
Security of the Suffix Keyed Sponge

Christoph Dobraunig and Bart Mennink

Digital Security Group, Radboud University, Nijmegen, The Netherlands
cdobraunig@cs.ru.nl, b.mennink@cs.ru.nl

Abstract. We formalize and analyze the general suffix keyed sponge construction, a
pseudorandom function built on top of a cryptographic permutation. The construction
hashes its data using the (keyless) sponge construction, transforms part of the state
using the secret key, and generates the tag from the output of a final permutation
call. In its simplest form, if the key and tag size are at most the rate of the sponge,
one can see the suffix keyed sponge as a simple sponge function evaluation whose
input is the plaintext appended with the key. The suffix keyed sponge is, however,
much more general: the key and tag size may exceed the rate without any need to
make extra permutation calls. We prove that the suffix keyed sponge construction
achieves birthday-bound PRF security in the capacity, even if key and tag size
exceed the rate. Furthermore, we prove that if the absorption of the key into the
state happens in a leakage resilient manner, the suffix keyed sponge itself is leakage
resilient as well. Our findings show that the suffix keyed sponge compares favorably
with the hash-then-MAC construction. For instance, to reach a security level of k
bits, the side-channel protected component in the suffix keyed sponge just needs to
process k bits of input besides the key, whereas schemes following the hash-then-MAC
construction need a side-channel protected MAC function that processes 2k bits of
input besides the key. Moreover, even if we just consider black-box attacks, the MAC
function in a hash-then-MAC scheme needs to be cryptographically strong whereas
in the suffix keyed sponge the key may be absorbed by a simple XOR. The security
proofs are performed using the H-coefficient technique, and make effective use of the
multicollision limit function results of Daemen et al. (ASIACRYPT 2017), both for
arguing that state manipulation larger than the rate is tolerated after key processing
and for upper bounding the amount of leakage an attacker may gain about the secret
key.

Keywords: suffix MAC · sponge · SuKS · PRF · leakage resilience · proof

1 Introduction
Whenever a device operates in a hostile environment and side-channel attacks [35] are a
threat, protection against them becomes a necessity. Hence, a lot of effort has been put in
the design of countermeasures against side-channel attacks like masking [17, 32], threshold
implementations [42, 43], or special primitives that limit the available data complexity
for an attacker [37, 38, 48]. However, the application of such countermeasures is not for
free and requires additional resources like chip area, energy, power, computation time,
randomness, and so on. In the context of message authentication codes (MACs), this
has led to an increased popularity of functions that process the bulk of the input in a
keyless manner and use the secret key for finalization only. This way, the first and largest
part is not prone to side-channel attacks; only the second part must be protected, but as
it is reasonably small this is an easier task. This particularly applies to the case where
messages may be arbitrarily large (as in our use case).

mailto:cdobraunig@cs.ru.nl
mailto:b.mennink@cs.ru.nl

2 Security of the Suffix Keyed Sponge

p

P2

r

c

r

P1

c
0

p

P`

r

c

. . .

. . .

p

K

s

b−s

G
s

k

p

T

t

U V W

Figure 1: The suffix keyed sponge. The plaintext P is first injectively padded into r-bit
blocks P1 . . . P`.

This approach comes to life in the hash-then-MAC construction, used in [7,9, 10,33],
among others. In the hash-then-MAC construction, one first hashes the plaintext P using
a hash function H, and subsequently authenticates the outcome using a MAC function F
with key K to obtain a tag T :

T = F (K,H(P)) .

The advantage of hash-then-MAC over traditional MAC functions like PMAC [15] and
CMAC [28] in the context of side-channel protection is evident: as such constructions
apply a cryptographic primitive with secret key at least once per plaintext block, each
of these invocations must have countermeasures against side-channel attacks in place. In
contrast, for hash-then-MAC, the amount of exposure of the secret key is independent of
the number of processed input blocks.

However, in order for the hash-then-MAC construction to be k-bit secure, where k is
the security level, one must necessarily take a hash function with digest size 2k [7,9,10,33].
This also means that the function F (K, ·), which is the critical part in the construction
from a side-channel perspective, must be able to process 2k-bit inputs. This negatively
impacts the resources needs to implement countermeasures; in general, it is cheaper to
protect a smaller primitive against side-channel attacks.

An alternative to the hash-then-MAC approach is the suffix keyed sponge approach
used in ISAP [22]. A generalized depiction of the suffix keyed sponge is given in Figure 1,
and it is described in detail in Section 3. The function operates as a sponge on top of a
permutation p with a state of b = c+ r bits, split into an outer part of size r (the rate)
and an inner part of size c (the capacity). The k-bit key K is absorbed using an s-bit to
s-bit keyed function G and one output block T of size t is squeezed. For a specific case
where the state size s and the tag size t are at most the rate r and in addition the key is
absorbed by a simple XOR, the construction matches the original description of Bertoni et
al. [12, Section 5.11.2]. However, the suffix keyed sponge construction that we consider is
more general.

For the suffix keyed sponge, there is no reason to believe that the function G needs to
be 2k bits large, like it is required for F in hash-then-MAC. In the case of G, it seems to
suffice to use a k-bit keyed function only. Indeed, in the suffix keyed sponge we can resort
to the secrecy of the state, and collisions in the input to G are not necessarily harmful.
Because for the suffix keyed sponge the function G is the focal point of protection against
side-channel attacks, the construction compares favorably over the hash-then-MAC mode.

Unfortunately, no analysis of the suffix keyed sponge has appeared so far, neither in
the black-box setting nor in the leakage resilient setting. The best we can do is to fall back
to the indifferentiability of the keyless sponge [11]. This reduction is valid as long as we
consider security in a black-box setting, where the key is absorbed using an XOR, key and
tag are of size at most the rate, and the capacity is at least twice the security level. In
other words, this is how security of the original and more restrictive version of the suffix
keyed sponge of Bertoni et al. [12, Section 5.11.2] was argued.

Christoph Dobraunig and Bart Mennink 3

1.1 Our Contribution
We present a complete and general analysis of the suffix keyed sponge (SuKS), both in
the black-box model and in the leakage resilience model. Noting that G is pivotal in the
analysis of leakage resilience (the key comes into play only at the occurrence of G), we
demonstrate how the security bound depends on the choice of G.

1.1.1 Suffix Keyed Sponge with Restricted Parameters

As a starter, we consider the restricted version of the suffix keyed sponge, where the state
size s of G and the tag size t are at most the rate r of the sponge. This restricted version
corresponds to the original suffix keyed sponge description of Bertoni et al. [12, Section
5.11.2], though with arbitrary key absorbing function G. In this case, as mentioned above,
we can resort to the indifferentiability of the keyless sponge [11] and argue that the resulting
construction behaves as a pseudorandom function. This indifferentiability result states
that if there is no inner collision on the c-bit inner part, the sponge function (with random
permutation) is indifferentiable from a random oracle, and we can analyze security of an
idealized version of the suffix keyed sponge. That construction, in turn, can only be broken
by an adversary that ever guesses the output of the function G. The result and analysis
are given in Section 4.

1.1.2 Suffix Keyed Sponge with Unrestricted Parameters

We present the main result in Section 5: security of the suffix keyed sponge in an unrestricted
setting. In this case, both the state size s of the function G as well as the tag size t may
be larger than the rate r. We prove that the construction still achieves c/2-bit security
under the assumption that the outputs of G are uniform (hard to guess) and universal
(collide with small probability).

Note that one can consider the suffix keyed sponge state right before the evaluation
of G as a state with s-bit rate and (b− s)-bit capacity, but b− s may be smaller than c,
and hence, it may be that collisions occur on the (b− s)-bit inner part even though the
keyless part of the suffix keyed sponge does not have inner collisions. The trick in the
proof consists of observing that, even if there are multicollisions on this (b− s)-bit inner
part, these multicollisions do not harm security of the construction as long as the input to
G is different. A symmetric reasoning is applied on the state from which the tag is derived:
it can be split into a t-bit outer part and a (b− t)-bit inner part. Overall, the bound shows
that even partial (multi-)collisions on the input to or output of the keyed permutation call
in the suffix keyed sponge provide only limited help to the adversary. Hence, the security
level usually stays in the area of 2c/2.

The result holds for an arbitrary G that is uniform and universal, but this does not
mean that it needs to be cryptographically strong: a simple XOR suffices. This observation
demonstrates another advantage of the suffix keyed sponge over the hash-then-MAC
approach, where F must necessarily be cryptographically strong.

1.1.3 Leakage Resilience of Suffix Keyed Sponge

In practice, however, one might want select a stronger function G, for the plain reason that
for an XOR even a small leakage usually allows to draw conclusions about the absorbed
secret key. We therefore transform the main result to the setting of leakage resilience
PRF design in Section 6. We consider non-adaptive leakage, akin to [27, 29, 45, 47, 50],
and restrict our focus to leakage coming from p. In other words, we assume that G is
a protected function (it could be instantiated as a leakage resilient keyed duplex, cf.,
Dobraunig and Mennink [25]), and consider that the adversary may obtain leakage from
the last invocation of p in the suffix keyed sponge. It is easily observed from Figure 1 that

4 Security of the Suffix Keyed Sponge

only this invocation of p may leak information; all previous ones process no secret data in
the first place. Keeping this in mind, the leakage resilience proof is quite clean. First, we
note that for repeated inputs X to G for different (b−s)-bit inner parts, the permutation p
may leak different pieces of information about G(K,X). By upper bounding the maximum
size of a multicollision in the input to G, we can henceforth upper bound the amount of
leakage that an adversary may learn for any particular G(K,X), and then upper bound
its success probability of guessing this value.

