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Abstract. Post-quantum cryptography has gathered significant attention in recent
times due to the NIST call for standardization of quantum resistant public key algo-
rithms. In that context, supersingular isogeny based key exchange algorithm (SIKE)
has emerged as a potential candidate to replace traditional public key algorithms
like RSA and ECC. SIKE provides O( 4

√
p) classical security and O( 6

√
p) quantum

security where p is the characteristic of the underlying field. Additionally, SIKE
has the smallest key sizes among all the post-quantum public algorithm, making
it very suitable for bandwidth constrained environment. In this paper, we present
an efficient implementation of SIKE protocol for FPGA based applications. The
proposed architecture provides the same latency as that of the best existing imple-
mentation of SIKE protocol while consuming 48% less DSPs and 58% less block
RAM resources. Thus, our design is substantially more efficient compared to that of
existing implementations of SIKE.
Keywords: SIKE, FPGA, Montgomery, BRAM, DSP

1 Introduction
In recent years, research in quantum computers has gone through a significant advancement
and the possibility of having commercial quantum computers in the near future is not
distant any more. IBM has recently launched a cloud based quantum computing service
IBM-Q which allows user to avail quantum computing services. Quantum computers can
solve many mathematical problems which can not be solved by the conventional computers.
Unfortunately, this includes many mathematical hard problems which form the basis of
several existing public key cryptographic algorithms. Therefore, all the existing public
key cryptographic algorithms (RSA and ECC) will cease to be secure in a post-quantum
world. Hence, there is a need for new public key algorithms which will be secure against
both traditional and quantum computing. Understanding this, NIST has announced
the standardization process for post-quantum secure public key algorithms in 2017 and
subsequently, there have been multiple submissions of post-quantum secure public key
schemes in the NIST’s portal. The submitted post-quantum algorithms can be broadly
classified into five different categories: lattice based algorithms, multivariate equation
based algorithms, code based algorithms, hash based algorithms and supersingular isogeny
based algorithm (SIKE). In this paper, we will concentrate on the efficient implementation
of SIKE protocol on FPGA platform.

Supersingular isogeny based Diffie-Hellman key exchange algorithm (SIKE) is based
on the isogeny property of supersingular elliptic curves. Elliptic curve is a well studied
topic and key exchange algorithm based on elliptic curve scalar multiplication is already
deployed in various security critical services. In that context, transition to supersingular
isogeny based cryptosystem will be easier compared to other post-quantum secure public
key algorithms. Additionally, among all the available post-quantum public key algorithms,
SIKE requires the smallest key. To provide 124 bit security, the public key size of SIKE
is 564 bytes only. Additionally with the recently proposed compression techniques[1],
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the size of the public key can be reduced further. This makes SIKE extremely suitable
for applications which have a very strict bandwidth requirement. However, the timing
performance of SIKE is still significantly slow compared to lattice based post-quantum
algorithms, and therefore performance of SIKE must be improved to compete with other
post-quantum public key algorithms.

The fast implementation of traditional elliptic curve cryptosystems generally takes
advantage of the fast modular reduction routine of pseudo-Mersenne or Solinas prime on
which the curve is based on. However, such advantage is not present in case of SIKE. The
SIKE protocol is implemented on a supersingular elliptic curve, defined over the field Fp2 .
The prime p is of the form 2e2 .3e3 ± 1. Due to this special form, fast modular reduction
routine of traditional elliptic curves can not be applied in this case. This becomes a major
hurdle in the efficient implementation of SIKE which needs to be solved. Moreover, the
size of the underlying field in case of SIKE is substantially larger than traditional elliptic
curve cryptography. For example, popular elliptic curves like NIST P-256 and Curve25519
provides 128 bits security with field size of 256. However, to have 124 bit quantum security
using SIKE, the field size needs to be 752 which adds to the complexity of the design.

In this paper, we propose an efficient implementation of SIKE for FPGA platforms. The
proposed architecture exhibits similar latency to that of the existing best implementation
of SIKE while consuming significantly less resources in terms of DSP and BRAM modules.
To achieve this, we use a special Montgomery multiplier, operating in the redundant
number system. This multiplier can execute multiple modular multiplications in parallel
with very low critical path and is tailor made for speed-critical applications like SIKE. We
combine this multiplier with efficient and customized field addition and subtraction modules
which perform significantly better compared to the standard field adder and subtractors,
deployed in existing implementation of SIKE. Finally, these base field operation circuitry
are integrated with an efficient scheduling structure to implement a high performance
architecture of SIKE. The contribution of the paper can be summarized as below:
• Our first objective will be to develop fast and efficient modules for implementing
field operations for execution of SIKE. The most time consuming field operation
is multiplication in Fp. To execute this, we have used an updated implementation
of Montgomery multiplier in the redundant number system [2]. The proposed
Montgomery multiplier has following features:
1. The execution of Montgomery multiplication involves integer multiplication and

multi-operand additions. As our proposed Montgomery multiplier is based on
the redundant number system, the carry propagation during these operations
can be restricted to a small values. For example, in our proposed implementation,
the carry propagation is limited to 16 bits only which makes the critical path
of the architecture considerably small.

2. To improve the timing performance of the design further, we have incorporated
carry save adders for the multi-operand addition operations. It must be noted
that implementation of carry save adders using only look up tables (LUTs)
will be slower compared to ripple carry adders on FPGAs. This is due to the
fact that ripple carry addition operations on FPGAs are automatically mapped
to the fast carry chains by the CAD tools. Therefore, to truly unlock the
advantages of carry save adders, we have implemented the carry save adders
using the fast carry chains of modern FPGAs.

