
Multi-Party Virtual State Channels

Stefan Dziembowski1, Lisa Eckey2, Sebastian Faust2,
Julia Hesse2, and Kristina Hostáková2

1 stefan.dziembowski@crypto.edu.pl; University of Warsaw
2 first.last@crisp-da.de; Technische Universität Darmstadt

c©IACR 2019. This article is a minor revision of the version published by Springer-Verlag available at
10.1007/978-3-030-17653-2 21.

Abstract. Smart contracts are self-executing agreements written in program code and are envi-
sioned to be one of the main applications of blockchain technology. While they are supported by
prominent cryptocurrencies such as Ethereum, their further adoption is hindered by fundamen-
tal scalability challenges. For instance, in Ethereum contract execution suffers from a latency of
more than 15 seconds, and the total number of contracts that can be executed per second is very
limited. State channel networks are one of the core primitives aiming to address these challenges.
They form a second layer over the slow and expensive blockchain, thereby enabling instantaneous
contract processing at negligible costs.
In this work we present the first complete description of a state channel network that exhibits the
following key features. First, it supports virtual multi-party state channels, i.e. state channels that
can be created and closed without blockchain interaction and that allow contracts with any number
of parties. Second, the worst case time complexity of our protocol is constant for arbitrary complex
channels. This is in contrast to the existing virtual state channel construction that has worst case
time complexity linear in the number of involved parties. In addition to our new construction, we
provide a comprehensive model for the modular design.

1 Introduction

Blockchain technology emerged recently as a promising technique for distributing trust in security proto-
cols. It was introduced by Satoshi Nakamoto in [27] who used it to design Bitcoin, a new cryptographic
currency which is maintained jointly by its users, and remains secure as long as the majority of com-
puting power in the system is controlled by honest parties. In a nutshell, a blockchain is a system for
maintaining a joint database (also called the “ledger”) between several users in such a way that there is
a consensus about its state.

In recent years the original ideas of Nakamoto have been extended in several directions. Particularly
relevant to this paper are systems that support so-called smart contracts [32], also called contracts for
short (see Sect. 2.1 for a more detailed introduction to this topic). Smart contracts are self-executing
agreements written in a programming language that distribute money according to the results of their
execution. The blockchain provides a platform where such contracts can be written down, and more
importantly, be executed according to the rules of the language in which they are encoded. The most
prominent blockchain system that offers support for rich smart contracts is Ethereum, but many other
systems are currently emerging.

Unfortunately, the current approach of using blockchain platforms for executing smart contracts
faces inherent scalability limitations. In particular, since all participants of such systems need to reach
consensus about the blockchain contents, state changes are costly and time consuming. This is especially
true for blockchains working in the so-called permissionless setting (like Bitcoin or Ethereum), where
the set of users changes dynamically, and the number of participants is typically large. In Ethereum, for
example, it can take minutes for a transaction to be confirmed, and the number of state changes per
second (the so-called transaction throughput) is currently around 15-20 transactions per second. This is
unacceptable for many applications, and in particular, prohibits use-cases such as “microtransactions”
or many games that require instantaneous state changes.

Arguably one of the most promising approaches to tackle these problems are off-chain techniques
(often also called “layer-2 solutions”), with one important example being payment channels [3]. We
describe this concept in more detail in Sect. 2.1. For a moment, let us just say that the basic idea of a
payment channel is to let two parties, say Alice and Bob, “lock” some coins in a smart contract on the

blockchain in such a way that the amount of coins that each party owns in the contract can be changed
dynamically without interacting with the blockchain. As long as the coins are locked in the contract the
parties can then update the distribution of these coins “off-chain” by exchanging signatures of the new
balance that each party owns in the channel. At some point the parties can decide to close the channel, in
which case the latest signed off-chain distribution of coins is realized on the blockchain. Besides creation
and closing, the blockchain is used only in one other case, namely, when there is a dispute between the
parties about the current off-chain balance of the channel. In this case the parties can send their latest
signed balance to the contract, which will then resolve the dispute in a fair way.

This concept can be extended in several directions. Channel networks (e.g., the Lightning network
over Bitcoin [30]) are an important extension which allows to securely “route” transactions over a longer
path of channels. This is done in a secure way, which means that intermediaries on the path over which
coins are routed cannot steal funds. Another extension is known under the name state channels [1]. In a
state channel the parties can not only send payments but also execute smart contracts off-chain. This is
achieved by letting the channel maintain in addition to the balance of the users a “state” variable that
stores the current state of an off-chain contract. Both extensions can be combined resulting into so-called
state channel networks [12, 9, 7], where simple state channels can be combined to create longer state
channels. We write more about this in Sect. 2.1.

Before we describe our contribution in more detail let us first recall the terminology used in [12]
on which our work relies. Dziembowski et al. [12] distinguish between two variants of two-party state
channels – so-called ledger and virtual state channels3. Ledger state channels are created directly over
the ledger, while virtual state channels are built over multiple existing (ledger/virtual) state channels to
construct state channels that span over multiple parties. Technically, this is done in a recursive way by
building a virtual state channel on top of two other state channels. For instance, given two ledger state
channels between Alice and Ingrid, and Ingrid and Bob respectively, we may create a virtual state channel
between Alice and Bob where Ingrid takes the role of an intermediary. Compared to ledger state channels,
the main advantage of virtual state channels is that they can be opened and closed without interaction
with the blockchain.

1.1 Our Contribution

Our main contribution is to propose a new construction for generalized state channel networks that
exhibit several novel key features. In addition, we present a comprehensive modeling and a security
analysis of our construction. We discuss further details below. The comparison to related work is presented
in Sec. 1.2.

Multi-party state channels. Our main contribution is the first full specification of multi-party virtual
state channels. A multi-party state channel allows parties to off-chain execute contracts that involve > 2
parties. This greatly broadens the applicability of state channel networks since many use cases such as
online games or exchanges for digital assets require support for multi-party contracts. Our multi-party
state channels are built “on top” of a network of ledger channels. Any subset of the parties can form
multi-party state channels, where the only restriction is that the parties involved in the multi-party state
channel are connected via a path in the network of ledger channels. This is an important distinctive
feature of our construction because once a party is connected to the network it can “on-the-fly” form
multi-party state channels with changing subsets of parties. An additional benefit of our construction is
that our multi-party state channels are virtual, which allows opening and closing of the channel without
interaction with the blockchain. As a consequence in the optimistic case (i.e., when there is no dispute
between the parties) channels can be opened and closed instantaneously at nearly zero-costs.

At a more technical level, virtual multi-party state channel are built in a recursive way using 2-party
state channels as a building-block. More concretely, if individual parties on the connecting path do not
wish to participate in the multi-party state channel, they can be “cut out” via building virtual 2-party
state channels over them.

3 The startup L4 and their project Counterfactual [9] use a different terminology: virtual channels are called
“meta channels”, but the concepts are the same.

2

Virtual state channels with direct dispute. The second contribution of our work is to introduce
the concept of “direct disputes” to virtual state channels. To better understand the concept of direct
disputes let us recall the basic idea of the dispute process from [12]. While in ledger state channels
disputes are always directly taken to the ledger, in the 2-party virtual state channels from [12] disputes
are first attempted to be resolved by the intermediary Ingrid before moving to the blockchain. There
are two advantages of such an “indirect” dispute process. First, it provides “layers of defense” meaning
that Alice is forced to go to the blockchain only if both Bob and Ingrid are malicious. Second, “indirect”
virtual state channels allow for cross-blockchain state channels because the contracts representing the
underlying ledger state channels always have to deal with a single blockchain system only.

These features, however, come at the price of an increased worst case time complexity. Assuming a
blockchain finality of ∆,4 the virtual channel construction of [12] has worst case dispute timings of order
O(n∆) for virtual state channels that span over n parties. We emphasize that these worst case timing
may already occur when only a single intermediary is corrupt, and hence may frequently happen in state
channel networks with long paths.

In this work we build virtual state channels with direct disputes. Similar to ledger state channels,
virtual state channels with direct dispute allow the members of the channel to resolve conflicts in time
O(∆), and thus, independent of the number of intermediaries involved. We call our new construction
virtual state channels with direct dispute to distinguish them from their “indirect” counterpart [12]. To
emphasize the importance of this improvement, notice that already for relatively short channels spanning
over 13 ledger channels the worst case timings reduce from more than 1 day for the dispute process in [12]
to less than 25 minutes in our construction. A comparison of the two types of two party state channels
is presented in the following table.

Ledger Direct Virtual Indirect Virtual

Creation on chain via subchannels via subchannels

Dispute on chain on chain via subchannels

Closure on chain via subchannels via subchannels

Our final construction generalizes the one of [12] by allowing an arbitrary composition of: (a) 2-party
virtual state channels with direct and indirect disputes, and (b) multi-party virtual state channels with
direct disputes. We leave the design of multi-party virtual state channels with indirect dispute as an
important open problem for future work.

Modeling state channel networks. Our final contribution is a comprehensive security model for
designing and analysing complex state channel networks in a modular way. To this end, we use the
Universal Composability framework of Canetti [4] (more precisely, its global variant [5]), and a recursive
composition approach similar to [12]. One particular nice feature of our modeling approach is that we are
able to re-use the ideal state channel functionality presented in [12]. This further underlines the future
applicability of our approach to design complex blockchain-based applications in a modular way. Or put
differently: our functionalities can be used as subroutines for any protocol that aims at fast and cheap
smart contract executions.

1.2 Related Work

One of the first constructions of off-chain channels in the scientific literature was the work of Wattenhofer
and Decker [10]. Since then, there has been a vast number of different works constructing protocols for
off-chain transactions and channel networks with different properties [31, 21, 13, 22, 20, 23]. These
papers differ from our work as they do not consider off-chain execution of arbitrary contract code, but
instead focus on payments. Besides academic projects, there are also many industry projects that aim
at building state channel networks. Particular relevant to our work is the Counterfactual project of
L4 [9], Celer network [7] and Magmo [8]. The white-papers of these projects typically do not offer full
specification of full state channel networks and instead follow a more “engineering-oriented” approach
that provides descriptions for developers. Moreover, none of these works includes a formal modeling of
state channels nor a security analysis.

4 In Ethereum typically ∆ equal to 6 minutes is assumed to be safe.

3

To the best of our knowledge, most related to our work is [12], which we significantly extend (as
described above), and the recent work of Sprites [26] and its extensions [25, 24] on building multi-party
ledger state channels. At a high-level in [26, 25, 24] a set of parties can open a multi-party ledger state
channel by locking a certain amount of coins into a contract. Then, the execution of this contract can
be taken “off-chain” by letting the parties involved in the channel sign the new states of the contract.
In case a dispute occurs among the parties, the dispute is taken on-chain. The main differences to our
work are twofold: first [26, 25, 24] do not support virtual channels, and hence opening and closing state
channels requires interaction with the blockchain. Second, while we support full concurrent execution of
multiple contracts in a single channel, [26, 25, 24] focuses on the off-chain execution of a single contract.
Moreover, our focus is different: while an important goal of our work is formal modeling, [26] aims at
improving the worst case timings in payment channel networks, and [25, 24] focus on evaluating practical
aspects of state channels.

2 Overview of Our Constructions

Before we proceed with the more technical part of this work, we provide some background on the ledger
and virtual state channels in Sec. 2.1 (we follow the formalism of [12]). In Sec. 2.2 we give an overview of
our construction for handling “direct disputes”, while in Sec. 2.3, we describe how we build and maintain
multi-party virtual state channels. Below we assume that the parties that interact with the contracts
own some coins in their accounts on the ledger. We emphasize that the description in this section is very
simplified and excludes many technicalities.

2.1 Background on Contracts and State Channels [12]

Contracts. As already mentioned in Sect. 1, contracts are self-executing agreements written in a pro-
gramming language. More formally, a contract can be viewed as a piece of code that is deployed by one
of the parties, can receive coins from the parties, store coins on its account, and send coins to them. A
contract never “acts by itself” – in other words: by default it is in an idle state and activates only when
it is “woken up” by one of the parties. Technically, this is done by calling a function from its code. Every
function call can have some coins attached to it (meaning that these coins are deduced from the account
of the calling party and added to the contract account).

To be a bit more formal, we use two different terms while referring to a “contract”: (i) “contract code”
C – a static object written in some programming language (and consisting of a number of functions); and
(ii) “contract instance” ν, which results from deploying the contract code C. Each contract instance ν
maintains during its lifetime a (dynamically changing) storage, where the current state of the contract is
stored. One of the functions in contract code, called a constructor, is used to create an instance and its
initial storage. These notions are defined formally in Sect. 3. Here, let us just illustrate them by a simple
example of a contract Csell for selling a pre-image of some fixed function H. More concretely, suppose that
we have two parties: Alice and Bob, and Bob is able to invert H, while Alice is willing to pay 1 coin for a
pre-image of H, i.e., for any x such that H(x) = y (where y is chosen by her). Moreover, if Bob fails to
deliver x, then he has to pay a “fine” of 2 coins. First, the parties deploy the contract by depositing their
coins into it (Alice deposits 1 coins, and Bob deposits 2 coins).5 Denote the initial storage of the contract
instance as G0. Alice can now challenge Bob by requesting him to provide a pre-image of y. Let G1 be
the storage of the contract after this request has been recorded. If now Bob sends x such that H(x) = y
to the contract, 1 + 2 = 3 coins are paid to Bob, and the contract enters a terminal state of storage G2.
If Bob fails to deliver x in time, i.e. within some time t > ∆, and the contract has still storage G1, then
Alice can request the contract to pay the 3 coins to her, and the contract enters into a terminal state of
storage G3.

The contract code Csell consists of functions used to deploy the contract (see footnote 5), a function
that Alice uses to send y to the contract instance, a function used by Bob to send x, and a function that
Alice calls to get her coins back if Bob did not send x in time.

5 Technically, this is done by one of the parties, Alice, say, calling a constructor function, and then Bob calling
another function to confirm that he agrees to deploy this contract instance. To keep our description simple,
we omit these details here.

4

Functionality of state channels. State channels allow two parties Alice and Bob to execute instances of
some contract code C off-chain, i.e., without interacting with the ledger. These channels offer four sub-
protocols that manage their life cycles: (i) channel create for opening a new channel; (ii) channel update
for updating the state of a channel; (iii) channel execute for executing contracts off-chain; and finally
(iv) channel close for closing a channel when it is not needed anymore. In [12] the authors consider two
types of state channels: ledger state channels and virtual state channels. The functionality offered by
these two variants is slightly different, which we discuss next.

Ledger state channels. Ledger state channels are constructed directly on the ledger. To this end, Alice
and Bob create the ledger state channel γ by deploying an instance of a state channel contract (denoted
SCC) on the ledger. The contract SCC will take the role of a judge, and resolve disputes when Alice
and Bob disagree (we will discuss disputes in more detail below). During channel creation, Alice and
Bob also lock a certain amount of coins into the contract. These coins can then be used for off-chain
contracts. For instance, Alice and Bob may each transfer 10 coins to SCC, and hence in total 20 coins
are available in the channel γ. Once the channel γ is established, the parties can update the state of
γ (without interacting with the state channel contract). These updates serve to create new contract
instances “within the channel”, e.g., Alice can buy from Bob a pre-image of H and pay for it using her
channel funds by deploying an instance of the Csell contract in the channel. At the end the channel is
closed, and the coins are transfered back to the accounts of the parties on the ledger. The state channel
contract guarantees that even if one of the parties is dishonest she cannot steal the coins of the honest
party (i.e.: get more coins than she would get from an honest execution of the protocol). The mechanism
behind this is described a bit later (see “Handling disputes in channels” on page 6).

Virtual state channels. The main novelty of [12] is the design of virtual state channels. A virtual state
channel offers the same interface as ledger state channels (i.e.: channel creation, update, execute, and
close), but instead of being constructed directly over the ledger, they are built “on top of” other state
channels. Consider a setting where Alice and Bob are not directly connected via a ledger state channel,
but they both have a ledger channel with an intermediary Ingrid. Call these two ledger state channels α
and β, respectively (see Fig. 1, page 6). Suppose now that Alice and Bob want to execute the pre-image
selling procedure using the contract Csell according to the same scenario as the one described above. To
this end, they can create a virtual state channel γ with the help of Ingrid, but without interacting with
the ledger. In this process the parties “lock” their coins in channels α and β (so that they cannot be
used for any other purpose until γ is closed). The amounts of “locked” coins are as follows: in α Alice
locks 1 coin and Ingrid locks 2 coins, and in β Bob locks 2 coins, and Ingrid locks 1 coin. The requirement
that Ingrid locks 2 coins in α and 1 coin in β corresponds to the fact that she is “representing” Bob in
channel α and “representing” Alice in channel β. Here, by “representing” we mean that she is ready to
cover their commitments that result from executing the contract in γ.

Once γ is created, it can be used exactly as a ledger state channel, i.e., Alice and Bob can open a
contract instance ν of Csell in γ via the virtual state channel update protocol and execute it. As in the
ledger state channels, when both Alice and Bob are honest, the update and execution of ν can be done
without interacting with the ledger or Ingrid. Finally, when γ is not needed anymore, it is closed, where
closing is first tried peacefully via the intermediary Ingrid (in other words: Alice and Bob “register” the
latest state of γ at Ingrid).

For example: suppose the execution of Csell ends in the way that Alice receives 0 coins, and Bob
receives 3 coins. The effect on the ledger channels is as follows: in channel α Alice receives 0 coins, and
Ingrid receives 3 coins, and in channel β Bob receives 3 coins, and Ingrid receives 0 coins. Note that this is
financially neutral for Ingrid who always gets backs the coins that she locked (although the distribution
of these coins between α and β can be different from the original one). This situation is illustrated on
Fig. 1. If the peaceful closing fails, the parties enter into a dispute which we describe next.

5

Alice Ingrid Bob
1/0 2/3

α
1/0 2/3

β

γ

1/0 2/3

Fig. 1. Virtual channel γ built over ledger channels α and β. The labels “x/y” on the channels denote the fact
that a given party locked x coins for the creation of γ, and got y coins as a result of closing γ.

Handling disputes in channels. The description above considered the case when both Alice and Bob are
honest. Of course, we also need to take into account conflicts between the parties, e.g., when Alice and
Bob disagree on a state update, or refuse to further execute a contract instance. Resolving such conflicts
in a fair way is the purpose of the dispute resolution mechanism. The details of this mechanism appear
in [12], but for completeness we included its short description in Appx. A.

In order to better understand the dispute handling, we start by providing some more technical details
on the state channel off-chain execution mechanism. Let ν be a contract instance of the pre-image selling
contract Csell, say, and denote byG0 its initial state. To deploy ν in the state channel both parties exchange
signatures on (G0, 0), where the second parameter in the tuple will be called the version number. The
rest of the execution is done by exchanging signatures on further states with increasing version number.
For instance, suppose that in the pre-image selling contract Csell (described earlier in this section) the
last state on which both parties agreed on was (G1, 1) (i.e., both parties have signatures on this state
tuple), and Bob wants to provide x such that H(x) = y. To this end, he locally evaluates the contract
instance to obtain the new state (G2, 2), and sends it together with his signature to Alice. Alice verifies
the correctness of both the computation and the signature, and if both checks pass, she replies with her
signature on (G2, 2).

Let us now move to the dispute resolution for ledger channels and consider a setting where a malicious
Alice does not reply with her signature on (G2, 2) (for example because she wants to avoid “acknowledg-
ing” that she received x). In this case, Bob can force the execution of the contract instance ν on-chain
by registering in the state channel contract SCC the latest state on which both parties agreed on. To this
end, Bob will send the tuple (G2, 2) together with the signature of Alice to SCC. Of course, SCC cannot
accept this state immediately because it may be the case that Bob cheated by registering an outdated
state.6 Hence, the ledger contract SCC gives Alice time ∆ to reply with a more recent signed state (recall
that in Sec. 1.1 we defined ∆ to be a constant that is sufficiently large so that every party can be sure
her transaction is processed by the ledger within this time). When ∆ time has passed, SCC finalizes the
state registration process by storing the version with the highest version number in its storage. Once
registration is completed, the parties can continue the execution of the contract instance on-chain.7

The dispute process for virtual state channels is much more complex than the one for the ledger
channels. In particular, in a virtual state channel Alice and Bob first try to resolve their conflicts peacefully
via the intermediary Ingrid. That is, both Alice and Bob first send their latest version to Ingrid who takes
the role of the judge, and attempts to resolve the conflict. If this does not succeed because a dishonest
Ingrid is not cooperating, then the parties resolve their dispute on-chain using the underlying ledger state
channels α and β (and the virtual state channel contracts VSCC).

Longer virtual state channels via recursion. So far, we only considered virtual state channels that can be
built on top of 2 ledger state channels. The authors of [12] show how virtual state channels can be used
in a recursive way to build virtual state channels that span over n ledger state channels. The key feature
that makes this possible is that the protocol presented in [12] is oblivious of whether the channels α or β
underlying γ are ledger or virtual state channels. Hence, given a virtual state channel α between P0 and
Pn/2 and a virtual state channel β between parties Pn/2 and Pn, we can construct γ, where Pn/2 takes
the role of Ingrid.

As discussed in the introduction, one main shortcoming of the recursive approach used by [12] is
that even if only one intermediary is malicious8, the worst-case time needed for dispute resolution is

6 Notice that SCC is oblivious to what happened inside the ledger state channel γ after it was created.
7 In the example that we considered, Bob can now force Alice bear the consequences that he revealed x to the

contract instance.
8 While it is sufficient that only one intermediary is malicious, it has to be the intermediary that was involved

in the last step of the recursion, i.e., in the example from above: party Pn/2.

6

significantly prolonged. Concretely, even a single intermediary that works together with a malicious Alice
can delay the execution of a contract instance in γ for up to Ω(n∆) time before it eventually is resolved
on the ledger.

2.2 Virtual State Channel with Direct Dispute

The first contribution of this work is to significantly reduce the worst case timings of virtual state chan-
nels. To this end, we introduce virtual state channels with direct dispute, where in case of disagreement
between Alice and Bob the parties do not contact the intermediaries over which the virtual state channel
is constructed, but instead directly move to the blockchain. This reduces worst case timings for dispute
resolution to O(∆), and hence makes it independent of the number of parties over which the virtual
channel is spanned. Let us continue with a high-level description of our construction, where we call the
virtual state channels constructed in [12] virtual state channels with indirect dispute or indirect virtual
state channels to distinguish them from our new construction.

Overview of virtual state channels with direct dispute. The functionality offered by virtual state channels
with direct dispute can be described as a “hybrid” between ledger and indirect virtual state channels. On
the one hand – similar to virtual state channels from [12] – creation and closing involves interaction with
the intermediary over which the channel is built. On the other hand – similar to ledger state channels
– the update and execution, in case of dispute between the end parties, is directly moved to the ledger.
The latter is the main difference to indirect virtual state channels, where dispute resolution first happens
peacefully via an intermediary. The advantage of our new approach is that the result of a dispute is
visible to all parties and contracts that are using the same ledger. Hence, the other contracts can use
the information about the result of this dispute in order to speed up the execution of their own dispute
resolution procedure. This process is similar to the approach used in the Sprites paper [26], but we extend
it to the case of virtual (multi-party) channels.

Before we describe in more detail the dispute process, we start by giving a high-level description
of the creation process. To this end, consider an initial setting with two indirect virtual state channels
α and β. Both α and β have length n/2, where α is spanned between parties P0 and Pn/2, while β
is spanned between parties Pn/2 and Pn (assume that n is a power of 2). Using the channels α and
β, parties P0 and Pn can now create a direct virtual state channel γ of length n. At a technical level
this is done in a very similar way to creating an indirect virtual state channel. In a nutshell, with the
help of the intermediary Pn/2 the parties update their subchannels α and β by opening instances of a
special so-called direct virtual state channel contract dVSCC. The role of dVSCC is similar to the role of
the indirect virtual state channel contract presented in [12]. It (i) guarantees balance neutrality for the
intermediary (here for Pn/2), i.e., an honest Pn/2 will never loose money; and (ii) it ensures that what
was agreed on in γ between the end users P0 and Pn can be realized in the underlying subchannels α
and β during closing or dispute.

Once γ is successfully created P0 and Pn can update and execute contract instances in γ using a
2-party protocol, which is similar to the protocol used for ledger state channels (i.e., using the version
number approach outlined above) as long as P0 and Pn follow the protocol. The main difference occurs
in the dispute process, which we describe next.

Direct dispute via the dispute board. Again, suppose that P0 and Pn want to execute the pre-image
selling procedure. Similarly to the example on page 6 suppose that during the execution of the contract
P0 (taking the role of Alice) refuses to acknowledge that Pn (taking the role of Bob) revealed the pre-
image. Unlike in indirect virtual state channels, where Pn would first try to resolve his conflict peacefully
via Pn/2, in our construction Pn registers his latest state directly on the so-called dispute board – denoted
by D. Since the dispute board D is a contract running directly on the ledger whose state can be accessed
by anyone, we can reduce timings for dispute resolution from O(n∆) to O(∆). At a technical level, the
state registration process on the dispute board is similar to the registration process for ledger channels
described above. That is, when Pn registers his latest state regarding channel γ on D, P0 gets notified
and is given time ∆ to send her own version to D. While due to the global nature of D all parties can see
the final result of the dispute, only the end parties of γ can dispute the state of γ on D. Our construction
for direct virtual state channels uses this novel dispute mechanism also as subroutine during the update.

7

This enables us to reduce the worst case timings of these protocols from O(n∆) in indirect virtual state
channels to O(∆).

The above description omits many technical challenges that we have to address in order to make the
protocol design work. In particular, the closing procedure of direct virtual state channels is more complex
because sometimes it needs to refer to contents on the public dispute board. Concretely, during closing
of channel γ, the end parties P0 and Pn first try to close γ peacefully via the intermediary. To this end,
P0 and Pn first attempt to update the channels α and β, respectively, in such a way that the updated
channels will reflect the last state of γ. If both update requests come with the same version of γ then
Pn/2 confirms the update request, and the closing of γ is completed peacefully. Otherwise Pn/2 gives the
end parties some time to resolve their conflict on the dispute board D, and takes the final result of the
state registration from D to complete the closing of γ. Of course, also this description does not present
all the details. For instance, how to handle the case when both P0 and Pn are malicious and try to steal
money from Pn/2, or a malicious Pn/2 that does not reply to a closing attempt. Our protocol addresses
these issues.

