′ ×S
such that s = (φ(Z),v)×S−1 contains an encrypted subliminal message in the last ν bits. If s′ is not in the
image of S−1 we can re-encrypt the subliminal message.

The subliminal message mi ∈ Fν2 is inserted in the last ν bits of si ∈ Fn+ν2 , for i = 1, . . . , σ. The
scheme provides three parameter sets. The dimension ν is 11, 18, and 32, respectively. The number of inner
signatures σ is 64, 96, and 256, respectively. If, for a chosen subliminal message, the inner algorithm does
not terminate we can re-encrypt the subliminal message and try again.
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2.6 Falcon

The Falcon signature scheme is a combination of the GPV framework [27], over the NTRU lattice, with fast
Fourier sampling. The scheme uses the polynomial ring Z[x]/〈φ〉, where φ ∈ Z[x] is a monic and irreducible
cyclotomic polynomial of degree n. Vectors are denoted in lowercase bold and matrices in uppercase bold.

Signatures have the form
SignFalcon = (r, s),

where r ∈ {0, 1}320 is a uniformly sampled salt, and is used in a hash together with the message to get a
point c ∈ Zq[x]/〈φ〉. A preimage t = cB−1 is computed, for a secret basis B, and is used to find two short
polynomials s1, s2 ∈ Zq[x]/〈φ〉 such that s1 + s2h ≡ c mod q, for a NTRU public key h = gf−1 mod q.
The polynomial s2 is encoded as the bitstring s.

2.6.1 Random values included in the clear

The random value r ∈ {0, 1}320 can be replaced by a subliminal message ms ∈ {0, 1}320.

2.7 GeMSS

The GeMSS scheme is based on the Quartz digital signature scheme [45], modified using the ideas of the Gui
digital signature scheme [24]. The scheme uses the fields F2 and Fn2 . Vectors are denoted in bold lowercase,
matrices in bold uppercase and polynomials in capital plain letters.

The signature algorithm of the GeMSS scheme uses a subroutine called GeMSS inversion, which output
the n+ ν bit vector

s = (φ(Z),v)× S−1,

where φ(Z) is a root represented as a binary coefficient vector, S is a secret invertible n+ ν × n+ ν matrix,
and v ∈ Fν2 are random vinegar variables. A signature of GeMSS has the form

SignGeMSS = (Snb ite,Xnb ite, . . . ,X1),

where (Si,Xi) is the output si of the inversion algorithm discussed above. The first component Si ∈ Fm2 is
the first m bits of the output si and the second component Xi ∈ Fn+ν−m2 is the remaining n + ν −m bits.
The last ν bits of si is contained in the second component Xi.

2.7.1 Subliminal channel using public values

For a chosen vector s′, that contains a subliminal message in the last ν bits, we can find a vector v = s′ ×S
such that s = (φ(Z),v)×S−1 contains an encrypted subliminal message in the last ν bits. If s′ is not in the
image of S−1 we can re-encrypt the subliminal message.

The subliminal message mi ∈ Fν2 is inserted in the last ν bits of si ∈ Fn+ν2 , for i = 1, . . . , nb ite. The
scheme provides three parameter sets. The dimension ν is 12, 20, and 33, respectively, and the number
nb ite is 4 for all sets. If the inversion algorithm does not terminate, for a chosen subliminal message, we
can re-encrypt the message and try again.

2.8 Gravity – SPHINCS

Gravity–SPHINCS is an extension of Goldreich’s construction of a stateless hash based signature scheme [29],
and share many similarities with SPHINCS [8]. The scheme outputs bit strings, where a binary number
v ∈ {0, 1}n is denoted in plain. The scheme uses four types of trees; hyper tree, subtrees (Merkle trees [41]),
WOTS public key compression trees, and PORST public key compression trees. The signature is com-
posed of a PORST signature (improved version of HORST few times signatures [8]), Winternitz one time
signatures [34], and Merkle authentication paths.