3. This multiplier that we have deployed in our architecture can execute either three
or four parallel modular multiplications in Fp depending upon the user’s choice.
This flexibility in terms of choosing the number of parallel multiplications to be
executed distinguish our implementation from the existing implementations of
Montgomery multiplier. It will also play a key part in improving the overall
performance of SIKE.
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• To augment the field multiplier module, we have also used an efficient field adder
circuitry [3]. This field adder module is based on a hybrid architecture of ripple carry
and carry look ahead adders and utilizes the fast carry chains of modern FPGAs in
much improved way compared to standard ripple carry adders.

• BRAM is a critical component of modern FPGAs and the existing implementations
of SIKE consumes a large number of BRAMs during its execution. Compared to
them, due to our memory optimization policy, our proposed architecture consumes
around 58% less BRAMs compared to existing implementations

• We have also determined an optimal scheduling of the field operations so that we
can tap out the maximum efficiency from the high speed field operation modules.
The resulting architecture of SIKE which we have developed is significantly more
efficient compared to existing implementations of SIKE.

The rest of the paper is organized as follows. In section 2, we will briefly discuss
the relevant literature regarding SIKE and its implementation. Section 3 will focus on
the preliminaries of SIKE protocol. In this section, we will also introduce the basics of
redundant number system which will be useful in understanding the architecture of the
Montgomery field multiplication. In section 4 and in 5, we will explain the architecture
of different field operation modules and in section 6 we will introduce our proposed
architecture of SIKE. Section 7 will provide detailed performance analysis of the proposed
architecture and finally we will conclude the paper in section 8.

2 Related Works
The first work which focuses on the application of isogeny to implement post-quantum
secure Diffie-Hellman key exchange algorithm was proposed in [4]. This work was based
on the difficulty of computing isogeny between ordinary elliptic curves. However, in [5],
a sub-exponential attack in the quantum domain was proposed against the algorithm
of [4]. Subsequently, in [6], the authors proposed a modified Diffie-Hellman key exchange
algorithm using the the property of difficulty in computing isogeny between supersingular
elliptic curves. Supersingular elliptic curves are generally not used in traditional elliptic
curve cryptography as computing elliptic curve discrete curve logarithm problem (ECDLP)
is easy on those curves. However, isogeny based Diffie-Hellman key exchange algorithm on
supersingular elliptic curves is found to thwart the attack proposed in [5]. The proposed
supersingular isogeny based Diffie-Hellman key exchange (SIDH) algorithm provides
O( 4
√
p) classical security and O( 6

√
p) quantum security where p is the characteristic of

the underlying field on which the supersingular elliptic curve is built. The work of [6]
was later updated in [7], where the authors optimized the implementation of SIDH
significantly. The main contribution of this work is to propose the usage of projective
coordinates during the computation of SIDH. Projective coordinates reduces the number
of field inversions required in the SIDH computation. This improves the performance
of the SIDH computation significantly as inversion is a costly field operation. The final
supersingular isogeny based key exchange algorithm (SIKE) which was submitted in the
NIST post-quantum public key standardization procedure is based on this work.

The implementation of SIDH and SIKE on FPGA has emerged as an interesting
design problem in recent years. The first implementation of SIDH was proposed in [8]
where the authors have implemented the SIDH architecture on Virtex-7 FPGA. This
implementation was based on [6] and uses Kaliski inverter to implement the field
inversion. The field multiplier was implemented using systolic array based Montgomery
multiplication algorithm. Later, after the publication of [7], which significantly reduces
the number of inversions required to implement SIDH, the authors proposed an updated
implementation of SIDH in [9]. This implementation is significantly faster compared to
the [8] and exploits the parallelism involved during the computation of isogeny. This work
was further improved in [10] with increased usage of field multipliers.
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All the aforementioned implementations of SIDH or SIKE exhibit the following features:
• The architectures use systolic array based Montgomery multiplier to implement
field multiplication in Fp. Their proposed multiplier can interleave two parallel
modular multiplication which in turn improves the performance of the architecture
significantly.

• The multiplication in Fp2 is implemented using Karatsuba multiplier. This reduces
the number of field multiplication in Fp

• All the above mentioned architecture are built on extensive usage of DSP blocks and
block RAM resources of modern FPGAs.

In our proposed implementation, we will use an alternative implementation of Mont-
gomery multiplier to implement field multiplication in Fp. More specifically, we will be
using redundant number system to implement Montgomery multiplier with the capability
either three or four parallel modular multiplications in Fp. Additionally, our proposed
architecture requires significantly lesser number of DSP blocks and block RAMs compared
to existing implementation with similar timing performance.

3 Preliminaries
In this section we will present a brief overview of SIDH and SIKE protocol. Additionally,
we will also present basics of redundant number system which plays a major role in the
proposed architecture of SIDH implementation.
3.1 Supersingular Montgomery Elliptic Curve
All the isogeny based cryptographic protocols are built on supersingular Montgomery
elliptic curves. A Montgomery curve EA,B over a finite field Fq can be defined as below:

Ea,b : by2 = x3 + ax2 + x, a, b ∈ Fq (1)

The curve equation can also be expressed in projective domain as follows:

EA/C,B/C : By2 = Cx3 +Ax2 + Cx, A,B,C ∈ Fq and a = A/C, b = B/C (2)

In recent years, Montgomery curves have become immensely popular as it provides more
efficient elliptic curve operations compared to short Weierstrass curves. Montgomery curves
support differential addition and doubling computation using only the x coordinates (X : Z
coordinates in projective domain) of the input points. This feature of the Montgomery
curves will also be utilized during the computation of SIDH (and SIKE). More details on
Montgomery curves in the context of elliptic curve cryptography can be found in [11].