We stress, again, that G need not be cryptographically strong, unlike F in hash-then-
MAC. This provides additional flexibility when considering leakage resilience. For instance,
it could be possible to use a masked block cipher as G, but with heavily reduced rounds,
since an attacker does not see the full output of the block cipher but only a limited leakage
of it.

In Section 7, we map our results to ISAP [22] and demonstrate that the multicollision
events only contribute to the bound negligibly, both in the black-box setting and in the
leakage resilience setting. In the conclusion in Section 8, we elaborate on what our leakage
resilient PRF result means for leakage resilient MAC design.

1.2 Related Work
A significant amount of research has been put in the analysis of the keyed sponge, where the
state of the sponge is keyed prior to the absorption of data [1,13,14,16,19,30,34,39,40,40,41].
These results have not only led to better and more fine grained bounds, but in the end
also demonstrated that the full bit-width of the state can be used to absorb data in the
case of such “prefix” keyed duplex or sponge [19]. The reason for this is that, as the key is
used to initialize the state, all subsequent states are secret to an adversary.

By allowing full-state absorption, these constructions are naturally more efficient than
the suffix keyed sponge. On the downside, however, secrecy of the states also makes these
constructions more expensive from a side-channel protection point of view. Constructions
following the prefix keyed duplex or prefix keyed sponge usually allow for the evaluation of
the same secret state for varying inputs. This is for instance the case in authenticated
encryption schemes, which are initialized using a static secret key and a nonce. Hence,
DPA attacks can be mounted if the protection against side-channel attacks is insufficient,
as shown by Samwel and Daemen [46]. Even stronger: not only the initialization has
to be protected, but every stage where known changing inputs are mixed with a static
secret. In the case of an attacker that can control all the inputs, e.g, for a MAC based on
a prefix keyed sponge during verification, this means that the whole construction has to be
protected against side-channel attacks. In this light, it makes sense to limit the exposure
of the secret key and rely on a suffix keyed sponge as done in ISAP [22].

It is worth noting that there exist other ways besides hash-then-MAC and the suffix
keyed sponge to end up with leakage resilient MAC constructions. One way to do so
is to base the scheme on ideas from asymmetric cryptography, an approach endeavored
in a proposal of Martin et al. [36] that is based on the Barreto-Naehrig [2] family of
pairing-friendly elliptic curves.

Alternatively, one can design a leakage resilient PRF from a (smaller) weak PRF in
a sequential fashion, where the key input to the underlying weak PRF depends on the
processed data so far. This approach is adopted in [27,29,47,50], among others. Such a
PRF can, naturally, also be used as instantiation of G in the suffix keyed sponge.

2 Preliminaries
Let m,n ∈ N. The set of n-bit strings is denoted {0, 1}n, the set of arbitrarily long
strings is denoted {0, 1}∗, the set of n-bit functions is denoted func(n), and the set of

Christoph Dobraunig and Bart Mennink 5

n-bit permutations is denoted perm(n). We let "n be any injective padding function
that transforms an arbitrarily long string X ∈ {0, 1}∗ into n-bit blocks X1, . . . , X`. For
X ∈ {0, 1}n and if m ≤ n, we denote by leftm(X) (resp., rightm(X)) the m leftmost (resp.,
rightmost) bits of X. If m ≥ n, we write (m)n = m(m− 1) · · · (m− n+ 1) as the falling
factorial. For a finite set X , X $←− X denotes the uniformly random drawing of an element
X from X .

2.1 Distinguishing Advantage
An adversary A is an algorithm. It is given access to one or more oracles O, and after
interaction with O it outputs a decision bit b: b ← AO. For two oracles O and P, the
adversarial distinguishing advantage is defined as

∆A (O ; P) = Pr
(
1← AO

)
−Pr

(
1← AP

)
. (1)

2.2 PRF Security
Let b, k, t ∈ N and m ∈ N ∪ {∗}. Consider a function F : {0, 1}k × {0, 1}m → {0, 1}t that
internally uses a permutation p ∈ perm(b). We write F instantiated with permutation p
and key K ∈ {0, 1}k as F pK . The pseudorandom function (PRF) security of F against an
adversary A is defined as

Advprf
F (A) = ∆A (F pK , p ; Rm,t, p) , (2)

where the randomness is taken over the random drawing of K $←− {0, 1}k, the random
drawing of p $←− perm(b), the definition of a function Rm,t : {0, 1}m → {0, 1}t that generates
a random t-bit response for each new input, and the random coins of A.

The adversary is typically bounded by three types of complexities: q denotes the
construction complexity, the number of queries the adversary may make to F pK or Rm,t; N
denotes the total primitive complexity, which accounts for the total number of evaluations
of p (either direct forwardly, direct inversely, or via the real-world construction oracle F pK);
τ denotes the time complexity.

It is a well-known result that a PRF is a secure message authentication code in the
black-box model [4, 5, 31]. More detailed, if Advmac

F (A) denotes the advantage of an
adversary A with query access to (F pK , p) to output a non-trivial forgery for F pK , then

Advmac
F (A) ≤ Advprf

F (A) + q

2t ,

where q is the number of forgery attempts that A makes. We note that this reduction does
not necessarily apply in the leakage resilience setting, cf., Section 8.

2.3 Uniform and Universal Functions
Let k, s ∈ N and δ, ε ∈ [0,∞). A function G : {0, 1}k × {0, 1}s → {0, 1}s is 2−δ-uniform if
for any X,Y ∈ {0, 1}s,

Pr (G(K,X) = Y) ≤ 2−δ ,

where the randomness is taken over the random drawing of K $←− {0, 1}k. It is 2−ε-universal
if for any distinct X,X ′ ∈ {0, 1}s,

Pr (G(K,X) = G(K,X ′)) ≤ 2−ε ,

6 Security of the Suffix Keyed Sponge

where the randomness is taken over the random drawing of K $←− {0, 1}k. Here, we say
that a function is 0-uniform (resp., 0-universal) if above definition applies for δ =∞ (resp.,
ε =∞).

Note that for k ≤ s, the function G(K,X) = K‖0s−k ⊕X that simply XORs the two
input values is 2−k-uniform and 0-universal. Alternatively, we can define G as a random
function: G : |func(s)| × {0, 1}s → {0, 1}s is defined as G(f,X) = f(X). This function G
is 2−s-uniform and 2−s-universal.

2.4 Multicollision Limit Function
Daemen et al. [19] introduced the multicollision limit function in the context of keyed
sponge proofs. We will use the same notion in our proofs.

Let q, b, s ∈ N such that s ≤ b. Consider the experiment of throwing q balls uniformly
at random in 2b−s bins, and denote by µ the maximum number of balls in any single bin.
The multicollision limit function µqb−s,s is defined as the smallest natural number x that
satisfies

Pr (µ > x) ≤ x

2s .

Daemen et al. also proved that if one does not consider the bins to be uniformly
randomly selected, but rather according to a distribution D where the i-th ball ends up in
a certain bin with probability

2s − (i− 1)
2b − (i− 1) ≤ p ≤

2s

2b − (i− 1) , (3)

the corresponding multicollision function, defined as µD,qb−s,s, satisfies µ
D,q
b−s,s ≤ µ

2q
b−s,s [19,

Lemma 6].
Furthermore, Daemen et al. [19] gave an in-depth analysis of the term µqb−s,s. The

analysis is tedious, but the conclusion is that the term behaves as follows:

µqb−s,s .

b/ log2

(
2b−s

q

)
, for q . 2b−s ,

b · q

2b−s , for q & 2b−s .

3 Suffix Keyed Sponge
Let b, c, r, k, s, t ∈ N such that c+ r = b and k, s, t ≤ b. Let p ∈ perm(b) be a permutation
and G : {0, 1}k × {0, 1}s → {0, 1}s be a function. The suffix keyed sponge (SuKS)
F : {0, 1}k × {0, 1}∗ → {0, 1}t is defined in Algorithm 1 and depicted in Figure 1. The
function first injectively pads its input P , and hashes it the usual sponge way. Only at
this point, the key will be used: the outer k bits of the resulting state are transformed
through G(K, ·). The resulting state is processed by the permutation p once more, and
the tag equals the outer t bits of the state.

4 Security of Suffix Keyed Sponge with Restricted Param-
eters

As a starter, we prove security of the suffix keyed sponge for a restricted case where s, t ≤ r.
This version of the suffix keyed sponge corresponds to the original version suggested by
Bertoni et al. [12, Section 5.11.2], though with arbitrary key absorbing function G. The
result is mainly included to show how, in this case, we can rely on the indifferentiability of
the sponge [11].

Christoph Dobraunig and Bart Mennink 7

Algorithm 1 Suffix keyed sponge construction F
Input: (K,P) ∈ {0, 1}k × {0, 1}∗
Output: T ∈ {0, 1}t

1: P1 . . . P` ←"r(P)
2: S ← 0b
3: for i = 1, . . . , ` do
4: S ← S ⊕ Pi‖0c
5: S ← p(S)
6: S ← G(K, lefts(S)) ‖ rightb−s(S)
7: S ← p(S)
8: return leftt(S)

Theorem 1. Let b, c, r, k, s, t ∈ N such that c+ r = b, k ≤ b, and s, t ≤ r. Consider the
suffix keyed sponge of Section 3 based on random permutation p $←− perm(b) and a function
G : {0, 1}k × {0, 1}s → {0, 1}s. Assume that G is 2−δ-uniform. For any adversary A with
construction complexity q and primitive complexity N ≤ 2b−1,

Advprf
F (A) ≤ N2 +N

2c + N

2δ .