Interleaving direct and indirect virtual state channels. A special feature of our new construction is that
users of the system can mix direct and indirect virtual state channels in an arbitrary way. For example,
they may construct an indirect virtual γ over two subchannels α and β which are direct (or where α is
direct and β is indirect). This allows them to combine the benefits of both direct and indirect virtual
channels. If, for instance, γ is indirect and both α and β are direct, then in case of a dispute, P0 and
Pn will first try to resolve it via the intermediary Pn/2, and only if this fails they use the dispute board.
The advantage of this approach is that, as long as Pn/2 is honest, disputes between P0 and Pn can be
resolved almost instantaneously off-chain (thereby saving fees and time). On the other hand, even if Pn/2
is malicious, then disputes can be resolved fast, since the next lower level of subchannels α and β are
direct, and hence a dispute with a malicious Pn/2 will be taken directly to the ledger. We believe that
the optimal composition of direct and indirect virtual channels highly depends on the use-case and leave
a detailed discussion on this topic for future research.

2.3 Multi-Party Virtual State Channels

The main novelty of this work is a construction of multi-party virtual state channels. As already men-
tioned in Sec. 1, multi-party virtual state channels are a natural generalization of 2-party channels
presented in the previous sections and have two distinctive features. First, they are multi-party, which
means that they can execute contracts involving multiple parties. Consider for instance a multi-party
extension of Csell – denoted by Cmsell – where parties P1, . . . Pt−1 each pay 1 coin to Pt for a pre-image
of a function H, but if Pt fails to deliver a pre-image, Pt has to pay a “fine” of 2 coins to each of
P1, . . . , Pt−1 (and the contract stops). Our construction allows the parties to create an off-chain channel
for executing this contract, pretty much in the same way as the standard (bilateral) channels are used for
executing Csell. The second main feature of our construction is that our multi-party channels are virtual.
This means that they are built over 2-party ledger channels, and thus their creation process does not
require interaction with the ledger. Our construction has an additional benefit of being highly flexible.
Given ledger channels between parties Pi and Pi+1 for i ∈ {0, . . . , n− 1}, we can build multi-party state
channels involving any subset of parties. Technically, this is achieved by cutting out individual parties
Pj that do not want to participate in the multi-party state channel by building 2-party virtual state
channels “over them”. Moreover, we show how to generalize this for an arbitrary graph (V,E) of ledger
channels, where the vertices V are the parties, and the edges E represent the ledger channels connecting
the parties.

An example: a 4-party virtual state channel. To get a better understanding of our construction, we take
a look at a concrete example, which is depicted in Fig. 2. We assume that five parties P1, . . . , P5, are
connected by ledger state channels (P1 ⇔ P2 ⇔ P3 ⇔ P4 ⇔ P5). Suppose P1, P3, P4 and P5 want to
create a 4-party virtual state channel γ. Party P2 will not be part of the channel γ but is needed to
connect P1 and P3. In order to ”cut out” P2, parties P1 and P3 first construct a virtual channel denoted
by P1 ↔ P3.

8

P1 P2 P3 P4 P5

γ

mpVSCC
2/0 2/4

mpVSCC
3/0 1/4

1/0

1/0
1/0

1/4

mpVSCC1/0 3/4

Fig. 2. Example of a multi-party virtual state channel γ between parties P1, P3, P4 and P5. In each subchannel
a contract instance of mpVSCC is opened. Initially every party invests one coin and when the channel is closed,
party P5 owns all coins. The figure depicts the initial/final balance of parties in each of these contract instances.

Now the channel γ can be created on top of the subchannels P1 ↔ P3, P3 ⇔ P4 and P4 ⇔ P5.9

Assume for simplicity that each party invests one coin into γ. Now in each subchannel, they open an
instance of the special “multi-party virtual state channel contract” denoted as mpVSCC, which can be
viewed as a “copy” of γ in the underlying subchannels. Note, that some parties have to lock more coins
into the subchannel mpVSCC contract instances than others. For example in the channel P4 ⇔ P5, party
P4 has to lock three coins while P5 only locks one coin. This is necessary, since P4 additionally takes over
the role of the parties P1 and P3 in this subchannel copy of γ. In other words, we require that in each
mpVSCC contract instance, each party has to lock enough coins to match the sum of the investments of
all “represented” parties.

After γ was successfully created, the parties P1, P3, P4 and P5 can open and execute multiple contracts
ν in γ without talking to P2. Let us assume that at the end of the channel lifetime party P5 is the rightful
owner of all four coins. Then after γ is successfully closed, the coins locked in the contract instances
mpVSCC in the subchannels are unlocked in a way that reflects the final balance of γ. This means, for
example, that all coins locked in subchannel P4 ⇔ P5 go to P5. Since party P4 now lost 3 coins in
this subchannel, she needs to be compensated in the subchannel P3 ⇔ P4. Hence, the closing protocol
guarantees that all four coins locked in P3 ⇔ P4 go to P4. Since P4 initially locked 2 + 3 = 5 coins in the
subchannels and received 4 + 0 = 4 coins at the closing of γ, she lost 1 coin which corresponds to the
final distribution in γ. As shown in Fig. 2 this process is repeated for the other subchannel P1 ↔ P3 as
well.

Key ideas of the multi-party state channel update and execution. As for 2-party channels, our multi-party
construction consists of 4 sub-protocol and a state registration process that is used by the parties in case
of dispute. For registration our construction uses the direct dispute process outlined in Sec. 2.2, where all
involved parties can register their latest state on the dispute board. One of the main differences between
the 2-party and multi-party case is the way in which they handle state channel updates. Recall that in
the two party case the initiating party sends an update request to the other party of the state channel,
who can then confirm or reject the update request. Hence, in the two-party case it is easy for two honest
parties to reach agreement whether an update was successfully completed or not.10 In the multi-party
case the protocol is significantly more complex. When the initiating party, say P1, requests an update,
she sends her update request to all other parties P3, P4 and P5. The challenge is now that a malicious
P1 may for instance send a different update request to P3 and P4. At this point honest P3 and P4 have a
different view on the update request. To resolve this inconsistency we may use standard techniques from
the literature on authenticated broadcast protocols [11]. The problem with such an approach, however,
is that it is well known [14] that broadcast has communication complexity of O(n) in case most parties
are dishonest. Our protocol circumvents this impossibility by a simple approach, where agreement can
be reached in O(1) rounds by relying on the ledger as soon as an honest party detects inconsistencies.

Let us now consider the contract execution protocol. The first attempt for constructing a protocol
for multi-party state channel execution might be to use a combination of our new update protocol from

9 To keep things simple we do not allow the recursion to build virtual channels on top on n-party channels for
n > 2. We leave describing this extension as a possible future research direction.

10 In case one party behaves maliciously, an agreement is reached via the state registration process.

9

above together with the contract execution protocol for the 2-party setting. In this case the initiating
party P would locally execute the contract instance, and request an update of the multi-party state
channel γ according to the new state of the contract instance. Unfortunately, this naive solution does
not take into account a concurrent execution from two or more parties. For example, it may happen
that P1 and P4 simultaneously start different contract instance executions, thereby leading to a protocol
deadlock. For 2-party state channels this was resolved by giving each party a different slot when it is
allowed to start a contract instance execution. In the multi-party case this approach would significantly
decrease the efficiency of our protocol and in particular make its round complexity dependent on the
number of involved parties. Our protocol addresses this problem by introducing a carefully designed
execution scheduling, which leads to a constant time protocol.

Combining different state channel types. Finally, we emphasize that due to our modular modeling ap-
proach, all different state channel constructions that we consider in this paper can smoothly work together
in a fully concurrent manner. That is, given a network of ledger state channels, parties may at the same
time be involved in 2-party virtual state channels with direct or indirect dispute, while also being active
in various multi-party state channels. Moreover, our construction guarantees strong fairness and effi-
ciency properties in a fully concurrent setting where all parties except for one are malicious and collude.
Further details on our formal model are given in Sec. 5 and in the appendix.

3 Definitions and Notation

We assume that the set P = {P1, . . . , Pm} of parties that use the system is fixed. In addition, we fix a
bijection OrderP : P → [m] which on input a party Pi ∈ P returns its “order” i in the set P. Following
[12, 13] we present tuples of values using the following convention. The individual values in a tuple
T are identified using keywords called attributes, where formally an attribute tuple is a function from
its set of attributes to {0, 1}∗. The value of an attribute identified by the keyword attr in a tuple T
(i.e. T (attr)) will be referred to as T.attr. This convention will allow us to easily handle tuples that have
dynamically changing sets of attributes. We assume the existence of a signature scheme (Gen,Sign,Vrfy)
that is existentially unforgeable against a chosen message attack (see, e.g., [18]). The ECDSA scheme
used in Ethereum is believed to satisfy this definition.

3.1 On the Usage of the UC-Framework

To formally model the security of our construction, we use a UC-style model that consider protocols that
operate with coins.11 In particular, our model uses a synchronous version of the global UC framework
(GUC) [6] which extends the standard UC framework [4] by allowing for a global setup. Since our security
model is essentially the same as in [12], parts of this section are taken verbatim from there.

Protocols and adversarial model. We consider an n-party protocol π that runs between parties from the
set P = {P1, . . . , Pn}. A protocol is executed in the presence of an adversary A that takes as input a
security parameter 1λ (with λ ∈ N) and an auxiliary input z ∈ {0, 1}∗, and who can corrupt any party
Pi at the beginning of the protocol execution (so-called static corruption). By corruption we mean that
A takes full control over Pi including learning its internal state. Parties and the adversary A receive
their inputs from a special entity – called the environment Z – which represents anything “external” to
the current protocol execution. The environment also observes all outputs returned by the parties of the
protocol. In addition to the above entities, the parties can have access to ideal functionalities F1, . . . ,Fm.
In this case we say that the protocol π works in the (F1, . . . ,Fm)-hybrid model and write πF1,...,Fm .

Modeling time and communication. We assume a synchronous communication network, which means that
the execution of the protocol happens in rounds. Let us emphasize that the notion of rounds is just an
abstraction which simplifies our model and allows us to argue about the time complexity of our protocols
in a natural way. We follow [19] and formalize the notion of rounds via an ideal functionality Ĝclock
representing “the clock”. On a high level, the ideal functionality requires all honest parties to indicate

11 Throughout this work, the word coin refers to a monetary unit.

10

that they are prepared to proceed to the next round before the clock is “ticked”. For completeness, we
include the formal description of the functionality in Appx. B. In contrast to [19], we treat the clock
functionality as a global ideal functionality using the global UC (GUC) model [6]. This means that
all entities (possibly including hybrid ideal functionalities) are always aware of the given round. For a
formalization of the synchronous communication model and its relation to the model with real time, see,
e.g, [16, 17, 28, 19].

We assume that parties of a protocol are connected via authenticated communication channels with
guaranteed delivery of exactly one round. This means that if a party S sends a message m to party
R in round t, party R receives this message in beginning of round t + 1. In addition, R is sure that
the message was sent by party S. The adversary can see the content of the message and can reorder
messages that were sent in the same round. However, it can not modify, delay or drop messages sent
between parties, or insert new messages. We formalize our assumptions on the communication channels
as an ideal functionality FGDC which is described in the figure below.12

Functionality FGDC

Functionality FGDC is parameterized by a set of parties P. It has access to the global ideal functionality
Ĝclock . It accepts queries of following types:

Sending messages

Upon receiving a message (send, sid , ssid , {(Ri,mi)}i∈[k]), where Ri ∈ P and mi ∈ {0, 1}∗, from a party
S ∈ P, forward this message to the adversary and for every i ∈ [k], store (t, S,Ri,mi) in your memory. Here
t denotes the current round.

Receiving messages

Upon receiving a message (fetch, sid , ssid) from a party R ∈ P, consider the following two cases:

– If no message was sent to R in the previous round, then reply with a message (noMessage, sid , ssid).
– Otherwise, let {(Si,mi)}i∈[k] be the sequence of messages sent to R in the previous round, i.e., the

sequence of all pairs (Si,mi) such that (t− 1, Si, R,mi) is in the memory, where t is the current round.
Reply to R with the message (deliver, sid , ssid , {(Sρ(i),mρ(i))}i∈[k]), where ρ : [k]→ [k] is a permutation
chosen by the adversary (if the adversary does not make any choice, ρ is set to be the identity function).

Fig. 3. The guaranteed delivery authenticated communication channel functionality FGDC .

While the communication between two parties of a protocol takes exactly one round, all other com-
munication – for example, between the adversary A and the environment Z or between a party and a
hybrid ideal functionality – takes zero rounds. For simplicity, we assume that any computation made by
any entity takes zero rounds as well.

Handling coins. We model the money mechanics offered by crypotcurrencies such as Bitcoin or Ethereum
via a global ideal functionality L̂ using the global UC (GUC) model [6]. The state of the ideal functionality

L̂ is public and can be accessed by all parties of the protocol π, the adversary A and the environment
Z. It keeps track on how much money the parties have in their accounts by maintaining a vector of
non-negative (finite precision) real numbers (x1, . . . , xn), where each xi is the amount of coins that Pi
owns.13

The ledger functionality L̂ is initiated by the environment Z that can also freely add and remove
money in user’s accounts, via the operations “add” and “remove”. While parties P1, . . . , Pn cannot
directly perform operations on L̂, the ideal functionalities can carry out “add” and “remove” operations
on the L̂ (and hence, indirectly, Pi’s can also modify L̂, in a way that is controlled by the functionalities).

Every time an ideal functionality issues an “add” or “remove” command, this command is sent to L̂ within
∆ rounds, for some parameter ∆ ∈ N. The exact round when the command is sent is determined by the
adversary A. The parameter ∆ models the fact that in cryptocurrencies updates on the ledger are not

12 The functionality FGDC can be seen as a modification of the bounded-delay channel functionality of [19]. The
main difference is that the delay is fix to 1, i.e., both lower and upper bounded by the constant 1.

13 This is similar to the concept of a safe of [2].

11

immediate. We denote a ledger functionality L̂ with maximal delay ∆ by L̂(∆) and an ideal functionality

G with access to L̂(∆) by GL̂(∆). The ledger functionality L̂ is formally defined in Fig. 4.

Functionality L̂

Functionality L̂ is parameterized by a set of parties P = {P1, . . . , Pn}, a set of ideal functionalities
{F1, . . . ,Fm} and a vector (x1, . . . , xn) ∈ Rn≥0 (where R≥0 are finite-precision non-negative reals) repre-
senting the balances of parties. The functionality accepts queries of following types:

Adding money

Upon receiving a message (add, sid , ssid , Pi, y) from Fj for some j ∈ [m], where y ∈ R≥0 and i ∈ [n], set

xi := xi + y. We say that y coins are added to Pi’s account in L̂.

Removing money

Upon receiving a message (remove, sid , ssid , Pi, y) from Fj for some j ∈ [m], where y ∈ R≥0 and i ∈ [n]:

– If xi < y, then reply with a message (noFunds, sid , ssid).

– Otherwise let xi := xi − y. We say that y coins were removed from the account of Pi in L̂.

Getting balance

Upon receiving a message (getBalance, sid , ssid , Pi) from the adversary or Fj for some j ∈ [m] or Pj for
some j ∈ [n], where i ∈ [n], reply with (balance, sid , ssid , Pi, xi).

Fig. 4. The ledger functionality L̂.

The GUC-security definition. Let π be a protocol working in the H-hybrid model with access to the
global ledger L̂(∆) and the global clock Ĝclock . The output of an environment Z interacting with a

protocol π and an adversary A on input 1λ and auxiliary input z is denoted as exec
L̂(∆),Ĝclock ,H
π,A,Z (λ, z).

Let φF be the ideal protocol for an ideal functionality F with access to the global ledger L̂(∆) and the

global clock Ĝclock . This means that φF is a trivial protocol in which the parties simply forward their
inputs to the ideal functionality F . We call parties of the ideal protocol dummy parties. The output of
an environment Z interacting with a protocol φF and a adversary Sim (sometimes also call simulator)

on input 1λ and auxiliary input z is denoted as exec
L̂(∆),Ĝclock
φF ,Sim,Z (λ, z).

We are now ready to state our main security definition which, informally, says that if a protocol
π UC-realizes an ideal functionality F , then any attack that can be carried out against the real-world
protocol π can also be carried out against the ideal protocol φF .

Definition 1. We say that a protocol π working in a H-hybrid model UC-realizes an ideal functionality
F with respect to a global ledger L̂(∆) and a global clock Ĝclock if for every adversary A there exists a
adversary Sim such that we have{

exec
L̂(∆),Ĝclock ,H
π,A,Z (λ, z)

}
λ∈N,

z∈{0,1}∗

c
≈
{
exec

L̂(∆),Ĝclock
φF ,Sim,Z (λ, z)

}
λ∈N,

z∈{0,1}∗

(where “
c
≈” denotes computational indistinguishability of distribution ensembles, see, e.g., [15]).

Simplifying assumptions To simplify exposition, we omit the session identifiers sid and the sub-session
identifiers ssid. Instead, we will use expressions like “message m is a reply to message m′”. We believe that
this approach improves readability. Another simplifying assumption we make is that before the protocol
starts, the following public-key infrastructure is set up by some trusted party: (1) For every i = 1, . . . , n
let (pkPi , skPi)← Gen(1λ), (2) For every i = 1, . . . , n send the message (skPi , (pkP1

, . . . , pkPn)) to Pi. We
emphasize that the use of a PKI is only an abstraction, and can easily be realized using the blockchain.

Moreover, in the protocol descriptions, we do not explicitly mention that communication between
parties takes place via the hybrid ideal functionality FGDC . For brevity, we say “S sends a m message to
R in round t” instead of “S sends a message (send, sid , (R,m)) to FGDC in round t”. Similarly, when we

12

say “R receives a message m from S in round t” we formally mean that R sends a message (fetch, sid)
to FGDC in round t and FGDC replies with the message (deliver, sid ,M), where M contains the pair
(S,m).

We further adopt the notation of [4] and write ρφ→π to denote a protocol that is equal to ρ except
that calls to the sub-protocol φ (e.g., an ideal functionality) are replaced by calls to the sub-protocol π,
and outputs from π are treated as if they came from φ.

Finally, since in our work all entities have access to the global clock, we drop the superscript Ĝclock ,
and when it is clear from the context that a functionality has access to the ledger (e.g., it accesses L̂(∆)

in its code), we will also drop the L̂(∆) superscript.

3.2 Definitions of Multi-Party Contracts and Channels

We now present our syntax for describing multi-party contracts and state channels (it has already been
introduced informally in Sect. 2.1). We closely follow the notation from [12, 13].

Contracts. Let n be the number of parties involved in the contract. A contract storage is an attribute
tuple σ that contains at least the following attributes: (1) σ.users : [n] → P that denotes the users
involved in the contract (sometimes we slightly abuse the notation and understand σ.users as the set
{σ.users(1), . . . , σ.users(n)}), (2) σ.locked ∈ R≥0 that denotes the total amount of coins that is locked in
the contract, and (3) σ.cash : σ.users→ R that denotes the amount of coins assigned to each user. It must
hold that σ.locked ≥

∑
P∈σ.users σ.cash(P). Let us explain the above inequality on the following concrete

example. Assume that three parties are playing a game where each party initially invests 5 coins. During
the game, parties make a bet, where each party puts 1 coin into the “pot”. The amount of coins locked
in the game did not change, it is still equal to 15 coins. However, the amount of coins assigned to each
party decreased (each party has only 4 coins now) since it is not clear yet who wins the bet.

We say that a contract storage σ is terminated if σ.locked = 0. Let us emphasize that a terminated
σ does not imply that σ.cash maps to zero for every user. In fact, the concept of a terminated contract
storage with non-zero cash values is important for our work since it represents “payments” performed
between the users. Consider, for example, a terminated three party contract storage σ with σ.cash(P1) =
1, σ.cash(P2) = 1 and σ.cash(P3) = −2. This means that both P1 and P2 paid one coin to P3.

A contract code consists of constructors and functions. They take as input: a contract storage σ, a
party P ∈ σ.users, round number τ ∈ N and input parameter z ∈ {0, 1}∗, and output: a new contract
storage σ̃, information about the amount of unlocked coins add : σ.users → R≥0 and some additional
output message m ∈ {0, 1}∗. Importantly, no contract function can ever change the set of users or create
new coins. More precisely, it must hold that σ.users = σ̃.users and σ.locked−σ̃.locked ≥

∑
P∈σ.users add(P).

As described already in Sec. 2.1, a contract instance represents an instantiation of a contract code.
Formally, a contract instance is an attribute tuple ν consisting of the contract storage ν.storage and the
contract code ν.code. To allow parties in the protocol to update contract instances off-chain, we also
define a signed contract instance version of a contract instance which in addition to ν.storage and ν.code
contains two additional attributes ν.version and ν.sign. The purpose of ν.version ∈ N is to indicate the
version of the contract instance. The attribute ν.sign is a function that on input P ∈ ν.storage.users
outputs the signature of P on the tuple (ν.storage, ν.code, ν.version).

Two-party ledger and virtual state channels. Formally, a two-party state channel is an attribute tuple
γ = (γ.id, γ.Alice, γ.Bob, γ.cash, γ.cspace, γ.length, γ.Ingrid, γ.subchan, γ.validity, γ.dispute). The attribute
γ.id ∈ {0, 1}∗ is the identifier of the two-party state channel. The attributes γ.Alice ∈ P and γ.Bob ∈ P
identify the two end-parties using γ. For convenience, we also define the set γ.end–users := {γ.Alice,
γ.Bob} and the function γ.other–party as γ.other–party(γ.Alice) := γ.Bob and γ.other–party(γ.Bob) :=
γ.Alice. The attribute γ.cash is a function mapping the set γ.end–users to R≥0 such that γ.cash(T) is the
amount of coins the party T ∈ γ.end–users has locked in γ. The attribute γ.cspace is a partial function
that is used to describe the set of all contract instances that are currently open in this channel. It
takes as input a contract instance identifier cid ∈ {0, 1}∗ and outputs a contract instance ν such that
ν.storage.users = γ.end–users. We refer to γ.cspace(cid) as the contract instance with identifier cid in γ.
The attribute γ.length ∈ N denotes the length of the two-party state channel.

If γ.length = 1, then we call γ a two-party ledger state channel. The attributes γ.Ingrid and γ.subchan
do not have any meaning in this case and it must hold that γ.validity = ∞ and γ.dispute = direct.

13

Intuitively, this means that a ledger state channel has no intermediary and no subchannel, there is no
a priory fixed round in which the channel must be closed, and potential disputes between the users are
resolved directly on the blockchain.

If γ.length > 1, then we call γ a two-party virtual state channel and the remaining attributes have the
following meaning. The attribute γ.Ingrid ∈ P denotes the identity of the intermediary of the virtual chan-
nel γ. For convenience, we also define the set γ.users := {γ.Alice, γ.Bob, γ.Ingrid}. The attribute γ.subchan
is a function mapping the set γ.end–users to channel identifiers {0, 1}∗. The value of γ.subchan(γ.Alice)
refers to the identifier of the two-party state channel between γ.Alice and γ.Ingrid. Analogously, for the
value of γ.subchan(γ.Bob). The attribute γ.validity ∈ N denotes the round in which the virtual state chan-
nel γ will be closed. Intuitively, the a priory fixed closure round upper bounds the time until when party
γ.Ingrid has to play the role of an intermediary of γ.14 At the same time, the γ.validity lower bounds the
time for which the end-users can freely use the channel. Finally, the attribute γ.dispute ∈ {direct, indirect}
distinguishes between virtual state channel with direct dispute, whose end-users contact the blockchain
immediately in case they disagree with each other, and virtual state channel with indirect dispute, whose
end-users first try to resolve disagreement via the subchannels of γ.15

Multi-party virtual state channel. Formally, an n-party virtual state channel γ is a tuple γ := (γ.id,
γ.users, γ.E, γ.subchan, γ.cash, γ.cspace, γ.length, γ.validity, γ.dispute). The pair of attributes (γ.users, γ.E)
defines an acyclic connected undirected graph, where the set of vertices γ.users ⊆ P contains the identities
of the n parties of γ, and the set of edges γ.E denotes which of the users from γ.users are connected with
a two-party state channel. Since (γ.users, γ.E) is an undirected graph, elements of γ.E are unordered pairs
{P,Q} ∈ γ.E. The attribute γ.subchan is a function mapping the set γ.E to channel identifiers {0, 1}∗ such
that γ.subchan({P,Q}) is the identifier of the two-party state channel between P and Q. For convenience,
we define the function γ.other–party which on input P ∈ γ.users outputs the set γ.users \ {P}, i.e., all
users of γ except for P . In addition, we define a function γ.neighbors which on input P ∈ γ.users outputs
the set consisting of all Q ∈ γ.users for which {P,Q} ∈ γ.E. Finally, we define a function γ.split which,
intuitively works as follows. On input the ordered pair (P,Q), where {P,Q} ∈ γ.E, it divides the set of
users γ.users into two subsets VP , VQ. The set VP contains P and all nodes that are “closer” to P than
to Q and the set VQ contains Q and all nodes that are “closer” to Q than to P . We define the function
formally in Appx. B. The attribute γ.cash is a function mapping γ.users to R≥0 such that γ.cash(P) is the
amount of coins the party P ∈ γ.users possesses in the channel γ. The attributes γ.length, γ.cspace and
γ.validity are defined as for two-party virtual state channels. The value γ.dispute for multi-party channels
will always be equal to direct, since we do not allow indirect multi-party channels. We leave adding
this feature to future work. In the following we will for brevity only write multi-party channels instead
of virtual multi-party state channels with direct dispute. Additionally, we note that since multi-party
channels cannot have intermediaries, the sets γ.users and γ.end–users are equal.

We demonstrate the introduced definitions on two concrete examples depicted in Fig. 5. In the 6-party
channel on the left, the neighbors of party P4 are γ.neighbors(P4) = {P3, P5, P6} and γ.split({P3, P4}) =
({P1, P2, P3}, {P4, P5, P6}). In the 4-party channel on the right, the neighbors of P4 are γ.neighbors(P4) =
{P1, P5, P6} and γ.split({P1, P4}) = ({P1}, {P4, P5, P6}).

P1 P2 P3 P4 P5

P6

γ

P1 P2 P3 P4 P5

P6

γ

γ2

γ3

Fig. 5. Examples of multi-party channel setups: A 6-party channel on top of 5 ledger channels (left) and a 4-party
channel on 2 ledger and a virtual channel γ3 (right).

14 In practice, this information would be used to derive fees charged by the intermediary for its service.
15 Recall from Sec. 2 that disagreements in channels with indirect dispute might require interaction with the

blockchain as well. However this happen only in the worst case when all parties are corrupt.

14

3.3 Security and Efficiency Goals

In the previous section, we formally defined what state channels are. Let us now give several security
and efficiency goals that we aim for when designing state channels. The list below can be seen as an
extension of the one from [12].

Security goals. We define security goals that guarantee that an adversary cannot steal coins from honest
parties, even if he corrupts all parties except for one.

(S1) Consensus on creation: A state channel γ can be successfully created only if all users of γ agree
with its creation.