A Montgomery curve EA/C,B/C defined over a field Fq with characteristic p is said to
be supersingular if p|(q + 1−#EA/C,B/C) and ordinary otherwise. Supersingular curves
are generally not used in ECDH or ECDSA algorithms as ECDLP on supersingular curve
EA/C,B/C defined over Fq can be mapped to DLP in Fp using MOV reduction [12]. DLP
in Fq can be solved in subexponential time using index calculus method. However, in case
of isogeny based cryptography, supersingular curves are preferred over ordinary elliptic
curves as supersingular curves support non-commutative endomorphism ring, preventing
the attack by [5].

3.1.1 j − invariant

j − invariant of an supersingular Montgomery elliptic curve can be defined as follows:

j(Ea,b) = 256(a2 − 3)3

a2 − 4 (3)

In projective domain, the j − invariant can be computed as below:

j(EA/C,B/C) = 256(A2 − 3C2)3

C4(A2 − 4C2) (4)
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In case of isogeny based cryptography, the objective of the Diffie-Hellman key exchange
protocol is to make sure that the two communicating property ends up with two different
but isomorphic curves. This can be verified by computing the j − invariant of the curves
as isomorphic curves will have same j − invariant value. Therefore this j − invariant
values of the final curves can act as the shared secret key. Another important observation
is that during the computation of j − invariant, we do not require the value of b or B.
Thus is our future discussion, we will denote the Montgomery curve EA/C,B/C as EA/C .

3.2 Isogeny
An isogeny φ : E1 → E2 is a non-constant rational map between two elliptic curves E1
and E2 defined over a finite field Fq. It can also be defined as a group homomorphism
which preserves the group structure of the elliptic curve. More specifically, isogeny maps
an elliptic curve of one particular isomorphism class to a new elliptic curve of another
isomorphism class. A separable isogeny can be uniquely defined by the kernel of it.
Moreover in this case, the degree of the isogeny will be equal to the order of the kernel.
Kernel of the isogeny φ can be defined as follows:

ker(φ) = {P ∈ E1, φ(P ) = O} (5)

For any subgroup H in E1, there exist a unique isogeny (upto isomorphism) such that
ker(φ) = H and deg(φ) = |H|. In other words, the isogeny map φ can be uniquely
identified by its kernel H. For any prime, l 6= p, there exist l + 1 isogenies of degree
l. Additionally, larger degree isogeny computation can be decomposed into computing
multiple smaller degree isogeny. An isogeny map φ of degree le can be computed as a
chain of degree l isogeny as shown below

φ = φe−1 ◦ φe−2 ◦ . . . ◦ φ0 (6)

Each φi indicates an isogeny map of degree l. Degree l isogeny can be uniquely computed
from its kernel using Velu’s formula [13].

In case of isogeny computation, we can create a graph where each node indicates a
particular isomorphism class and each edge indicates a degree l isogeny. For a large such
graph, the path between two distant nodes is difficult to determine without the knowledge
of the kernel. The security of the isogeny based public key cryptosystem relies on the
hardness of computing the isogeny map φ, given the image and preimage curve E2 and E1.
It must be noted that kernel H of the isogeny map φ is kept secret and is not known to
the adversary.

3.3 Public Parameters
In this section, we will briefly state the different public and secret parameters used in
isogeny based cryptography.
• Integer e2 and e3 which will define the prime p = 2e23e3 − 1 and the finite field Fp2 .
Any element a ∈ Fp2 can be defined as a0 + i.a1 where a0, a1 ∈ Fp and i =

√
−1.

• Starting curve : E0/Fp2 : y2 = x3 + x. This curve can also be defined as E0(Fp2) =
E0[2e2 ]⊕E0[3e3 ]⊕ F . Here E0[2e2 ] and E0[3e3 ] denotes the subgroup of 2e2 torsion
points and 3e3 torsion points in E0(Fp2) respectively. F denotes the set which
contains the points having order co-prime to 2 and 3.

• Public generator points: We choose P2 ∈ E0/Fp2\E0(Fp), Q2 ∈ E0(Fp) such that
{P2, Q2} forms the basis of E0(Fp2)[2e2 ]. Similarly we choose another pair of points
{P3, Q3} such that P3 ∈ E0/Fp2\E0(Fp), Q3 ∈ E0(Fp). {P3, Q3} forms the basis
of E0(Fp2)[3e3 ]. For efficiency reason, rather than using {P2, Q2}, we will use
{xP2 , xQ2 , xD2} as public parameters (D2 = P2 − Q2). This is done to utilize the
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Algorithm 1: Computing the degree-4 isogenous curve
1 Input:(XP4 : ZP4 ) where P4 constitutes the kernel < P4 > of degree 4 isogeny and order of P4 is 4 on

EA/C

Result: Curve coefficients (A+
24 : C24) (A′ + 2C′ : 4C′) of EA′/C′ = EA/C/ < P4 > and constants

(K1, K2, K3) ∈ (F 2
p )3

2 K2 = XP4 − ZP4
3 K3 = XP4 − ZP4
4 K1 = Z2

P4

5 K1 = K1 + K1
6 C24 = K2

1 K1 = K1 + K1

7 A+
24 = X2

P4
8 A+

24 = A+
24 + A+

24

9 A+
24 = (A+

24)2

10 return
A+

24, C24, K1, K2, K3

efficient x coordinate only arithmetic of Montgomery curves. Similarly, we encode
points {P3, Q3} as {xP3 , xQ3 , xD3} as public parameters (D3 = P3 −Q3).