Proof. Let K $←− {0, 1}k and p $←− perm(b). Let R∗,t : {0, 1}∗ → {0, 1}t be a function that
generates a random t-bit response for each new input. Consider any adversary A, whose
goal is to maximize

∆A (F pK , p ; R∗,t, p) , (4)

As we will argue security based on the uniformity and universality of G (and not on the
computational security of it), we assume that A is computationally unbounded.

Let spongep be the sponge construction based on permutation p with rate r, that gets
input strings of size a multiple of r (we can assume w.l.o.g. that the message is already
padded) and a natural number z ∈ N, and it outputs a string of z bits. One can equivalently
write F pK as a function F spongep

K as follows:
Input: (K,P) ∈ {0, 1}k × {0, 1}∗
Output: T ∈ {0, 1}t

1: P1 . . . P` ←"r(P)
2: Z ← spongep(P1 . . . P`, s)
3: P ′ ←

(
GK(Z)⊕ Z

)
‖ 0r−s

4: Z ← spongep(P1 . . . P` ‖ P ′, t)
5: return Z

We will resort to the indifferentiability of the sponge [11], which states that there exists a
simulator S such that ∆A′

(
spongep, p ; RO,SRO) ≤ (N+1

2
)
/2c for any adversary A′ with

total complexity N , where RO is a random oracle. We write FRO
K as the suffix keyed

sponge construction where the two evaluations of spongep are replaced by RO, and write
FRO,RO′
K as that construction where the first evaluation of spongep is replaced by RO and

8 Security of the Suffix Keyed Sponge

the second one by RO′. By a game hopping argument,

∆A
(
F spongep
K , p ; R∗,t, p

)
≤∆A

(
F spongep
K , p ; FRO

K ,SRO
)

+ ∆A
(
FRO
K ,SRO ; FRO,RO′

K ,SRO
)

+ ∆A
(
FRO,RO′
K ,SRO ; R∗,t, p

)
≤∆A′

(
spongep, p ; RO,SRO)

+ ∆A
(
FRO
K ,SRO ; FRO,RO′

K ,SRO
)

+ ∆A′′
(
SRO ; p

)
, (5)

where A′ and A′′ are some adversaries with the same primitive complexity N as A (noting
that any evaluation of F spongep

K indeed consists of two sponge calls, but they jointly consist
of `+ 1 unique primitive evaluations). The first and last distance in (5) are at most the
indifferentiability of the sponge,

(
N+1

2
)
/2c. For the middle term of (5), we define the

following event bad:

• bad: SRO calls its oracle for input P1 . . . P` ‖
(
GK(Z) ⊕ Z

)
‖ 0r−s, where Z =

RO(P1 . . . P`, s).

As long as bad does not happen, the adversary cannot notice the difference between RO and
RO′ for the finalization calls in both world. Therefore, (FRO

K ,SRO) and (FRO,RO′
K ,SRO)

are indistinguishable, and thus

∆A
(
FRO
K ,SRO ; FRO,RO′

K ,SRO
)
≤ Pr (bad) . (6)

The event bad requires an adversary to force S into querying the random oracle for value
Y := GK(Z)⊕ Z, where Z is fixed by the specific query that A makes (by design of the
actual simulator of [11]). The adversary makes N attempts, and any of them succeeds
with probability at most 2−δ. We thus obtain that Pr (bad) ≤ N/2δ.

5 Security of Suffix Keyed Sponge with Unrestricted Pa-
rameters

In this section, we set aside the restriction s, t ≤ r of the previous section and present the
main result, namely security of the suffix keyed sponge for arbitrary r, s, t.

Theorem 2. Let b, c, r, k, s, t ∈ N such that c+ r = b and k, s, t ≤ b. Consider the suffix
keyed sponge of Section 3 based on random permutation p

$←− perm(b) and a function
G : {0, 1}k ×{0, 1}s → {0, 1}s. Assume that G is 2−δ-uniform and 2−ε-universal. For any
adversary A with construction complexity q ≥ 2 and primitive complexity N ≤ 2b−1,

Advprf
F (A) ≤ 2N2

2c +
µ

2(N−q)
b−s,s ·N
2min{δ,ε} +

µqt,b−t ·N
2b−t .

The proof of Theorem 2 is given in Section 5.1.
Note that G itself may be anything, as long as it is 2−δ-uniform and 2−ε-universal.

The simple XOR function, i.e., setting s = k and taking G(K,X) = K⊕X, is 2−k-uniform
and 0-universal. A more general instantiation is to have G to be a pseudorandom function
independent of the permutation p. In this case, the first step of the proof would be to
replace G by a random function at cost Advprf

G (A′), for some adversary A′. The second
step would be to rely on the observation that a random s-bit function is 2−s-uniform and
2−s-universal (see Section 2.3). This leads to the following corollary, for which the formal
proof is given in Section 5.2.

Christoph Dobraunig and Bart Mennink 9

Corollary 1. Let b, c, r, k, s, t ∈ N such that c + r = b and k, s, t ≤ b. Consider the
suffix keyed sponge of Section 3 based on random permutation p $←− perm(b) and a function
G : {0, 1}k × {0, 1}s → {0, 1}s independent of p. For any adversary A with construction
complexity q ≥ 2, primitive complexity N ≤ 2b−1, and time complexity τ ,

Advprf
F (A) ≤ 2N2

2c +
µ

2(N−q)
b−s,s ·N

2s +
µqt,b−t ·N

2b−t + Advprf
G (A′) ,

for some adversary A′ with construction complexity q, primitive complexity 0, and time
complexity τ ′ ≈ τ .

5.1 Proof of Theorem 2
Let K $←− {0, 1}k and p $←− perm(b). Let R∗,t : {0, 1}∗ → {0, 1}t be a function that generates
a random t-bit response for each new input. Consider any adversary A, whose goal is to
maximize

∆A (F pK , p ; R∗,t, p) , (7)

We will call O := (F pK , p) the real world and P := (R∗,t, p) the ideal world. As we will
argue security based on the uniformity and universality of G (and not on the computational
security of it), we assume that A is computationally unbounded. Without loss of generality,
it is deterministic: for any probabilistic adversary there is a deterministic one with the
same success probability.

5.1.1 Oracle Interaction

The adversary has a total primitive complexity N , meaning that for the real world the
total number primitive queries (direct or through F pK) does not exceed N . Of course, the
ideal world R∗,t does not query p, but the complexity is counted in terms of the number
of evaluations that would be made to p in the real world. Note that in the real world
O = (F pK , p), any construction query P of ` blocks entails `+ 1 evaluations of p: the first `
evaluations are “offline” and the adversary can evaluate them itself using the primitive
oracle, and the last evaluation is keyed. We will thus consider A to be allowed an “offline”
complexity N − q and an online complexity q. Without loss of generality, as duplicated
queries are not counted doubly, we may assume that before each construction query, the
adversary makes all primitive queries but the last one itself offline.

The interaction of A with its oracle (O or P) is summarized in a view. All q construction
queries (to F pK in the real world and to R∗,t in the ideal world) are summarized in a view

vc = {(P1, T1), . . . , (Pq, Tq)} .

All primitive evaluations (to p, in both worlds) are summarized in a view

vp = {(dir1, X1, Y1), . . . , (dirN−q, XN−q, YN−q)} ,

where dirj ∈ {+,−} denotes the direction of the j-th query: forward primitive queries are
denoted by dirj = + and inverse primitive queries by dirj = −. The variables dirj are used
to distinguish between the direction of the queries in case of inner collisions.

After the conversation of A with its oracle, but before it outputs its decision bit, we
reveal additional information to A. First of all, we reveal a key K. In the real world, this
is the key K $←− {0, 1}k that is effectively used by GK ; in the ideal world, it is a dummy
key. In addition, we reveal a tuple {Z1, . . . , Zq}. In the real world, these are the values
that are truncated at the end of each construction query to F pK (i.e., the values rightb−t(S)

10 Security of the Suffix Keyed Sponge

with S the state of line 7 of Algorithm 1); in the ideal world, these are random values
Zi

$←− {0, 1}b−t.
The values Zi are appended to vc:

v′c = {(P1, T1, Z1), . . . , (Pq, Tq, Zq)} .

The aggregate view is defined as v = (v′c, vp,K). We assume that the adversary never
makes any duplicate query, hence Pi 6= Pi′ for any two distinct queries in v′c and (Xj , Yj) 6=
(Xj′ , Yj′) for any two distinct queries in vp.

It is important to note that, as we force A to make all primitive queries corresponding
to the unkeyed part of F pK , for each construction query (Pi, Ti), the state value Ui that
is at the end of the unkeyed part of F pK (see Figure 1) can be retrieved from vp. We
subsequently define Vi and Wi from Ui, K, and v′c as follows:

Vi = G(K, lefts(Ui)) ‖ rightb−s(Ui) , (8)
Wi = Ti ‖ Zi . (9)

Note that in the real world (F pK , p), the values Vi and Wi are the actual values indicated
in Figure 1. In the ideal world, they are simply defined as in (8) and (9).