Signatures have the form

SignGravity−SPHINCS = (s, σd, oct, σd−1, Ad−1, . . . , σ0, A0, Ac),

where s is a hash and a public salt, σd is a PORST signature, oct is an authentication value for the PORST
signatures, σd−1, . . . , σ0 are Winternitz signatures, and Ad−1, . . . , A0, Ac are Merkle authentication paths.
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2.8.1 Random values included in the clear

The public salt s is constructed using a hash function with a secret salt and the message as input, where
the verifier cannot verify that the random value s was computed using this hash function without the secret
salt. The sender can replace the random value s with a subliminal message ms.

The PORST signature σd = (sx1 , sx2 , . . . , sxk
), where the xi’s are indices and the si are generated using

a pseudorandom function G with a secret seed and an address in the hyper tree as input. We can replace the
random vales with a subliminal message. The security of the scheme will be reduced as we can now make a
collision in the PORST signatures with probability 2−128, which is acceptable.

The submission proposes tree parameter sets. The binary string of length n is 256 for all parameter sets,
and the dimension k is 24, 32, and 28, respectively.

2.9 Gui

The Gui scheme is based on the Hidden Field Equations cryptosystem using the minus and vinegar modifi-
cation (HFEv-) [45]. The scheme use a finite field Fq and the field extension Fqn . Field elements are denoted
in lowercase plain. Vectors are denoted in lowercase bold or in uppercase plain. The affine transformations
and maps are denoted in uppercase plain and their inverses are denoted with the prefix Inv.

The signature algorithm of the Gui scheme uses a subroutine called HFEv- inversion that outputs

z = InvT · ((y||v1|| . . . ||vν)− cT ),

where invT is the inverse of the affine transformation T , y is a root of a polynomial Y , v1, . . . , vν are random
vinegar elements, and cT is a random masking value. The output of the signature scheme is

SignGui = (Sk||Xk|| . . . ||X1||r),

where r is a random bit string and (Si, Xi) is the output of the HFEv- inversion algorithm. Si is the first
n− a elements and Xi is the last a+ ν elements, where the last ν elements are the random vinegar values.

2.9.1 Random values included in the clear

The random value r ∈ {0, 1}l can be replaced by a subliminal message ms ∈ {0, 1}l, where l = 128 for all
parameter settings.

2.9.2 Subliminal channel using secret values

Using the verification algorithm we can recover all Si’s, from the first and the Xi’s. Then we can recover
the random values v1, . . . , vν , in each (Si, Xi), using the secret key, which contains T and cT .

In each Xj , for j = 1, . . . , k, the subliminal message msi ∈ Fq replaces the random values vi, for
i = 1, . . . , ν. The scheme offer three parameter sets. The number of random elements ν is 16, 20 and 28,
respectively. The number k is 2 for all sets and the group size q is 2 for all sets. If the signing algorithm
does not terminate, for a chosen subliminal message, we can re-encrypt the subliminal message.

2.10 HiMQ – 3

The HiMQ – 3 is based on multivariate quadratic equations. The scheme use a finite field Fq. The affine
transformations and maps are denoted in uppercase plain and vectors in lowercase bold.

Signatures have the form
SignHiMQ−3 = T−1(s),

where T−1 : Fnq → Fnq is an invertible affine or linear map, depending on the parameter set, and s =
(s1, . . . , sν , sν+1, . . . , sn) is a solution of the central map F , where the first ν elements of s are random.
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2.10.1 Subliminal channel using secret values

The random elements of s can be replaced with a subliminal message. The message can be recovered using
the secret map T .

The subliminal message msi ∈ Fq replaces the first ν random values si, in s, for i = 1, . . . , ν. The authors
offer three variation the scheme, HiMQ – 3, HiMQ – 3F and HiMQ – 3P, where each variation has one
parameter set. The number of group elements q is 28, for all variations. The number of random values ν is
31, 24, and 31, respectively. The variations HiMQ – 3F and HiMQ – 3P has a different central map, but the
output of the signature algorithms is the same as HiMQ – 3. If the signing algorithm does not terminate we
can re-encrypt the chosen subliminal message.

2.11 LUOV

The LUOV, Lifted Unbalanced Oil and Vinegar, scheme is based on the Unbalanced Oil and Vinegar and is
a modification of the Oil and Vinegar scheme by Patarin [44]. The scheme uses the finite field F2 and the
extension F2r . Vectors are denoted in lowercase bold and matrices in uppercase bold.