3.4 Isogeny Computation
In this subsection, we will focus on the computation of large degree isogenies from smaller
degree isogeny values. We will first focus on the computation of degree 4 and degree 3
isogeny as they serve as the basic building block in the execution of SIDH and SIKE.
3.4.1 Degree 4 and degree 3 isogeny
The computation of a degree 4 isogenous curve EA′/C′ from the curve EA/C given the
kernel generator point P4 is shown in algorithm 1. The computation involves 4 field
squarings, 4 field additions and one field subtraction (in Fp2). It must be noted that
algorithm 1 returns A′ + 2C ′ and 4C ′ instead of A′ and C ′. This is done to reduce the
number of field operations during the computation of the isogeny mapping of a given
point [14]. Apart from A′ + 2C ′ and 4C ′, the algorithm 1 also produces three constants
K1, K2 and K3 which are utilized in the computation of the degree 4 isogeny mapping of
a given point. The steps for computing the mapping of a point on the degree 4 isogenous
curve is shown in algorithm 3. It requires 6 field multiplications, 2 field squarings, 3 field
additions and 3 field subtractions (in Fp2).

Algorithm 2 lists the steps for computing degree 3 isogenous curve. In this case, the
algorithm returns A′ + 2C ′ and A′ − 2C ′ instead of A′ and C ′. Additionally, algorithm 2
also returns curve constants K1 and K2 which are used during the computation of degree
3 isogeny mapping of a given point as shown in algorithm 4. Algorithm 2 requires 3
field squarings, 2 field multiplication, 3 field subtractions and 12 field additions (in Fp2).
Algorithm 4, on the other hand, requires 2 field squarings, 4 field multiplications, 2 field
subtraction and 2 field additions. The formulations of computing degree 4 and degree 3
isogeny, described in this section, are optimized interpretation of Velu’s formula [13] and
is in accordance with [14].

3.5 Computing Larger Degree Isogenies
In the previous section we have illustrated how to compute degree 3 and degree 4 isoge-
nous curves. We have also shown how to evaluate the map of point on degree 3 and 4
isogenous curves. In this section,we will show how to compute degree 3e3 or degree 4

e2
2

isogenous curves using the aforementioned functions. More specifically, we will discuss the

Algorithm 2: Computing the degree-3 isogenous curve
1 Input:(XP3 : ZP3 ) where P3 constitutes the kernel < P3 > of degree 3 isogeny and order of P3 is 3 on

EA/C

Result: Curve coefficients (A+
24 : A−24) (A′ + 2C′ : A′ − 2C′) of EA′/C′ = EA/C/ < P3 > and constants

(K1, K2) ∈ (F 2
p )2

2 K1 = XP3 − ZP3
3 t0 = K2

1
4 K2 = XP3 + ZP3
5 t1 = K2

2
6 t2 = t0 + t1

7 t3 = K1 + K2
8 t3 = t23
9 t3 = t3 − t2

10 t2 = t1 + t3
11 t3 = t3 + t0
12 t4 = t3 + t0

13 t4 = t4 + t4
14 t4 = t1 + t4

15 A−24 = t2.t4
16 t4 = t1 + t2
17 t4 = t4 + t4
18 t4 = t0 + t4

19 t4 = t3.t4

20 t0 = t4 − A−24
21 A+

24 = A−24 + t0

22 return A+
24, A

−
24, K1, K2
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Algorithm 3: Evaluating degree 4 isogeny on a point
1 Input:Constants K1, K2, K3 ∈ (Fp2 )3 from algorithm 1 and (XQ : ZQ) where the point Q is on the

curve EA/C

Result: Q′ = (XQ′ : ZQ′ ) where Q′ ∈ EA′/C′
2 t0 = XQ + ZQ

3 t1 = XQ − ZQ

4 XQ = t0.K2
5 ZQ = t1.K3

6 t0 = t0.t1
7 t0 = t0.K1
8 t1 = XQ + ZQ

9 ZQ = XQ − ZQ

10 t1 = t21
11 ZQ = Z2

Q

12 XQ = t0 + t1
13 t0 = ZQ − t0

14 XQ′ = XQ.t1
15 ZQ′ = ZQ.t0
16 return (XQ′ : ZQ′ )

methodology of computing le degree of isogeny from the computation of l degree isogeny.
As shown in [6], from a curve E0 and a kernel generator point R0 of degree le, we can
compute a chain of degree l isogenies as

Ei+1 = Ei/ < le−i−1Ri >, φi : Ei → Ei+1, Ri+1 = φ(Ri), 0 ≤ i < e (7)

As per this algorithm, the total number of scalar multiplications by l is equal to e(e−1)
2 .

Therefore, the complexity of this algorithm is O(e2) scalar multiplication by l operations
which can be improved significantly as shown next.

3.5.1 Optimum Larger Isogeny Computation

Figure 1(a) shows an acyclic graph structure for computing isogeny of degree l6. The solid
line in the figure indicates scalar multiplication by l and the dashed line indicates degree l
isogeny computation. At the start, only the kernel generator point R0 is known. To compute
the isogeny of degree l6, we need to compute all the leaf nodes’ value of the tree structure of
the figure 1(a). One of the way to compute the value of the leaf nodes is shown in figure 1(b),
where each leaf node is computed by repeated executions of scalar multiplication by l.
This computational strategy is actually analogous to equation (7) which has complexity of
O(e2). However, if we follow the computational strategy of figure 1(c), we can compute
the isogeny map with much lesser number of scalar multiplication operations. In [6], the
authors have shown that such triangular decomposition yields a computational strategy
with O(eloge) number of scalar multiplication by l operations and similar number of degree
l isogeny computation. More details on finding such optimum computational strategy can
be found in [6, 14]. It must be noted that selection of such optimum computational strategy
also depends upon the cost of scalar multiplication and degree l isogeny computation.