5.1.2 H-Coefficient Technique

We denote by DO the probability distribution of views in interaction with O, and by
DP the probability distribution of views in interaction with P. Define V to be the set
of “attainable views”: views v such that Pr (DP = v) > 0. We will use the H-coefficient
technique [18,44].

Lemma 1 (H-coefficient technique). Consider a partition V = Vgood ∪ Vbad of the set of
views into “good” and “bad” views. Let ε ∈ [0, 1] be such that Pr(DO=v)

Pr(DP=v) ≥ 1 − ε for all
v ∈ Vgood. Then, ∆A (O ; P) ≤ ε+ Pr (DP ∈ Vbad).

5.1.3 Bad Views

Informally, we consider a view bad if for any construction query Pi in the real world
O = (F pK , p), the evaluation (Vi,Wi) of p is repeated. This is formally covered by the
following two events:

• collcc: there exist distinct i, i′ ∈ {1, . . . , q} with

Vi = Vi′ or Wi = Wi′ ;

• collcp: there exist i ∈ {1, . . . , q} and j ∈ {1, . . . , N − q} with

Vi = Xj or Wi = Yj .

We indeed need these two bad events, because in the non-occurrence of either of those,
v = (v′c, vp,K) corresponds to exactly N input/output tuples of p (and one key).

However, analyzing bad events collcc and collcp is quite involved, and we will define four
auxiliary bad events. For this, let νright = µ

2(N−q)
b−s,s and νtag = µqt,b−t be two thresholds.

• capfwd: there exists j ∈ {1, . . . , N − q} with dirj = + and

rightc(Yj) ∈ {rightc(X1), . . . , rightc(Xj), rightc(Y1), . . . , rightc(Yj−1)} ;

Christoph Dobraunig and Bart Mennink 11

• capinv: there exists j ∈ {1, . . . , N − q} with dirj = − and

rightc(Xj) ∈ {rightc(Y1), . . . , rightc(Yj−1), 0c} ;

• mcright: there exist distinct j1, . . . , jνright+1 ∈ {1, . . . , N − q} with dirj = + and

rightb−s(Yj1) = · · · = rightb−s(Yjνright+1) ;

• mctag: there exist distinct i1, . . . , iνtag+1 ∈ {1, . . . , q} with

leftt(Wi1) = · · · = leftt(Wiνtag+1) .

Events capfwd and capinv cover the case that there exists a inner collision, and that the
adversary has potentially found two different plaintexts leading to the same inner part.
At the cost of readability, the event capfwd can be tightened slightly, noting that it is not
a problem if rightc(Yj) hits an older inner part if this j-th query is not “rooted”, i.e., if
there is no path from 0b to this query. See also Daemen et al. [20].

The events mcright and mctag cover multicollisions on part of the state, and are included
to tighten the bounding of the occurrence of collcc ∨ collcp. We note that the choice of
thresholds νright and νtag (and our reliance on the multicollision limit function of Section 2.4)
is for the sake of generality. It may be that for specific parameter choices b, c, s, t, better
thresholds may render a better bound. See also Section 8.

We write cap = capfwd ∨ capinv and

bad = cap ∨mcright ∨mctag ∨ collcc ∨ collcp . (10)

5.1.4 Probability of Bad View

Our goal is to bound the probability that a bad transcript is generated in the ideal world,
Pr (DP ∈ Vbad). This probability equals the probability that a view v generated by DP
satisfies bad. By basic probability theory,

Pr (DP ∈ Vbad) = Pr (bad) ≤Pr (cap) + Pr (mcright) + Pr (mctag)
+ Pr (collcc | ¬(cap ∨mcright))
+ Pr (collcp | ¬(cap ∨mcright ∨mctag)) . (11)

Here, we recall that in the ideal world, K $←− {0, 1}k, W1, . . . ,Wq
$←− {0, 1}b, and each tuple

(dirj , Xj , Yj) ∈ vp has either Yj random without replacement (if dirj = +) or Xj random
without replacement (if dirj = −).

cap. Consider the j-th query (dirj , Xj , Yj). If it is a forward query it can only set capfwd
and if it is an inverse query it can only set capinv. In either case, the response is uniformly
randomly generated using a random permutation p from a set of size at least 2b − (j − 1)
elements. The query sets capfwd with probability at most (2j − 1)2r/(2b − (j − 1)) and
capinv with probability at most j2r/(2b − (j − 1)). In either case, as any query is either
forward or inverse, the success probability is at most 2(2j − 1)/2c, using that j − 1 ≤ 2b−1.
Summing over all queries, we obtain

Pr (cap) = Pr (capfwd ∨ capinv) ≤
N−q∑
j=1

2(2j − 1)
2c = 2(N − q)2

2c .

12 Security of the Suffix Keyed Sponge

mcright. The values Yj are randomly generated from {0, 1}b\{Y1, . . . , Yj−1}, and at most
N − q draws are done. The event mcright is thus a balls-and-bins experiment with N − q
balls randomly thrown into 2b−s bins, in such a way that any of the bins contains more than
νright balls. Note that the distribution of balls satisfies the condition of (3). By definition
of νright = µ

2(N−q)
b−s,s , we can resort to the multicollision limit function of Section 2.4 and

obtain

Pr (mcright) ≤
µ

2(N−q)
b−s,s

2s .

mctag. The values Wi are randomly generated from {0, 1}b, and q draws are done. The
event mctag is thus a balls-and-bins experiment with q balls uniformly randomly thrown
into 2t bins, in such a way that any of the bins contains more than νtag balls. By definition
of νtag = µqt,b−t, we can resort to the multicollision limit function of Section 2.4 and obtain

Pr (mctag) ≤
µqt,b−t
2b−t .

collcc. The event Vi = Vi′ is equivalent to stating that

G(K, lefts(Ui)) ‖ rightb−s(Ui) = G(K, lefts(Ui′)) ‖ rightb−s(Ui′) . (12)

Consider any i, i′ ∈ {1, . . . , q}. If s ≤ r, then by ¬cap we necessarily have rightb−s(Ui) 6=
rightb−s(Ui′). Consider the case that s > r and that rightb−s(Ui) = rightb−s(Ui′) holds. By
the non-occurrence of cap, we necessarily have lefts(Ui) 6= lefts(Ui′). By 2−ε-universality
of G, the two queries satisfy above equation with probability at most 2−ε.

We thus have to count the number of possible choices i, i′ ∈ {1, . . . , q} such that
rightb−s(Ui) = rightb−s(Ui′). Consider any i′ (q possibilities). Recall that we assumed
that the keyless part of F pK is evaluated by the adversary. By ¬cap, any construction
query must necessarily be formed by making forward evaluations of p starting from 0b,
and none of these collide with an earlier primitive query. This, particularly, means that
the last evaluation of p in the keyless part of each construction query is a forward query.
By ¬mcright, there are at most νright = µ

2(N−q)
b−s,s possible paths from 0b.

By eliminating symmetric cases, the number of possible (i, i′)’s with rightb−s(Ui) =
rightb−s(Ui′) is at most µ2(N−q)

b−s,s · q/2, and we obtain that there exist i, i′ such that Vi = Vi′

with probability at most

µ
2(N−q)
b−s,s · q/2

2ε .

For the second event of collcc, as the values Wi are randomly generated from {0, 1}b, there
exist i, i′ with Wi = Wi′ with probability at most

(
q
2
)
/2b ≤ q2/2b.

We thus obtain

Pr (collcc | ¬(cap ∨mcright)) ≤
µ

2(N−q)
b−s,s · q/2

2ε + q2

2b .

collcp. Fix any primitive query (dirj , Xj , Yj) (N − q possibilities). We consider both
equations of the event separately. First consider equation Vi = Xj :

• If dirj = +, the equation Vi = Xj is equivalent to stating that

G(K, lefts(Ui)) ‖ rightb−s(Ui) = lefts(Xj) ‖ rightb−s(Xj) .

Christoph Dobraunig and Bart Mennink 13

As for the analysis collcc, by ¬cap and ¬mcright, there are at most νright = µ
2(N−q)
b−s,s

construction queries with rightb−s(Ui) = rightb−s(Xj). By 2−δ-uniformity of G, any
of these satisfies above equation with probability at most 2−δ.

• If dirj = −, the equation happens with probability at most µ2(N−q)
b−s,s /2δ as it is

symmetric to the case of Vi = Xj in forward queries.

Next consider equation Wi = Yj :

• If dirj = −, the equation Wi = Yj is equivalent to stating that

Ti ‖ Zi = lefts(Yj) ‖ rightb−s(Yj) .

By ¬mctag, there are at most νtag = µqt,b−t construction queries with Ti = lefts(Yj).
As Zi

$←− {0, 1}b−t, any of these satisfies above equation with probability at most
1/2b−t.

• If dirj = +, the equationWi = Yj happens with probability at most q/(2b−(j−1)) ≤
2q/2b, using that j − 1 ≤ 2b−1.

Aggregating both cases, we obtain

Pr (collcp | ¬(cap ∨mcright ∨mctag)) ≤
µ

2(N−q)
b−s,s · (N − q)

2δ +
µqt,b−t · (N − q)

2b−t + 2q(N − q)
2b .

Conclusion. Summing the individual terms, we obtain for (11) that

Pr (DP ∈ Vbad) ≤ 2(N − q)2

2c + q2 + 2q(N − q)
2b

+
µ

2(N−q)
b−s,s · (N − q/2 + 1)

2min{δ,ε} +
µqt,b−t · (N − q + 1)

2b−t

≤ 2N2

2c +
µ

2(N−q)
b−s,s ·N
2min{δ,ε} +

µqt,b−t ·N
2b−t , (13)

where we used that min{δ, ε} ≤ s and q ≥ 2.