(S2) Consensus on updates: A contract instance in a state channel γ can be successfully updated (this
includes also creation of the contract instances) only if all end-users of γ agree with the update.

(S3) Guarantee of execution: An honest end-user of a state channel γ can execute a contract function
f of an opened contract instance in any round τ0 < γ.validity on an input value z even if all other
users of γ are corrupt.

(S4) Balance security: If the channel γ has an intermediary, then this intermediary never loses coins
even if all end-users of γ are corrupt and collude.

Let us stress that while creation of a state channel has to be confirmed by all users of the channel, this
includes the intermediary in case of a two-party virtual state channel, the update of a contract instance
needs confirmation only from the end-users of the state channel. In other words, the intermediary of
a two-party virtual state channel has the right to refuse being an intermediary but once he agrees,
he can not influence how this channel is being used by the end-users. Let us also emphasize that the
last property, (S4), talks only about two-party virtual state channels since, by definition, ledger and
multi-party channels do not have any intermediary.

Efficiency goals. We identify four efficiency requirements. Table 1 defines which property is required
from what type of channel.

(E1) Creation in O(1) rounds: Successful creation of a state channel γ takes a constant number of
rounds.

(E2) Optimistic update/execute in O(1) rounds: In the optimistic case when all end-users of a state
channel γ are honest, they can update/execute a contract instance in γ within a constant number of
rounds.

(E3) Pessimistic update/execute in O(∆) rounds: In the pessimistic case when some end-users of a
state channel γ are dishonest, the time complexity of update/execution of a contract instance in γ
depends only on the ledger delay ∆ but is independent of the channel length.

(E4) Optimistic closure in O(1) rounds: In the optimistic case when all users of γ.users are honest,
the channel γ is closed in round γ.validity +O(1).

Ledger
Virtual

Direct Indirect MP

(E1) Creation in O(1) X X X
(E2) Opt. update/execute in O(1) X X X X
(E3) Pess. update/execute in O(∆) X X X
(E4) Opt. closing in O(1) X X X

Table 1. Summary of the efficiency goals for state channels. Above, “Ledger” stands for ledger state channels,
“Direct/Indirect” stand for a two party virtual state channels with direct/indirect dispute and “MP” stands for
multi-party channels.

It is important to note that in the optimistic case when all users of any virtual state channel (i.e.
multi-party, two-party with direct/indirect dispute) are honest, the time complexity of channel creation,
update, execution and closure must be independent of the blockchain delay; hence in this case there
cannot be any interaction with the blockchain during the lifetime of the channel.

15

4 State Channels ideal functionalities

Recall that the main goal of this paper is to broaden the class of virtual state channels that can be
constructed. Firstly, we want virtual state channels to support direct dispute meaning that end-users
of the channel can resolve disputes directly on the blockchain, and secondly, we want to design virtual
multi-party state channels that can be built on top of any network of two-party state channels. In order to
formalize these goals, we define an ideal functionality F L̂(∆)

mpch(i, C) which describes what it means to create,
maintain and close multi-party as well as two-party state channels of length up to i in which contract
instances from the set C can be opened. The functionality has access to a global ledger functionality
L̂(∆) keeping track of account balances of parties in the system.

The first step towards defining F L̂(∆)

mpch(i, C) has already been done in [12], where the authors describe

an ideal functionality, F L̂(∆)

ch (i, C), for ledger state channels and two-party virtual state channels with
indirect dispute. For completeness, we recall this ideal functionality in Appx. C.1. The second step is to
extend the ideal functionality F L̂(∆)

ch (i, C) such that it additionally describes how virtual state channels

with direct dispute are created, maintained and closed. We denote this extended functionality F L̂(∆)

dch (i, C)
and describe it in more detail in Sec. 4.1. As a final step, we define how multi-party channels are created,
maintained and closed. This is discussed in Sec. 4.2.

Before we proceed with the description of the novel ideal functionalities, let us establish the following
simplified notation. In the rest of this paper, we write F instead of F L̂(∆), for F ∈ {Fch ,Fdch ,Fmpch}.

4.1 Virtual State Channels with Direct Dispute

In this section we introduce our ideal functionality Fdch(i, C) that allows to build any type of two party
state channel (ledger state channel, virtual state channel with direct dispute and virtual state channel
with indirect dispute) of length up to i in which contract instances with code from the set C can be
opened. The ideal functionality Fdch(i, C) extends the ideal functionality Fch(i, C) in the following way:

– Messages about ledger state channels and virtual state channels with indirect dispute are handled as
in Fch(i, C).

– Virtual state channels with direct dispute are created (resp. closed) using the procedure of Fch(i, C)
for creating (resp. closing) virtual channels with indirect dispute.

– Update (resp. execute) requests of contract instances in channels with direct dispute are handled
as Fch(i, C) handles such queries for ledger state channels.

Hence, intuitively, a virtual state channel γ with direct dispute is a “hybrid” between a ledger state
channel and a virtual state channel with indirect dispute, meaning that it is created and closed as a
virtual state channel with indirect dispute and its contract instances are updated and executed as if γ
would be a ledger state channel. In the remainder of this section, we explain how Fdch(i, C) works in
more detail and argue that it satisfies all the security and efficiency goals listed in Sec. 3.3. The formal
description of the ideal functionality Fdch(i, C) can be found in Appx. C.1, where we also recall the
functionality Fch(i, C) from [12] for completeness.

If Fdch(i, C) receives a message about a ledger state channel or a virtual state channel with indirect
dispute, then Fdch(i, C) behaves exactly as Fch(i, C). Since Fch(i, C) satisfies all the security goals and
the efficiency goals (E1) – (E2) (see [12]), Fdch(i, C) satisfies them as well in this case. It is thus left to
analyze the properties in the novel case, i.e., for virtual state channels with direct dispute.

Create and close a virtual state channel with direct dispute. The users of the virtual state channel γ,
which are the end-users of the channel γ.Alice and γ.Bob and the intermediary γ.Ingrid, express that
they want to create γ by sending the message (create, γ) to Fdch(i, C). Once Fdch(i, C) receives such a
message, it records it into the memory and locks coins in the corresponding subchannel. For example, if
the sender of the message is γ.Alice, Fdch(i, C) locks γ.cash(γ.Alice) coins of γ.Alice and γ.cash(γ.Bob)
coins of γ.Ingrid in the subchannel γ.subchan(γ.Alice). If Fdch(i, C) records the message (create, γ) from
all three parties within three rounds, then the channel γ is created. The ideal functionality informs both
end-users of the channel about the successful creation by sending the message (created, γ) to them. Since
all three parties have to agree with the creation of γ, the security goal (S1) is clearly met. The successful
creation takes 3 rounds, hence (E1) holds as well.

16

Once the virtual state channel is successfully created, γ.Alice and γ.Bob can use it (open and execute
contract instance) until round γ.validity when the closing of the channel γ begins. In round γ.validity,
Fdch(i, C) first waits for τ rounds, where τ = 3 if all users of γ are honest and is set by the adversary
otherwise,16 and then distributes the coins locked in the subchannels according to the final state of
the channel γ. It might happen that the final state of γ contains unterminated contract instances, i.e.
contract instances that still have locked coins, in which case it is unclear who owns these coins. In order to
guarantee the balance security for the intermediary, the property (S4), Fdch(i, C) gives all of these locked
coins to γ.Ingrid in both subchannels. The goal (E4) is met because γ is closed in round γ.validity + 3 in
the optimistic case.

Update a contract instance. A party P that wants to update a contract instance with identifier cid in
a virtual state channel γ sends the message (update, γ.id, cid , σ, C) to Fdch(i, C). The parameter σ is
the proposed new contract instance storage and the parameter C is the code of the contract instance.
Fdch(i, C) informs the party Q := γ.other–party(P) about the update request and completes the update
only if Q confirms it. If the party Q is honest, then it has to reply immediately. In case Q is malicious,
Fdch(i, C) expects the reply within 3∆ rounds. Let us emphasize that the confirmation time is independent
of the channel length. This models the fact that disputes are happening directly on the blockchain and
not via the subchannels. In the optimistic case the update procedure takes 2 rounds and in the pessimistic
case 2+3∆ rounds; hence both update efficiency goals (E2) and (E3) are satisfied. The security property
(S2) holds as well since without Q’s confirmation the update fails.

Execute a contract instance. When a party P wants to execute a contract instance with identifier cid
in a virtual state channel γ on function f and input parameters z, it sends the message (execute, γ.id,
cid , f, z) to Fdch(i, C). The ideal functionality waits for τ rounds, where τ ≤ 5 in case both parties
are honest and τ ≤ 4∆ + 5 in case one of the parties is corrupt. The exact value of τ is determined
by the adversary. Again, let us stress that the pessimistic time complexity is independent of channel
length which models the fact that registration and force execution takes place directly on the blockchain.
After the waiting time is over, Fdch(i, C) performs the function execution and informs both end-users of
the channel about the result by outputting the message (execute, γ.id, cid , σ̃, add,m). Here σ̃ is the new
contract storage after the execution, add contains information about the amount of coins unlocked from
the contract instance and m is some additional output message. Since the adversary can not stop the
execution, and only delay it, the guarantee of execution, security property (S3), is satisfied by Fdch(i, C).
From the description above it is clear that the two execute efficiency goals (E2) and (E3) are fulfilled as
well.

Two-party state channels of length one. Before we proceed to the description of the ideal functionality
Fmpch(i, C), let us state one simple but important observation which follows from the fact that the
minimal length of a virtual state channel is 2 and the ideal functionality Fdch(1, C) accepts only messages
about a state channel of length 1.

Observation 1 For any set of contract codes C it holds that Fdch(1, C) is equivalent to Fch(1, C).

4.2 Virtual Multi-Party State Channels

We now introduce the functionality Fmpch(i, C) which allows to create, maintain and close multi-party
as well as two-party state channels of length up to i in which contract instances from the set C can be
opened. Before we give formal definition of the ideal functionality, le us provide its high level description
and argue that all security and efficiency goals identified in Sec. 3.3 are met.

High level description of the ideal functionality The ideal functionality Fmpch(i, C) extends the func-
tionality Fdch(i, C), which we described in Sec. 4.1, in the following way. In case Fmpch(i, C) receives a
message about a two-party state channel, then it behaves exactly as the functionality Fdch(i, C). Since
the functionality Fdch(i, C) satisfies all the security and efficiency goals for two-party state channels,

16 The value of τ can be set by the adversary as long as it is smaller than some upper bound T which is of order
O(γ.length ·∆) .

17

these goals are met by Fmpch(i, C) as well. For the rest of this informal description, we focus on the more
interesting case, when Fmpch(i, C) receives a message about a multi-party channel.

Parties express that they want to create the channel γ by sending the message (create, γ) to the ideal
functionality Fmpch(i, C). Once the functionality receives such message from a party P ∈ γ.users, it locks
coins needed for the channel γ in all subchannels of γ party P is participating in. Let us elaborate on
this step in more detail. For every Q ∈ γ.neighbors(P) the ideal functionality proceeds as follows. Let
(VP , VQ) := γ.split({P,Q}) which intuitively means that VP contains all the user of γ that are “closer” to
P than to Q. Analogously for VQ. Then

∑
T∈VP γ.cash(T) coins of party P and

∑
T∈VQ γ.cash(T) coins

of party Q are locked in the subchannel between P and Q by the ideal functionality. If the functionality
receives the message (create, γ) from all parties in γ.users within 4 rounds, then the channel γ is created.
The ideal functionality informs all parties about the successful creation by outputting the message
(created, γ). Clearly, the security goal (S1) and the efficiency goal (E1) are both met.

Once the multi-party channel is successfully created, parties can use it (open and execute contract
instances in it) until the round γ.validity comes. In round γ.validity, the ideal functionality first waits for
τ rounds, where τ = 3 if all parties are honest and is set by the adversary otherwise,17 and then unlocks
the coins locked in the subchannels of γ. The coin distribution happens according to the following rules
(let γ̂ denote the final version of γ): If there are no unterminated contract instances in γ̂.cspace, then the
ideal functionality simply distributes the coins back to the subchannels according to the function γ̂.cash.
The situation is more subtle when there are unterminated contract instances in γ̂.cspace. Intuitively,
this means that some coin of the channel are not attributed to any of the users. Our ideal functionality
distributes the unattributed coins equally among the users18 and the attributed coins according to γ̂.cash.
Once the coins are distributed back to the subchannels, the channel γ is closed which is communicated to
the parties via the message (closed, γ.id). Since in the optimistic case, γ is closed in round γ.validity + 3,
the goal (E4) is clearly met.

The update and execute parts of the ideal functionality Fmpch(i, C) in case of multi-party channels
are straightforward generalizations of the update and execute parts of the ideal functionality Fdch(i, C)
in case of two-party virtual state with direct dispute (see Sec. 4.1).

Formal description of the ideal functionality For completeness, we give the pseudo-code description of the
multi-party state channel functionality Fmpch(i, C) in Fig. 6. We assume that the functionality maintains
a channel space Γ , were it stores all channels that were created via this functionality. Since messages that
the parties send to the ideal functionality do not contain any private information, we implicitly assume
that the ideal functionality forwards all messages it receives to the adversary. In addition, the adversary
influences the timings; for example, the adversary decides when the parties receive messages from the
functionality. Adversary’s influence of this kind is implicit in the notation. By saying: “In round τ ≤ T do
instruction X”, we mean that the adversary can decide when exactly instruction X is performed as long
as it is before round T . In case the adversary does not make any choice, the instruction X is performed
in round T .

Let us emphasize that since our ideal functionality is fairly complex, the description presented in
Fig. 6 is simplified. In particular, it excludes some natural checks that one would expect from an ideal
state channel functionality upon receiving a message from a party P . For instance, when party requests
multi-party channel γ creation, the ideal functionality should check that all subchannels of γ exist. We
discuss all necessary check in Appx. C.2. Furthermore, the pseudo-code of the functionality makes use of
some abbreviated notation. For instance, it uses a symbolic notation for sending and receiving messages
and makes use of a sub-procedure UpdateChanSpace. In order to keep the main body of the paper
compact, we provide the detailed explanations and formal descriptions of all the abbreviated notation in
Appx. B.4.

Towards realizing the ideal functionality For the rest of the paper, we focus on realization of our novel
ideal functionality Fmpch(i, C). Our approach of realizing the ideal functionality Fmpch(i, C) closely follows

17 In case at least one user is corrupt, the value of τ can be set by the adversary as long as it is smaller that some
upper bound T which is of order O(γ.length ·∆).

18 Let us emphasize that this design choice does not necessarily lead to a fair coin distribution. For example,
when users of the multi-party channel play a game and one of the users is “about to win” all the coins when
round γ.validity comes. Hence, honest parties should always agree on new contract instances only if they can
enforce contract termination before time γ.validity or if they are willing to take this risk.

18

Functionality F L̂(∆)

mpch (i, C)

This functionality accepts messages from parties in P. Let TimeExe(i,∆) be the timing function for executing
a contract instance in a two party state channel of length at most i, see Appx. B.5.

Multi-party virtual state channel creation

Upon (create, γ) ←−↩ P , where γ is a multi-party virtual state channel and P ∈ γ.users, record the message
and for every Q ∈ γ.neighbors(P) proceed as follows:
1. If you did not already receive (create, γ) from Q let (VP , VQ) := γ.split(P,Q) and remove∑

T∈VP
γ.cash(T) coins from P ’s balance in γ.subchan({P,Q}) and

∑
T∈VQ

γ.cash(T) coins from Q’s

balance in γ.subchan({P,Q}).
2. Distinguish the following cases:

– If within 4 rounds you record (create, γ) from all users in γ.users, define Γ (γ.id) := γ, send
(created, γ) ↪−→ γ.users and wait for channel closing in Step 3 (while accepting update and exe-
cute messages for γ).

– Otherwise wait until γ.validity to refund the coins that you removed from the subchannels in Step 1
within 3∆+ TimeExe(i,∆) + 2 rounds. Then stop.

Automatic closure of a multi-party virtual state channel γ in round γ.validity:

Let γ̂ be the current and γ be the initial version of the multi-party state channel. Let C :=∑
P∈γ.users γ.cash(P) and Ĉ :=

∑
P∈γ.users γ̂.cash(P). Let X := C−Ĉ

|γ.users| .

3. If C > Ĉ, then for every P ∈ γ.users add X to γ̂.cash(P).
4. If all parties are honest, set τ := 3. Otherwise set τ := 3∆ + TimeExe(i,∆) + 2. Wait until round

γ.validity + τ .
5. For every {P,Q} ∈ γ̂.E:

(a) Let (VP , VQ) := γ̂.split(P,Q)
(b) Add

∑
T∈VP

γ̂.cash(T) coins to P ’s balance in γ̂.subchan({P,Q}) and
∑
T∈VQ

γ̂.cash(T) coins to

Q’s balance in γ̂.subchan({P,Q}).
6. Set Γ (γ.id) = ⊥ and send (closed, γ.id)

τ
↪−→ γ.users.

Contract instance update in a multi-party virtual state channel

Upon (update, id , cid , σ̃, C)
τ0←−↩ P , where γ := Γ (id) is a multi-party virtual state channel and P ∈ γ.users,

proceed as follows:

1. Send (update–requested, id, cid , σ̃, C)
τ0+1
↪−−−→ γ.other–party(P).

2. Set τ := τ0 + 1 in optimistic case when all parties in γ.users are honest. Else set τ := τ0 + 3∆+ 3.

3. If for every party Q ∈ γ.other–party(P) you receive (update–reply, ok , id , cid)
τ1≤τ←−−−↩ Q, then set

Γ := UpdateChanSpace(Γ, id , cid , σ̃, C, add), where for every Q ∈ γ.users the value add(Q) is defined
as −σ̃.cash(Q) if γ.cspace(cid) = ⊥ and as σ.cash(Q) − σ̃.cash(Q), where σ := γ.cspace(cid).storage,

otherwise. Set τ2 := max{τ0 + 3, τ1} and send (updated, id , cid)
τ2
↪−→ γ.users.

Contract instance execution in a multi-party virtual state channel

Upon (execute, id , cid , f, z)
τ0←−↩ P , where γ := Γ (id) is a virtual multi-party channel and P ∈ γ.users proceed

as follows:
1. Set τ := τ0 + 6 in the optimistic case when all parties in γ.users are honest and τ := τ0 + 4∆ + 5

otherwise.
2. In round τ1 ≤ τ , let γ := Γ (id), ν := γ.cspace(cid), σ := ν.storage, and τ ′ := τ0 if P is honest and else τ ′

is set by the simulator. Compute (σ̃, add,m) := f(σ, P, τ ′, z). If m = ⊥, then stop. Else set Γ := Update

ChanSpace(Γ, id , cid , σ̃, ν.code, add) and send (executed, id , cid , σ̃, add,m)
τ1
↪−→ γ.users.

Two party state channel

Upon m
τ0←−↩ P where m is not one of the messages from above, proceed exactly as the functionality Fdch(i, C).

Fig. 6. The ideal functionality for multi-party virtual state channels.

19

the modular way we use for defining it. On a very high level, we first show how to construct any two
party state channel, in other words, how to realize the ideal functionality Fdch . This is done in Sec. 5
and Sec. 6. Thereafter, in Sec. 7, we design a protocol for multi-party channels using two party state
channels in a black box way.

5 Modular Approach

In this section, we introduce our approach of realizing Fdch(i, C). We do not want to realize Fdch(i, C)
from scratch, but find a modular approach which lets us reuse existing results.

Reusing standard virtual channels. We give a protocol Πdch(i, C, π) for building two-party state channels
supporting direct dispute. Our construction uses three ingredients: (1) a protocol π for virtual state
channels with indirect dispute up to length i, which was shown in [12] how to build recursively from
subchannels, (2) the ideal functionality Fdch for virtual channels with direct dispute up to length i− 1
and (3) an ideal dispute board. Our protocol can roughly be described by distinguishing three cases:

Case 1: If a party receives a message about a two-party state channel of length j < i, then it forwards
the request to Fdch .

Case 2: If a party receives a message about a virtual state channel with indirect dispute and of length
exactly i, then it behaves as in the protocol π.

Case 3: For the case when a party receives a message about a virtual state channel γ with direct dispute
of length exactly i, we describe a new protocol using Fdch and an ideal dispute board FDB which
we will detail shortly. Central element of the new protocol will be a special contract dVSCC used for
creating and closing γ.

In the rest of this section, we discuss each of the above mentioned building blocks and describe how the
building blocks can be combined and used by our protocol Πdch(i, C, π). We provide the description of
the protocol in the next section, Sec. 6, where we also describe the special contract dVSCC whose instances
are opened in the subchannels of γ during the creation process and guarantee that the final state of γ
will be correctly reflected to the subchannels.

Ideal dispute board. Let us now informally describe our ideal functionality FDB (C) for directly disputing
about contracts whose code is in some set C. On a high level, the functionality models an ideal blockchain
which allows the users to achieve consensus on contract instance. For this, FDB (C) maintains a public
“dispute board”, which is a list of contract states available to all parties. FDB (C) admits two different
procedures to manipulate these states: registration of a contract instance and execution of a contract
instance. The registration procedure works as follows: whenever a party determines a dispute regarding
a specific instance whose code is in the set C, it can register this contract instance by sending its latest
valid state to FDB (C). The dispute board will now give the other party19 of the contract instance some
time to react and to send her latest state. Then, FDB (C) compares both states, judges which is the latest
valid one and adds it to the dispute board. To execute a function of a contract instance without the
other party cooperating, the execute procedure of FDB (C) can be called. We stress that the other party
cannot interfere and merely gets informed about the execution. Upon receiving an execution request for
a contract instance that is contained in the dispute board, FDB (C) will execute the called function and
update the contract instance on the dispute board according to the outcome. The formal description of
the dispute board functionality FDB (C) can be found in Appx. D.

Unfortunately, we cannot simply add an ideal dispute board as another hybrid functionality next to
one for constructing smaller channels. In a nutshell, the reason is that the balances of virtual channels
that are created via subchannels might be influenced by contracts that are in dispute. Upon closing
these virtual channel, the dispute board needs to be taken into account. However, in the standard UC
model it is not possible that ideal functionalities communicate their state. Thus, we will artificially allow
sharing state by merging both ideal functionalities. Technically, this is done by putting a wrapper Wdch

around both functionalities, which can be seen just as a piece of code distributing queries to the wrapped
functionalities. The formal description of the wrapper can be found in Appx. E.

19 For simplicity, we describe here how the functionality FDB handles a dispute about a 2-party contract. FDB

handles disputes about multi-party contracts in a similar fashion.

20

Now that we described all ingredients, we formally state what our protocol Πdch achieves and what it
assumes. On a high level, our protocol gives a method to augment a 2-party state channel protocol π with
indirect dispute, to also support direct dispute. Our transformation is case-tailored for channel protocols
π that are build recursively out of shorter channels. That is, we do not allow an arbitrary protocol π for
channels up to length i, but only one that is itself recursively build out of shorter channels. See Figure 7
for a graphical version of the Theorem 1.20

Theorem 1. Let C0 be a set of contract codes, let i > 1 and ∆ ∈ N. Suppose the underlying signature
scheme is existentially unforgeable against chosen message attacks. Let π be a protocol that realizes the
ideal functionality Fch(i, C0) in the Fch(i− 1, C′0)-hybrid world. Then protocol Πdch(i, C0, π) (cf. Sec. 6)
working in theWdch(i−1, C1, C0)-hybrid model, for C1 := C0∪C′0∪dVSCCi, emulates the ideal functionality
Fdch(i, C1).

Fch(i-1, C′0)

π∼Fch(i, C0)

Theorem 1
=======⇒

Wdch(i-1, C1, C0)

Fdch(i-1, C1)
FDB (C0)

Wdch(i-1, C1, C0)

Fdch(i-1, C1) FDB (C0)

Πdch(i, C0, π)∼Fdch(i, C0)

Fig. 7. We build virtual channels with direct dispute (right) out of standard virtual channels of the same length
(left). The ∼ denotes “is UC-realized by” and → denotes usage of a hybrid functionality. The functionality
Wdch(i-1, C1, C0) is a wrapper combining two functionalities, which we will discuss in detail later.

Remaining technicalities. Remember that our goal is to add direct dispute to a 2-party state channel
protocol that is itself recursively build from smaller subchannels. We still need to solve two technicalities.
Firstly, note that Thm. 1 yields a protocol realizing Fdch for length up to i, while it requires a wrapped
Fdch of length up to i − 1. Thus, to be able to apply it recursively, we introduce a technical Lemma 2
which shows how to modify Πdch(i, C0, π) so that it realizes the wrapped Fdch .

Secondly, we can apply Thm. 1 on any level except for ledger channels. In a nutshell, the reason is
that Thm. 1 heavily relies on using subchannels, which simply do not exist in case of ledger channels.
Fortunately, this can quite easily be resolved by showing how to add our dispute board to a protocol
for ledger channels. We will show how to do this with a protocol π1 from [12] in Lemma 1. Adding the
dispute board to any functionality again works by wrapping functionality Fx and FDB within a wrapper
Wx. The protocol π1 assumes an ideal functionality Fscc which models contracts on the blockchain.

The proofs of both lemmas can be found in Appx. E.

Fscc(C)

π1∼Fch(1, C)

Lemma 1
======⇒

Wscc(C, C0)

Fscc(C)
FDB (C0)

Wscc(C, C0)

Fscc(C) FDB (C0)

Wprot(1, C0, π1)∼Wch(1, C, C0)

Fch(1, C)
FDB (C0)

Wch(1, C, C0)

Fch(1, C) FDB (C0)

Fig. 8. Pictorial representation of Lemma 1.

Lemma 1 (The Blue Lemma). Let C and C0 be two arbitrary sets of contract codes and let π1 be a
protocol that UC-realizes the ideal functionality Fch(1, C) in the Fscc(C)-hybrid world. Then the protocol
Wprot(1, C0, Π1) UC-realizes the ideal functionality Wch(1, C, C0) in the Wscc(C, C0)-hybrid world.

20 For the sake of correctness, in this section we include details about contract sets which each channel is supposed
to handle. In order to understand our modular approach, their relations can be ignored. The reader can just
assume that each subchannel is build in such a way that it can handle all contracts required for building all
the longer channels.

21

Lemma 2 (The Red Lemma). Let i ≥ 2 and let C be a set of contract codes. Let Πi be a protocol
that UC-realizes the ideal functionality Fdch(i, C) in the Wdch(i − 1, C′, C)-hybrid world for some set of
contract codes C′. Then for every C0 ⊆ C the protocol Wprot(i, C0, Πi) UC-realizes the ideal functionality
Wdch(i, C, C0) in the Wdch(i− 1, C′, C)-hybrid world.