Once the computational strategy gets defined, the computation of the isogeny map
becomes straightforward. We label each node which has more than one child with number
of leaf nodes to its right side. We then walk the tree in depth-first left-first manner and
output the node labels as we encounter them. This process is called linearization. For
example, if we apply linearization on the computational strategy shown in figure 1, its
output will be {3, 1, 1, 1, 1}. More formally, the size of the computational strategy after
the linearization will be e− 1 for le degree isogeny computation. In appendix C, we have
provided the Algorithm 6 [14] which shows the methodology of computing le degree isogeny
using optimum computational strategy.

Algorithm 4: Evaluating degree 3 isogeny on a point
1 Input:Constants K1, K2 ∈ (Fp2 )2 from algorithm 2 and (XQ : ZQ) where the point Q is on the curve

EA/C

Result: Q′ = (XQ′ : ZQ′ ) where Q′ ∈ EA′/C′
2 t0 = XQ + ZQ

3 t1 = XQ − ZQ

4 t2 = K1.t0

5 t1 = K2.K1
6 t2 = t0 + t1
7 t0 = t1 − t0

8 t2 = t22
9 t0 = t20

10 XQ′ = XQ.t2

11 ZQ′ = ZQ.t0
12 return (XQ′ : ZQ′ )
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Figure 1: Various Strategy for Computing Isogeny Map of degree l6

Alice Bob

sk2 < 2e2

EA
φA←−− E0/ < ([sk2]P2 +Q2) >

sk3 < 3e3

EB
φB←−− E0/ < ([sk3]P3 +Q3) >

φA(P3)−−−−→
φA(Q3)−−−−−→
EA−−→

φB(P2)←−−−−−
φB(Q2)←−−−−−
EB←−−

EAB
φAB←−−− EB/ < ([sk2]φB(P2) + φB(Q2)) > EBA

φBA←−−− EA/ < ([sk3]φA(P3) + φA(Q3)) >

j(EAB) = j(EBA)

Figure 3: The Key Exchange Protocol using SIDH

3.6 SIKE Protocol
In this section, we will briefly describe the supersingular isogeny based key exchange
algorithm. The protocol description is shown in figure 3. Alice selects her secret key
sk2 < 2e2 and computes the point R2 = [sk2]P2 + Q2 and computes the image curve
EA

φA←−− E0/ < R2 > where E0 is the starting curve. Similarly Bob also selects his secret
key sk3 < 3e3 and computes the corresponding image curve EB

φB←−− E/ < R3 = [sk3]P3 +
Q3 >. Alice and Bob then publish EA, φAP3, φAQ3 and EB, φBP2, φBQ2 respectively.
Subsequently, Alice and Bob computes EAB

φAB←−−− EB/ < ([sk2]φB(P2) + φB(Q2)) > and
EBA

φBA←−−− EA/ < ([sk3]φA(P3) + φA(Q3)) > respectively. The curves EAB and EBA are
isomorphic to each other.Therefore, their j − invariant will be same which can be used as
shared secret.

3.7 Redundant Number System
The idea of applying redundant number system to enhance the performance of field
arithmetic circuits was first proposed in [15]. In this section we will briefly introduce the
concepts of redundant number system.

A d digit non-redundant number X can be represented as (Xd−1, . . . , X1, X0) where
each Xi is an r bit number. This is also known as radix-2r number. The value of X is∑d−1
i=0 Xi.2ir and it can represent a number up to 2dr−1. Additionally, such representation is

unique. A d digit and n bit redundant number X ′ can be represented at (X ′d−1, . . . , X
′
1, X

′
0)

where each X ′i is an (r + n) bit number and n < r. The value of X ′ is
∑d−1
i=0 X

′
i.2ir. We

can partition each X ′i into two parts: X ′i[r − 1 : 0] and X ′i[r + n − 1 : r]. X ′i[r − 1 : 0]
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are known as the principal bits and X ′i[r + n − 1 : r] are known as the redundant bits.
Redundant number can be converted into non-redundant number by simple addition as

follows:
. . . X ′1[r + n− 1 : r] X ′0[r + n− 1 : r]

+ . . . X ′2[r − 1 : 0] X ′1[r − 1 : 0] X ′0[r − 1 : 0]
. . . X2 X1 X0

The representation of a redundant number is not unique. Additionally, every non-redundant
number by default can be represented as a redundant number by considering the value of
the redundant bits as zero.
Example: Carry Save form: A number X in carry save form is characterized by two
values Xsum and Xcarry. It is a special case of a redundant number in radix-2, where Xsum

constitutes the principal bits and Xcarry constitutes the redundant bits of the number X.

3.7.1 Overflow condition

A d digit radix-2r redundant number X ′ represents a maximum value of
∑d−1
i=0 (2r+2 −

1)2ir > 2dr. However, the permissible value of X ′ is 2dr − 1 as it is a representation of
d digit radix-2r non-redundant number. Whenever the value of X ′ becomes more than
2dr − 1, we consider that as overflow.

As we have already mentioned, the application of redundant number system on Mont-
gomery multiplication was first proposed by [15]. Later, this implementation was updated
in [2] where the authors have modified the methodology of [15] to apply it to the asym-
metric multipliers of modern Xilinx FPGAs. The details of different arithmetic operations
in redundant number system along with its application using asymmetric multipliers of
modern FPGAs are discussed in appendix 8.