5.1.5 Ratio for Good Views

Consider any good view v ∈ Vgood. We will prove that Pr (DO = v) ≥ Pr (DP = v).

Real World. We start with the real world O = (F pK , p). The view vp corresponds to
exactly N − q distinct input/output tuples of p. For any construction query Pi in the
extended view v′c, the unkeyed part of the evaluation of F pK(M) is included in vp. The
keyed evaluation of p is the tuple (Vi,Wi) defined in (8)-(9). By the non-occurrence of
collcp, it is different from any tuple in vp, and by the non-occurrence of collcc it is different
from any earlier tuple (Vi′ ,Wi′) with i′ < i. Therefore, the good view v = (v′c, vp,K)
corresponds to exactly N input/output tuples of p and one random key K. Therefore, we
obtain:

Pr (DO = v) = 1
(2b)N

· 1
2k . (14)

14 Security of the Suffix Keyed Sponge

Ideal World. We next consider the ideal world P = (R∗,t, p). The view vp corresponds
to exactly N − q distinct input/output tuples of p. The extended view v′c consists of q
outputs T1, . . . , Tq of R∗,t and q dummy values Z1, . . . , Zq

$←− {0, 1}b−t. Finally, the key
K is random as before. Therefore, we obtain:

Pr (DP = v) = 1
(2b)N−q

· 1
(2t)q ·

1
(2b−t)q ·

1
2k = 1

(2b)N−q
· 1

2bq ·
1
2k . (15)

Bounding the Ratio. Combining (14) and (15), we obtain the following for any good
view v ∈ Vgood:

Pr (DO = v)
Pr (DP = v) = 2bq

(2b − (N − q))q
≥ 1 . (16)

5.1.6 Conclusion

The H-coefficient technique of Lemma 1 gives, using (13) and (16):

∆A (F pK , p ; R∗,t, p) ≤
2N2

2c +
µ

2(N−q)
b−s,s ·N
2min{δ,ε} +

µqt,b−t ·N
2b−t .

5.2 Proof of Corollary 1
Let K $←− {0, 1}k and p $←− perm(b). Let R∗,t : {0, 1}∗ → {0, 1}t be a function that generates
a random t-bit response for each new input. Consider any adversary A, whose goal is to
maximize

∆A (F pK , p ; R∗,t, p) , (17)

As a first step, we replace GK by a function Rs : {0, 1}s → {0, 1}s that generates a random
s-bit response for each new input. Denote the resulting suffix keyed sponge construction
by F p,Rs . By a straightforward reduction,

∆A (F pK , p ; R∗,t, p) ≤ ∆A
(
F p,Rs , p ; R∗,t, p

)
+ ∆A′ (GK ; Rs)

= ∆A
(
F p,Rs , p ; R∗,t, p

)
+ Advprf

G (A′) , (18)

where A′ is some adversary with construction complexity q, primitive complexity 0 (as G
does not depend on p), and time complexity τ ′ ≈ τ .

The remaining distance ∆A
(
F p,Rs , p ; R∗,t, p

)
of (18) is bounded using Theorem 2,

noting that Rs is an instance of a random function family, which is 2−s-uniform and
2−s-universal (see Section 2.3).

6 Leakage Resilience of Suffix Keyed Sponge
We will demonstrate how Theorem 2 carries over to leakage resilience. We first describe
the model of leakage resilient PRFs in Section 6.1. The leakage resilience of the suffix
keyed sponge is stated in Section 6.2.

6.1 Leakage Resilient PRF Security
We transform the definition of PRF security of Section 2.2 to security in case of leakage
resilience. We will restrict our focus to non-adaptive L-resilience of Dodis and Pietrzak [27],
where the adversary receives leakage under any leakage L ∈ L of the scheme under

Christoph Dobraunig and Bart Mennink 15

investigation. We adopt the well-established approach [3, 27, 29, 45, 47, 50] where the
adversary has access to a leak-free version of the construction which it has to distinguish
from random, and a leaky version, which it may use to obtain leakage.

Let b, k, t, λ, λ′ ∈ N and m ∈ N ∪ {∗}. Consider the suffix keyed sponge function
F : {0, 1}k × {0, 1}m → {0, 1}t that internally uses a permutation p ∈ perm(b) and a
function G : {0, 1}k × {0, 1}s → {0, 1}s. Let Lp = {Lp : {0, 1}b × {0, 1}b → {0, 1}λ} be a
class of leakage functions independent of p, i.e., that do not internally evaluate p or p−1,
and let LG = {LG : {0, 1}k × {0, 1}s × {0, 1}s → {0, 1}λ′} be a fixed, predetermined set
that captures all allowed leakage functions on the instantiation of G. Write L = Lp × LG.
For any leakage function L = (Lp, LG) ∈ L, define by [F pK]L an evaluation of F that leaks
LG(K, lefts(U), lefts(V)) and Lp(V,W), where U is the state before evaluation of G and
where V and W are the state before and after the last evaluation of p in F pK (see Figure 1).
Note that LG must also operate on lefts(U) and Lp must also operate on rightb−s(V)
and leftt(W), despite that the adversary knows these values: the leakage functions may
operate differently depending on these values. The leakage functions give the same leakage
whenever the inputs are the same, but possibly different leakages for different inputs. The
non-adaptive leakage resilient pseudorandom function (NALR-PRF) security of F against
an adversary A is defined as

Advnalr-prf
F (A) = max

L∈L
∆A

(
[F pK]L , F

p
K , p ; [F pK]L , Rm,t, p

)
, (19)

where the randomness is taken over the random drawing of K $←− {0, 1}k, the random
drawing of p $←− perm(b), the definition of a function Rm,t : {0, 1}m → {0, 1}t that generates
a random t-bit response for each new input, and the random coins of A.

The adversary never repeats construction queries (both to the leaky and leak-free oracle).
The adversary is typically bounded by three types of complexities: q denotes the construc-
tion complexity, the number of queries it may make to ([F pK]L , F

p
K) or ([F pK]L , Rm,t); N

denotes the total primitive complexity, which accounts for the total number of evaluations
of p (either direct or via the real-world construction oracle); τ denotes the time complexity.

We briefly elaborate on the scope of our model. Any leakage function L that gives a
bounded amount of information about its inputs is fine. For instance, a probe placed on
a wire within a circuit falls into this category. The only restriction we have is that L is
chosen at the beginning of the experiment, and hence stays the same for every evaluation.
E.g., a function that gives for a permutation call p(K‖A1) the first λ bits of K and for
p(K‖A2) the second λ bits of K is fine. However, the function is not allowed to be change,
e.g., getting for p(K‖A1) the first λ bits of K and for a later same call p(K‖A1) the second
λ bits of K is not allowed. The parameter λ is basically used to upper bound the total
amount an adversary might learn from this single call p(K‖A1), over the entire duration
of the experiment.

6.2 Security of Suffix Keyed Sponge under Leakage
We will prove that the suffix keyed sponge is a leakage resilient PRF under the assumption
that p is a random permutation and G is a 2−δ-uniform and 2−ε-universal function
that is strongly protected against side-channel attacks. Stated differently, we inherit the
assumptions of Theorem 2, and in addition require that G is strongly protected.

In a bit more detail, we say that G is strongly protected if it is 2−δ-uniform and
2−ε-universal even under internal leakage, i.e., if for any leakage function LG ∈ LG, any
auxiliary leakage function Laux : {0, 1}s → {0, 1}ν (for some ν), and any X,X ′, Y ∈ {0, 1}s
with X 6= X ′,

Pr
(
G(K,X) = Y | {LG(K,Z,G(K,Z))}Z∈{0,1}s ∧ Laux(G(K,X))

)
≤ 2−(δ−ν) , (20)

Pr
(
G(K,X) = G(K,X ′) | {LG(K,Z,G(K,Z))}Z∈{0,1}s

)
≤ 2−ε , (21)

16 Security of the Suffix Keyed Sponge

where the randomness is taken over the random drawing of K $←− {0, 1}k. The condition
that earlier leakage must be considered over any possible Z is generous: it can be refined
to only consider values Z for which G actually gets evaluated in the suffix keyed sponge
construction. However, in many applications, including the one that we will discuss in
the next paragraph, the generous conditioning is tolerable. The auxiliary leakage function
Laux is required to capture leakage on G(K,X) that might be gathered from outside G,
i.e., from leaky evaluations of p. Indeed, in our construction, the leaky evaluation of p gets
V as input, where lefts(V) = G(K, lefts(U)), and we must take this leakage into account
when investigating leakage coming from G.

The assumption that G is strongly protected is well-established, see [8, 10,33] among
others, with the difference that we apply it to the definition of universal hashing. By
adopting the generous definition of strongly protected universal G, we can separate leakage
of G from leakage of p, and thus discard of leakage incurred by evaluations of G in the
proof: they are implicit in the uniformity terms δ and ε.