Wdch(i-1, C′, C)

Fdch(i-1, C′)
FDB (C)

Wdch(i-1, C′, C)

Fdch(i-1, C′) FDB (C)

Πi∼Fdch(i, C)

Lemma 2
======⇒

Wdch(i-1, C′, C)

Fdch(i-1, C′)
FDB (C)

Wdch(i-1, C′, C)

Fdch(i-1, C′) FDB (C)

Wprot(i, C0, Πi)∼Wdch(i, C, C0)

Fdch(i, C)
FDB (C0)

Wdch(i, C, C0)

Fdch(i, C) FDB (C0)

Fig. 9. Pictorial representation of Lemma 2.

We finish this section with the complete picture of our approach of building any two-party state
channel of length up to 3 (Fig. 10). The picture demonstrates how we recursively realize Fdch function-
alities of increasing length, as well as their wrapped versions Wdch which additionally comprise the ideal
dispute board functionality. While already being required for recursively constructing Fdch , Wdch will
also serve us as a main building block for our protocol for multi-party channels presented in Sec. 7.

Legend

∼ is (UC-)realized by
→ accesses hybrid functionality
⇔ equivalent functionalities
⇒ implication

Indirect Virtual
State Channels

Fscc(C2)

π1∼Fch(1, C2)

π2∼Fch(2, C1)

π3∼Fch(3, C0)

Wscc(C2, C1)

Fscc(C2)
FDB (C1)

Wscc(C2, C1)

Fscc(C2) FDB (C1)

Wprot(1, C1, π1)∼Wch(1, C2, C1)

Fch(1, C2)
FDB (C1)

Wch(1, C2, C1)

Fch(1, C2) FDB (C1)

Wdch(1, C2, C1)

Fdch(1, C2)
FDB (C1)

Wdch(1, C2, C1)

Fdch(1, C2) FDB (C1)

Π2∼Fdch(2, C1)

Wprot(2, C0, Π2)∼

Wdch(2, C1, C0)

Fdch(2, C1)
FDB (C0)

Wdch(2, C1, C0)

Fdch(2, C1) FDB (C0)

Π3∼Fdch(3, C0)

Le
mma 1

Lemma 2
Theorem 1

Theorem 1

Obs. 1 m

Fig. 10. The complete approach of building virtual state channels with direct dispute of length up to 3 (top
left), from channels with indirect dispute (gray background). Thm. 1 and Lemma 1 allow to add direct dispute
to channels. Note that the resulting recursion chain for building longer channels is disconnected due to Thm. 1
requiring FDB . Lemma 2 then reconnects the recursion chain. C0 is an arbitrary contract set. To build longer
channels recursively, we have to allow the necessary channel contracts in each level. Thus, C1 := C0 ∪ C′, where
C′ is a special contract used for opening our target channel (i.e., longer channel supporting direct dispute, or
multi-party channel). Similarly, C2 := C1 ∪ C′′, where again C′′ is a special contract that is needed for the target
channel. Note that it holds that C0 ⊂ C1 ⊂ C2, and also that the length of the channels as well as the target
contract set have to be known in advance.

22

6 Protocol for Two-Party Channels

We now prepared to describe a concrete protocol that realizes the ideal functionality Fdch(i, C0) for i > 1
and any set of contract codes C0 in the hybrid world of the ideal functionalityWdch(i−1, C1, C0) that was

recursively constructed in the previous section. Recall that the ideal functionality W L̂(∆)

dch (i − 1, C1, C0)
combines the functionality of Fdch(i − 1, C1), which is an ideal functionality that allows to build any
state channel of length up to i− 1 in which contract instance with code from C1 can be opened, and the
functionality of the dispute board FDB (C0) that allows parties to dispute about contract instances from
the set C0.

Our strategy of constructing the new protocol, which we denote Πdch(i, C0, π), is to distinguish three
cases which we already informally described in Sec. 5. We recall these three cases here and additionally
explain the minimal requirements on the content of the set C1. On high level, this contract set contains
the contract codes that must be supported by channel of length up to i− 1:

Case 1: If a party receives a message about a two-party state channel of length j < i, then it forwards
the request to the hybrid ideal functionality. Thus we require that C0 ⊆ C1.

Case 2: If a party receives a message about a virtual state channel with indirect dispute and of length
exactly i, then it behaves as in the protocol π.21

Case 3: For the case when a party receives a message about a virtual state channel γ with direct dispute
of length exactly i, we describe a new protocol using (a) shorter state channels as building blocks
that provide monetary guarantees and (b) the dispute board for fair resolution of disagreements. For
(a) we need the subchannels of γ to support contract instances of a special contract code which we
denote dVSCCi and formally define later in this section. Thus we require that dVSCCi ∈ C1.

The first two cases are rather straightforward and we refer the reader to Appx. G for more details. Here
we focus on the most interesting case – Case 3. We begin with the explanation of the contract code
dVSCCi and, thereafter, we describe all parts of the protocol Πdch(i, C0, π) for Case 3.

6.1 Contract Code dVSCCi

In order to create a virtual state channel with direct dispute, let us denote it γ, parties of the channel
need to open a special contract instance in both subchannels of γ. We call these special contract instances
Direct Virtual State Channel Contract instances and denote their code dVSCCi. The parameter i denotes
the length of the virtual channel γ.

Let us demonstrate the role of dVSCCi on a concrete example for i = 3 that is depicted in Fig. 11. Let
us consider four parties P1, P2, P3 and P4 and assume that the following state channels already exist:
ledger channels P1 ⇔ P2, P2 ⇔ P3, P3 ⇔ P4 and a virtual state channel (with or without) direct dispute
of length 2 between P1 ↔ P3. In order to build a virtual state channel with direct dispute γ between P1

and P4, an instance of dVSCC3 has to be built in both P1 ↔ P3 and P3 ⇔ P4. The instances are generated
using the constructor of dVSCC3 which we denote Initd3. The contract instance in P1 ↔ P3 is identified
by cid1 := P1||γ.id and one can view it as a “copy” of the virtual state channel γ, where party P3 plays
the role of party P4. Analogously, the contract instance in P3 ⇔ P4, with identifier cid4 := P4||γ.id,
can be viewed as a “copy” of the virtual state channel γ, where party P3 plays the role of party P1.
So for example, if γ is a virtual state channel in which each party initially invests one coin, then (i)
P1 has to lock one coin in cid1, P4 has to lock one coin in cid4 and (ii) P3 has to lock one coin in the
contract instance cid1 and one coin in the contract instance cid4. Once both cid1 and cid4 are opened,
the virtual state channel γ is considered to be created and can be used by parties P1 and P4 until round
γ.validity, when it must be closed. During the closing procedure, parties execute the contract instance
cid1 and cid4 on the contract function Closed3, whose purpose is to redistribute the locked coins back
to the subchannels according to the final state of the virtual state channel γ. In the example in Fig. 11,
we assume that party P4 has two coins in γ when round γ.validity comes and party P1 has none. Hence
P1 does not get any coin back in the channel P1 ↔ P3, P3 gets two coins back in P1 ↔ P3 and none in
P3 ⇔ P4 and P4 gets two coins back in P3 ⇔ P4.

21 Recall that π is a protocol for virtual state channels with indirect dispute up to length i, which was shown in
[12] how to build recursively from subchannels.

23

To summarize, the role of the dVSCCi contract instances is to (i) guarantee the balance neutrality for
the intermediary of the channel γ and (ii) guarantee the end-users of the channel γ that whatever they
agreed on in the virtual state channel during its lifetime will be reflected to the subchannels when round
γ.validity comes. The interface of the contract code dVSCCi can be found in Fig. 12. The description of
the contract functions is presented together with the protocol Πdch(i, C0, π) later in this section. The
formal definition can be found in Appx. G.

P1 P2 P3 P4dVSCC3
1/0 1/2

dVSCC31/0 1/2

γ
1/0 1/2

Fig. 11. Example of a virtual state channel with direct dispute γ of length 3 in which both end users P1 and P4

initially invest one coin. When the channel is being closed, party P4 possesses both coins of the channel γ. In both
subchannels of γ, a contract instance of the code dVSCC3 has to be opened. The figure depicts the initial/final
balances of parties in each of these contract instances.

Interface of the contract dVSCCi

Attributes:
– Mandatory attributes: users, locked, cashL, cashR (see Sec. 3.2)
– virtual–channel: stores the initial version of the virtual state channel γ;

Functions:
– Initdi : the constructor of the contract (see page 45);
– Closedi : a contract function called when the virtual state channel is being closed (see page 49).

Fig. 12. Interface of the contract dVSCCi

6.2 Protocol Description

Below we provide an intuitive explanation of each part of the protocol Πdch(i, C0, π) for the Case 3. The
formal description can be found in Appx. G. Let us emphasize that some protocol parts are very similar
to the protocol for ledger state channel or the protocol for virtual state channel with indirect dispute
which were described in [12].

Create a virtual state channel with direct dispute As already explained in Sec 6.1, in order to create a
virtual state channel γ with direct dispute and length i, parties have to open a dVSCCi contract instance in
both subchannels of γ. This is done using the “update” mechanism of the subchannels. Since subchannels
of γ are state channels of length < i, update of their contract instance can be done in a black-box way
via the hybrid ideal functionality W L̂(∆)

dch (i− 1, C1, C0). Let us explain how this is done in more detail.
In order to create the virtual state channel γ, party γ.Alice runs (locally) the dVSCCi constructor

Initdi (γ.Alice, τ0, γ), where τ0 is the current round, and obtains the initial contract instance storage
σA. Thereafter, she requests an update by sending the message (update, idA, cidA, σA, dVSCCi) to the
hybrid ideal functionality, where idA is the identifier of the subchannel between her and γ.Ingrid and
cidA := γ.Alice||γ.id. The party γ.Bob proceeds analogously. If in round τ0+1, party γ.Ingrid receives two
symmetric update requests from the ideal functionality, meaning that γ.Alice’s proposal corresponds to
the result of Initdi (γ.Alice, τ0, γ) and γ.Bob’s proposal corresponds to the result of Initdi (γ.Alice, τ0, γ),
she confirms both update requests. Parties γ.Alice and γ.Bob signal to each other in round τ0 + 2 that
the updates were successfully completed and output “created” to the environment which completes the
channel creation. To conclude, successful creation of the channel γ takes 3 rounds.

24

Register a contract instance in a virtual state channel with direct dispute As long as end-users of the
virtual state channel γ with direct dispute and length i behave honestly, they can update/execute contract

instance in the channel γ without communicating with the hybrid ideal functionality W L̂(∆)

dch (i− 1, C1, C0)
which models the dispute board and the subchannels of γ. However, once the end-users disagree with
each other on the latest state of a contract instance in the channel γ, they need some third party to
fairly resolve their disagreement. In case of virtual state channel with direct dispute, the dispute board
plays the role of such a judge which intuitively means that, as soon as parties disagree about a contract
instance, they go directly to the blockchain to resolve their disagreement. Let us emphasize that this is
different than in the case of a virtual state channel without direct dispute, where parties tried to resolve
their dispute via the subchannels.

Parties might run into dispute about a contract instance when they update/execute the contract
instance or when the are closing the virtual state channel γ. In order to avoid code repetition, we
define the dispute process as a separate registration procedure, RegisterDirect(P, id , cid). The input
parameter P denotes the initiating party of the dispute process, the parameter id identifies the virtual
state channel γ and cid is the identifier of the contract instance parties disagree on.

On a high level, the initiating party P first sends her version of the contract instance, let us denote it
νP , to the dispute board.22 The dispute board verifies the validity of νP and informs the other party of
the virtual state channel, let us denote this party Q, that registration was requested. The party Q has the
opportunity to react on the registration request by submitting her own version of the contract instance,
let us denote it νQ. After a certain amount of rounds, which is sufficient for Q to react, the initiating
party P can request finalization of the registration. The dispute board compares the two submitted
contract instance versions νP and νQ and registers the one with higher version number. Parties interact
with the dispute board three times during the registration process; hence, the time complexity of the
registration if bounded by 3∆, where ∆ is the “blockchain delay” parameter (see Sec. 3.2).

Before we proceed to the next part of the protocol Πdch(i, C0, π), let us briefly discuss one technicality.
Looking ahead, when a party P wants to open a new contract instance ν in the channel γ, she sends
her signature on the first version of the contract instance to the other party Q. If Q does not reply to
P ’s request by sending a valid signature on the proposed contract instance, P is in a difficult situation.
Note that P does not have any valid version of the contract instance that she could submit to the
dispute board and initiate the registration process. On the other had, Q can decide at any later point to
register ν since it has P ’s signature. Because of this special case, the dispute board allows P to initiate
the registration process by submitting the set {P,Q} instead of a valid contract instance version. The
dispute board then knows that it should inform the party Q about P ’s registration request and expect
an immediate reply. If Q does not react, then the dispute board marks the contract instance cid in the
channel γ as “unregistrable”, which prevents Q from registering ν in some later round.

Update a contract instance in a virtual state channel with direct dispute The main idea of the update
subprotocol is that parties of the virtual state channel γ exchange signatures on the new contract instance.
More precisely, the party initiating the update, let us denote this party P , signs the new contract instance
version and contacts the other party of the channel, let us denote it Q, to sign the new contract instance
version as well. The party Q can either (i) agree with the update and send her signature on the new
contract instance version back to P , or (ii) disagree with the update in which case Q signs the original
version of the contract instance but with higher version number, or (iii) in case Q is malicious, it can
simply abort and not reply, reply with an invalid message etc. Note that in the third case, party P does
not know which contract instance version is the latest valid one. In order to force Q to either accept or
reject the update, P initiates the registration procedure by executing the procedure RegisterDirect in
which parties contact the dispute board to resolve the disagreement about the latest valid state of the
contract instance. In case Q registers the new contract instance version on the dispute board, update
is successfully completed. Hence, the update protocol takes in the optimistic case 2 rounds and in the
pessimistic case, when registration on the dispute board is needed, it takes up to 3∆+ 2 rounds.

Execute a contract instance in a virtual state channel with direct dispute Execution of a contract instance
in a virtual state channel γ with direct dispute and length i works on high level as follows. If both end-
users of the channel γ are honest, then they first try to execute the contract instance in a peaceful way.

22 In fact, party sends the message to the hybrid ideal functionalityW L̂(∆)

dch (i−1, C1, C0) which internally runs the
code of the dispute board ideal functionality FDB .

25

This means that the initiating party P locally executes the function to obtain the new contract instance
version. Then P signs it and sends details of the execution and the signature to the other party of the
channel, let us denote this party Q. Party Q verifies the correctness of P ’s local execution and validity of
P ’s signature and if no mistakes are found, Q sends her signature on the new contract instance version
to P . If the peaceful execution fails, party P initiates the registration procedure to reach consensus with
Q on the latest valid version. In case Q registers the contract instance version after the execution, then
the execution process is completed. Otherwise, P has to execute the contract instance forcefully via the
dispute board.

Before we proceed to the channel closing procedure, let us discuss one technicality. Since we allow
parties to execute contract instances fully concurrently, we need to tackle the problematic situation when
both end-users want to peacefully execute the same contract instance in the same round. To this end,
we assign a “time slot” to each party, in which it is allowed to propose a peaceful execution request.
More precisely, the party γ.Alice can send a peaceful execution request to party γ.Bob only if the round
number τ = 1 mod 4. Party γ.Bob can send a peaceful update request to party γ.Alice only if the round
number τ = 3 mod 4. Hence, if an honest party P receives the execution message from the environment,
the party might need to wait for 3 rounds until it is allowed to propose the execution to the other party.

To summarize, the execution protocol takes in the optimistic case up to 5 rounds and up to 4∆+ 5
rounds in the pessimistic case when the registration and force execution via the dispute board are needed.

Close a virtual state channel with direct dispute The closing procedure of a virtual state channel with
direct dispute γ starts automatically in round γ.validity. The goals of the closing procedure is to unlock
the coins that were locked in the subchannels of γ when the channel γ was created. Importantly, the
coins have to be unlocked back to the subchannels in a way that corresponds to the final distribution in
the virtual state channel γ. Let us now give an high level explanation on how this is done.

The end-users of the channel, γ.Alice and γ.Bob, first try to unlock the coins back to the subchannels
in a peaceful way by updating the dVSCCi contract instances in the subchannels. More precisely, party
γ.Alice locally executes the dVSCCi contract instance with identifier cidA := γ.Alice||γ.id on the function
f = Closedi and input parameter z containing all contract instances ever opened in γ, i.e. z contains
ν := γ.cspace(cid) if ν 6= ⊥. The function Closedi is designed in such a way that it processes every
contract instance ν ∈ z and adjusts the cash attributes of cidA according to the coin distribution in ν.
Once all contract instances from z are processed, the balances in cidA correspond to the final balances
of γ. Hence Closedi can unlock coins from cidA and output a terminated contract instance storage. The
party γ.Alice uses the result of the local execution as an update proposal for the contract instance cidA.
The update request is made via the hybrid ideal functionality W L̂(∆)

dch (i − 1, C1, C0). The party γ.Bob
proceeds analogously with the dVSCCi contract instance with identifier cidB := γ.Alice||γ.id.

If the intermediary of the channel, party γ.Ingrid, receives two symmetric update requests from the
hybrid ideal functionality W L̂(∆)

dch (i− 1, C1, C0), it confirms both of them. However, if the update requests
are not symmetric, which implies that at least one of the end-users is trying to close γ with a false view on
the set γ.cspace, γ.Ingrid does not confirm any of the updates. This forces the end-users to first publicly
reach consensus on the content of the set γ.cspace and only then complete the closing procedure.

Hence, parties γ.Alice and γ.Bob register all the contract instances in γ.cspace on the dispute board
which guarantees a unique global view on the set γ.cspace. This is done by running RegisterDirect.
After the registration procedure, γ.Alice requests execution of cidA on the function Closedi and γ.Bob
requests execution of cidB on the function Closedi . If one of the parties did not request the execution, the
intermediary can, after some time, request it herself. Let us emphasize that since the execution of cidA
and cidB is done via the hybrid ideal functionality W L̂(∆)

dch (i − 1, C1, C0), the input parameter z is equal
to the set γ.cspace as it appears on the dispute board in both executions. This guarantees symmetric
termination of both cidA and cidB .

The closing procedure is completed in round γ.validity + 3 in the optimistic case when all users of γ
are honest. Otherwise it is completed before round γ.validity + 3∆ + 2 + TimeExe(di/2e), where Time
Exe(di/2e) represents the upper bound on the time complexity of force execution in a virtual state
channel of length at most di/2e (see Appx. B.5 for the precise definitions). Let us emphasize that the
above high level description excludes some technical details which can be found in the formal description
in Appx. G.

26

7 Protocol for Multi-Party Channels

In this section we describe a concrete protocol that realizes the ideal functionality Fmpch(i, C0) for i ∈ N
and any set of contract codes C0 in the Wdch(i, C1, C0)-hybrid world. Recall that Wdch(i, C1, C0) is a
functionality wrapper (cf. Sec. 5) combining the dispute board FDB (C0) and the ideal functionality
Fdch(i, C1) for building two-party state channels of length up to i supporting contract instances whose
codes are in C1. Our strategy of constructing a protocol Πmpch(i, C0) for multi-party channels is to
distinguish two cases. These cases also outline the minimal requirements on the set of supported contracts
C1:

Case 1: If a party receives a message about a two-party state channel, it forwards the request to the
hybrid ideal functionality. Thus, we require C0 ⊂ C1.

Case 2: For the case when a party receives a message about a multi-party channel γ, we design a
new protocol that uses (a) the dispute board for fair resolution of disagreements between the users
of γ and (b) two-party state channels as a building block that provides monetary guarantees. For
(b) we need the subchannels of γ to support contract instances of a special code mpVSCCi; hence,
mpVSCCi ∈ C1.

Since case 1 is rather straightforward, we refer the reader to Appx. H for technical details. Here we
discuss case 2 in more detail, by first describing the special contract code mpVSCCi and then the protocol
for multi-party channels.

7.1 Multi-Party Channel Contract

In order to create a multi-party channel γ, parties of the channel need to open a special two-party
contract instance in each subchannel of γ (recall the example depicted in Fig. 2 in Sec. 2.3). We denote
the code of these instances mpVSCCi, where i ∈ N is the maximal length of the channel in which an
instance of mpVSCCi can be opened. A contract instance of mpVSCCi in a subchannel of γ between two
parties P and Q can be understood as a “copy” of γ, where P plays the role of all parties from the set
VP and Q plays the role of parties from the set VQ, where (VP , VQ) := γ.split({P,Q}). The purpose of
the mpVSCCi contract instances is to guarantee to every user of γ that he gets the right amount of coins
back to his subchannels when γ is being closed in round γ.validity. And this must be true even if all other
parties collude.23

The contract has in addition to the mandatory attributes users, locked, cash (see Sec. 3.2) one ad-
ditional attribute virtual–channel storing the initial version of the multi-party channel γ. The interface
of the contract code dVSCCi can be found in Fig. 13. The description of the contract functions is pre-
sented together with the protocol Πmpch(i, C0) later in this section. The formal definition can be found
in Appx. G.

Interface of the contract code mpVSCCi

Attributes: users, locked, cash (mandatory attributes, see Sec. 3.2),
virtual–channel (stores the initial version of the multi-party channel γ);

Functions:
Init

mp
i : the constructor of the contract (see page 50)

Close
mp
i : a contract function called when the multi-party channel is being closed (see page 54)

Fig. 13. Interface of the contract code mpVSCCi.

7.2 Protocol Description

We now informally explain the main ideas of the protocol Πmpch(i, C0) for the Case 2, i.e. when a message
about a multi-party channel is received by the parties. We discuss each part of the protocol separately.
The formal description of the protocol can be found in Appx. H.

23 This statement assumes that the only contract instances that can be opened in the multi-party channel are
the ones whose code allows any user to enforce termination before time γ.validity.

27

Create a multi-party channel. Parties are instructed by the environment to create a multi-party channel
γ via the message (create, γ). As already explained before, parties have to add an instance of mpVSCCi to
every subchannel of γ. This is, on high level, done as follows. Let P and Q be the two parties of a two
party channel α which is a subchannel of γ. Let us assume for now that OrderP(P) < OrderP(Q) (see
Sec. 3.2 for the definition of OrderP). If P receives the message (create, γ) in round τ0, it requests an
update of a contract instance in the state channel α via the hybrid ideal functionality. As parameters of
this request, P chooses the channel identifier cid := P ||Q||γ.id, the contract storage Init

mp
i (P,Q, τ0, γ)

and contract code mpVSCCi. Recall that Init
mp
i is the constructor of the special contract mpVSCCi. If the

party Q also received the message (create, γ) in round τ0, it knows that it should receive an update
request from the hybrid ideal functionality in round τ0 + 1. If this is indeed the case, Q inspects P ’s
proposal and confirms the update.

Assume that the environment sends (create, γ) to all users of γ in the same round τ0. If all parties
follow the protocol, in round τ0 + 2 all subchannels of γ should contain a new contract instance with the
contract code mpVSCCi. However, note that a party P ∈ γ.users only has information about subchannels
it is part of, i.e. about subchannels SP := {α ∈ γ.subchan | P ∈ α.end–users}. To this end, every honest
party P sends a message “create–ok” to every other party if all subchannels in SP contain a new mpVSCCi
instance in round τ0 + 2. Hence, if all parties are honest, latest in round τ0 + 3 every party knows that
the creation process of γ is completed successfully. However, if there is a malicious party P that sends
the “create–ok” to all parties except for one, let us call it Q, then in round τ0 + 3 only Q thinks that
creation failed. In order to reach total consensus on creation among honest parties, Q signals the failure
by sending a message “create–not–ok” to all other parties.

To conclude, an honest party outputs (created, γ) to the environment if (1) it received “create–ok”
from all parties in round τ0 + 3 and (2) did not receive any message “create–not–ok” in round τ0 + 4.

Register a contract instance in a multi-party channel. As long as users of the multi-party channel γ behave
honestly, they can update/execute contract instances in the channel γ by communicating with each other.
However, once the users disagree, they need some third party to fairly resolve their disagreement. The
dispute board, modeled by the hybrid ideal functionality Wdch(i, C1, C0), plays the role of such a judge.

Parties might run into dispute when they update/execute the contract instance or when they are
closing the channel γ. In order to avoid code repetition, we define the dispute process as a separate
procedure mpRegister(P, id , cid). The input parameter P denotes the initiating party of the dispute
process, the parameter id identifies the channel γ and cid is the identifier of the contract instance parties
disagree on. The initiating party submits its version of the contract instance, νP , to the dispute board
which then informs all other parties about P ’s registration request. If a party Q has a contract instance
version with higher version number, i.e. νQ.version > νP .version, then Q submits this to the dispute
board. After a certain time, which is sufficient for other parties to react to P ’s registration request, any
party can complete the process by sending “finalize” to the dispute board which then informs all parties
about the result.

Update a contract instance in a multi-party channel. In order to update the storage of a contract instance
in a multi-party channel from σ to σ̃, the environment sends the message (update, id , cid , σ̃, C) to one
of the parties P , which becomes the initiating party. Let τ0 denote the round in which P receives this
message. On a high level the update protocol works as follows. P sends the signed new contract storage σ̃
to all other parties of γ. Each of these parties Q ∈ γ.other–party(P) verifies if the update request is valid
(i.e., if P ’s signature is correct) and outputs the update request to the environment. If the environment
confirms the request, Q also signs the new contract storage σ̃ and sends it as part of the “update–ok”
message to the other channel parties. In case the environment does not confirm, Q sends a rejection
message “update–not–ok” which contains Q’s signature on the original storage σ but with a version
number that is increased by two, i.e., if the original version number was w, then Q signs σ with w + 2.

If in round τ0 + 2 a party P ∈ γ.users is missing a correctly signed reply from at least one party, it is
clear that someone misbehaved. Thus, P initiates the registration procedure to resolve the disagreement
via the dispute board.

If P received at least one rejection message, it is unclear to P if there is a malicious party or not.
Note that from P ’s point of view it is impossible to distinguish whether (a) one party sends the “update–
not–ok” message to P and the message “update–ok” to all other parties, or (b) one honest party simply
does not agree with the update and sends the “update–not–ok” message to everyone. To resolve this

28

uncertainty, P communicates to all other parties that the update failed by sending the signed message
(update–not–ok, σ, w + 2) to all other parties. If all honest parties behave as described above, in round
τ0 + 3 party P must have signatures of all parties on the original storage with version number w + 2;
hence, consensus on rejection is reached. If P does not have all the signatures at this point, it is clear
that at least one party is malicious. Thus, P initiates the registration which enforces the consensus via
the dispute board.