4 Field Operation in Fp

4.1 Field Multiplication in Fp

The underlying field on which the SIKE protocol is built does not support reduction
friendly primes. Therefore, efficient implementation of field multiplication in this field
is challenging. In the previous works of SIKE implementations, the authors have used
Montgomery multiplication algorithm to perform field multiplication in Fp (p = 2e23e3 − 1,
e2, e3 ∈ Z+). More categorically, they have used a specific implementation of Montgomery
multiplier based on systolic array architecture. The differences between the proposed
Montgomery multiplier and the exiting systolic array based architecture [8, 9, 10] are
manifold:
• The proposed Montgomery multiplier is based on the redundant number system and

is capable of performing three or four parallel modular multiplication simultaneously.
Compared to this, systolic array based Montgomery architecture performs only two
parallel modular multiplications in an interleaved fashion.

• The existing systolic array based architectures uses DSP blocks of modern FPGAs
as 16 × 16 integer multipliers. However, the modern 7 series Xilinx FPGAs have
24× 17 unsigned integer multipliers embedded inside the DSP blocks. This results
in under-utilization of the the DSP blocks. Our proposed architecture on the other
hand uses DSP blocks as 24× 17 unsigned multiplier, unlocking its full capability.
In this section, we will provide detailed description of the multiplier architecture.

4.1.1 Montgomery Multiplication

Montgomery multiplication was proposed in [18] and it showed how to perform modular
reduction without trial division. The initial version of Montgomery multiplication [18]
was not constant time as it involved a conditional subtraction operation. In [16, 17],
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Algorithm 5: Constant Time Montgomery Multiplication [16, 17]
1 INPUT: M =

∑m−1
i=0

m′i · 2
ri, A =

∑m+2
i=0

ai · 2ri with am+2 = 0, B =
∑m+1

i=0
bi · 2ri, M ′ = −M−1

mod R, M = (M ′ mod 2r) ·M =
∑m+1

i=0
mi · 2ri, A,B < 2M , 4M < 2rm, R = 2r(m+2)

2 OUTPUT:A×B×R−1modM S0=0
3 for i← 0 to m + 2 do
4 qi = Si mod 2r

Si+1= (Si + qi ·M)/2r + ai · B
5 end
6 return Sm+3 = A× B × R−1 mod M

the authors proposed an alternative high radix Montgomery multiplication algorithm
which removed the conditional subtraction operation to make its implementation constant
time. This algorithm is shown in algorithm 5 which represent a r-radix Montgomery
multiplication. Here the modulus M is divided into {m′0,m′1, . . . ,m′m−1}, r bit words such
that M =

∑i=m−1
i=0 m′i · 2ri. Similarly, the multiplicand operands A and B are represented

as m+ 3 and m+ 2, r bits word respectively (A =
∑m+2
i=0 ai · 2ri, B =

∑m+1
i=0 bi · 2ri). The

value of am+2 is always zero. The Montgomery multiplication also requires the knowledge
three parameters: R = 2r(m+2), M ′ = −M−1modR and M = (M ′ mod 2r) ·M . These
values can be precomputed and henceforth do not contribute to the complexity of the
architecture. The range of the input A and B are [0, 2M ] and the range of the output
Sm+3 is [0, 2M ], therefore a final range correction is necessary. Input to the Montgomery
multiplication should be transformed into Montgomery domain. However, such conversion
is executed only once as the entire SIKE protocol can be executed in the Montgomery
domain. The value of an operand A in Montgomery domain will be A ·R mod M which
can be calculated by performing Montgomery multiplication between A and R2. The
conversion of the final result from Montgomery domain to normal integer domain can be
executed by multiplying the final result with 1 using the Montgomery multiplier.

4.1.2 Multiplier Architecture

The usage of redundant number system to implement Montgomery multiplication was first
proposed in [15]. In [2], the authors have updated this implementation for better utilization
of asymmetric multipliers. Additionally, the authors have also provided a methodology to
perform multiple modular multiplication using their proposed architecture. In this work,
we will take advantage of this property.

Figure 4a shows the architecture of the Montgomery multiplier implemented using
redundant number system in Fp. The input operand A is a redundant number in base r1

where A =
∑ma+2
i=0 ai · 2r1i with ama+2 = 0 where ma = d log2(M)

r1
e. Similarly, we encode

B as a redundant number in radix-2r2 (B =
∑mb+1
i=0 bi · 2r2i, where mb = d log2(M)

r2
e). The

parameter M is also encoded as a redundant number of base r2 and the final result (stored
in the register Si in figure 4a) will be a redundant number in base r2. In [2], the authors
have used asymmetric embedded multipliers of dimension 24×17 in the architecture. They
have chosen the the value of r1 as 22 and the value of r2 is 15 (refer appendix A). This is
motivated by the fact that two bits are needed to be preserved for redundant bits to ensure
no overflow during the multi-operand additions, involved in the Montgomery multiplication
algorithm. However, if we compute the multi-operand addition in carry save form, we do
not have the issue of overflow. For example, when we perform addition of three redundant
numbers, each with two redundant bits, the output of the addition will still be a redundant
number with two redundant bits. But if we add three redundant numbers, each with one
redundant bit, the output of the addition will not remain a redundant number with one
redundant bits due to the overflow. However, if we add those three redundant numbers in
a carry save form, we do not have the issue of overflow as we are storing the carry bits
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separately. In our proposed architecture, we have followed this strategy and have used
only one bit as the redundant bit. This allows us to use 23 as value of r1 and 16 as value
of r2. We will illustrate the advantage behind this choice later.