One way to construct a suitable G is by instantiating it with an “adjusted ideal
extendable input function (AIXIF)” in light of the formalism of Dobraunig and Mennink [25].
Simply said, an AIXIF is the ideal equivalent of a leakage resilient keyed duplex construction,
and Dobraunig and Mennink proved that the keyed duplex is indistinguishable from an
AIXIF (under certain conditions) even if the construction leaks upon each duplexing call.
Such a function would, indeed, do the job in the instantiation of G, as an AIXIF leaks no
useful information, except, possibly, a constant amount of information about the key that
is the same for each evaluation of the AIXIF. Clearly, upon instantiation of the AIXIF
as a leakage resilient keyed duplex [25], one has to take into account the distinguishing
advantage with respect to the AIXIF. A concrete example of how a leakage resilient keyed
duplex can be used to instantiate G in the suffix keyed sponge is given by Dobraunig and
Mennink [26, Proposition 6]. In this example, G is instantiated with a k-bit keyed AIXIF
that is strongly protected 2−(k−λ)-uniform and 2−(k−λ)-universal, where λ denotes the
maximum amount of leakage incurred by evaluations of the cryptographic permutation
within the mode.

We are ready to state the theorem on the leakage resilience of the suffix keyed sponge.
Theorem 3. Let b, c, r, k, s, t, λ ∈ N such that c + r = b and k, s, t ≤ b. Consider the
suffix keyed sponge of Section 3 based on random permutation p $←− perm(b) and a function
G : {0, 1}k × {0, 1}s → {0, 1}s. Assume that G is strongly protected 2−δ-uniform and
2−ε-universal. For any adversary A with construction complexity q ≥ 2 and primitive
complexity N ≤ 2b−1,

Advnalr-prf
F (A) ≤ 2N2

2c +
µ

2(N−q)
s,b−s

2b−s +
µ

2(N−q)
b−s,s ·N

2min{δ,ε}−µ2(N−q)
s,b−s λ

+
µ2q
t,b−t ·N
2b−t−λ ,

where we recall that λ denotes the maximum amount of information leaked in one leaky
evaluation of p.

The proof is given in Section 6.3.

6.3 Proof of Theorem 3
The proof is a mere extension of that of Section 5.1, but as the adversary is given access
to an additional oracle, and gets leakage for that oracle, care must be taken in the formal
application of the H-coefficient technique. In current proof, we highlight the changes.

Let K $←− {0, 1}k and p
$←− perm(b). Let R∗,t : {0, 1}∗ → {0, 1}t be a function that

generates a random t-bit response for each new input. Let L = (Lp, LG) ∈ L be any
leakage function. Consider any adversary A, whose goal is to maximize

∆A
(
[F pK]L , F

p
K , p ; [F pK]L , R∗,t, p

)
, (22)

Christoph Dobraunig and Bart Mennink 17

We will call O := ([F pK]L , F
p
K , p) the real world and P := ([F pK]L , R∗,t, p) the ideal world.

As before, we assume that A is deterministic.

6.3.1 Oracle Interaction

As before, the adversary has a total primitive complexity N , meaning that for the real
world the total number primitive queries (direct or through [F pK]L or F pK) does not exceed
N . We again require A to make all unkeyed primitive queries itself offline, and all primitive
evaluations (to p, in both worlds) are summarized in a view

vp = {(dir1, X1, Y1), . . . , (dirN−q, XN−q, YN−q)} .

Any construction query to [F pK]L leaks information, namely through evaluations of GK
and through evaluations of the last permutation call. As discussed above, we can restrict
our focus to leakage from p: leakage from GK is captured implicitly in the universality
terms δ and ε, as we will also detail later on. Thus, in our setting, any construction query
to [F pK]L leaks the value Lp(V,W) ∈ {0, 1}λ. Noting that, in fact, the adversary also
learns the values rightb−s(V) and leftt(W), we will model the leakage more generously: we
assume that for each query the adversary learns λ bits of lefts(V), called `V ∈ {0, 1}λ, and
λ bits of rightb−t(W), called `W ∈ {0, 1}λ. For consistency, we simply define `V = `W = ⊥
if the corresponding query is made to the challenge oracle (F pK in the real world or R∗,t
in the ideal world). All q construction queries (to ([F pK]L , F

p
K) in the real world and to

([F pK]L , R∗,t) in the ideal world) are summarized in a view

vc = {(P1, T1, `V 1, `W 1), . . . , (Pq, Tq, `V q, `Wq)} .

(One can deduce from (`V i, `W i) whether the i-th query was made to the leaky or leak-free
oracle.) After the conversation of A with its oracle, but before it outputs its decision bit,
we reveal the key K and the values Zi as before, but now the definition of these values Zi
is slightly more delicate. For queries to [F pK]L (in either world) or to F pK (in the real world
only), the values Zi are the values that are truncated at the end of the construction query;
for R∗,t, these are random values Zi

$←− {0, 1}b−t. The values Zi are appended to vc:

v′c = {(P1, T1, Z1, `V 1, `W 1), . . . , (Pq, Tq, Zq, `V q, `Wq)} .

The aggregate view is defined as v = (v′c, vp,K).
Note that the definitions of Ui, Vi, and Wi (see also (8)-(9)) carry over. In particular, if

the i-th query was made to the leaky oracle [F pK]L, the leakages `V i and `W i are consistent
with the values Vi and Wi.

6.3.2 Bad Views

We inherit the bad events of Section 5.1, but now with thresholds νright = µ
2(N−q)
b−s,s and

νtag = µ2q
t,b−t. We furthermore need to split event collcp into input and output collisions:

• collcp-in: there exist i ∈ {1, . . . , q} and j ∈ {1, . . . , N − q} with

Vi = Xj ;

• collcp-out: there exist i ∈ {1, . . . , q} and j ∈ {1, . . . , N − q} with

Wi = Yj .

The reason for this separation is that in the proof of Section 5.1, collcp-out is proven under
the non-occurrence of mctag, but as the view v′c also includes queries to [F pK]L, one can

18 Security of the Suffix Keyed Sponge

only upper bound the probability that mctag occurs under the condition that collcp-in does
not occur.

Finally, we define a helping event used to bound the amount of leakage. Let νleft =
µ

2(N−q)
s,b−s be a threshold.

• mcleft: there exist distinct j1, . . . , jνleft+1 ∈ {1, . . . , N − q} with dirj = + and

lefts(Yj1) = · · · = lefts(Yjνleft+1) .

The event mcleft is motivated by the observation that any time G is evaluated for the same
input lefts(Ui) but alongside a different inner part rightb−s(Ui) (see (8)), the adversary
may learn different information about lefts(Vi) = G(K, lefts(Ui)). The bad event mcleft
upper bounds the maximum number of times G is invoked on the same input lefts(Ui).

We write cap = capfwd ∨ capinv and

bad = cap ∨mcleft ∨mcright ∨mctag ∨ collcc ∨ collcp-in ∨ collcp-out . (23)

6.3.3 Probability of Bad View

Our goal is to bound the probability that a bad view is generated in the ideal world,
Pr (DP ∈ Vbad). This probability equals the probability that a view v generated by DP
sets bad. By basic probability theory,

Pr (DP ∈ Vbad) = Pr (bad)
≤Pr (cap) + Pr (mcleft) + Pr (mcright) + Pr (mctag | ¬collcp-in)
+ Pr (collcc | ¬(cap ∨mcright))
+ Pr (collcp-in | ¬(cap ∨mcleft ∨mcright))
+ Pr (collcp-out | ¬(cap ∨mctag ∨ collcp-in)) . (24)

Much of the analysis of the proof of Section 5.1 carries over verbatim, but there are some
differences, most notably in the analysis of mcleft (the new bad event) and collcp (leakages
must be taken into account).

cap. The analysis is identical to the one in Section 5.1, and we obtain

Pr (cap) = Pr (capfwd ∨ capinv) ≤
N−q∑
j=1

2(2j − 1)
2c = 2(N − q)2

2c .

mcleft. The analysis is symmetric to the one of mcright in Section 5.1, and we obtain

Pr (mcleft) ≤
µ

2(N−q)
s,b−s

2b−s .

mcright. The analysis is identical to the one in Section 5.1, and we obtain

Pr (mcright) ≤
µ

2(N−q)
b−s,s

2s .

Christoph Dobraunig and Bart Mennink 19

mctag. Note that the tuples in v′c either come from R∗,t or [F pK]L. In the former case, the
values Wi are randomly generated from {0, 1}b. In the latter case, by ¬collcp-in, they are
generated uniformly randomly without replacement. The event mctag is thus a balls-and-
bins experiment with q balls randomly (with some distribution) thrown into 2t bins, in
such a way that any of the bins contains more than νtag balls. Note that the distribution
of balls satisfies the condition of (3). By definition of νtag = µ2q

t,b−t, we can resort to the
multicollision limit function of Section 2.4 and obtain

Pr (mctag | ¬collcp-in) ≤
µ2q
t,b−t

2b−t .

collcc. The analysis for the case of Vi = Vi′ is identical to the one in Section 5.1. Here,
we note that, particularly, the probability analysis does not change as it is independent
of the leakage that happens outside G. That leakage, in turn, is captured within the
2−ε-universality of G.

For the case of Wi = Wi′ , we have to be a bit more careful as v′c contains queries to
[F pK]L, where the Wi’s are the outputs of a permutation, as well as R∗,t, where the Wi’s are
random b-bit values. If both queries i and i′ are made to [F pK]L, we have Wi = Wi′ if and
only if Vi = Vi′ , but that case was already covered above. If at least one of the two queries
is made to R∗,t, equation Wi = Wi′ holds with probability at most 1/(2b− (j − 1)) ≤ 2/2b,
using that j − 1 ≤ 2b−1. There are at most

(
q
2
)
≤ q2/2 choices i, i′ ∈ {1, . . . , q} such that

at least one of the two queries is made to R∗,t.
We obtain

Pr (collcc | ¬(cap ∨mcright)) ≤
µ

2(N−q)
b−s,s · q/2

2ε + q2

2b .

collcp-in. Fix any primitive query (dirj , Xj , Yj). We make a distinction depending on the
direction of this query.