If P receives a valid “update–ok” from all parties in round τ0 + 2, she knows that consensus on the
updated storage σ̃ will eventually be reached. This is because in worst case, P can register σ̃ on the
dispute board. Still, P has to wait if no other party detects misbehavior and starts the dispute process
or sends a reject message in which case P initiates the dispute. If none of this happens, all honest parties
output the message “updated” in round τ0 + 3. Otherwise they output the message after the registration
is completed.

Execute a contract instance in a multi-party channel. The environment triggers the execution process
by sending the instruction (execute, id , cid , f, z) to a party P in round τ0. P first tries to perform the
execution of the contract instance with identifier cid in a channel γ with identifier id peacefully, i.e.
without touching the blockchain. An intuitive design of this process would be to let P compute f(z)
locally and send her signature on the new contract storage (together with the environment’s instruction)
to all other users of γ. Every other user Q would verify this message by recomputing f(z) and confirm
the new contract storage by sending her signature on it to the other users of γ.

It is easy to see that this intuitive approach fails when two (or more) parties want to peacefully
execute the same contract instance cid in the same round. While in two party channels this can be
solved by assigning “time slots” for each party, this idea cannot be generalized to the n-party case,
without blowing up the number of rounds needed for peaceful execution from O(1) to O(n). To keep
the peaceful execution time constant, we let each contract instance have its own execution period which
consists of four rounds:

Round 1: If P received (execute, id , cid , f, z) in this or the previous 3 rounds, it sends (peaceful–request,
id , cid , f, z, τ0) to all other parties.

Round 2: P locally sorts24 all requests it received in this round (potentially including its own from the
previous round), locally performs all the executions and sends the signed resulting contract storage
to all other parties.

Round 3: If P did not receive valid signatures on the new contract storage from all other parties, it
starts the registration process.

Round 4: Unless some party started the registration process, P outputs an execution success message.

If the peaceful execution fails, i.e. one party initiates registration, all execution requests of this period
must be performed forcefully via the dispute board.

Close a multi-party channel. The closing procedure of a multi-party channel begins automatically in
round γ.validity. Every pair of parties {P,Q} ∈ γ.E tries to peacefully update the mpVSCCi contract
instance, let us denote its identifier cid , in their subchannel α := γ.subchan({P,Q}). More precisely, both
parties locally execute the function Close

mp
i of contract instance cid with input parameter z := γ.cspace –

the tuple of all contract instances that were ever opened in γ. The function Close
mp
i adjusts the balances

of users in cid according to the provided contract instances in z and unlocks all coins from cid back to
α.

If the peaceful update fails, then at least one party is malicious and either does not communicate or
tries to close the channel γ with a false view on the set γ.cspace. In this case, users have to register all
contract instances of γ on the dispute board. This guarantees a fixed global view on γ.cspace. Once the
registration process is over, the mpVSCCi contract instances in the subchannels can be terminated using
the execute functionality of Wdch(i, C1, C0) on function Close

mp
i . Since the set γ.cspace is now publicly

available on the dispute board, the parameter z will be the same in all the mpVSCCi contract instance
executions in the subchannels. Technically, this is taken care of by the wrapper Wch(i, C1, C0) which
overwrites the parameter z of every execution request with function Close

mp
i to the relevant content of

the dispute board. See Sec. 5 and Appx. E for more details.

24 We assume a fixed ordering on peaceful execution requests. See Appx. H for more details.

29

Theorem 2. Suppose the underlying signature scheme is existentially unforgeable against chosen mes-
sage attacks. For every set of contract codes C0, every i ≥ 1 and every ∆ ∈ N, the protocol Πmpch(i, C0)
in the Wdch(i, C1, C0)-hybrid model emulates the ideal functionality Fmpch(i, C0).

8 Conclusion

We presented the first full specification and construction of a state channel network that supports multi-
party channels. The pessimistic running time of our protocol can be made constant for arbitrary complex
channels. While we believe that this is an important contribution by it self, we also think that it is very
likely that the techniques developed by us will have applications beyond the area of off-chain channels.
In particular, the modeling of multiparty state channels that we have in this paper can be potentially
useful in other types of off-chain protocols, e.g., in Plasma [29]. We leave extending our approach to such
protocols as an interesting research direction for the future.

Acknowledgments. This work was partly supported by the German Research Foundation (DFG)
Emmy Noether Program FA 1320/1-1, the DFG CRC 1119 CROSSING (project S7), the Ethereum
Foundation grant Off-chain labs: formal models, constructions and proofs, the Foundation for Pol-
ish Science (FNP) grant TEAM/2016-1/4, the German Federal Ministry of Education and Research
(BMBF) iBlockchain project, by the Hessen State Ministry for Higher Education, Research and the
Arts (HMWK) and the BMBF within CRISP, and by the Polish National Science Centre (NCN) grant
2014/13/B/ST6/03540.

We thank Jan Camenisch for useful discussions on the UC model.

References

[1] I. Allison. Ethereum’s Vitalik Buterin explains how state channels address privacy and scalability.
2016.

[2] I. Bentov and R. Kumaresan. “How to Use Bitcoin to Design Fair Protocols”. In: CRYPTO 2014,
Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 421–439. doi: 10.1007/978-3-662-44381-1_24.

[3] Bitcoin Wiki: Payment Channels. https://en.bitcoin.it/wiki/Payment_channels. 2018.
[4] R. Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Protocols”. In:

42nd FOCS. IEEE Computer Society Press, Oct. 2001, pp. 136–145.
[5] R. Canetti and T. Rabin. “Universal Composition with Joint State”. In: CRYPTO 2003. Ed. by

D. Boneh. Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003, pp. 265–281.
[6] R. Canetti et al. “Universally Composable Security with Global Setup”. In: TCC 2007. Ed. by

S. P. Vadhan. Vol. 4392. LNCS. Springer, Heidelberg, Feb. 2007, pp. 61–85.
[7] Celer Network. https://www.celer.network. 2018.
[8] T. Close. Nitro Protocol. Cryptology ePrint Archive, Report 2019/219. https://eprint.iacr.

org/2019/219. 2019.
[9] Counterfactual. https://counterfactual.com. 2018.

[10] C. Decker and R. Wattenhofer. “A Fast and Scalable Payment Network with Bitcoin Duplex
Micropayment Channels”. In: Stabilization, Safety, and Security of Distributed Systems. Ed. by A.
Pelc and A. A. Schwarzmann. Springer International Publishing, 2015, pp. 3–18. isbn: 978-3-319-
21741-3.

[11] D. Dolev and H. R. Strong. “Authenticated Algorithms for Byzantine Agreement”. In: SIAM J.
Comput. 12.4 (1983), pp. 656–666. doi: 10.1137/0212045. url: https://doi.org/10.1137/
0212045.

[12] S. Dziembowski et al. “General State Channel Networks”. In: ACM CCS 18. 2018, pp. 949–966.
[13] S. Dziembowski et al. Perun: Virtual Payment Hubs over Cryptographic Currencies. conference

version accepted to the 40th IEEE Symposium on Security and Privacy (IEEE S&P) 2019. 2017.
url: http://eprint.iacr.org/2017/635.

[14] J. A. Garay et al. “Round Complexity of Authenticated Broadcast with a Dishonest Majority”.
In: 48th FOCS. IEEE Computer Society Press, Oct. 2007, pp. 658–668.

30

[15] O. Goldreich. Foundations of Cryptography: Volume 1. New York, NY, USA: Cambridge University
Press, 2006. isbn: 0521035368.

[16] D. Hofheinz and J. Mueller-Quade. A Synchronous Model for Multi-Party Computation and the In-
completeness of Oblivious Transfer. Cryptology ePrint Archive, Report 2004/016. http://eprint.
iacr.org/2004/016. 2004.

[17] Y. T. Kalai et al. “Concurrent Composition of Secure Protocols in the Timing Model”. In: Journal
of Cryptology 20.4 (Oct. 2007), pp. 431–492.

[18] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography
and Network Security Series). Chapman & Hall/CRC, 2007. isbn: 1584885513.

[19] J. Katz et al. “Universally Composable Synchronous Computation”. In: TCC 2013. Ed. by A.
Sahai. Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013, pp. 477–498. doi: 10.1007/978-3-642-
36594-2_27.

[20] R. Khalil and A. Gervais. NOCUST - A Non-Custodial 2nd-Layer Financial Intermediary. Cryp-
tology ePrint Archive, Report 2018/642. https://eprint.iacr.org/2018/642. 2018.

[21] R. Khalil and A. Gervais. “Revive: Rebalancing Off-Blockchain Payment Networks”. In: ACM CCS
17. Ed. by B. M. Thuraisingham et al. ACM Press, 2017, pp. 439–453.

[22] J. Lind et al. “Teechain: Reducing Storage Costs on the Blockchain With Offline Payment Chan-
nels”. In: Proceedings of the 11th ACM International Systems and Storage Conference, SYSTOR
2018. ACM, 2018, p. 125. doi: 10.1145/3211890. url: http://doi.acm.org/10.1145/3211890.
3211904.

[23] G. Malavolta et al. “Concurrency and Privacy with Payment-Channel Networks”. In: ACM CCS
17. Ed. by B. M. Thuraisingham et al. ACM Press, 2017, pp. 455–471.

[24] P. McCorry et al. Pisa: Arbitration Outsourcing for State Channels. Cryptology ePrint Archive,
Report 2018/582. https://eprint.iacr.org/2018/582. 2018.

[25] P. McCorry et al. “You sank my battleship ! A case study to evaluate state channels as a scaling
solution for cryptocurrencies”. In: 2018.

[26] A. Miller et al. “Sprites: Payment Channels that Go Faster than Lightning”. In: CoRR abs/1702.05812
(2017). url: http://arxiv.org/abs/1702.05812.

[27] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http://bitcoin.org/bitcoin.
pdf. 2009.

[28] J. B. Nielsen. “On Protocol Security in the Cryptographic Model”. PhD thesis. Aarhus University,
2003.

[29] J. Poon and V. Buterin. Plasma: Scalable Autonomous Smart Contracts. 2017. url: http://

plasma.io/plasma.pdf.
[30] J. Poon and T. Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. Draft

version 0.5.9.2, available at https://lightning.network/lightning-network-paper.pdf. Jan.
2016.

[31] S. Roos et al. “Settling Payments Fast and Private: Efficient Decentralized Routing for Path-Based
Transactions”. In: NDSS. 2018.

[32] N. Szabo. Smart Contracts: Building Blocks for Digital Markets. Extropy Magazine. 1996.

31

Appendix (Supplementary Material)

A Further Background on Contracts and State Channels [12]

Some prior work on channels has already been provided in Sec. 2.1. In this section we provide some further
details on the dispute handling procedure that was mentioned there. In order to better understand it, we
start by providing some more technical details on the state channel off-chain execution mechanism. Let
ν be a contract instance of the pre-image selling contract Csell, say, and denote by G0 its initial state. To
deploy ν in the state channel both parties exchange signatures on (G0, 0), where the second parameter
in the tuple will be called the version number (and y is the value whose pre-image Alice wants to learn).
The rest of the execution is done by exchanging signatures on further states with increasing version
number. For instance, suppose in the pre-image selling contract Csell (described earlier in this section)
the last state on which both parties agreed on was (G1, 1) (i.e., both parties have signatures on this state
tuple), and Bob wants to provide x′ such that H(x′) = y. To this end, he locally evaluates the contract
instance to obtain the new state (G2, 2), and sends it together with his signature to Alice. Alice verifies
the correctness of both the computation and the signature, and if both checks pass, he replies with his
signature on (G3, 3).

Let us start by taking a look at the dispute resolution for ledger channels and consider a setting where
a malicious Alice does not reply with her signature on (G3, 3) (for example because she wants to avoid
“acknowledging” that she received x′). In this case, Bob can force the execution of the contract instance
ν on-chain by registering in the state channel contract SCC the latest state on which both parties agreed
on. To this end, Bob will send the tuple (G2, 2) together with the signature of Alice to SCC. Of course,
SCC cannot accept this state immediately because it may be the case that Bob cheated by registering an
outdated state.25 Hence, the ledger contract SCC gives Alice time ∆ to reply with a more recent signed
state (recall that in Sec. 1.1 we defined ∆ to be a constant that is sufficiently large so that every party
can be sure her transaction is processed by the ledger within this time). When ∆ time has passed, SCC
finalizes the registration process by storing the version with the highest version number in its storage.
Once registration is completed, the parties can continue the execution of the contract instance on-chain.26

As described in Sec. 2.1 the dispute process for virtual state channels is significantly more complex.

B Additional Notation and Definitions

B.1 The Clock Functionality

As discussed in Sec. 3.1, we formalize the notion of rounds via the ideal functionality Ĝclock representing
the clock. On high level, the ideal functionality requires all honest parties to indicate that they are
prepared to proceed to the next round before the clock is “ticked”. We consider the clock functionality
presented by Katz et. al [19] with two minor modifications. Firstly, since we use Ĝclock as a global ideal
functionality, it additionally maintains a internal “round counter” t. And secondly, because we consider
only static corruption, the set of honest parties is fixed and hence the functionality does not need to
include a mechanism for corrupting parties “on the fly”.

Ideal functionality Ĝclock

The functionality is parameterized by a set of parties P = {P1, . . . , Pn}. The functionality maintains an
internal counter t which is initially set to 0. In addition, for each party Pi it maintains a flag di initially set
to 0. The functionality accepts the following messages:

Round Ok

Upon receiving the message (RoundOK) from a party Pi ∈ P, set di := 1. If for all honest Pj ∈ P, dj = 1,
then set t := t+ 1 and reset dj := 0 for all j ∈ [n]. In any case, leak (RoundOK, Pi) to the adversary.

25 Notice that SCC is oblivious to what happened inside the ledger state channel γ after it was created.
26 In the example that we considered, Bob can now force Alice bear the consequences of the fact that he revealed
x′ to the contract instance.

Round Request

Upon receiving the message (RequestRound) from Pi ∈ P, reply to Pi by sending (t, di).

B.2 Formal Definition of a Contract Code

We will now define formally the notion of contract code that was already described informally in Sec. 3.2.
Formally a contract code consists of some functions (in Ethereum they are written in Solidity) that
operate on contract storage. The set of possible contract storages is usually restricted (e.g. the functions
expect that it has certain attributes defined). We call the set of restricted storages the admissible contract
storages and typically denote it by Λ.

Formally, we define a contract code as a tuple C = (Λ, g1, . . . , gr, f1, . . . , fs), where Λ are the admis-
sible contract storages and g1, . . . , gr are functions called contract constructors, and f1, . . . , fs are called
contract functions. Each contract constructor gi is a function that takes as input a tuple (P, τ, z), with
P ∈ P, τ ∈ N, and z ∈ {0, 1}∗, and produces as output an admissible contract storage σ or a special
symbol ⊥ (in which case we say that the contract construction failed). The meaning of these parameters
is as follows: P is the identity of the party that called the function, τ is the current round, and z is used
to pass additional parameters to gi. The constructors are used to create a new instance of the contract.
If the contract construction did not fail, then gi(P, τ, z) is the initial storage of a new contract instance.

Each contract function fi takes as input a tuple (σ, P, τ, z), with σ ∈ Λ being an admissible contract
storage, P ∈ σ.users, τ ∈ N and z ∈ {0, 1}∗ (the meaning of these parameters is as before). It outputs a
tuple (σ̃, add,m), where σ̃ is the new contract storage (that replaces contract storage σ in the contract
instance), values add : [n]→ R≥0 correspond to the amount of coins that were unlocked from the contract
storage to each user (as a result of the execution of fi), and m ∈ {0, 1}∗ ∪ {⊥} is an output message. If
the output message is ⊥, we say that the execution failed (we assume that the execution always fails if
a function is executed on input that does not satisfy the constraints described above, e.g., it is applied
to σ that is not admissible). If the output message m 6= ⊥, then we require that σ̃ is an admissible
contract storage and the attribute users in σ̃ is identical to the one in σ. In addition, it must hold that∑
i∈[n] add(i) = σ.locked − σ̃.locked. Intuitively, this condition guarantees that executions of a contract

functions can never result in unlocking more coins than what was originally locked in the contract storage.

B.3 Formal Definition of the Function γ.split

In order to formally define the function γ.split, we first define an auxiliary function Decompose which,
intuitively, decomposes a graph into connected components. More precisely, the function Decompose on

input a graph G = (V,E) outputs G1, . . . , G`, where (i)
⋃
i∈[`]Gi =

(⋃
i∈[`] Vi,

⋃
i∈[`]Ei

)
= (V,E) = G,

(ii) every Gi is a connected graph and (iii) for every i 6= j it holds that Vi ∩ Vj = ∅. Using the function
Decompose, we now define the function γ.split. On input (P,Q), where {P,Q} ∈ γ.E, proceeds as follows

1. Set V ′ := γ.users and E′ := γ.E \ {P,Q}
2. Set (V1, E1) ∪ (V2, E2) := Decompose(V ′, E′)
3. If P ∈ V1, then set (VP , VQ) := (V1, V2), otherwise set (VP , VQ) := (V2, V1).
4. Output (VP , VQ).

B.4 Notation Simplifying the Formal Descriptions

In order to simplify the notation in the description of the ideal functionalities and protocols, we introduce
symbolic notation for sending and receiving messages. Instead of the instruction “Send the message msg

to party P in round τ”, we write msg
τ
↪−→ P. Instead of the instruction “Send the message msg to all

parties in the set S in round τ”, we write msg
τ
↪−→ S. By msg

τ←−↩ P we mean that an entity (i.e. the ideal

functionality) receives a message msg from party P in round τ , and we use msg
τ≤τ1←−−−↩ P when an entity

receives msg from party P latest in round τ1.
Recall from Sec. 3.2 that each entity (ideal functionality or party in a protocol), stores and maintains

a set of all state channels it is aware of. This set is called channel space and denoted Γ . When we want

33

to emphasize that we are referring to a local version of a state channel stored by some entity T , we add
T to the superscript. So for instance, γT := ΓT (id) denotes T ’s local version of the state channel γ with
identifier id as stored in T ’s channel space ΓT .

We define an auxiliary procedure UpdateChanSpace, which takes as input a channel space Γ , a
channel identifier id , a contract instance identifier cid , a new contract instance storage σ̃ together with
the contract code C and a vector of values add representing the required change in the cash values of
the state channel with identifier id. The procedure sets Γ (id).cspace(cid) := (σ̃, C), adds add(T) coins
to Γ (id).cash(T) for every T ∈ γ.users. Finally, it outputs the updated channel space Γ . In Fig. 14 we
define the procedure formally.

UpdateChanSpace(Γ, id , cid , σ̃, C, add)

Let γ := Γ (id) and make the following updates:
1. For every T ∈ γ.users add add(T) coins to γ.cash(T)
2. Set γ.cspace(cid) equal to the tuple (σ̃, C).

Output Γ with the updated contract instance cid in the state channel γ.

Fig. 14. Auxiliary procedure for updating the channel space.

It will be often the case that the values of the input parameter add will correspond to the difference
between the amount of coins locked in the contract instance before the update and the amount of coins in
the new contract instance. To simplify the descriptions even further and avoid code repetition, we define
another auxiliary procedure UpdateChanSpace∗ which will derive the parameter add automatically from
the new contract storage σ̃. See the formal description in Fig. 15.

UpdateChanSpace∗(Γ, id , cid , σ̃, C)

Let γ := Γ (id) and σ := γ.cspace(cid).storage. For every P ∈ σ.users define the value xP as follows: if σ = ⊥,
the set xP := 0. Else set xP := σ.cash(P). Make the following updates:
1. For every P ∈ σ.users add xP − σ̃.cash(P) coins to γ.cash(P).
2. Set γ.cspace(cid) equal to the tuple (σ̃, C).

Output Γ with the updated contract instance cid in the state channel γ.

Fig. 15. Modification of the auxiliary procedure for updating the channel space.

We define both UpdateChanSpace∗ and UpdateChanSpace in case a party wants to update the private
extended version of the contract instance. Notice that in this case procedures will take additional two
parameters: the new version number and the signatures created by the parties.

We also define the auxiliary procedure that takes as input a signed contract instance version, verifies
if the instance is correctly signed by all users of the contract instance and outputs a decision bit.

VerifyInstance(id , cid , ν)

1. Let b := 1, σ := ν.storage, C := ν.code and w := ν.version.
2. If σ 6∈ code.Λ, then set b := 0.
3. For every P ∈ σ.users: if VrfypkP (id , cid , σ, C, w; ν.sign(P)) 6= 1, set b := 0.
4. Return b.

Fig. 16. An auxiliary procedure that verifies validity of a signed contract instance version.

In addition to the channel space, each party P maintains a set ΓPaux containing additional information
about the contract instances in the open state channels of the party. The tuple aux := ΓPaux (id , cid) has
the following attributes: aux .next-version ∈ N denoting the version number to be used during the next
update of the contract instance (id , cid);27; aux .corrupt ∈ {0, 1} which is set to 1 the first time parties
run into disagreement about the contract instance (id , cid); aux .registered ∈ {0, 1} which is set to 1 the

27 For technical reasons (see [12]) it is not always the case that Γ (id).cspace(cid).version+ 1 = Γaux (id , cid).next-
version.

34

if the contract instance (id , cid) is registered (on the blockchain in case of ledger state channel and in
the subchannels in case of virtual state channel); and if ΓP (id) is a virtual state channel, then aux has
an addition attribute aux .toExecute which is a set containing all functions that party P requested to
“forcefully” execute via the subchannels in case of a virtual state channel.

For better readability of the protocol descriptions, we write “Mark (id , cid) as corrupt” instead of the
instruction “Set Γaux (id , cid).corrupt := 1”. Similarly, we write “Mark (id , cid) as registered” instead of
the instruction “Set Γaux (id , cid).registered := 1”.

B.5 Timing Functions

In the description of the ideal functionality we use two “timing functions”: TimeExeReq(i,∆), that
represents the maximal number of rounds it takes to inform a party that execution of a contract instance
in a two-party ledger channel or virtual state channel with indirect dispute of length i > 0 was requested
by the other party, and TimeExe(i,∆) that represents the maximal number of rounds it takes to execute
of a contract instance in a two-party ledger channel or virtual state channel with indirect dispute of
length i > 0. Both of these functions were formally defined in [12] as

TimeExeReq(i,∆) := 20i+ 8i∆− 5

TimeExe(i,∆) := 40i+ 16∆i+ 32∆+ 67.

C State Channel Ideal Functionalities

In this section we formally define the ideal functionality for two-party state channels, F L̂(∆)

dch (i, C), that was

informally described in Sec. 4.1. Since this functionality is an extension of the functionality F L̂(∆)

ch (i, C)
defined in [12], we recall this functionality here as well. Before we do so, let us make some assumptions
that apply to both of these functionalities.

We assume that every state channel functionality formally defined in this section maintains a channel
space Γ , were it stores all channels that were created via this functionality. Since messages that the
parties send to the ideal functionality do not contain any private information, we implicitly assume
that the ideal functionality forwards all messages it receives to the adversary. In addition, the adversary
influences the timings; for example, the adversary decides when the parties receive messages from the
functionality. Adversary’s influence of this kind is implicit in the notation. By saying: “In round τ ≤ T do
instruction X”, we mean that the adversary can decide when exactly instruction X is performed as long
as it is before round T . In case the adversary does not make any choice, the instruction X is performed
in round T .

In the UC model, an entity can send only one input to another entity per activation. For example,
if a functionality wants to send a message m to party P and party Q, it needs to be activated twice. In
the descriptions of our functionalities, we frequently write that a functionality sends m to two or more
parties in the same round. Formally, this means that the ideal functionality does not “tick the clock”
on behalf of honest parties before all pending messages are sent, hence sufficient amount of activation is
enforced.

C.1 Ideal Functionality for Two-party Channels

We now formally define the ideal functionality F L̂(∆)

dch (i, C) that was informally described already in
Sec. 4.1. The functionality allows two parties to create maintain and close a two-party state channel
up to length i in which contract instances with code from the set C can be opened. Recall that the
functionality is defined exactly as the functionality F L̂(∆)

ch (i, C), which was introduced in [12], in case it
receives a message about a ledger state channel or a virtual state channel with indirect dispute. For
completeness, we present the functionality F L̂(∆)

ch (i, C) (with slightly modified notation) below as well.

Ideal Functionality F L̂(∆)

dch (i, C)

This functionality accepts messages from parties in P. Upon m
τ0←−↩ P , depending on m distinguish the

following cases:

35

– If m = (create, γ), where γ is a virtual state channel with direct dispute of length ≤ i, execute the

“Virtual state channel creation” procedure of F L̂(∆)

ch (i, C).
– If m = (update, id , cid , σ̃, C) and γ := Γ (id) is a virtual state channel with direct dispute of length ≤ i,

then execute the “Contract instance update” procedure of F L̂(∆)

ch (i, C) as if γ would be a ledger state
channel.

– If m = (execute, id , cid , f, z) and γ := Γ (id) is a virtual state channel with direct dispute of length ≤ i,
then execute the “Contract instance execute” procedure of F L̂(∆)

ch (i, C) as if γ would be a ledger state
channel.

– If none of the former cases apply, proceed as the functionality F L̂(∆)

ch (i, C).

Ideal Functionality F L̂(∆)

ch (i, C)

This functionality accepts messages from parties in P. We abbreviate A := γ.Alice, B := γ.Bob and I :=
γ.Ingrid.

Ledger state channel creation

Upon (create, γ)
τ0←−↩ A where γ.length = 1 proceed as follows:

1. Within ∆ rounds remove γ.cash(A) coins from A’s account on L̂.

2. If (create, γ)
τ1≤τ0+∆←−−−−−−↩ B, remove within 2∆ rounds γ.cash(B) coins from B’s account on L̂ and then

set Γ (γ.id) := γ, send (created, γ) ↪−→ γ.end–users and stop.

3. Otherwise upon (refund, γ)
>τ0+2∆
←−−−−−↩ A, within ∆ rounds add γ.cash(A) coins to A’s account on L̂.

Virtual state channel creation

1. Upon (create, γ) ←−↩ P , where γ.length ∈ {2, . . . , i} and P ∈ γ.end–users ∪ {I}, record the message and
distinguish:
– If P ∈ γ.end–users proceed as follows: If you have not yet received (create, γ) from I, then remove
γ.cash(P) coins from P ’s balance in the subchannel γ.subchan(P) and γ.cash(γ.other-party(P)) coins
from I’s balance in the subchannel γ.subchan(P).

– If P = I, then for both P ∈ γ.end–users proceed as follows: If you have not yet received (create, γ)
from P then remove γ.cash(P) coins from P ’s balance in γ.subchan(P), and γ.cash(γ.other-party(P))
coins from I’s balance in γ.subchan(P).