Signatures have the form

SignLUOV =

(
1ν −T
0 1m

)(
v
o

)
,

where 1ν and 1m are identity matrices, −T is a ν ×m binary matrix, v is a vector of random elements, and
o is a unique solution of the central map F .

2.11.1 Subliminal channel using secret values

Let A =

(
1ν −T
0 1m

)
, then A is an upper triangular binary (ν + m) × (ν + m) matrix and is invertible.

Using A we can recover the vector v by

A−1SignLUOV =

(
v
o

)
.

The vector v is generated by squeezing a vinegar-sponge, where the sponge is generated using the message
and a private seed. Only the sender, which has the private seed, can verify that the vinegar-sponge, and the
random values v, is computed according to the protocol. We can replace the random vector v ∈ Fν2r with
a subliminal message ms ∈ Fν2r . The scheme offer six parameter sets. The number of random elements ν is
256, 351, 404, 242, 330, and 399, respectively. The field extension r is 8, 8, 8, 48, 64, and 80, respectively.
We can re-encrypt the subliminal message if the signing algorithm rejects the produced signature.

2.12 MQDSS

The MQDSS signature scheme is built from the SSH 5-pass identification scheme [48] using the Fiat-Shamir
transform. The scheme use the finite field Fq for an integer q. Vectors are denoted in lowercase bold and
matrices in uppercase bold.

Signatures have the form
SignMQDSS = (R, σ0, σ1, σ2),

where R is a random value, σ0 is a digest of the commitments of (r
(j)
0 , t

(j)
0 , e

(j)
0 ) and of (r

(j)
1 ,F(t

(j)
0 + r

(j)
1 )−

F(t
(j)
0 )−F(r

(j)
1 )+e

(j)
0 ), σ1 contains r responses of the form resp

(j)
1 = (α(j)r

(j)
0 −t

(j)
0 , α(j)F(r

(j)
0 )−e(j)0 ), and σ2

contains r responses of the form resp
(j)
2 = r

(j)

b(j)
, for b(j) ∈ {0, 1}, and r of the commitments in σ0. The values

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 are random elements from Fq, generated using a pseudo random

generator PRGrte. The values r
(j)
1 = s− r

(j)
0 , for j ∈ {1, . . . , r}. The first challenge ch1 = (α(0), . . . , α(r)) is

computed as H1(H(pk||R||M), σ0), for hash functions H1 and H. The second challenge ch2 = (b(0), . . . , b(r))
is computed as H2(H(pk||R||M), σ0, ch1, σ1), for a hash function H2. The multivariate system F is generated
as XOFF(SF), for an extendable output function XOF , and SF is the output of a pseudorandom generator
PRGsk(sk). The secret key s is generated as PRGs(Ss), for a pseudorandom generator PRGs, and Ss is
the output of a pseudorandom generator PRGsk(sk).
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2.12.1 Random values included in the clear

The random value R is generated using a hash function with the message and the secret key as input. Only
the sender, which has the secret key, can verify that the random value R is computed according to the
protocol. We can replace the random vector with a subliminal message ms ∈ {0, 1}k. The scheme offer two
parameter options. The security parameter k is 256 and 384, respectively.

2.12.2 Subliminal channel using secret values

Using the secret key sk the subliminal receiver can recover r
(j)
0 , t

(j)
0 , and e

(j)
0 , for j ∈ {1, . . . , r}, by doing

the following.
Generate the second challenge ch2 = (b(0), . . . , b(r)) using pk, R and M , and s using sk. These are used

to recover the random values r
(j)
0 ’s from σ2 = (r

(1)

b(1)
, . . . , r

(r)

b(r)
). If b(j) = 0 then r

(j)
0 = r

(j)

b(j)
, if b(j) = 1 then

r
(j)
0 = s− r

(j)

b(j)
, for j ∈ {1, . . . , r}.