The different sub-operations involved during the implementation of Montgomery multi-
plications (refer algorithm 5) are: 1. Multiplication (ai ·B), 2. Multiplication and Accumu-
lation (Si+qi ·M), 3. Right Shift ((Si+qi ·M)/2r1), 4. Addition ((Si+qi ·M)/2r1 +ai ·B)
and 5. Mod (Si+1 mod 2r1)

The multiplication operation between ai and B can be performed as shown in appendix
A in redundant number system using DSP blocks. Similarly, implementation of the multiply
and accumulation operation (Si+qi ·M) in redundant number system is shown in appendix
A. The operations like right shift, addition and mod operations are easy to execute. As we
have already mentioned, the implementation of Montgomery multiplier requires multiple
multi-operand addition operations in redundant number system. For example, simple
multiplication operation (refer appendix B) requires addition between three operands
whereas multiply and accumulate operation requires addition operations between 5 input
operands. To achieve this, we have implemented 3 : 2, 4 : 2 and 5 : 2 compressor circuits
using the fast carry chains of modern Xilinx FPGAs. Deployment of such compressor
circuits in the architecture improves the performance of the design significantly. Details of
the implementation of compressor circuits using fast carry chains can be found in appendix
B. The compressor circuits produces the output in carry save form which needs to be
transformed in to the redundant number of base r1 which is achieved by the base converter.

In this architecture, DSP blocks are required mainly for computing partial products of
ai · B and qi ·M , where the dimension of ai and qi are r1 + 1, and dimension of B and
M are (mb + 2)(r2 + 1). If a single DSP block can execute (r1 + 1) × (r2 + 1) integer
multiplication in a single cycle, we would require 2mb + 4 DSP blocks to generate all the
partial products of operation ai ·B and qi ·M in a single cycle. This motivates the choice
of choosing r1 as 23 and r2 as 16 as that allow us to fully utilize the embedded 24× 17
unsigned multiplier of DSP blocks. For 752 bits modular multiplication, we will require
2 · d(752/16)e+ 4 = 98 DSP blocks. If we remove the register layer in the architecture,
the clock cycle requirement of the design becomes ma + 3. This is due to the fact that in
each clock cycle we are executing ai ·B and i varies from 1 to ma + 3, as the dimension
of A is (ma + 3)(r1 + 1). In this scenario, the critical path of the architecture consists of
DSP blocks, 5 : 2 compressor circuits, shifter module, 4 : 2 compressor and base converter
module. However, in [2], the authors made an interesting observation that when the
multiplier modules are active, the other modules (compressor, shifter and base converter
module) are inactive. Therefore, if we place a register layer between the multipliers and
the other modules, we can actually execute two modular multiplications simultaneously
(refer figure 4a). Total clock cycle requirement to execute these two parallel modular
multiplications will be 2(ma + 3) + 1 = 2ma + 7, one extra clock cycle is because of the
initial latency. The efficiency arises from the reduced critical path which is now max(delay
of multipliers, delay of other modules combined). Figure 4a shows the architecture of
the Montgomery multiplier performing two parallel modular multiplications using two
redundant bits. The usage of the compressor circuits for carry save additions is a key
distinguishing feature compared to [2], leading to a significant saving in terms of clock
cycles which we explain below.

By introducing more register layers at the appropriate positions, the architecture
can be extended further to execute three or even four parallel modular multiplications.
As shown in figure 4b, if we introduce another register layer between the first level of
compressor circuits (consist of 3 : 2 and 5 : 2 compressor circuits) and the second level
of compressor circuits (consist of 4 : 2 compressor and base converter module), we can
perform three parallel modular multiplications. In this case, the critical path will reduce
further as the critical path of figure 4a lies in the compressor modules. If we introduce
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another register module between the 4 : 2 compressor module and the base converter, we
can execute four parallel modular multiplications in Fp. The clock cycle requirement for
executing three and four parallel modular multiplication will be 3(ma + 3) + 2 = 3ma + 11
and 4(ma + 3) + 3 = 4ma + 15 respectively. It must be noted that if we have used 2
redundant bits, the value of r1 and r2 would be 22 and 15. In that case, the DSP block
requirement would have become 2.d(752/15)e+ 4 = 106 and clock cycle requirement to
perform three and four parallel modular multiplication is 3.d(752/22)e + 11 = 116 and
4.d(752/22)e+15 = 155 respectively. On the other hand, if we use only one bit as redundant
bit, the DSP block requirement becomes 2.d(752/16)e+ 4 = 98 and clock cycle requirement
to perform three and four parallel modular multiplication is 3.d(752/23)e + 11 = 110
and 4.d(752/23)e+ 15 = 147 respectively. This shows the advantage of using compressor
circuits as it allow us to use only one bit as redundant bit.

One disadvantage of this architecture is that if we perform three modular multiplications
in Fp using the architecture which can perform four parallel modular multiplications, the
clock cycle requirement will be similar to performing four parallel modular multiplications.
This could be problematic as we may not require four parallel modular multiplications in
every step of the SIKE execution. To mitigate this issue, we have introduced a multipliexer
in the architecture as shown in figure 4b. This multipliexer takes the combinatorial and
the registered output of 4 : 2 compressor modules and depending upon the control signal
three/four, pass one of them to the base converter module. If we need to perform three
parallel modular multiplications, the multiplexer passes the combinatorial output of the
4 : 2 compressor module to the base converter circuitry. On the other hand, it passes the
registered output of the 4 : 2 compressor modules when we need to perform four parallel
modular multiplications. This flexibility in choice of performing three or four parallel
modular multiplications allow us to have an efficient scheduling to implement SIKE. More
details on this is given in the next section.