2. Distinguish the following two cases:
– If within 3 rounds you record (create, γ) from all users in γ.end–users ∪ {γ.Ingrid}, then define
Γ (γ.id) := γ, send (created, γ) ↪−→ γ.end–users and wait for channel closing in Step 3 (in the mean-
while accepting the update and execute messages concerning γ).

– Else wait until round γ.validity. Then within 2 · (TimeExeReq(dj/2e) + TimeExe(dj/2e)) rounds,
where j := γ.length, refund the coins that you removed from the subchannels in Step 1 and stop.

Automatic closure of virtual state channel γ when round γ.validity comes:

3. Let j := γ.length. If all parties from γ.users are honest, set T := 15. Else let T := 2 · (TimeExe
Req(dj/2e) + TimeExe(dj/2e)).

4. Within T rounds proceed as follows: Let γ̂ be the current version of the virtual state channel, i.e.
γ̂ := Γ (γ.id), and let ĉA := γ̂.cash(A) and ĉB := γ̂.cash(B).

5. Add ĉA coins to A’s balance and ĉB coins to I’s balance in γ.subchan(A). Add ĉA coins to I’s bal-
ance and ĉB coins to B’s balance in γ.subchan(B). If there exists cid ∈ {0, 1}∗ such that σcid :=
γ̂.cspace(cid).storage 6= ⊥ and ĉ := σcid .locked > 0, then add ĉ coins to I’s balance in both γ.subchan(A)
and γ.subchan(B). Erase γ̂ from Γ and (closed, γ.id) ↪−→ γ.end–users.

Contract instance update

Upon (update, id , cid , σ̃, C)
τ0←−↩ P , let γ := Γ (id), j = γ.length. If C 6∈ C or j > i, then stop. Else proceed

as follows:

36

1. Send (update–requested, id, cid , σ̃, C)
τ0+1
↪−−−→ γ.other–party(P) and set T := τ0 + 1 in optimistic case

when both parties in γ.end–users are honest. Else if j = 1, set T := τ0 + 3∆ + 1 and if j > 1, set
T := τ0 + 4 · TimeExeReq(dj/2e) + 1.

2. If (update–reply, ok , id , cid)
τ1≤T←−−−↩ γ.other–party(P), then set Γ := UpdateChanSpace∗(Γ, id , cid , σ̃, C).

Then send (updated, id , cid)
τ1+1
↪−−−→ γ.end–users and stop.

Contract instance execution

Upon (execute, id , cid , f, z)
τ0←−↩ P , let γ := Γ (id) and j := γ.length. If j > i, then stop. Else set T1 and

T2 as:
– In the optimistic case when both parties in γ.end–users are honest, set T1 := τ0 + 4 and T2 := τ0 + 5.
– In the pessimistic case when at least one party in γ.end–users is corrupt, set T1, T2 := τ0 + 4∆ + 5 if
j = 1 and set T1 := τ0 + 2 · TimeExeReq(dj/2e) + 5, T2 := τ0 + 4 · TimeExeReq(dj/2e) + 5 if j > 1.

1. In round τ1 ≤ T1, send (execute–requested, id , cid , f, z)
τ1
↪−→ γ.other–party(P).

2. In round τ2 ≤ T2, let γ := Γ (id), ν := γ.cspace(cid), σ := ν.storage, and τ := τ0 if P is honest and else τ
is set by the simulator. Compute (σ̃, add,m) := f(σ, P, τ, z). If m = ⊥, then stop. Else set Γ := Update

ChanSpace(Γ, id , cid , σ̃, ν.code, add) and send (executed, id , cid , σ̃, add,m)
τ2
↪−→ γ.end–users.

Ledger state channel closure

Upon (close, id)
τ0←−↩ P , let γ = Γ (id). If γ.length 6= 1, then stop. Else wait for at most 7∆ rounds and

then distinguish:
– If there exists cid ∈ {0, 1}∗ such that σcid := γ.cspace(cid).storage 6= ⊥ and σcid .locked 6= 0, then stop.
– Otherwise wait up to ∆ rounds to add γ.cash(A) coins to A’s account and γ.cash(B) coins to B’s account

on the ledger L̂. Then set Γ (id) := ⊥, send (closed, id)
τ2≤τ0+8∆
↪−−−−−−−→ γ.end–users and stop.

Let us note that the time complexity of executing a contract instance in a virtual state channel with
direct dispute of length i has the same upper bound as the time complexity of executing contract instance
in a ledger state channel. Consequently, the timing functions TimeExeReq(i,∆) and TimeExe(i,∆), see
Appx. B.5, upper bound the execution time complexity for any two-party state channel.

C.2 Simplifying Descriptions of State Channel Functionalities

Let us emphasize that the formal descriptions of all our state channel ideal functionalities F L̂(∆)

ch (i, C),
F L̂(∆)

dch (i, C) and F L̂(∆)

mpch(i, C), which were presented in Sec. 4.2, are simplified. In particular, the descriptions
exclude many natural checks that one would expect from an ideal state channel functionality F ∈
{F L̂(∆)

ch (i, C),F L̂(∆)

dch (i, C),F L̂(∆)

mpch(i, C)} upon receiving requests from a party P . The intuition behind this
is that we do not want a virtual state channel protocol to “work” for malformed or invalid requests. Let
us give a few examples of such invalid requests of P that we want F to refuse.

– P wants to create a ledger channel, but does not have enough coins.
– P wants to create a virtual channel using an intermediary I but there does not exist any state channel

between P and I yet.
– P wants to update or execute a contract instance in a channel that was never created, or that P is

not participating in, or that was already closed.
– P wants to execute a non-existing function of a contract instance.
– P provides malformed inputs (e.g., missing or unknown parameters).

Since the descriptions of our functionalities are already very complex, we formally define a wrap-
per W L̂(∆)

checks(i, C,F) that takes care of all these and other necessary checks. We then let F(i, C) :=

W L̂(∆)

checks(i, C,F L̂(∆)(i, C)), for F ∈ {F L̂(∆)

ch F L̂(∆)

dch ,F L̂(∆)

mpch} with W L̂(∆)

checks as defined below.

Authors of [12] define the ideal functionality F L̂(∆)

ch (i, C) with respect to a set of restricted environments
Eres in order to reduce the complexity of the functionality description. It is straightforward to verify that
restrictions defining the set Eres translate to checks performed by our wrapper as defined below, i.e, that
our wrapped functionalities directly drop all queries that a restricted environment Eres would not be
allowed to make. We note that handling invalid requests using a wrapper was already pointed out as an
alternative approach in [12].

37

Wrapper: W L̂(∆)

checks(i, C,F)

The wrapper is defined only if F ∈ {F L̂(∆)

ch (i, C),F L̂(∆)

dch (i, C),F L̂(∆)

mpch (i, C)}. Below, we abbreviate A := γ.Alice,
B := γ.Bob and I := γ.Ingrid.

Create

Upon receiving (create, γ)
τ0←−↩ P make the following checks: F .Γ (γ.id) = ⊥ and there is no state channel

γ′ with γ.id = γ′.id currently being created; γ is a valid state channel according to the definition given
in Sec. 3.2; γ.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗. Depending on the type of the channel the wrapper
additionally checks:

Ledger channel: both parties of the ledger state channel have enough funds on the ledger for the channel
creation;a

Two-party virtual channel: j := γ.length ≤ i; if γ.dispute = indirect, then γ.validity > τ0 + 2 + 4 · Time
ExeReq(dj/2e) and if γ.dispute = direct, then γ.validity > τ0 + 2 + 3∆; and the following holds for the
subchannels:
– If P ∈ γ.end–users, then α := F .Γ (idP) 6= ⊥ for idP := γ.subchan(P); α.end–users = {P, I};
α.length ≤ dj/2e; α.validity > γ.validity + 2TimeExeReq(dj/2e) + 2TimeExe(dj/2e); if α.dispute =
indirect, then check if α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ and if there is no other virtual
state channel being created over α; both P and I have enough funds in α.b

– If P = γ.Ingrid, then α := F .Γ (idA) 6= ⊥ for idA := γ.subchan(A); β := F .Γ (idB) 6= ⊥ for idB :=
γ.subchan(B); α.end–users = {A, I}; β.end–users = {B, I}; j = α.length + β.length, α.length ≤
dj/2e and β.length ≤ dj/2e; min{α.validity, β.validity} > γ.validity + 2TimeExeReq(dj/2e) + 2Time
Exe(dj/2e); if α.dispute = indirect, then check if α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ and
if there is no other virtual state channel being created over α; (analogously for β); A and I have
enough funds in α and B and I have enough funds in β. b

Multi-party virtual channel: γ.dispute = direct, j := γ.length ≤ i; γ.validity > τ0+3∆+3; for every Q ∈
γ.neighbors(P): α := F .Γ (idQ) 6= ⊥ for idQ := γ.subchan({P,Q}); α.end–users = {P,Q}; α.length ≤ i;
α.validity > γ.validity + 3∆+ TimeExe(i) + 2; if α.dispute = indirect, then α.cspace(cid) = ⊥ for every
cid ∈ {0, 1}∗ and there is no other virtual state channel being opened over α; both P and Q have enough
funds in α. b

If one of the above checks fail, then drop the message. Otherwise proceed as the functionality F . In addition,
if P = A, γ.length = 1, P is an honest party and F does not output (created, γ) before round τ0 + 2∆, act

as F upon receiving (refund, γ)
τ0+2∆+1
←−−−−−−↩ A.

Update

Upon receiving (update, id , cid , σ̃, C)
τ0←−↩ P make the following checks: γ := F .Γ (id) 6= ⊥; P ∈ γ.users;

τ0 < γ.validity; C ∈ C; σ̃ ∈ C.Λ; σ̃.locked =
∑
Q∈γ.users σ̃.cash(Q)), all parties have enough cash in the

state channel for the contract instance update. If ν := γ.cspace(cid) 6= ⊥, then the following must hold:
ν.code = C; σ.user = σ̃.user, where σ := ν.storage; σ.locked =

∑
Q∈γ.users σ.cash(Q). If γ.dispute = indirect,

then γ.cspace(cid∗) = ⊥ for every cid∗ ∈ {0, 1}. If one of the above checks fails, then drop the message.
Otherwise proceed as the functionality F .

Upon receiving (update–reply, ok , id , cid)
τ0←−↩ P make the following checks: the message is a reply to the

message (update–requested, id , cid , σ̃, C) sent by F to P (see Appx. 3.1 what we formally mean by “reply”);
there is no other update or execution of the contract instance cid in channel γ := F .Γ (id) currently going
on. In addition, if γ.dispute = indirect, then check is there is no virtual state channel currently being created
over γ. If one of the above checks fails, then drop the message. Otherwise proceed as the functionality F .

Execute

Upon receiving (execute, id , cid , f, z)
τ0←−↩ P , make the following checks γ := F .Γ (id) 6= ⊥; P ∈ γ.users;

τ0 < γ.validity; γ.cspace(cid) 6= ⊥, f ∈ γ.cspace(cid).code. If one of the above checks fails, then drop the
message. Otherwise proceed as the functionality F .

Close

38

Upon (close, id)
τ0←−↩ P make the following checks: γ := F .Γ (id) 6= ⊥; P ∈ γ.users; γ.length = 1. If one of the

checks fails, then drop the message. Otherwise proceed as the functionality F .

a In case more ledger state channels are being created at the same time, all parties have enough funds for
all ledger state channels that are being created.

b In case more virtual state channels are being created at the same time, both parties have enough funds
for all of them.

D The Dispute Board Functionality

As already informally introduced in Sec. 5, our protocol for virtual state chanenls with optional direct
dispute makes use of an ideal dispute board. In this section, we formally introduce such a board as
the ideal functionality FDB (C0). In a nutshell, FDB (C0) maintains a list of latest valid contract states
that parties reached consensus about (FDB (C0) itself serves as a judge for this consensus). For this,
the ideal functionality maintains a set D which we call the dispute board, where it stores all registered
instances of contracts from a set C0 which were opened in direct (multi-party) virtual state channels. In
particular, elements of dispute board are tuples of the form (id , cid , ν), there id denotes the identifier
of a direct virtual channel, cid is an identifier of a contract instance and ν is the registered version of
the contract instance. Sometimes we slightly abuse the notation and treat D as a function which on
input (id , cid ,Q) outputs ν if the set contains a tuple (id , cid , ν) such that, ν.storage.users = Q and
⊥ otherwise. In addition, for every id ∈ {0, 1}∗, we define the set Did := {ν | ∃cid ∈ {0, 1}∗ : ν =
D(id , cid , ν.storage.users) 6= ⊥}, i.e., the set of contract instances that are currently in dispute in channel
id .

In addition to the dispute board D, the functionality maintains an auxiliary set Daux , where it stores
all contract instances whose registration was requested but not completed yet. The elements of Daux are
tuples of the form (T, id , cid , ν, τ0), where T ∈ P denotes the party who submitted the contract instance
version ν in time τ0. The parameters id , cid ,Q are as for D. When it is convenient, we understand Daux

as a function which on input (id , cid ,Q) outputs (T, id , cid , ν, τ0) if such tuple is stored in the auxiliary
set (s.t. ν.storage.users = Q) and ⊥ otherwise.

Since messages that the parties send to the dispute board functionality do not contain any private
information, we implicitly assume that FDB forwards all messages it receives to the adversary. Further,
the adversary influences the timings when parties receive outputs from FDB by imposing a delay ≤ ∆

on them. This is implicit in the notation m
τ1≤τ0+∆
↪−−−−−−→ P . Note that FDB is not parameterized with L̂(∆)

since it does not open or close any channels, and thus does not need to modify account balances of
parties.

Functionality Dispute Board FDB (C0)

This functionality accepts messages from parties in P.

Contract instance registration

Upon (instance–register, id , cid , ν)
τ0←−↩ P , proceed as follows:

1. If D(id , cid , ν.storage.users) 6= ⊥, then stop.
2. If ν ⊆ P, then set Q := ν, ν := ⊥ and goto step 4. Else set Q := ν.storage.users and goto step 3.
3. If VerifyInstance(id , cid , ν) 6= 1 or ν.code 6∈ C0, then stop.
4. If P 6∈ Q, then stop.
5. If Daux (id , cid ,Q) = ⊥, then set Daux (id , cid ,Q) := (P, id , cid , ν, τ0) and send (instance–registering,

id , cid , ν, direct)
τ1≤τ0+∆
↪−−−−−−→ Q and stop. Else let (Q, id , cid , ν̂, τ̂0) := Daux (id , cid ,Q).

6. If ν = ⊥ or Q 6= ν̂.storage.users, then stop.
7. If ν̂ = ⊥ or ν.storage.version > ν̂.storage.version, then set Daux (id , cid ,Q) := (P, id , cid , ν, τ0) and

send (instance–registering, id , cid , ν, direct)
τ1≤τ0+∆
↪−−−−−−→ Q.

Upon (finalize–register, id , cid ,Q)
τ2←−↩ P , s.t. P ∈ Q proceed as follows:

39

– If D(id , cid ,Q) = ⊥ and (P, id , cid , ν̂, τ̂0) := Daux (id , cid ,Q) such that τ2 − τ̂0 ≥ 2∆, then set
ν̃ = “unregisterable” if ν̂ = ⊥ and ν̃ := (ν̂.storage, ν̂.code) otherwise, send (instance–registered,

id , cid , ν̃, direct)
τ3≤τ2+∆
↪−−−−−−→ Q and set D(id , cid ,Q) := ν̃.

– Else ignore this call.

Contract instance execution

Upon (instance–execute, id , cid ,Q, f, z, τ)
τ0←−↩ P, s.t. P ∈ Q set ν := D(id , cid ,Q) and proceed as follows:

1. If ν = ⊥, τ0 − τ > 6 or f 6∈ ν.code, then stop. Else let σ := ν.storage.

2. Within ∆ rounds, send (execute–requested, id , cid , f, z, τ, direct)
τ1≤τ0+∆
↪−−−−−−→ σ.users.

3. If ν.code = dVSCC and the identifier cid can be parsed as T ||id∗ for T ∈ σ.users, set z := Did∗ .
4. If ν.code = mpVSCC and the identifier cid can be parsed as TL||TR||id∗ for TL, TR ∈ σ.users, set

z := Did∗ .
5. Compute (σ̃, add,m) := f(σ, P, τ, z). If m = ⊥, then stop. Else set D(id , cid ,Q).storage := σ̃ and

send (instance–executed, id , cid , σ̃, add,m, direct)
τ1≤τ0+∆
↪−−−−−−→ σ.users and stop.

E Additional Material on Adding the Dispute Board

This section contains technical details on our modular approach of building channels with direct dispute.

In the entire section, we will explicitly denote a functionality F having access to the ledger with F L̂(∆),
to emphasize that, e.g., the dispute board functionality FDB does not have access to it.

E.1 Ideal Functionality Wrappers

Ideally, we would like to make the dispute board functionality FDB available to parties as a separate
hybrid functionality. However, we envision a modular approach where channels of length i are build using
an ideal functionality for channels of length i − 1 (such as F L̂(∆)

dch (i − 1, C)). In particular, we will build
the channel of length i by opening special contracts in the subchannels. Any contracts that are opened
off-chain in the channel of length i might influence the balance in that channel. Thus, if the channel is
closed, the contents of the dispute board have to be taken into account to compute the final balances of
the parties.

Unfortunately, the UC model does not allow hybrid functionalities to communicate with each other28.
To circumvent this technicality we merge both F L̂(∆)

ch and FDB (or, similarly, F L̂(∆)

dch and FDB) into a
single functionality by putting a wrapper around them which distributes calls. We note that this is just
a choice of presentation and we could also write down the resulting functionality in one piece of code.

More detailed, the wrapper allows disputing about contract instances only if they are not opened in
any of the subchannels (this is because the subchannels have their own interface for direct dispute via,

e.g., F L̂(∆)

dch (i− 1, C)). Also, as just already described above, in case a function (i.e., the Close function)
of some special contract types that allow to open a channel id∗ is executed, the contract instances that
are in dispute in channel id∗.

Wrapper W L̂(∆)

ch (i, C, C0)

Let FDB := FDB (C0) and F := F L̂(∆)

ch (i, C).
Upon receiving m

τ0←−↩ P depending on m proceed as follows:

– If m ∈ {(instance–register, id , cid , ν), (finalize–register, id , cid),
(instance–execute, id , cid , f, z, τ)}
• If F .Γ (id) = ⊥, then proceed as the functionality FDB .
• Else, drop the query.

– If m = (execute, id , cid , f, z) and γ := F .Γ (id) 6= ⊥, set ν := γ.cspace(cid) and proceed as follows:

28 We note that there are certain exceptions for this rule, namely when the functionalities are modeled as global [6],
or instances of the same functionality communicating via some shared setup [5]. Our model does not fit these
cases.

40

1. If ν.code = dVSCCi+1 and cid = T ||id∗ for T ∈ ν.storage.users, set z := FDB .Did∗ .
2. If ν.code = mpVSCCi and cid = TL||TR||id∗ for TL, TR ∈ ν.storage.users, set z := FDB .Did∗ .
3. Proceed as the functionality F .

– If none of the former cases applies, proceed as the functionality F .

Analogously, we define a wrapper W L̂(∆)

dch (i, C, C0) which combines F L̂(∆)

dch (i, C) and FDB (C0). The fol-
lowing corollary follows directly from Observation 1.

Corollary 1. For any sets of contract codes C and C0 it holds that the ideal functionality W L̂(∆)

dch (1, C, C0)

is equivalent to the ideal functionality W L̂(∆)

ch (1, C, C0)

In our constructions, we reuse the protocol for building virtual state channels (without direct dispute
in non-ledger channels) from [12] which uses a smart contract functionality Fscc . This smart contract
functionality is, on a high level, similar to FDB . Wrapping this functionality works exactly as wrapping
virtual state channels functionalities, with only slight changes of the format of queries and indices of
contracts (grey boxes show these differences).

Wrapper W L̂(∆)
scc (C, C0)

Let F := F L̂(∆)
scc (C), FDB := FDB (C0). Upon receiving m

τ0←−↩ P depending on m proceed as follows:

– If m ∈ {(instance–register, id , cid , ν), (finalize–register, id , cid),
(instance–execute, id , cid , f, z, τ)}
• If F .Γ (id) = ⊥, then proceed as the functionality FDB .
• Else, drop the query.

– If m = (instance–execute, id , cid , f, z, τ) and γ := F .Γ (id) 6= ⊥, set ν := γ.cspace(cid) and proceed as

follows:
1. If ν.code = dVSCC2 and cid = T ||id∗ for T ∈ ν.storage.users, set z := FDB .Did∗ .

2. If ν.code = mpVSCC1 and cid = TL||TR||id∗ for TL, TR ∈ ν.storage.users, set z := FDB .Did∗ .

3. Proceed as the functionality F .
– If none of the former cases applies, proceed as the functionality F .

E.2 Protocol Wrapper

We now detail what is necessary to let a virtual state channel protocol realize a wrapped virtual state
channel functionality. In an nutshell, the protocol participants need to get instructions on how to handle
direct dispute queries that are now possible through the added dispute board. The parties will merely
decide whether to forward such queries to FDB or to drop them, and they will internally keep track of
the dispute board to be able to add it to execute queries when necessary. Also, they have to relay all
outputs of the dispute board FDB to the environment.

Protocol Wrapper W L̂(∆)

prot (i, C0, π)

Let H be the hybrid ideal functionality of the protocol π. Distinguish the following two cases:

i = 1: If H 6= F L̂(∆)
scc (C) for some set of contract codes C, then the wrapper is not defined. Otherwise set

j := 2 and H0 :=WL̂(∆)
scc (C, C0).

i > 1: If H 6= W L̂(∆)

dch (i − 1, C′, C) for some sets of contract codes C, C′, then the wrapper is not defined.

Otherwise set j := i and H0 :=W L̂(∆)

dch (i− 1, C′, C ∪ C0).

We assume that every party P maintains a local copy of the dispute board DP and has access to the
hybrid ideal functionality H0.

Party P

Upon receiving m
τ1←−↩ Z depending on m proceed as follows:

Direct dispute only for known contracts in unknown channels:

41

– If m = (instance–register, id , cid , ν), then distinguish the following two cases

• If P did not already sent (created, γ)
τ0≤τ1
↪−−−−→ Z for any γ with γ.id = id and ν.code ∈ C0, then

forward the message to H0.
• Else, drop the query.

– If m ∈ {(finalize–register, id , cid), (instance–execute, id , cid , f, z, τ)}, then distinguish

• If P did not already sent (created, γ)
τ0≤τ1
↪−−−−→ Z for any γ with γ.id = id , then forward the message

to H0.
• Else, drop the query.

Take into account dispute board upon closing channels:

– If m = (execute, id , cid , f, z) and P already sent (created, γ)
τ0≤τ1
↪−−−−→ Z for some γ with γ.id = id , P

sets ν := γ.cspace(cid), initializes α := ⊥ and proceeds as follows:
1. If ν.code = dVSCCj and cid = T ||id∗ for T ∈ ν.storage.users, set α := id∗.
2. If ν.code = mpVSCCj−1 and cid = TL||TR||id∗ for TL, TR ∈ ν.storage.users, set α := id∗.

3. If α 6= ⊥, set z := DPα .
4. Proceed as in the protocol πH→H0 .

– If none of the former cases applies, proceed as in the protocol πH→H0 .

Relay output of dispute board to Z:

Upon receiving m
τ3←−↩ H0, depending on m distinguish

– If m ∈ {(instance–registering, id , cid , ν, direct), (execute–requested, id , cid , f, z, τ, direct)}, then out-

put m
τ3
↪−→ Z.

– If m = (instance–registered, id , cid , ν̃, direct), then set DP (id , cid ,Q) := ν̃, where Q := ν̃.storage.users,

and output m
τ3
↪−→ Z.

– If m = (instance–executed, id , cid , σ̃, add,m∗, direct), then set

DP (id , cid ,Q).storage := σ̃, where Q := ν̃.storage.users, and output m
τ3
↪−→ Z.

– If none of the former cases applies, proceed as in the protocol πH→H0 .

F Proofs of Lemmas

F.1 Proof of Lemma 1

Fscc(C)

π1∼Fch(1, C)

Lemma 1
======⇒

Wscc(C, C0)

Fscc(C)
FDB (C0)

Wscc(C, C0)

Fscc(C) FDB (C0)

Wprot(1, C0, π1)∼Wch(1, C, C0)

Fch(1, C)
FDB (C0)

Wch(1, C, C0)

Fch(1, C) FDB (C0)

Fig. 17. Pictorial representation of Lemma 1.

Proof. Let SimΠ be the simulator of Π which exists by the prerequisite of the lemma. Throughout the
proof, we will refer to queries instance–register,finalize–register and instance–execute as dispute queries.

We exploit the fact that every time Z is active, all entities in the system are aware of the same
channels. This is because FDB does not let parties create or close any channels, and parties and Fch

having created different channels would contradict the UC security of Π. Let us elaborate on this. From
the UC-security of Π, it follows that real and ideal parties send their confirmation messages of channel
creation (as well as closure) at the same time. Here, by time we mean at the same point in the order of
execution). This is clear since, if this would not be the case, then Z could easily distinguish by observing
at which time confirmation messages such as (created, γ) of the parties arrive. We stress that this is
independent of the corruption status. Further, in the ideal world Fch updates the channel spaces of the
parties in the same activation as it outputs the confirmation message.

42

Since the wrappers all equally decide to only call FDB (C0) if Γ (id) = ⊥ or, equivalently, they never
confirmed creation of a channel with this id , either all entities call FDB (C0) or none. In the first case,
the simulator’s task is to play the real-world adversary communicating with FDB (C0). We will give more
details on the simulation below. In the second case, FDB (C0) is not involved in the ideal execution apart
from informing Fch about contracts that are in dispute in either virtual or multi-party channels. We will
re-use SimΠ and adjust it in case of execute messages from Z, in which case SimΠ is adjusted to take
into account the contents of the (correctly simulated) dispute board.

More formally, the simulator Sim will internally run a copy of the hybrid world, which comprises
parties executing the wrapped protocol and a hybrid ideal functionality Wscc(C). Additionally, Sim talks
to the ideal functionality Wch(1, C, C0). Recall that there are no private inputs and thus Sim learns all
inputs that Wch receives from honest parties (we assume that Wch adds a prefix indicating which party
the message was received from). Inputs of corrupted parties Sim gets anyway directly from Z. Thus,
Sim can internally run a “perfect” copy of FDB (C0), of which we denote by DSim the dispute board.
Perfect here means that, throughout the simulation, it will hold that DSim = D, where D is maintained

by FDB (C0) in the real execution. Sim behaves as Sim
Fch(1,C)→Wch(1,C,C0)
Π in the case of create and update

queries. Regarding queries from the ideal functionalityWch(1, C, C0), Sim either acts as SimΠ or, if SimΠ

does not know the query (which means that it came from FDB) and it is not an execute query, Sim
forwards the query to the simulated FDB . We now detail how execute queries are treated.