Generate the first challenge ch1 = (α(0), . . . , α(r)) using pk, R and M , and the multivariate system F

using sk. These, together with the r
(j)
0 ’s, are used to recover the t

(j)
0 ’s and e

(j)
0 ’s from σ1 = {(α(j)r

(j)
0 −

t
(j)
0 , α(j)F(r

(j)
0 )− e

(j)
0 )}j∈{1,...,r}. Use α(j) and r

(j)
0 to recover t

(j)
0 , and use α(j) and F(r

(j)
0 ) to recover e

(j)
0 ,

for j ∈ {1, . . . , r}.
Replace the random values with a subliminal message ms ∈ {0, 1}3rndlog2 qe. The submission offer two

parameter sets. The integer r is 269 and 403, respectively, the integer n is 48 and 64, respectively, and the
field order q is 31 for all sets.

2.13 Picnic

The two building blocks of Picnic [16] is a hash function and a block cipher. The hash function is used in a
zero knowledge proof and the block cipher is used to generate the public key. The public key is an encryption
of a random value, using the secret key as encryption key, and the signature is a proof of knowledge of the
secret key using the message as a nonce. The scheme uses a zero knowledge proof to prevent information
about the secret key to leak. The scheme specifically use ZKB++, an optimized version of ZKBoo [28], for
the zero-knowledge proofs and the block cipher LowMC [2]. The scheme use bytes, byte arrays, integers,
integer vectors, and bits, where everything is denoted in plain.

Signatures have the form
(e, b0, . . . , bT−1, z0, . . . , zT−1),

where e is a hash of all values used in the computation and the message, the bi’s are parts of the commitments
used in the scheme, and the zi’s are parts of the randomness used.

2.13.1 Random values included in the clear

In total there are T triples of randomness used. Each zi consists of two of the three random values of a
triplet, where the sender does not know which two is selected before the signature is generated as the choice
depends on the randomness used. Set two of the three random values to be subliminal messages and, using
techniques from secret sharing, the third is chosen such that all three values sums to zero. This makes a two
out of three threshold scheme and the receiver can recover all three random values from any two values.

Each triplet in the random value are S bits long and there are T triples, hence the subliminal message
has length ms ∈ {0, 1}2ST . The scheme proposes three security levels. For each security level the value S is
128, 192, and 256, respectively, and the value T is 219, 329, and 438, respectively.

2.14 pqNTRUsign

The pqNTRUsign signature scheme [32, 33] uses the NTRU lattice: the polynomial ringRq = Zq[x]/〈xN±1〉,
for an integer N . An element x ∈ Rq is denoted in bold.

Signatures have the form
SignpqNTRUsign = r + (−1)baf .
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Table 2: pqNTRUsign parameters and subliminal message bounds for high orders digits subliminal channel.

Parameter set
Parameter Description Uniform–1024 Gaussian–1024

N dimension 1024 1024
Bs norm bound 98 500
‖r‖∞ randomness bound 16384 —
σ standard deviation — 250
b bit 0 {0, 1}

‖ms‖∞ message space 16 1
|r′i| masking value [98, 901] —

The random value r is either sampled from a uniform or a Gaussian distribution, the bit b is either zero or
one, the value a is used to adjust a signature such that it meets a congruence requirement, and the value f
is part of the secret key.

2.14.1 Subliminal channel using high order digits

For a valid signature we know that ‖af‖2 ≤ Bs, for a norm bound Bs, and ‖af‖∞ ≤ ‖af‖2 ≤ Bs. We can
insert a subliminal message in the high order digits of r if Bs is small compared to the coefficients of r.

Proof of concept – uniform distribution The pqNTRUsign scheme with uniform distribution has the
parameters b = 0, Bs = 98, and ‖r‖∞ ≤ 16384, see Table 2. The coefficients of af is at most three digits
long, which leaves us with two digits for the message space. Set the random value r = 1000ms + r′ and