If dirj = +, the equation Vi = Xj is equivalent to stating that

G(K, lefts(Ui)) ‖ rightb−s(Ui) = lefts(Xj) ‖ rightb−s(Xj) .

As for the analysis collcc, by ¬cap and ¬mcright, there are at most νright = µ
2(N−q)
b−s,s con-

struction queries with rightb−s(Ui) = rightb−s(Xj). By ¬mcleft, the adversary might have
seen at most νleft = µ

2(N−q)
s,b−s leakages for G(K, lefts(Ui)). Each of these leakages reduces

the entropy of the state by at most λ bits. As G itself is 2−δ-uniform (and this covers
leakage within G itself), any of the queries satisfies above equation with probability at
most 2−(δ−µ2(N−q)

s,b−s λ). Here, we explicitly note that (20) is defined conditioned on auxiliary
leakage, which in current analysis is of size ν := µ

2(N−q)
s,b−s λ bits.

If dirj = −, the case of equation Vi = Xj is symmetric, as in the proof of Section 5.1,
but now with probability 2−δ as no leakage can be exploited.

Aggregating both cases, we obtain

Pr (collcp-in | ¬(cap ∨mcleft ∨mcright)) ≤
µ

2(N−q)
b−s,s · (N − q)

2δ−µ
2(N−q)
s,b−s λ

.

collcp-out. Fix any primitive query (dirj , Xj , Yj). We make a distinction depending on the
direction of this query.

If dirj = −, the equation Wi = Yj is equivalent to stating that

Ti ‖ Zi = lefts(Yj) ‖ rightb−s(Yj) .

20 Security of the Suffix Keyed Sponge

By ¬mctag, there are at most νtag = µ2q
t,b−t construction queries with Ti = lefts(Yj). We

have Zi
$←− {0, 1}b−t, but the adversary may have learned information about this value

through leakage. There could be at most one leakage for this value, and this leakage
reduces the entropy by at most λ bits. Therefore any of these construction queries satisfies
above equation with probability at most 1/2b−t−λ.

If dirj = + and the i-th query is to [F pK]L, the equation cannot be set by condition
¬collcp-in. If the i-th query is to R∗,t, the equation Wi = Yj happens with probability at
most q/(2b − (j − 1)) ≤ 2q/2b, using that j − 1 ≤ 2b−1.

Aggregating both cases, we obtain

Pr (collcp-out | ¬(cap ∨mctag ∨ collcp-in)) ≤
µ2q
t,b−t · (N − q)

2b−t−λ + 2q(N − q)
2b .

Conclusion. Summing the individual terms, we obtain for (24) that

Pr (DP ∈ Vbad) ≤ 2N2

2c +
µ

2(N−q)
s,b−s

2b−s +
µ

2(N−q)
b−s,s ·N

2min{δ,ε}−µ2(N−q)
s,b−s λ

+
µ2q
t,b−t ·N
2b−t−λ , (25)

where we used that min{δ, ε} ≤ s and q ≥ 2.

6.3.4 Ratio for Good Views

Consider any good view v ∈ Vgood. We will prove that Pr (DO = v) ≥ Pr (DP = v).

Real World. For the real world, the analysis is exactly as that of Section 5.1, using
that the leakage values `V i, `W i in v′c – the only difference compared with the analysis
in Section 5.1 – contain no additional information after the values Zi and K have been
revealed. Therefore, we obtain:

Pr (DO = v) = 1
(2b)N

· 1
2k . (26)

Ideal World. For the ideal world, the analysis is more involved, as construction queries
may be to the real but leaky oracle [F pK]L or to the ideal oracle R∗,t. Assume that v
contains q′ ≤ q queries to the ideal oracle. By independence of R∗,t from ([F pK]L , p), we
can resort to the analysis for the real world for all elements in v except for the q′ queries
to R∗,t. For these q′ queries, we can observe that the outputs Ti

$←− {0, 1}t and dummy
values Zi

$←− {0, 1}b−t are randomly generated, as before. Therefore, we obtain:

Pr (DP = v) = 1
(2b)N−q′

· 1
(2t)q′ ·

1
(2b−t)q′ ·

1
2k = 1

(2b)N−q′
· 1

2bq′ ·
1
2k . (27)

Bounding the Ratio. Combining (26) and (27), we obtain the following for any good
view v ∈ Vgood:

Pr (DO = v)
Pr (DP = v) = 2bq′

(2b − (N − q′))q′
≥ 1 . (28)

6.3.5 Conclusion

The H-coefficient technique of Lemma 1 gives, using (25) and (28):

∆A
(
[F pK]L , F

p
K , p ; [F pK]L , Rm,t, p

)
≤ 2N2

2c +
µ

2(N−q)
s,b−s

2b−s +
µ

2(N−q)
b−s,s ·N

2min{δ,ε}−µ2(N−q)
s,b−s λ

+
µ2q
t,b−t ·N
2b−t−λ .

Christoph Dobraunig and Bart Mennink 21

As this holds for any leakage function L ∈ L, this completes the proof.

7 Application
One clear application of our bound is the message authentication part of ISAP [22].
The MAC of ISAP is based on a suffix keyed sponge construction that uses a 400-bit
permutation with rate r = 144, capacity c = 256, and s = t = 128. According to Daemen
et al. [19, Equation (32)], we compute µqt,b−t = µ2128

128,272 ≤ 80 and µ2(N−q)
b−s,s = µ2129

272,128 ≤ 3,
where, w.l.o.g., we can assume that q,N ≤ 2c/2 = 2128. If we assume that G is 2−128-
uniform, and 2−128-universal, then an attacker has advantage

Advprf
F (A) ≤ 2N2

2256 + 3N
2128 + 80N

2272 .

If we consider a smaller permutation of, e.g., 320 bits like the one used for Ascon [23,24]
and aim to achieve a similar security level, we have to change the rate to r = 64,
but can leave c = 256 and s = t = 128. Then, we get µqt,b−t = µ2128

128,192 ≤ 67 and
µ

2(N−q)
b−s,s = µ2129

192,128 ≤ 5. In this case, we get a bound

Advprf
F (A) ≤ 2N2

2256 + 5N
2128 + 67N

2272 .

Comparing both construction, we see that they achieve a similar security level, namely
128 bits up to small constant factors. The biggest difference in both bounds is the factor
µ

2(N−q)
b−s,s , which changes from 3 to 5. This is a marginal change considering that the inner

part of the state for the 320-bit construction is just 192 bits, which is significantly smaller
than the 256-bit capacity one would need in order to rely on the indifferentiability result
of the sponge [11].

In previous examples, we upper bounded the values of µqt,b−t and µ
2(N−q)
b−s,s by upper

bounding the query complexities q and N to 2128. However, if we consider the leakage
resilience bound of Theorem 3, doing the same thing would distort the advantage, since
the advantage an attacker gains by exploiting the leakage is tightly coupled with µ2(N−q)

s,b−s .
Hence, we have to consider µ2(N−q)

s,b−s as a function, which grows for a fixed b and s if 2(N−q)
increases. To get some insight what this means for practical cases, let us consider an attacker
with complexities N = 265 and q = 264. Furthermore, assume that r = 64, c = 256, and
s = t = 128 as in the example above. In this case, we get µ2(N−q)

s,b−s = µ2q
t,b−t = µ265

128,192 ≤ 5
and µ2(N−q)

b−s,s = µ265

192,128 ≤ 3. If we assume that G is strongly protected 2−128-uniform and
2−128-universal, we get

Advnalr-prf
F (A) ≤ 1

261 + 5
2192 + 3 · 265

2128−5λ + 5 · 265

2192−λ ,

meaning that in this case λ can be up to 12 bits while still having an advantage smaller
than one.

8 Conclusion and Discussion
Towards Leakage Resilient Message Authentication. In this paper, we provided the
– to the best of our knowledge – first dedicated analysis of the suffix keyed sponge and
bounded the advantage of an attacker in distinguishing this construction from a PRF in
the black-box security model and in the leakage resilience model. However, we stress that
such a leakage resilient PRF not always results in a leakage resilient MAC.

22 Security of the Suffix Keyed Sponge

This remark seems counter-intuitive, but recently, Berti et al. [7] and Guo et al. [33]
detailed a problem with MACs during the verification. In most cases, this is done by
computing a tag T ′ from the transmitted data M by using the PRF and compare it
with the transmitted tag T . If this comparison is not done in a leakage resilient manner,
information about T ′ can leak. Thus, an attacker could learn information about T ′ by
repeated queries of the same M with different T . If all the information about T ′ is learned,
a forgery M ‖ T ′ can be created.

In their schemes, Berti et al. [7] and Guo et al. [33] overcome this issue in their hash-
then-MAC construction by computing the inverse of a perfectly protected tweakable block
cipher on the transmitted T to compare directly the outcome of the hash function, so no
information about T ′ can leak. The approach is also used in Spook [6]. Clearly, this can
also be done for a MAC based on a suffix keyed sponge if we do not use T directly, but
also put T in a perfectly protected block cipher and transmit EK(T), and also doing the
comparison via the inverse. Another way to protect the comparison is, as suggested by
Dobraunig et al. [21], via one additional permutation call during the verification. In this
case, T and T ′ are computed and transmitted as normal, but instead of a direct comparison,
e.g., leftt(p(T ′‖0b−t)) is compared with leftt(p(T‖0b−t)) first. In such a comparison, quite
in a similar manner to [7, 33], the comparison only reveals mostly useless information,
namely only at most t out of b− t bits of p(T ′‖0b−t), which gives no advantage in retrieving
T ′.