Execute a contract instance in a ledger channel. We will re-use the simulator SimΠ for executing a con-
tract instance. Note that the only difference between Wprot and Π, respectively Wch and Fch , regarding
this query arises for closing virtual and multi-party channel contracts (dVSCC2 and mpVSCC1). In the
wrapped scenario of Lemma 1, all latest contract states that are in dispute in these channels and that
have to be taken into account when closing virtual or multi-party channels are available on the dispute
board, which Sim is informed about and maintains in DSim. Sim now updated execute queries before
handing them over to SimΠ . Formally, Sim behaves as follows.

Sim for Lemma 1.

Sim handles queries as Sim
Fch (1,C)→Wch (1,C,C0)
Π except for the following:

– Upon (P, execute, id , cid , f, z)
τ0←−↩Wch(1, C, C0), if P already sent (created, γ)

τ≤τ0
↪−−−→ Z for some γ with

γ.id = id , set ν := γ.cspace(cid), α := ⊥ and proceed as follows:
1. If ν.code = dVSCC2 and cid = T ||id∗ for T ∈ ν.storage.users, set z∗ = DSim

id∗ .
2. If ν.code = mpVSCC1 and cid = TL||TR||id∗ for TL, TR ∈ ν.storage.users, set z∗ = DSim

id∗ .

Proceed as Sim
Fch (1,C)→Wch (1,C,C0)
Π upon receiving (P, execute, id , cid , f, z∗)

τ0←−↩Wch(1, C, C0).

Let us now elaborate on indistinguishability of direct dispute queries for contracts in non-ledger
channels. Considering the code of FDB (C0), it is clear that the only adversarial influence on the ideal
functionality for direct dispute is determining the rounds in which parties receive their outputs. However,
since FDB (C0) exists also in the real world and we assume the real-world adversary to be the dummy
adversary, Z is in fact determining the delays and sends them to Sim. This means that Sim can perfectly
simulate by just relaying the delays to FDB (C0).

F.2 Proof of Lemma 2

Wdch(i-1, C′, C)

Fdch(i-1, C′)
FDB (C)

Wdch(i-1, C′, C)

Fdch(i-1, C′) FDB (C)

Πi∼Fdch(i, C)

Lemma 2
======⇒

Wdch(i-1, C′, C)

Fdch(i-1, C′)
FDB (C)

Wdch(i-1, C′, C)

Fdch(i-1, C′) FDB (C)

Wprot(i, C0, Πi)∼Wdch(i, C, C0)

Fdch(i, C)
FDB (C0)

Wdch(i, C, C0)

Fdch(i, C) FDB (C0)

Fig. 18. Pictorial representation of Lemma 2.

43

Proof. Our simulation strategy will be similar to Lemma 1. The simulator Sim will internally run a
copy of the hybrid world, which comprises parties executing the wrapped protocol Πi and a hybrid ideal
functionality W L̂(∆)

dch (i− 1, C′, C). Additionally, Sim is connected to the ideal functionality W L̂(∆)

dch (i, C, C0).

Again, UC-security of Πi yields that, from the point of view of Z, all entities in the system are aware
of the same set of channels. Further, the wrappers are designed to send queries to FDB according to the
openend channels, and thus either all entities forward the query to FDB or none. In this case, we describe
how the simulator handles queries that might result in FDB acting differently in both worlds due to their
mismatching contract set parameters. However, note that since the protocol wrapper requires an honest
party to drop all dispute queries for contracts that are not in C0, we have to consider only dispute queries
for contracts that are in C \ C0 asked through corrupted parties.

If a query is not forwarded to FDB , the only difference to the unwrapped execution of Πi is that
W L̂(∆)

dch (i, C, C0) will equip certain execute queries with infos from the dispute board. Sim will thus run
SimΠi ’s code for simulating execute queries but first add the infos from the simulated dispute board. It
follows from the code of Sim below that real (i.e., hybrid) and simulated FDB (C) get the same queries
and thus maintain the same dispute board, which renders execute queries in the ideal and the real world
indistinguishable.

More formally, Sim behaves as SimΠi in the case of create or update queries. For the remaining
queries, i.e. execute and the three dispute queries, we now give a detailed description of Sim.

Sim for Lemma 2.

Sim handles all queries as SimΠi except for the following:

– If a corrupted party P sends (instance–register, id , cid , ν)
τ0←−↩ P or (finalize–register, id , cid ,Q)

τ0←−↩ P
or (instance–execute, id , cid ,Q, f, z, τ)

τ0←−↩ P , if cid ∈ C \ C0, then Sim does not input anything into

W L̂(∆)

dch (i, C, C0) on behalf of the corrupted P . Instead, Sim forwards the query on behalf of the simulated

P to the simulated W L̂(∆)

dch (i− 1, C′, C). Whatever the simulated P outputs, Sim sends to Z as claimed
output of the corrupted P .

– Upon (P, execute, id , cid , f, z)
τ0←−↩ W L̂(∆)

dch (i, C, C0), if P already sent (created, γ)
τ≤τ0
↪−−−→ Z for some γ

with γ.id = id , set ν := γ.cspace(cid), α := ⊥ and proceed as follows:
1. If ν.code = dVSCCi and cid = T ||id∗ for T ∈ ν.storage.users, set z∗ = DSim

id∗ .
2. If ν.code = mpVSCCi+1 and cid = TL||TR||id∗ for TL, TR ∈ ν.storage.users, set z∗ = DSim

id∗ .

Proceed as SimΠi
Fch→W

L̂(∆)
dch

(i,C,C0) upon receiving (P, execute, id , cid , f, z∗)
τ0←−↩W L̂(∆)

dch (i, C, C0).

G Additional material on the Protocol for Virtual State Channels

In this section, we provide the full description of the protocol Πdch(i, C0) for two-party virtual channels
that was already described informally in Sec. 6. Recall that we distinguish thee cases: (1) party receives
a message about a state channel of length j < i, (2) If a party receives a message about a virtual state
channel without direct dispute and of length exactly i and (3) party receives a message about a virtual
state channel γ with direct dispute and of length exactly i.

Shorter channels Case 1 is rather straightforward. If a party P receives a message about creating/closing
a state channel of length j < i, then the party immediately forwards the message to the hybrid ideal
functionality W L̂(∆)

dch (i − 1, C1, C0). Analogously, if the hybrid ideal functionality outputs a message that
the state channel was created/closed, then the party simply forwards this message to the environment. In
case a party P receives a message m which is of the form (update, id , cid , σ, C), (update–reply, ok , id , cid)
or (execute, id , cid , f, z) and id is an identifier of a state channel of length j < i, then the party P sightly
modifies the message m before sending it to the hybrid ideal functionality. In particular, party P extends
the contract instance identifier cid by adding a prefix “short”. For example, if m = (execute, id , cid , f, z),

then the party sends the message m′ = (execute, id , short||cid , f, z) to W L̂(∆)

dch (i− 1, C1, C0). Analogously,
if a party P receives a message from the hybrid ideal functionality that the contract instance with
identifier short||cid was updated/executed, the party removes the prefix “short” before forwarding it to
the environment.

44

The reason for adding/removing this prefix is to prevent the environment from instructing honest
parties to update/execute a contract instance with identifier P ||id , where P ∈ P and id is an identifier
of a virtual state channel of length i. Contract instance identifiers of this form are used for contract
instances with the code dVSCCi that are created in the subchannels of a virtual state channel of length i
and hence should be updated/executed only when the virtual state channel is being created or closed.

Channels with indirect dispute In Case 2, i.e. when the party receives a message about a virtual state
channel with indirect dispute of length i, the the party follows the protocol π. This means, that it
behaves exactly as in the protocol π except that calls to the hybrid ideal functionality Fch(i− 1, C′0) are

replaced by calls to the hybrid functionality W L̂(∆)

dch (i − 1, C1, C0). Analogously, messages received from

W L̂(∆)

dch (i− 1, C1, C0) are interpreted as messages from Fch(i− 1, C′0).

Channels with direct dispute This case was discussed in detail already in Sec. 6.2. We provide the formal
description of each protocol part below.

Protocol Πdch(i, C0, π): Create a virtual state channel with direct dispute

Let us abbreviate H :=W L̂(∆)

dch (i− 1, C1, C0).

Party P ∈ γ.end–users upon (create, γ)
τ0←−↩ Z:

1. Let cidP := P ||γ.id and idP := γ.subchan(P).

2. Compute σ̃P := Initdi(P, τ0, γ) and send (update, idP , cidP , σ̃P , dVSCCi)
τ0
↪−→ H.

Party I upon (create, γ)
τ0←−↩ Z:

3. Let idA := γ.subchan(γ.Alice), idB := γ.subchan(γ.Bob), cidA := γ.Alice||γ.id and cidB := γ.Bob||γ.id.
4. Compute σ̃A := Initdi(γ.Alice, τ0, γ) and σ̃B := Initdi(γ.Bob, τ0, γ).

5. If both messages (update–requested, idA, cidA, σ̃A, C)
τ0+1
←−−−↩ H and (update–requested, idB , cidB , σ̃B , C)

τ0+1
←−−−↩ H are received, then set Γ I(γ.id) := γ and send (update–reply, ok , idA, cidA)

τ0+1
↪−−−→ H and

(update–reply, ok , idB , cidB)
τ0+1
↪−−−→ H and wait until time γ.validity. Else stop.

Back to P ∈ γ.end–users

6. If (updated, idP , cidP)
τ0+2
←−−−↩ H, then send (create–ok, γ)

τ0+2
↪−−−→ γ.other–party(P). If (create–ok, γ)

τ0+3
←−−−↩

γ.other–party(P), then set ΓP (γ.id) := γ and output (created, γ)
τ0+3
↪−−−→ Z.

7. Wait until time γ.validity.

Constructor Initdi (P, τ, γ)

If P 6∈ γ.end–users or γ.cash(γ.Alice) < 0 or γ.cash(γ.Bob) < 0 or γ.cspace(cid) 6= ⊥ for some
cid ∈ {0, 1}∗ or τ ≤ γ.validity + 3∆ + 2, then output ⊥. Else output the attribute tuple σ defined
as follows:

σ.users :=

{
(γ.Alice, γ.Ingrid), if P = γ.Alice,

(γ.Ingrid, γ.Bob), if P = γ.Bob,

σ.locked :=γ.cash(γ.Alice) + γ.cash(γ.Bob),

(σ.cash(σ.users(1)), σ.cash(σ.users(2))) := (γ.cash(γ.Alice), γ.cash(γ.Bob)),

σ.virtual–channel := γ.

Protocol Πdch(i, C0, π): procedure RegisterDirect(P, id , cid)

Let us abbreviate H :=W L̂(∆)

dch (i− 1, C1, C0) and let τ0 be the staring round of the procedure.

45

Party P

1. Let γP := ΓP (id) and Q := γ.other–party(P). If γP .cspace(cid) = ⊥, then set νP := {P,Q}. Else set
νP := γP .cspace(cid).

2. Send (instance–register, id , cid , νP)
τ0
↪−→ H and go to Step 4.

Party Q

3. Upon (instance–registering, id , cid , νP , direct)
τ1←−↩ H, let γQ := ΓQ(id) and νQ := γQ.cspace(cid). If

νQ 6= ⊥, then send (instance–register, id, cid , νQ)
τ1
↪−→ H and goto Step 5.

Back to party P

4. In round τ2 := τ0 + 2∆, send (finalize–register, id, cid , γ.end–users)
τ2
↪−→ H.

End for both T ∈ γ.end–users

5. Upon (instance–registered, id , cid , ν̃, direct) ←−↩ H, mark (id , cid) as registered and set ΓT := Update

ChanSpace∗(ΓT , id , cid , ν̃).

Protocol Πdch(i, C0, π): Contract instance update

Party P upon (update, id , cid , σ̃, C)
τ0←−↩ Z

1. If (id , cid) is marked as corrupt, then stop. Else let γP := ΓP (id) and νP := γP .cspace(cid). If νP = ⊥,
then set wP := 1, else let wP := ΓPaux (id , cid).next-version.

2. Compute sP := SignskP (id , cid , σ̃, C, wP).

3. Send (update, sP , id , cid , σ̃, C)
τ0
↪−→ Q and go to Step 6.

Party Q upon (update, sP , id , cid , σ̃, C)
τ1←−↩ P

4. If (id , cid) is marked as corrupt, then stop. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). If νQ = ⊥,
then set wQ := 1, else set wQ := ΓQaux (id , cid).next-version.

5. If VrfypkP (id , cid , σ̃, C, wQ; sP) 6= 1 or C 6∈ C0, then mark (id , cid) as corrupt and stop. Else output

(update–requested, id , cid)
τ1
↪−→ Z and consider the following two cases

– If (update–reply, ok , id , cid)
τ1←−↩ Z, then compute the signature sQ := SignskQ(id , cid , σ̃, C, wQ),

send (update–ok, sQ)
τ1
↪−→ P , set ΓQ := UpdateChanSpace∗(ΓQ, id , cid , σ̃, C, wQ, {sP , sQ}), set ΓQaux (id ,

cid).next-version := wQ + 1, output (updated, id , cid)
τ1+1
↪−−−→ Z and stop.

– Else compute sQ := SignskQ(id , cid , νQ.storage, νQ.code, wQ + 1), send (update–not–ok, sQ)
τ1
↪−→ P

and set ΓQaux .next-version(id , cid) := wQ + 2 and stop.

Back to party P

6. Distinguish the following three cases:

– If (update–ok, sQ)
τ2=τ0+2
←−−−−−↩ Q, where VrfypkQ(id , cid , σ̃, C, wP ; sQ) = 1, then set ΓP := Update

ChanSpace∗(ΓP , id , cid , σ̃, C, wP , {sP , sQ}), update ΓPaux (id , cid).next-version := wP + 1, output

(updated, id , cid)
τ2
↪−→ Z and stop.

– If (update–not–ok, sQ)
τ2=τ0+2
←−−−−−↩ Q, where VrfypkQ(id , cid , νP .storage, νP .code, wP +1; sQ) = 1, then

compute sP := SignskP (id , cid , νP .storage, νP .code, wP + 1), set ΓP := UpdateChanSpace∗(ΓP , id ,

cid , νP .storage, νP .code, wP + 1, {sP , sQ}), set ΓPaux (id , cid).next-version := wP + 2 and stop.

46

– If none of the above cases applies, mark (id , cid) as corrupt and in round τ0+2 call the subprocedure
RegisterDirect(P, id , cid). After the subprocedure execution (in round τ3 ≤ τ0 + 3∆ + 2), if

ΓP (id).cspace(cid) = (σ̃, C), then output (updated, id , cid)
τ3
↪−→ Z.

Protocol Πdch(i, C0, π): Contract instance execution

Let us abbreviate H :=W L̂(∆)

dch (i− 1, C1, C0).

Party P upon (execute, id , cid , f, z)
τ0←−↩ Z

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage, CP := νP .code and set wP := ΓPaux (id , cid).next-
version.

2. Set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3
mod 4 if P = γP .Bob.

3. For round τ ∈ [τ0, τ1] proceed as follows: If (id , cid) is marked as corrupt, goto Step 5.
4. In round τ1, compute (σ̃, add,m) := f(σP , P, τ0, z). If m = ⊥, then stop. Otherwise compute sP :=

SignskP (id , cid , σ̃, CP , wP), send (peaceful–request, id , cid , f, z, sP , τ0)
τ1
↪−→ Q and goto Step 12.

5. If (id , cid) is marked as corrupt but not registered, then execute RegisterDirect(P, id , cid).
6. Goto Step 13.

Party Q upon (peaceful–request, id , cid , f, z, sP , τ0)
τQ
←−↩ P

7. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, CQ := νQ.code, wQ := ΓQaux (id , cid).next-
version. If γQ = ⊥, P,Q 6∈ γQ.end–users, νQ = ⊥ or f 6∈ CQ, then goto step 11.

8. If P = γQ.Alice and τQ mod 4 6= 2 or if P = γ.Bob and τQ mod 4 6= 0, then goto step 11.
9. If τ0 6∈ [τQ − 4, τQ − 1], then goto step 11.

10. If (id , cid) is not marked as corrupt in ΓQaux , do:
(a) Compute (σ̃, add,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VrfypkP (id , cid , σ̃, CQ, wQ; sP) 6= 1, then goto step 11. Else proceed.

(c) Output (execute–requested, id , cid , f, z, τ0)
τQ
↪−→ Z.

(d) Sign sQ := SignskQ(id , cid , σ̃, CQ, wQ), send (peaceful–confirm, id , cid , f, z, sQ)
τQ
↪−→ P , set ΓQ :=

UpdateChanSpace(ΓQ, id , cid , σ̃, CQ, add, wQ, {sP , sQ}), ΓQaux (id , cid).next-version := wQ + 1.

(e) Output (executed, id , cid , σ̃, add(γ.Alice), add(γ.Bob),m)
τQ+1

↪−−−→ Z and stop.
11. Mark (id , cid) as corrupt.

Back to party P

12. Distinguish the following two cases

– If (peaceful–confirm, id , cid , f, z, sQ)
τ2=τ1+2
←−−−−−↩ Q such that VrfypkQ(id , cid , σ̃, CP , wP ; sQ) = 1, then

set ΓP := UpdateChanSpace(ΓP , id , cid , σ̃, CP , add, wP , {sP , sQ}), ΓPaux .next-version := wP + 1, out-

put (executed, id , cid , σ̃, add(γ.Alice), add(γ.Bob),m)
τ2
↪−→ Z and stop.

– Else mark (id , cid) as corrupt and run RegisterDirect(P, id , cid). Once the procedure is exe-
cuted (in round τ3 ≤ τ0 + 3∆ + 5) and it holds that ΓP (id).cspace(cid).storage = σ̃ (i.e. Q regis-
tered the contract instance version after execution), then output (executed, id , cid , σ̃, add(γ.Alice),

add(γ.Bob),m)
τ3
↪−→ Z and stop. Else goto the next step.

13. Send (instance–execute, id , cid , f, z)
τ3
↪−→ H.

Back to party Q

14. If (execute–requested, id , cid , f, z, τ, direct)←−↩ H, output (execute–requested, id , cid , f, z, τ) ↪−→ Z.

End for both parties T = A,B

47

15. If (instance–executed, id , cid , f, τ, σ̂, add,m, direct)
τ4←−↩ H, set ΓT := UpdateChanSpace(ΓT , id , cid , σ̂,

CT , add) and output (executed, id , cid , σ̂, add(γ.Alice), add(γ.Bob),m)
τ4
↪−→ Z.

Protocol Πdch(i, C0, π): Close a virtual state channel with direct dispute

Let γ be a virtual state channel with direct dispute and length i requested to be created in round τ0. Let
cidT := T ||γ.id and idT := γ.subchan(T) for each party T ∈ γ.end–users. Let TEdi/2e := TimeExe(di/2e)
denote the upper bound of number of rounds needed to execute a contract instance in a virtual state channel
of length ≤ di/2e and TRdi/2e := TimeExeReq(die) denote the upper bound of number of rounds needed to
inform a party that an execution request was made in virtual state channel of length ≤ di/2e.

We abbreviate H :=W L̂(∆)

dch (i− 1, C1, C0), A := γ.Alice, B := γ.Bob and I := γ.Ingrid.

Party T ∈ γ.end–users in round τv := γ.validity

1. Let νT := ΓT (idT).cspace(cidT).
2. Distinguish the following cases

– If ΓT (id) = ⊥ and νT = ⊥, then do nothing.
– If ΓT (id) = ⊥ but νT 6= ⊥, then wait until round τ2 := τv + 3∆ + 2 to send (execute, idT , cidT ,

Closedi ,⊥) ↪−→ H and stop.
– If none of the above cases applies, then proceed as follows

(a) Set z := ∅. For every cid ∈ {0, 1}∗ such that γ.cspace(cid) 6= ⊥, set z := z ∪ γ.cspace(cid).
(b) Compute (σ̃, add, contract–closed) := Close(νT .storage, T, τv + 3∆+ 2, z).

(c) Send (update, sT , idT , cidT , σ̃, dVSCCi)
τv
↪−→ H and goto Step 4.

Party I in round τv + 1

3. Distinguish the following two cases:

– If for both T ∈ {A,B} you receive (update–requested, idT , cidT , σ̃T , dVSCCi)
τv+1
←−−−↩ H and they

are such that (i) σ̃A.cash(A) = σ̃B .cash(I) and σ̃A.cash(I) = σ̃B .cash(B), and (ii) σ̃A.cash(A) +

σ̃A.cash(I) = 0, send (update–reply, ok , idA, cidA)
τv+1
↪−−−→ H and (update–reply, ok , idB , cidB)

τv+1
↪−−−→

H and stop.
– Otherwise, goto Step 5.

Back to party T ∈ γ.end–users

4. Distinguish the following cases:

– If you receive (updated, idT , cidT)
τv+2
←−−−↩ H, then goto Step 7.

– Otherwise, proceed as follows:
(a) For cid ∈ {0, 1}∗ that is not marked as registered, execute (in parallel) the subprocedure

RegisterDirect(T, id , cid).
(b) Once the registration procedure is over (at round τ1 ≤ τv + 3∆+ 2), send (execute, idT , cidT ,

Closedi ,⊥)
τ1
↪−→ H and goto Step 6.

Party I:

5. Let τ2 := τv + 3∆ + 2 + TRd i
2
e. If for T ∈ {A,B} you did not receive (execute–requested, idT , cidT ,

Closedi , z)
≤τ2←−−↩ H, send (execute, idT , cidT , Close

d
i ,⊥)

τ2
↪−→ G

End for both T ∈ γ.end–users

6. Upon receiving (executed, idT , cidT , σT , addT , contract–closed)←−↩ H go to step 7.
7. Let Q := γ.other–party(T) and let τ4 be the current round and let τ6 := τv + 3∆ + 2 + TEdi/2e. Set

ΓT (id) := ⊥ and send (closed, ok , id)
τ4
↪−→ Q and distinguish:

– If you have received (closed, ok , id)
≤τ4←−−↩ Q, wait for one round and output (closed, id)

τ4+1
↪−−−→ Z.

– Otherwise wait if you receive (closed, ok , id)
τ5<τ6←−−−−↩ Q. In that case output (closed, id)

τ5
↪−→ Z and

else wait until round τ6 to output (closed, id)
τ6
↪−→ Z.

48

Function Closedi (σ, P, τ, z)

Let L := σ.users(1), R := σ.users(2), γ := σ.virtual–channel, A := γ.Alice, B := γ.Bob, I := γ.Ingrid.
1. Make the following checks: γ 6= ⊥; P ∈ {L,R}; if P = {A,B}, then τ ≥ γ.validity + 3∆+ 2; if
P = I, then τ ≥ γ.validity + 3∆+ 2 + TRd i2 e. If one of the checks fails, output (σ, 0, 0,⊥).

2. Let σ(0) := σ and parse (ν1, . . . , ν`) := z.
3. For every k ∈ [`] proceed as follows:

(a) Let σn := νi.storage and define σ(k+1) := σ(k).
(b) If σn.users = γ.end–users, then adjust the cash values of L and R as σ(k+1).cash(L) :=

σ(k).cash(L)− σn.cash(A) and σ(k+1).cash(R) := σ(k).cash(R)− σn.cash(B).
4. Set σ̃ := σ(`). Let investL := γ.cash(A), investR := γ.cash(B) denote the initial balance of

parties in the contract when it was created and let finalL := σ̃.cash(L) and finalR := σ̃.cash(R)
denote the current balance. Distinguish the following two situations:
– If finalL ≥ 0 and finalR ≥ 0 and X := (investL − finalL) + (investR − finalR) ≥ 0, then

set σ̃.cash(L) := (investL − finalL) and add(L) := finalL. Analogously for σ̃.cash(R) and
add(R). If X > 0, then set σ̃.cash(I) := σ̃.cash(I) +X and add X coins to add(L) if I = L
and to add(R) if I = R. Let add := (add(L), add(R))

– Otherwise set σ̃.cash(L) := 0, σ̃.cash(R) := 0 and add := (add(L), add(R)) := (investL,
investR).

5. Set σ̃.locked := 0, σ̃.virtual–channel := ⊥ and output (σ̃, add, contract–closed).

H Additional material on the Protocol for Virtual Multi-Party Channels

In this section, we provide the full description of the protocol Πmpch(i, C0) for multi-party channels which
was already described informally in Sec. 7.2. Recall that we distinguish two cases: when messages about
two-party state channels are received by the parties and when a multi-party channel is received by the
parties.

Two-party state channels If a party P receives a message about creating/closing a two party state
channel, then the party immediately forwards it to the hybrid ideal functionality H := Wdch(i, C1, C0).
Analogously, if the hybrid ideal functionality outputs a message that a two party state channel was
created/closed, then the party simply forwards this message to the environment.

In case a party P receives a message m which is of the form (update, id , cid , σ, C), (update–reply, ok ,
id , cid) or (execute, id , cid , f, z) and id is an identifier of a two party state channel, then for technical
reasons the party P sightly modifies the message m before sending it to the hybrid ideal functionality. In
particular, party P extends the contract instance identifier cid by adding a prefix “TwoParty”. For ex-
ample, if m = (execute, id , cid , f, z), then the party sends the message m′ = (execute, id ,TwoParty||cid ,
f, z) to H. Analogously, if a party P receives a message from the hybrid ideal functionality H that
a contract instance with identifier TwoParty||cid was updated/executed, the party removes the prefix
“TwoParty”‘ before forwarding it to the environment.

The reason for adding/removing this prefix is to prevent the environment from instructing honest
parties to update/execute a contract instance with identifier P ||Q||id , where P,Q ∈ P and id is an
identifier of a multi-party channel. Looking ahead, contract instance identifiers of this form are used for
contract instances with the code mpVSCCi that are created in the subchannels of a multi-party channel
and hence should be updated/executed only when a multi-party virtual state channel is being created or
closed. For the rest of this section, we focus on the protocol description of the case when a party receives
a message about a multi-party channel.

Create a multi-party channel

Protocol Πmpch(i, C): Create a multi-party virtual state channel

We denote the hybrid functionality as H :=Wdch(i, C1, C0) and the virtual state contract as C := mpVSCCi.

Party P ∈ γ.end–users upon (create, γ)
τ0←−↩ Z

49

1. For every Q ∈ γ.neighbors(P), set idQ := γ.subchan({P,Q}) and distinguish the following cases:
Case 1: If OrderP(P) < OrderP(Q), then compute σ̃Q := Init

mp
i (P,Q, τ0; γ) and set cidQ := P ||Q||γ.id.

Then send (update, idQ, cidQ, σ̃Q, C)
τ0
↪−→ H.