Sign′pqNTRUsign = 1000ms + r′ + af ,

where the bounds on ms and coefficient interval of r′ are in Table 2. Note that each coefficient in the
masking randomness r′ needs to have the same sign as the subliminal message, that is, sgn(r′i) = sgn(msi)
for all i ∈ {1, . . . , N}, for the message recovery to be correct. The subliminal message ms is bounded such
that ‖Sign′pqNTRUsign‖∞ ≤ ‖SignpqNTRUsign‖∞, for a valid signature SignpqNTRUsign, and the coefficients
of the masking randomness are chosen such that 0 ≤ ‖r′ + af‖∞ ≤ 999. To recover the subliminal message,
the receiver computes ⌊

Sign′pqNTRUsign
1000

⌋
to remove the error term and retrieve the subliminal message ms. The signature is bounded, the max norm
should not be too big, and has to meet a congruence requirement. We can re-encrypt the subliminal messages
such that these requirements will be met. Resample r′ if ‖1000ms + r′‖∞ > ‖r‖∞.

Proof of concept – Gaussian distribution The pqNTRUsign scheme with discrete Gaussian distribu-
tion has the parameter setting p = 2, Bs = 500, and r is sampled from a discrete Gaussian with standard
deviation σ = 250, see Table 2. It is expected that 95 % of the sampled values from the discrete Gaussian to
be in the interval (−500, 500), and it is reasonable that 5 % will be outside the interval. If a sampled value
ri > 500 then ri + aifi > 0 since ‖af‖∞ ≤ 500. Similarly, if ri < −500 then ri + aifi < 0. In other words,
to send the bit msi = 1 pick a ri > 500 and to send the bit msi = 0 pick a ri < −500.

Five percent of N = 1024 is 51.2, hence it is reasonable to send 51 bits in the subliminal message. The
placement of these 51 bits has to be specified before the signature is sent, say, index set {i1, i2, . . . i51} ⊂
{1, 2, . . . , 1024}. The random value is sampled according to the scheme and permuted such that the values at
index i ∈ {i1, i2, . . . i51} are larger than 500 or smaller than −500 to send msi = 1 and msi = 0, respectively.
If there not enough large values we can resample the random vector. The signature is required to be bounded,
the max norm should not be too big, and meet a congruence. If the produced signature is does not meet
theses requirements sample a new random value which will be modified again.
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2.15 pqRSA

Post-Quantum RSA is based on factorization and uses large parameters to make it secure in the post quantum
setting. Values are represented as byte strings and the computation is over the integers in little endian form.

Signatures have the form
SignpqRSA = (R,X),

where R is a uniform random value and X is an encoding of H(R,M)d mod N , for a RSA private key d,
modulus N , and message M .

2.15.1 Random values included in the clear

Replace the 32 byte long random string R with an subliminal message ms.

2.16 pqsigRM

The pqsigRM is a signature scheme based on punctured Reed-Muller code with random insertion and on
CFS [18]. All elements are denoted in plain.

Signatures have the form
SignpqsigRM = (M, e, ir),

where ir is a random value generated using AES, M is the message, and eT = Q−1e′T , where e′ is a punctured
error vector with weight w and Q is a permutation matrix. The error vector is generated by first computing
a syndrome s, which is decoded to find a (nonpunctured) error vector and then puncture it to get e′.

2.16.1 Random values included in the clear

Replace the random value ir with a subliminal message ms. The exact size of the value is not mentioned in
the submission. Looking at the signature size it seems to be 16 bytes long.

2.17 qTesla

The qTesla signature scheme is a variant of the TESLA signature schemes [1, 3, 6], which is based on the
scheme by Bai and Galbraith [5]. The hardness of the scheme is based on the decisional ring learning with
error problem. The scheme uses the polynomial rings R = Z[x]/〈xn + 1〉 and Rq = Zq[x]/〈xn + 1〉, for a
dimension n and integer q. An element in x ∈ R is denoted in plain.

Signatures have the form
SignqTesla = (c′, z),

where z = y + sc and c′ is a hash value. The value y ∈ Rq is a uniformly random value. The value s ∈ Rq
is a secret key sampled from a Gaussian distribution over Rq with standard deviation σ. The value c ∈ Rq
is a polynomial with coefficients in {−1, 0, 1}. It is required for a valid signature that ‖z‖∞ ≤ B − LS , for
bound parameters B and LS . Using the signature and the public values a and t the verifier can compute
w = az − tEnc(c′), where the value w should be bounded by q/2 − LE and the L least significant bits of
ay − ec is bounded by 2L − LE for the signature to be valid.