Estimation of Multicollision Probabilities. The leakage resilience security bound of
Theorem 3 has a term that bounds the probability of a large multicollision in the outer
part of the state:

µ
2(N−q)
s,b−s

2b−s .

The bound is based on the multicollision limit function bounding from Section 2.4. This
bound, however, shows an unexpected behavior if s = b, i.e., if one opts to absorb the
key over the full state: the bound of Theorem 3 becomes meaningless. However, this is
purely due to generality. For specific cases, in particular when b− s� c, other choices for
the threshold value νleft would give a better bound. For example, in case b = s one would
simply not even have collisions in the first place (by assumption that ¬cap holds).

Suffix Keyed Sponge for Short Messages. The description of the suffix keyed sponge
of Section 3 is given in a general manner in such a way that it still resembles as much as
possible from the sponge. One can improve the efficiency of the suffix keyed sponge slightly
by absorbing more data bits in the first round. Let a ∈ N satisfy a ≤ c/2, and consider an
adjustment of the suffix keyed sponge where the first block is of size r + a bits, but all
remaining blocks are of size r bits. In the security proofs of both the black-box and the
leakage resilience case, this only affects the definition and analysis of capinv, which is set if
an inverse query satisfies rightc−a(Xj) = 0c−a. This, in turn, happens with probability
at most 2(N − q)/2c−a. Summarizing, one can increase the rate for the first block by
a ≤ c/2 bits, and this only adds 2(N − q)/2c−a to the bound of Theorem 2, Corollary 1,
or Theorem 3. This term would not dominate the bound as long as a ≤ c/2.

Acknowledgments. We thank Joan Daemen, Maria Eichlseder, and Florian Mendel for
the fruitful discussions. Christoph Dobraunig is supported by the Austrian Science Fund
(FWF): J 4277-N38. Bart Mennink is supported by a postdoctoral fellowship from the
Netherlands Organisation for Scientific Research (NWO) under Veni grant 016.Veni.173.017.
We thank the reviewers and shepherds of ToSC 2019 for their valuable comments.

Christoph Dobraunig and Bart Mennink 23

References
[1] Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of Keyed Sponge

Constructions Using a Modular Proof Approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer (2015)

[2] Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In:
Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer
(2005)

[3] Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated Encryption in
the Face of Protocol and Side Channel Leakage. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer (2017)

[4] Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message
Authentication and Authenticated Encryption. Cryptology ePrint Archive, Report
2004/309 (2004)

[5] Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y. (ed.) CRYPTO ’94. LNCS, vol. 839, pp. 341–358. Springer (1994)

[6] Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G.,
Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.X., Wiemer, F.:
Spook: Sponge-Based Leakage-Resilient Authenticated Encryption with a Masked
Tweakable Block Cipher. Submission to NIST Lightweight Cryptography (2019)

[7] Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: TEDT, a Leakage-Resilient
AEAD mode for High (Physical) Security Applications. Cryptology ePrint Archive,
Report 2019/137 (2019)

[8] Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.X.: Ciphertext Integrity
with Misuse and Leakage: Definition and Efficient Constructions with Symmetric
Primitives. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T. (eds.)
AsiaCCS 2018. pp. 37–50. ACM (2018)

[9] Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.X.: Leakage-Resilient
and Misuse-Resistant Authenticated Encryption. Cryptology ePrint Archive, Report
2016/996 (2016)

[10] Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On Leakage-Resilient Authenticated
Encryption with Decryption Leakages. IACR Trans. Symmetric Cryptol. 2017(3),
271–293 (2017)

[11] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 181–197. Springer (2008)

[12] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge functions
(January 2011)

[13] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer (2011)

[14] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Security of the Keyed
Sponge Construction. Symmetric Key Encryption Workshop (February 2011)

24 Security of the Suffix Keyed Sponge

[15] Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Message
Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer (2002)

[16] Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A Keyed Sponge Construc-
tion with Pseudorandomness in the Standard Model. NIST SHA-3 Workshop (March
2012)

[17] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counter-
act Power-Analysis Attacks. In: Wiener [49], pp. 398–412

[18] Chen, S., Steinberger, J.P.: Tight Security Bounds for Key-Alternating Ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350.
Springer (2014)

[19] Daemen, J., Mennink, B., Van Assche, G.: Full-State Keyed Duplex with Built-In
Multi-user Support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 606–637. Springer (2017)

[20] Daemen, J., Mennink, B., Van Assche, G.: Sound Hashing Modes of Arbitrary
Functions, Permutations, and Block Ciphers. IACR Trans. Symmetric Cryptol. 2018(4),
197–228 (2018)

[21] Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas, R.,
Unterluggauer, T.: ISAP v2. Submission to NIST Lightweight Cryptography (2019)

[22] Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- Towards Side-Channel Secure Authenticated Encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

[23] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to
Round 3 of the CAESAR competition (2016)

[24] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to
NIST Lightweight Cryptography (2019)

[25] Dobraunig, C., Mennink, B.: Leakage Resilience of the Duplex Construction. In:
Galbraith, S., Moriai, S. (eds.) ASIACRYPT 2019. LNCS (2019), to appear

[26] Dobraunig, C., Mennink, B.: Leakage Resilience of the ISAP Mode: a Vulgarized
Summary (2019), nIST Lightweight Cryptography Workshop 2019

[27] Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-Channel
Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
21–40. Springer (2010)

[28] Dworkin, M.: NIST SP 800-38B: Recommendation for Block Cipher Modes of Opera-
tion: The CMAC Mode for Authentication (2005)

[29] Faust, S., Pietrzak, K., Schipper, J.: Practical Leakage-Resilient Symmetric Cryptog-
raphy. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–232.
Springer (2012)

[30] Gazi, P., Pietrzak, K., Tessaro, S.: The Exact PRF Security of Truncation: Tight
Bounds for Keyed Sponges and Truncated CBC. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 368–387. Springer (2015)

Christoph Dobraunig and Bart Mennink 25

[31] Goldreich, O., Goldwasser, S., Micali, S.: On the Cryptographic Applications of
Random Functions. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO ’84. LNCS, vol.
196, pp. 276–288. Springer (1984)

[32] Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication”
Method). In: Koç, Ç.K., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp. 158–172.
Springer (1999)

[33] Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards Lightweight Side-Channel
Security and the Leakage-Resilience of the Duplex Sponge. Cryptology ePrint Archive,
Report 2019/193 (2019)

[34] Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 85–104. Springer (2014)

[35] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener [49], pp.
388–397

[36] Martin, D.P., Oswald, E., Stam, M., Wójcik, M.: A leakage resilient MAC. In: Groth,
J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 295–310. Springer (2015)

[37] Medwed, M., Standaert, F.X., Joux, A.: Towards Super-Exponential Side-Channel
Security with Efficient Leakage-Resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer (2012)

[38] Medwed, M., Standaert, F.X., Nikov, V., Feldhofer, M.: Unknown-Input Attacks in
the Parallel Setting: Improving the Security of the CHES 2012 Leakage-Resilient
PRF. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp.
602–623 (2016)

[39] Mennink, B.: Key Prediction Security of Keyed Sponges. IACR Trans. Symmetric
Cryptol. 2018(4), 128–149 (2018)

[40] Mennink, B., Reyhanitabar, R., Vizár, D.: Security of Full-State Keyed Sponge and
Duplex: Applications to Authenticated Encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer (2015)

[41] Naito, Y., Yasuda, K.: New Bounds for Keyed Sponges with Extendable Output:
Independence Between Capacity and Message Length. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 3–22. Springer (2016)

[42] Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer (2006)

[43] Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlinear
Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)

[44] Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer (2008)

[45] Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer (2009)

[46] Samwel, N., Daemen, J.: DPA on hardware implementations of Ascon and Keyak. In:
CF’17. pp. 415–424. ACM (2017)

26 Security of the Suffix Keyed Sponge

[47] Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.: Leakage
Resilient Cryptography in Practice. In: Sadeghi, A.R., Naccache, D. (eds.) Towards
Hardware-Intrinsic Security - Foundations and Practice, pp. 99–134. Information
Security and Cryptography, Springer (2010)

[48] Taha, M.M.I., Schaumont, P.: Side-channel countermeasure for SHA-3 at almost-zero
area overhead. In: HOST 2014. pp. 93–96. IEEE Computer Society (2014)

[49] Wiener, M.J. (ed.): CRYPTO ’99, LNCS, vol. 1666. Springer (1999)

[50] Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseudoran-
dom generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) CCS 2010.
pp. 141–151. ACM (2010)

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Distinguishing Advantage
	PRF Security
	Uniform and Universal Functions
	Multicollision Limit Function

	Suffix Keyed Sponge
	Security of Suffix Keyed Sponge with Restricted Parameters
	Security of Suffix Keyed Sponge with Unrestricted Parameters
	Proof of Theorem 2
	Proof of Corollary 1

	Leakage Resilience of Suffix Keyed Sponge
	Leakage Resilient PRF Security
	Security of Suffix Keyed Sponge under Leakage
	Proof of Theorem 3

	Application
	Conclusion and Discussion