Case 2: If OrderP(P) > OrderP(Q), then compute σ̃Q := Init
mp
i (Q,P, τ0; γ) and set cidQ := Q||P ||γ.id.

If (update–requested, idQ, cidQ, σ̃Q, C)
τ0+1
←−−−↩ H reply by sending (update–reply, ok , idQ, cidQ)

τ0+1
↪−−−→

H.

2. If for every Q ∈ γ.neighbors(P) you receive (updated, idQ, cidQ)
τ0+2
←−−−↩ H, then send (create–ok, γ)

τ0+2
↪−−−→ γ.other–party(P). Else stop.

3. In round τ0 + 3 distinguish the following two cases:

– If for every party T ∈ γ.other–party(P) you received (create–ok, γ)
τ0+3
←−−−↩ T , then goto step 4

– Else send (create–not–ok, γ)
τ0+3
↪−−−→ γ.other–party(P) and stop.

4. In round τ0 + 4, distinguish the following two cases:

– If for any party T ∈ γ.other–party(P) you received (create–not–ok, γ)
τ0+4
←−−−↩ T , then stop.

– Else set ΓP (γ.id) := γ, output (created, γ)
τ0+4
↪−−−→ Z.

Constructor Init
mp
i (P,Q, τ, γ)

If {P,Q} 6∈ γ.E or γ.cash(T) < 0 for some T ∈ γ.users or γ.cspace(cid) 6= ⊥ for some cid ∈ {0, 1}∗
or γ.validity < τ+3∆+3, then output ⊥. Else let (VP , VQ) := γ.split(P,Q) and output the attribute
tuple σ defined as follows:

σ.users := (P,Q)

σ.locked :=
∑

T∈γ.users
γ.cash(T),

(σ.cash(σ.users(1)), σ.cash(σ.users(2))) :=

 ∑
T∈VP

γ.cash(T),
∑
T∈VQ

γ.cash(T)

 ,

σ.virtual–channel := γ.

Registration of a contract instance The informal description of the registration procedure was provided
already in Sec. 7.2. Before we present the formal definition, let us discuss one technicality here. A party
P can initiate the registration process even though it does not have any valid version of the contract
instance, i.e. νP = ⊥. Looking ahead, this can happen in the situation when a new contract instance
is being created in the channel and some party does not confirm neither reject the contract instance
creation (see the subprotocol “Update contract instance” for more details). In this case, the initiating
party sends the set of all other parties in the channel γ, instead of its version of the contract instance;
more precisely, it sends νP := γ.other–party(P). The dispute board thus knows to which parties it should
send the registration request.

Protocol Πmpch(i, C): Procedure mpRegister(P, id , cid)

We denote H :=Wdch(i, C1, C0).

Party P :

1. Let γP := ΓP (id), νP := γP .cspace(cid), and let τ0 be the current round. If νP = ⊥, then set νP :=
γ.other–party(P).

2. Send the message (dispute, id , cid)
τ0
↪−→ γP .other–party(P) and (instance–register, id , cid , νP)

τ0
↪−→ H and

set τP := τ0 + 2∆.

Party Q ∈ γ.other–party(P) upon (instance–registering, id , cid , ν)
τ1←−↩ H

50

3. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). If νQ 6= ⊥ and νQ.version > ν.version, then send (instance–

register, id, cid , νQ)
τ1
↪−→ H.

4. Set τQ := τ1 +∆.

For every T ∈ γ.users

5. If not (instance–registered, id , cid , ν̃)
≤τT←−−−↩ H, then send (finalize–register, id, cid , γ.users)

τT
↪−→ H.

6. Upon (instance–registered, id , cid , ν̃)
≤τT+∆
←−−−−−↩ H, mark (id , cid) as registered and set ΓT := UpdateChan

Space∗(ΓT , id , cid , ν̃).

Update a contract instance

Protocol Πmpch(i, C): Contract instance update

Party P upon (update, id , cid , σ̃, C)
τ0←−↩ Z

1. If (id , cid) is marked as corrupt in ΓPaux , stop. Otherwise, let γP := ΓP (id). If γP .cspace(cid) = ⊥ set
wP := 1, else let wP := ΓPaux (id , cid).next-version.

2. Compute sP := SignskP (id , cid , σ̃, C, wP).

3. Send (update, sP , id , cid , σ̃, C)
τ0
↪−→ γ.other–party(P) and goto Step 7.

Every party Q ∈ γ.other–party(P) upon (update, sP , id , cid , σ̃, C)
τ1←−↩ P

4. If (id , cid) is marked as corrupt in ΓQaux , then stop.
5. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). If νQ = ⊥, then set wQ := 1, else set wQ := ΓQaux (id , cid).next-

version.
6. If VrfypkP (id , cid , σ̃, C, wQ; sP) 6= 1, then mark (id , cid) as corrupt and stop. Else output (update–

requested, id , cid)
τ1
↪−→ Z and consider the following two cases

– If (update–reply, ok , id , cid)
τ1←−↩ Z, then sign sQ := SignskQ(id , cid , σ̃, C, wQ), send (update–ok, id , cid ,

sQ)
τ1
↪−→ γ.other–party(Q) and goto Step 7.

– Else compute the signature sQ := SignskQ(id , cid , νQ.storage, νQ.code, wQ+1), send message (update–

not–ok, id , cid , sQ)
τ1
↪−→ γ.other–party(Q), set ΓQaux .next-version(id , cid) := wQ + 2 and stop.

Every party T ∈ γ.users

7. For every Q ∈ γ.users \ {P, T}, set ok(Q) := −1, set ok(P) := 0 and proceed as follows:

– If you receive (update–ok, id , cid , sQ)
τ2=τ0+2
←−−−−−↩ Q, where ok(Q) = −1 and VrfypkQ(id , cid , σ̃, C, wT ;

sQ) = 1, then set ok(Q) := 0.

– If you receive (update–not–ok, sQ)
τ2=τ0+2
←−−−−−↩ Q, where ok(Q) ≤ 0 and VrfypkQ(id , cid , νT .storage,

νT .code, wT + 1; sQ) = 1, then set ok(Q) := 1 compute sT := SignskT (id , cid , νT .storage, νT .code,

wT + 1) and send (update–not–ok, id , cid , sT)
τ2
↪−→ γ.other–party(T)

8. In round τ3 := τ2 + 1, distinguish the following cases
– If there exists Q ∈ γ.other–party(T) such that ok(Q) = −1, then goto Step 9.
– If for all Q ∈ γ.other–party(T) it holds that ok(Q) = 0 but in round τ3 you receive (update–not–

ok, sQ)
τ3←−↩ Q from some Q ∈ γ.other–party(T), where VrfypkQ(id , cid , νT .storage, νT .code, wT +

1; sQ) = 1, then goto Step 9.
– If for all Q ∈ γ.other–party(T) it holds that ok(Q) = 0 and you do not receive (update–not–ok, sQ)

τ3←−↩ Q from any Q ∈ γ.other–party(T), then set ΓT := UpdateChanSpace∗(ΓT , id , cid , σ̃, C, wT ,

{sQ}Q∈γ.users), set ΓTaux (id , cid).next-version := wT + 1, output (updated, id , cid)
τ3
↪−→ Z and stop.

– Else proceed as follows:

(a) For all Q ∈ γ.other–party(T): If you receive (update–not–ok, sQ)
τ3←−↩ Q, where VrfypkQ(id , cid ,

νT .storage, νT .code, wT + 1; sQ) = 1, then set ok(Q) := 1.

51

(b) If for all Q ∈ γ.other–party(T) it holds that ok(Q) = 1, then set ΓT := UpdateChanSpace∗(ΓT ,
id , cid , σ, C, wT + 1, {sQ}Q∈γ.users), set ΓQaux .next-version(id , cid) := wT + 2 and stop.

(c) Else goto Step 9.
9. Let τ4 ≤ τ0+3 be the current round. Mark (id , cid) as corrupt and call the subprocedure mpRegister(T,

id , cid). After the subprocedure execution (in round τ5 ≤ τ4 + 3∆), if γT .cspace(cid) = (σ̃, C), then

output (updated, id , cid)
τ5
↪−→ Z.

Execution of a contract instance As already explained in Sec. 7.2, our protocol requires a fixed ordering
of peaceful execution requests. Therefore, before we present the formal description of the execution
protocol, we present the ordering considered in this work. Recall that a peaceful execution request is a
tuple of the form (f, z, τ, P), where f is the function to be executed on input parameter z. The value of
τ denotes the time-stamp of the request and P is the requesting party.

1. The requests are ordered by party, meaning that requests from party P ∈ P will be processed before
requests from Q ∈ P if OrderP(P) < OrderP(Q).

2. Requests with lower time-stamp are processed first.
3. Requests are executed along the function order inside the contract code.
4. Lastly, the lexicographic ordering of binary input representation is applied.

Protocol Πmpch(i, C): Contract instance execution

We denote H := Wdch(i, C1, C0). In addition, we assume that every party P ∈ P maintains the following
three sets ΓPaux (id , cid).toPeacefullyExecute, ΓPaux (id , cid).toForceExecute and ΓPaux (id , cid).PeacefullyExecuted
in its auxiliary channel space.

Party P

Upon (execute, id , cid , f, z)
τc←−↩ Z:

1. Add the tuple (f, z, τc, P) to the set ΓPaux (id , cid).toPeacefullyExecute.
2. Wait for at most three rounds until the round number, let us denote it τ0, is such that τ0 = 0

mod 4.
3. Let E ⊆ ΓPaux (id , cid).toPeacefullyExecute consist of all (f ′, z′, τ ′c, P) ∈ ΓPaux (id , cid).toPeacefullyExecute,

where τ ′c ∈ [τ0 − 3, τ0]. Distinguish the following two situations:
– If (id , cid) is marked as corrupt in ΓPaux , then

(a) Add elements from E to the set ΓPaux (id , cid).toForceExecute
(b) If (id , cid) is not marked as registered yet, then run the procedure mpRegister(P, id , cid).
(c) Goto step 12.

– Else for every (f ′, z′, τ ′c, P) ∈ E send (peaceful–request, id , cid , f ′, z′, τ ′c)
τc
↪−→ Q and then goto

step 5.

Upon (peaceful–request, id , cid , f, z, τc)
τ←−↩ Q:

4. Let γ := ΓP (id), ν := γ.cspace(cid), σ := ν.storage.
– If at least one of the following is true: τ 6= 1 mod 4; τc 6∈ [τ − 4, τ − 1]; γ = ⊥; P,Q 6∈ γ.users;
ν = ⊥; f 6= ν.code; τc ≥ γ.validity; (id , cid) is marked as corrupt in ΓPaux , then mark (id , cid)
as corrupt in ΓPaux .

– Else add tuple (f, z, τc, Q) to the set ΓPaux (id , cid).toPeacefullyExecute and then goto step 5.
Local execution

5. Wait for at most one round until the round number, let us denote it τ1, is such that τ1 = 1 mod 4.
6. Let γ := ΓP (id), σ(0) := γ.cspace(cid).storage, C := ν.code and w := Γaux (id , cid).next-version. Let

E ⊆ ΓPaux (id , cid).toPeacefullyExecute consist of all tuples e(k) ∈ Γaux (id , cid).toPeacefullyExecute,

where e(k) = (f (k), z(k), τ
(k)
c , T (k)) for τ

(k)
c ∈ [τ1 − 4, τ1 − 1].

7. Let ` := |E| and E = {e(1), . . . , e(`)} be such that for i < j the following holds:
– If T (i) 6= T (j) , then OrderP(T (i)) < OrderP(T (j)).

– If T (i) = T (j), then either (i) τ
(i)
c < τ

(j)
c or (ii) τ

(i)
c = τ

(j)
c and f (i) <C f

(j), where <C is total

ordering of the contract functions defined by the contract code C, or (iii) τ
(i)
c = τ

(j)
c , f (i) = f (j)

and z(i) ≤lex z
(j), where ≤lex is the lexicographic ordering of binary strings.

8. For k = 1 to ` do
(a) Compute (σ(k), add(k),m(k)) := f(σ(k−1), T (k), τ

(k)
0 , z(k)).

52

(b) If m(k) = ⊥ set σ(k) := σ(k−1). Else add (executed, id , cid , σ(k), add(k),m(k)) to the set ΓPaux (id ,
cid).PeacefullyExecuted.

9. For every T ∈ γ.users, set add(T) :=
∑
k∈[`] add

(k)(T).

10. Set σ̃ := σ(`) and compute sP := SignskP (id , cid , σ̃, C, w) and send (peaceful–confirm, id , cid , sP)
τ1
↪−→ γ.other–party(P).

11. In round τ2 := τ1 + 1 distinguish:

– If (peaceful–confirm, id , cid , sQ)
τ2←−↩ Q, where VrfypkQ(id , cid , σ(`), C, w; sQ) = 1, from every

party Q ∈ γ.other–party(P), then proceed as follows
(a) Set ΓP := UpdateChanSpace(ΓP , id , cid , σ̃, C, add, w, {sQ}Q∈γ.users)
(b) If in round τ3 := τ2 + 1 you receive (dispute, id , cid)

τ3←−↩ Q from some party Q ∈ γ.other–
party(P), then participate in the registration procedure

(c) Let τ4 ≤ τ3 +3∆ be the current round. Then for every e ∈ Γaux .PeacefullyExecuted(id , cid),

output e
τ3
↪−→ Z and stop.

– Else mark (id , cid) as corrupt and execute the registration subprocedure mpRegister(P, id , cid).
If after the registration procedure is executed, in round distinguish:
• If ΓP (id).cspace(cid).storage = σ̃, then output e ↪−→ Z for every e ∈ Γaux .PeacefullyExecuted(id ,

cid) and stop.

• Otherwise add every tuple (f (k), z(k), τ
(k))
c , P) ∈ E to the set ΓPaux (id , cid).toForceExecute

and goto step 12.
Force execution

12. Let τ4 be the current round. Let E = ΓPaux (id , cid).toForceExecute.

13. For every (f, z, τc, P) ∈ E send (instance–execute, id , cid , f, z)
τ4
↪−→ H.

Upon (instance–executed, id , cid , σ̂, add,m)←−↩ H:
Set ΓP := UpdateChanSpace(ΓP , id , cid , σ̂, CT , add), output (executed, id , cid , σ̂, add,m) ↪−→ Z and stop.

Closing a multi-party channel

Protocol Πmpch(i, C): Close a multi-party virtual state channel γ

We denote the hybrid functionality as H := Wdch(i, C1, C0), the virtual state contract as C := mpVSCCi. Let
TEi := TimeExe(i) be the upper bound on the rounds needed to execute a two party virtual state channel
of length ≤ i. We assume that every party maintains a function terminated : γ.users→ {0, 1}, to keep track
on updated contract instances in the subchannels of γ.

Party P ∈ γ.end–users when round τ0 := γ.validity comes

For every Q ∈ γ.neighbors(P) set cidQ := P ||Q||γ.id if OrderP(P) < OrderP(Q) and cidQ := Q||P ||γ.id
otherwise. Let idQ := γ.subchan({P,Q}) and σQ := ΓP (idQ).storage.cspace(cidQ)

Case 1: If ΓP (γ.id) = ⊥, then check for every Q ∈ γ.neighbors(P) if σQ 6= ⊥. If this is the case, wait 3∆+2

rounds to send (execute, idQ, cidQ, Close
mp
i ,⊥)

τ0+3∆+2
↪−−−−−−→ H and stop.

Case 2: If ΓP (γ.id) 6= ⊥, then proceed as follows:
1. Set z := ∅. For every cid ∈ {0, 1}∗ such that γ.cspace(cid) 6= ⊥, add γ.cspace(cid) to z.
2. For everyQ ∈ γ.neighbors(P), set terminated(Q) := 0 and compute (σ̃Q, add,m) := Close

mp
i (σQ, Q, τ0+

3∆+ 2, z).

3. For each neighbor of higher order (OrderP(P) < OrderP(Q)) send (update, idQ, cidQ, σ̃Q, C)
τ0
↪−→ H.

4. For each neighbor of lower order (OrderP(P) > OrderP(Q)) upon receiving (update–requested, idQ,

cidQ, σ̃Q, C)
τ0+1
←−−−↩ H reply by sending (update–reply, ok , idQ, cidQ)

τ0+1
↪−−−→ H.

5. For every Q ∈ γ.neighbors(P) check the following:

– If you receive (updated, idQ, cidQ)
τ0+2
←−−−↩ H, set terminated(Q) := 1.

– If you did not receive (updated, idQ, cidQ)
τ0+2
←−−−↩ H

(a) For every (cid , ν) ∈ z execute mpRegister(P, γ.id, cid) if (γ.id, cid) is not marked as regis-
tered in ΓPaux yet.

(b) At τ1 := τ0 + 3∆+ 2 send (execute, idQ, cidQ, Close
mp
i ,⊥)

τ1
↪−→ H.

(c) Upon receiving (executed, idQ, cidQ, σ̃Q, add,m)
τ2≤τ1+TEi←−−−−−−−↩ H, set terminated(Q) := 1.

6. Let τP be the first round in which terminated(Q) = 1 for every Q ∈ γ.neighbors(P).

53

– If τP = τ0 + 2 and you did not receive (dispute, γ.id, cid)
τ0+3
←−−−↩ Q for any cid ∈ {0, 1}∗ such

that γ.cspace(cid) 6= ⊥, set τ3 := τ0 + 3.
– Else set τ3 := τ0 + 3∆+ TEi + 2.

7. In round τ3, set ΓP (γ.id) := ⊥ and output (closed, γ.id)
τ3
↪−→ Z.

Function Close
mp
i (σ, P, τ, z)

Let L := σ.users(1), R := σ.users(2), γ := σ.virtual–channel and n = |γ.users|.
1. Make the following checks: γ 6= ⊥; P ∈ {L,R}; and τ < γ.validity+ 3∆+ 2. If one of the checks

fails, the output (σ, 0, 0,⊥).
2. Let σ(0) := σ, set (VL, VR) := γ.split({L,R}) and parse (ν1, . . . , ν`) := z.
3. For every k ∈ [`] proceed as follows

(a) Let σn := νi.storage and define σ(k+1) := σ(k).
(b) If σn.users = γ.users, adjust the cash value of L as σ(k+1).cash(L) := σ(k).cash(L) −∑

T∈VL σn.cash(T) and of user R: σ(k+1).cash(R) := σ(k).cash(R)−
∑
T∈VR σn.cash(T).

4. Let σ̃ := σ(`) and the values investL :=
∑
T∈VL γ.cash(T) and investR :=

∑
T∈VR γ.cash(T)

denote the initial balance of parties in the contract when it was created and let finalL :=
σ̃.cash(L) and finalR := σ̃.cash(R) denote the current balance.

5. Let X := (investL − finalL) + (investR − finalR). If X > 0, then add |VL| · Xn to finalL and

|VR| · Xn to finalR.
6. Distinguish the following two cases

– If finalL ≥ 0 and finalR ≥ 0 and X ≥ 0, then set σ̃.cash(L) := (investL − finalL) and
σ̃.cash(R) := (investR − finalR) and add := (add(L), add(R)) := (finalL,finalR).

– Else set σ̃.cash(L) := 0 and σ̃.cash(R) := 0 and add := (add(L), add(R)) := (investL,
investR).

7. Set σ̃.locked := 0, σ̃.virtual–channel := ⊥ and output (σ̃, add, contract–closed).

H.1 Theorem Statement

For completeness we restate the theorem saying that the protocol described in this section UC-realizes
the ideal functionality Fmpch(i, C0).

Theorem 1 Suppose the underlying signature scheme is existentially unforgeable against chosen message
attacks. The protocol Πmpch(i, C0) in the Wdch(i, C1, C0)-hybrid model emulates the ideal functionality
Fmpch(i, C0) for every set of contract codes C0, every i ≥ 1 and every ∆ ∈ N.

I Simplifying the protocol descriptions

Let us emphasize that the formal descriptions of both our state channel protocols Πdch(i, C, π) and
Πmpch(i, C, π) are simplified. Similarly as the descriptions for state channel ideal functionalities (see
Appx. C.1), our protocol descriptions exclude many natural checks that one would expect a party fol-
lowing the protocol to make. The intuition behind this is that we do not want a state channel protocol
to “work” for malformed or invalid requests. Let us give a few examples of such invalid requests of Z
that a party will refuse.

– Z instructs the party P to ledger channel for which P does not have enough coins on the ledger.
– Z instructs the party P to create a virtual channel using an intermediary I but there does not exist

any state channel between P and I yet.
– Z instructs the party P to update or execute a contract instance in a channel that was never created

by P or that was already closed.
– Z instructs the party P to execute a non-existing function of a contract instance.
– Z instruction to party P contains malformed inputs (e.g., missing or unknown parameters).

In order to simplify the already complex protocol description, we define a wrapper W L̂(∆)

checks–P (i, C, Π) that

performs all these checks. That is, we write Π := W L̂(∆)

checks–P (i, C, Π) for Π ∈ {Πdch(i, C, ·), Πmpch(i, C)}
and W L̂(∆)

checks–P as defined below.

54

Wrapper: W L̂(∆)

checks–P (i, C, Π)

Below, we abbreviate notation A := γ.Alice, B := γ.Bob and I := γ.Ingrid.

Party P

Create

Upon receiving (create, γ)
τ0←−↩ Z make the following checks: ΓP (γ.id) = ⊥ and there is no state channel

γ′ with γ.id = γ′.id currently being created; γ is a valid state channel according to the definition given
in Sec. 3.2; γ.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗. Depending on the type of the channel, additionally
checks:

Ledger channel: check that both you and Q := γ.other–party(P) have enough funds on the ledger for the
channel creation;a

Two-party virtual channel: j := γ.length ≤ i; if γ.dispute = indirect, then γ.validity > τ0 + 2 + 4 · Time
ExeReq(dj/2e) and if γ.dispute = direct, then γ.validity > τ0 + 2 + 3∆; and the following holds for the
subchannels:
– If P ∈ γ.end–users, then α := ΓP (idP) 6= ⊥, for idP := γ.subchan(P); α.end–users = {P, I};
α.length ≤ dj/2e; α.validity > γ.validity + 2TimeExeReq(dj/2e) + 2TimeExe(dj/2e); if α.dispute =
indirect, then check if α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ and if there is no other virtual
state channel being created over α; both P and I have enough funds in α.b

– If P = γ.Ingrid, then α := ΓP (idA) 6= ⊥, for idA := γ.subchan(P) and β := ΓP (idB) 6= ⊥, for idB :=
γ.subchan(B); α.end–users = {A, I}; β.end–users = {B, I}; j = α.length + β.length, α.length ≤
dj/2e and β.length ≤ dj/2e; min{α.validity, β.validity} > γ.validity + 2TimeExeReq(dj/2e) + 2Time
Exe(dj/2e); if α.dispute = indirect, then check if α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ and
if there is no other virtual state channel being created over α; (analogously for β); A and I have
enough funds in α and B and I have enough funds in β. b

Multi-party virtual channel: γ.dispute = direct, j := γ.length ≤ i; γ.validity > τ0 + 3∆ + 3; for every
Q ∈ γ.neighbors(P): α := ΓP (idQ) 6= ⊥, where idP := γ.subchan({P,Q}); α.end–users = {P,Q};
α.length ≤ i; α.validity > γ.validity+3∆+TimeExe(i)+2; if α.dispute = indirect, then α.cspace(cid) = ⊥
for every cid ∈ {0, 1}∗ and there is no other virtual state channel being opened over α; both P and Q
have enough funds in α. b

If one of the above checks fail, then drop the message. Otherwise proceed as the in the protocol Π. In
addition, if P = A, γ.length = 1 and id round τ0 + 2∆+ 1 it still holds that Γ (γ.id) = ⊥, then act as in the

protocol Π upon receiving (refund, γ)
τ0+2∆+1
←−−−−−−↩ Z.

Update

Upon receiving (update, id , cid , σ̃, C)
τ0←−↩ Z make the following checks: γ := ΓP (id) 6= ⊥; τ0 < γ.validity; C ∈

C; σ̃ ∈ C.Λ; σ̃.locked =
∑
Q∈γ.users σ̃.cash(Q), all parties have enough cash in the state channel for the contract

instance update. If ν := γ.cspace(cid) 6= ⊥, then the following must hold: ν.code = C; σ.user = σ̃.user, where
σ := ν.storage; σ.locked =

∑
Q∈γ.users σ.cash(Q). If γ.dispute = indirect, then γ.cspace(cid∗) = ⊥ for every

cid∗ ∈ {0, 1}. If one of the above checks fails, then drop the message. Otherwise proceed as the protocol Π.

Upon receiving (update–reply, ok , id , cid)
τ0←−↩ Z make the following checks: the message is a reply to

your message (update–requested, id , cid , σ̃, C) sent to Z in round τ0; there is no other update or execution
of the contract instance cid in channel γ := Γ (id) currently going on. In addition, if γ.dispute = indirect,
then check is there is no virtual state channel currently being created over γ. If one of the above checks
fails, then drop the message. Otherwise proceed as in the protocol Π.

Execute

Upon receiving (execute, id , cid , f, z)
τ0←−↩ Z, make the following checks γ := ΓP (id) 6= ⊥; τ0 < γ.validity;

γ.cspace(cid) 6= ⊥, f ∈ γ.cspace(cid).code. If one of the above checks fails, then drop the message. Otherwise
proceed as in the protocol Π.

55

Close

Upon (close, id)
τ0←−↩ Z, check if γ := ΓP (id) 6= ⊥ and γ.length = 1. If not, then drop the message. Otherwise

proceed as in the protocol Π.

a In case more ledger state channels are being created at the same time, both parties have enough funds
for all ledger state channels that are being created.

b In case more virtual state channels are being created at the same time, all parties have enough funds for
all of them.

Recall that our protocol Πdch(i, C, π), that was formally defined in Appx. G, is parameterized by a

protocol π which must be a protocol that UC-realizes the ideal functionality W L̂(∆)

checks(i, C,Fch(i, C)).
Authors of [12] define a protocol realizing the ideal functionality Fch(i, C) with respect to a set of

restricted environments Eres . The reason for restricting the environment is to reduce the complexity
of the functionality and protocol description. As discuss in Appx. C.1, it is straightforward to verify
that restrictions defining the set Eres translate to checks performed by our functionality wrapper. It is
also straightforward to see that parties following the wrapped protocol directly drop all queries that a
restricted environment Eres would not be allowed to make. On the other hand, corrupted parties can of
course send any message they want, but note that also Eres only was restricted in sending messages to
honest parties. Hence, we conclude the protocolW L̂(∆)

checks–P (i, C, Πch(i, C)), where Πch(i, C) is the protocol

from [12], realizes the ideal functionality W L̂(∆)

checks(i, C,Fch(i, C)).

56