2.17.1 Subliminal channel using secret values

The receiver can recover the random value y with the secret key sk = (s, e, seedy, seeda). The sender replaces
the random value y with a subliminal message ms, that is, let SignqTesla = (c′, z), where z = ms + sc. The
receiver computes sc = sEnc(c′) and ms = z − sc to retrieve the subliminal message. If the signature is not
valid we can re-encrypt the subliminal message and try again.

2.17.2 Subliminal channel using high order digits

For a valid signature we know that ‖sc‖∞ ≤ LS , where LS is a norm bound parameter. We can insert a
subliminal message in the high order digits of y if LS is small compared to the coefficients of y.

11



Table 3: qTesla parameters and subliminal message bounds for high orders digits subliminal channel.

Parameter set
Parameter Description qTesla–128 qTesla–192 qTesla–256

n dimension 1024 2048 2048
LS norm bound 758 1138 1516
B randomness bound 220 − 1 221 − 1 222 − 1

‖ms‖∞ message space 104 209 419
|r′i| masking value [758, 9241] [1138, 8861] [1516, 8483]

Proof of concept In all three parameter settings sc has at most four digits and y has up to seven digits,
see Table 3. Set y = 10000ms + r′ and

z′ = 10000ms + r′ + sc,

where the bounds on ms and r′ are given in Table 3. Note that each coefficient in the masking randomness r′

needs to have the same sign as the subliminal message, that is, sgn(r′i) = sgn(msi) for all i ∈ {1, . . . , n}, for
the message recovery to be correct. The subliminal message ms is bounded such that ‖z′‖∞ ≤ B, and the
coefficients of the masking randomness are chosen such that 0 ≤ ‖r′ + sc‖∞ ≤ 9999. The receiver computes⌊

z′

10000

⌋
to remove the error term and retrieve the subliminal message ms. If the signature is not valid we can
re-encrypt the subliminal message. Resample masking values r′ such that ‖10000ms + r′‖∞ ≤ B − LS .

2.18 RaCoSS

The RaCoSS signature scheme uses random codes and is based on CFS [18] and KKS [36]. The scheme use
binary vectors and matrices, where vectors are denoted in lowercase plain and a matrices in uppercase plain.

Signatures have the form
SignRaCoSS = (z, c),

where c a bit string with hamming weight w, z = Stc+ y, St is a secret key, and y is a random value. The
vector y ∈ {0, 1}n is sampled from the Bernoulli distribution, where yi = 1 with probability ρ and yi = 0
with probability ρ− 1 for all indices i. The value ρ = 0.057 and y is a sparse vector.

2.18.1 Subliminal channel using secret values

A subliminal receiver with the secret key St can recover the random value by computing y = z − Stc. The
scheme proposes one parameter set, where n = 2400.

To encode a subliminal message in the sparse vector y we divide it into blocks, where a blocks consisting
of only zeroes is sending the bit 0 and a block consisting of at east one 1 is sending the bit 1. It is reasonable
to see 2400 · 0.057 ≈ 137 ones in a Bernoulli sampled vector, and, assuming messages consists of an almost
equal number of ones and zeroes, we can have a block length of 10 we can send 240 bits of information.
Sample each block according to the Bernoulli distribution and reject any sample that does not produce the
block we want. Concatenate the blocks to make a vector y′ and permute its coefficients to produce y. The
permutation could be shared together with the secret key or be produced using a hash function with the
secret and a counter as input.

2.19 Rainbow

The Rainbow signature scheme [23] is a generalization of the Oil and Vinegar structure. The scheme use a
finite field Fq, where vectors are denoted in lowercase bold. The affine transformations and maps are denoted

12



in uppercase plain letters and their inverse in denoted with the prefix Inv. Field elements are denoted in
lowercase plain letters.

Signatures have the form
SignRainbow = (InvT · (y − cT ), r),

where invT is the inverse of the affine map T , y is a solution under the central map F and consists of ν1
random values, cT is a random masking value and a part of the secret key, and r ∈ {0, 1}l is a random salt.

2.19.1 Random values included in the clear

We can replace the random value r ∈ {0, 1}l with a subliminal message, where l is 128 for all parameter sets.

2.19.2 Subliminal channel using secret values

We can insert a subliminal message ms ∈ Fν1q in the first ν1 elements of y and the receiver can recover it by
using the map T and masking value cT , both contained in the secret key.

The scheme offer nine parameter sets. The number of random values ν1 is 32, 36, 40, 64, 68, 56, 92, 76,
and 84, respectively. The number of group elements q is 24, 31, 28, 31, 28, 24, 28, 24, and 31, respectively.
The random elements are used to make a solvable system and if the chosen subliminal message does not
produce such a system we can re-encrypt the message.

2.20 RankSign

The RankSign signature scheme is based on the RankSign cryptosystem [26], this submission proposes a
variation of the existing cryptosystem by adding a small random error in the signature. The scheme use a
finite field Fqm , where q is a power of a prime p and m is a positive integer. Vectors are denoted in bold.

Signatures have the form
SignRankSign = (e, seed),

where seed is a counter and e is an error vector that satisfies eTHpub = G(M, seed), for a public parity-check
matrix Hpub, hash function G, and message M .

2.20.1 Random values included in the clear

The seed is a l bits, which can be replaced by a subliminal message ms. The submission is unclear of the
exact value of l, other than it is an integer input to their signature algorithm. From the implementation
it seems that the seed use the data type unsigned char, which is one byte. This implies that l = 8 for all
parameter sets. If the corresponding syndrome (of the error vector e) is not decodable we can re-encrypt
the subliminal message.

2.21 SPHINCS+

SPHINCS+ is based on SPHINCS [8], a stateless hash based signature scheme. The scheme outputs byte
strings, where a byte string b is denoted in bold.

Signatures have the form

SignSPHINCS+ = (R,SIGFORS ,SIGHT),

where R is a random value generated using a pseudo random function, SIGFORS is a FORS signature and
SIGHT is a hyper tree signature. The FORS signature (an improvement of the few times signature scheme
HORST [8]) contains private key values, generated using a pseudorandom function, and their associated
authentication paths. The hyper tree signature contains XMSS signatures [13]. A XMSS signature contains
WOTS signatures [34] and their associated authentication paths, where the WOTS signature takes as input
the messages and the public and secret keys.
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2.21.1 Random values included in the clear

The random value R is constructed using a pseudorandom function with a salt, an optional value, and the
message as input. The salt is part of the secret key and the verifier cannot verify that the random value was
computed using the pseudorandom function. We can replace R with a subliminal message ms.

The private key values in SIGFORS are generated with a pseudorandom function and can be used as a
subliminal channel. The signature contains k random values, where each are n bytes.

The submission offers six parameter set. The security parameter n is 16, 24, or 32 bytes long, respectively,
and the number of FORS trees k is 10, 30, 14, 33, 22, 30, respectively.

2.22 SRTPI

The SRTPI signature scheme is based on the Non-symmetric Simultaneous Algebraic Riccati Equations
problem, which is showed to be NP hard [46]. The scheme works over a field Fq, where matrices are denoted
in plain uppercase.

Signatures have the form
SignTPSig = (m,Xm),

where m is the message and Xm is a matrix, where Xm = X0 + C+Mm + (I − C+C)U0(I − CC+). The
matrices X0 and U0 are random and part of the secret key. The matrix C is random and part of the public
key. The matrix C+ is the Moor-Penrose pseudoinverse of C. The matrix

Mm =

In1
M1,2 M1,3

0 −In2 L2,3

0 0 0n3

 ,
where M1,2 contains the hashed values of the message, in a permuted order, M1,3 = −M1,2L2,3 +L1,2L2,3 +
L1,3, and I is the identity matrix. The matrices L1,2, L1,3, and L2,3 are random and part of the secret key.

2.22.1 No channel possible

The signature scheme is deterministic and the only difference between two signatures is the messages, and
the adversary will notice if any of the secret random matrices is changed for a signature. Any changes in X0

or U0 will be detected by a verifier, as the public matrix Q depends them. It is impossible to recover L, M ,
or π since we need C and C+ to be invertible, where both C and C+ are noninvertible by construction. No
(reliable) subliminal channel is possible in the SRTPI signature scheme.

2.23 WalnutDSA

The WalnutDSA scheme is based on the Reversing E-Multiplication problem over a braid group. The braid
group BN is defined by the set of Artin generator {b1, b2, . . . , bN−1} and a braid β ∈ BN has the form
β = bε1i1 b

ε2
i2
· · · bεkik , where ij ∈ {1, 2, . . . , N − 1} and εj ∈ {−1, 1}. The scheme uses the colored Burau

representation,
ΠCB : BN → (GL(N,Fq(t1, t−11 , . . . , tN , t

−1
N ))× SN ),

which represents the braid as a N ×N matrix over the ring of Laurent polynomials with N variables over
the field Fq and a permutation σ ∈ SN of N letters. E-Multiplication is an operation, denoted by ?, between
a matrix-permutation pair and the colored Burau representation of a braid

? : (GL(N,Fq)× SN )× (GL(N,Fq(t1, t−11 , . . . , tN , t
−1
N ))× SN )→ GL(N,Fq)× SN .

When we E-Multiply a colored Burau representation of a braid with a matrix-permutation pair we remove
all information of the braid by inserting a set of chosen T-values in the Laurent polynomials.

A signature is a rewritten braid and a hash of the message

SignWalnutDSA = (H(m),R(v1 · w−1 · v · E(H(m)) · w′ · v2),
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where (w,w′) is the secret key, E(H(m)) is an braid encoding of the hashed message, v, v1, and v2 are
random values called cloaking elements, and R : BN → BN is a braid rewriting algorithm.

An element ν is a cloaking element for the matrix-permutation pair (M,σ) if (M,σ) ?ΠCB(ν) = (M,σ).
The cloaking element is given by ν = wb2iw

−1, where bi is a generator and the corresponding permutation
of w ∈ BN satisfies i 7→ σ−1(a) and i+ 1 7→ σ−1(b). The integers a, b are public values.

2.23.1 Rewritten random values

The scheme proposes three possible methods for rewriting braids: (1) Rewrite the given braid to the Birman–
Ko–Lee (BKL) Normal Form [9] then shorten the braid using Dehornoy’s FullHRed algorithm [20]; (2)
Stochastic rewriting, that is, randomly rewrite the braid using lookup tables; and (3) Stochastic rewrite first
then shorten the braid with FullHRed.

The BKL algorithm rewrites a braid, and every equivalent braid, to its unique normal form. This makes
it hard to insert a subliminal message.

The FullHRed algorithm of Dehornoy rewrites the braid, to a fully reduced braid, by removing handles of
the form bεi · · · b

−ε
i , for an Artin generator bi and ε ∈ {−1, 1}. Given a chosen braid msβ we suspect that we

could use the FullHRed algorithm backward to change the chosen braid to a cloaking element v1 = wb2iw
−1.

Assuming this is possible, then

msβ
′ = R(v1 · w−1 · v · E(H(m)) · w′ · v2),

where ms is our chosen subliminal message, β′ ∈ BN , and msβ
′ is a fully reduced braid. We leave it as an

open problem, to prove that it is possible to use Dehornoy’s algorithm backwards, since the Walnut DSA
signature scheme has not been accepted into NIST’s second round.

The stochastic rewriting algorithm partitions the braid and replace two consecutive generators b
εj
ij
b
εj+1

ij+1

in each partition with a relation found in a lookup table. Nothing is changed if no relation was found. We
can alter this algorithm such that our chosen subliminal message inserted into the cloaking element stays
unchanged and, possibly, write additional messages into the signature.

The random braid w used to construct the cloaking elements has length L, which is 15 and 30 for each
parameter set. For option 2 we can at least use three random braids of combined length 3L to insert a
subliminal message.

3 Summary

In Table 4 we show the bandwidth of each subliminal channel, using the given parameter sets of the proposed
signature schemes.
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