As we have already mentioned, existing implementations of SIKE uses Montgomery
multiplier implemented using systolic arrays. As shown in [8, 10], implementation of SIKE
with prime size 504 bits requires 64 DSP blocks and has a latency of 68 cycles for a modular
multiplication operation. On the other hand, our proposed architecture will require 68
DSP blocks. But, it can execute three parallel modular multiplication in 80 cycles, which
makes the effective latency of single modular multiplication d(80/3)e = 27. Similarly, if
we consider primes of size 752 bits, the modular multiplier of [8, 10] will require 96 DSP
blocks with a latency of 101 cycles for single modular multiplication. For the same prime
size, our proposed architecture requires 98 DSP blocks performing three simultaneous
modular multiplications in 110 cycles.
4.2 Field Addition in Fp

In this section, we will present the architecture of the field addition module. For this, we
will first introduce the architecture of an efficient ripple carry adder.
4.2.1 Ripple Carry Adder

Modern FPGAs are equipped with fast carry chains which makes the implementation of
normal ripple carry adders significantly efficient. The fast carry chains exhibit less routing
delay compared to traditional routing through LUTs.

There have been few works which have tried to use the fast carry chain of the FPGAs in
an optimum manner to reduce the delay of the ripple carry adder. The idea is to implement
a carry look ahead adder using the carry chain of the FPGAs. We can approximate the
delay of a ripple carry adder by the length of the carry chain. Now, the key observation
in this case is that a single LUT can handle a six input, single output function or five
input two output function. Hence, in a single LUT, we can actually pass four inputs
(two consecutive bits from each operand) and generate the corresponding propagate and
generate signals which are used for carry implementation of carry lookahead adder [19].
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(a) Architecture of the Montgomery Multiplier [2]
Updated with Compressor circuits, performing
two parallel modular multiplication with 2 redun-
dant bits

(b) Architecture of the Proposed Montgomery
Multiplier Performing Three or Four Parallel
Modular Multiplication with 1 redundant bit

Figure 4: Montgomery Multiplication in Redundant Number System

Now, we can generate this two signals from a single look up table which implies that
using this method, we can look ahead the carry of two bits from a single look up table.
Hence, this architecture can generate the carry output of the lower n/2 bits using a carry
chain of length n/4. For n bits addition, we can divide it into two n/2 bits addition.
For the upper n/2 bits, a separate carry look ahead logic can be implemented using the
aforementioned method. Hence the total delay for the n bits addition is equivalent to delay
of a carry chain of length 3n/4 (n/4 for carry prediction and n/2 for upper bit addition).
The addition results of lower n/2 bits are computed using a normal ripple carry adder.
The total LUT count for this adder is 5n/4.

This architecture was considerably improved in [3] where the authors have altered the
approach of [19]. In this case, the n bit addition is partitioned into two blocks of K and M
bits. The first block predicts the carry output of the lower K bits of inputs using the carry
chain of length K/2. Additionally, in this scenario the addition result of lower K bits are
also computed by additional K/2 LUTs as we can compute two consecutive sum bits by
using the LUT as a 5 input, 2 output function. The upper block of M bits are computed
in a normal ripple carry fashion. The key observation is that if we have implemented this
adder in ripple carry fashion, it would have consumed K+M = n number of LUTs. In this
modified approach, the total consumption of the LUT is K/2 for generating carry output
of K bits addition, K/2 for generating the sum of K bits and M for M bit addition using
ripple carry adder. Thus the total LUT count is K/2 + K/2 + M = K + M = n. The
delay of this adder is equivalent to the delay of the carry chain of length K/2 +M . Thus
this architecture provides speed up without any additional requirement of extra LUTs,
making this design optimum from area point of view.

For the implementation of field adder, we have developed a 256 bits adder following
the methodology of [3]. In our architecture, the value of M is chosen as 32. Therefore the
delay of 256 bit ripple carry adder is equivalent to delay of carry chain of length 144.

4.2.2 Modular Adder Architecture

The architecture of the modular adder is shown in figure 5. The basic building block of
the architecture is the 256 bit ripple carry adder, details of which we have discussed in the
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Figure 5: Modular Adder Architecture in Fp

previous section. As our proposed modular multiplier produces redundant number in base
r2 as output, the inputs to the modular adder are considered as redundant numbers. The
first two 256 bit adder converts the redundant numbers into non-redundant number. The
subsequent adder and subtractor modules perform a+ b and a+ b− 2M . The range of
the output is [0, 2M − 1] and depending on the sign value, either addout (a+ b) or subout
(a+ b− 2M) is stored as result. The modular subtractor can be implemented in a similar
manner. the modular adder will require 5 clock cycles to perform a single modular addition
for prime length of 504 bits. For prime length of 752 bits, the clock cycle requirement is 6.

5 Field Operation in Fp2

In this section, we will present the implementation details of field operation in Fp2 .

5.1 Field Addition Operation in Fp2

Any element a in the target field Fp2 can be represented as a = a0 + a1 · i. Addition of
such two elements a and b can be defined as below:

a+ b = (a0 + a1 · i) + (b0 + b1 · i) = (a0 + b0) + (a1 + b1) · i (8)

Similarly subtraction operation can be defined as below:

a− b = (a0 + a1 · i)− (b0 + b1 · i) = (a0 − b0) + (a1 − b1) · i (9)

If we have two instances of modular adders in Fp (refer section 4.2), the modular addition
in Fp2 will require 6 clock cycles for prime of size 752 bits and 5 clock cycles for prime of
size 504 bits.

5.2 Field Multiplication in Fp2

Multiplication of two elements a and b in the field Fp2 can be defined as below:

a× b = (a0 + a1 · i)× (b0 + b1 · i) = (a0 · b0 − a1 · b1) + (a0 · b1 + a1 · b0) · i (10)
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Table 1: Scheduling of field multiplication operation in Fp2 where the length of p is 752
Steps Multiplication in Fp Addition in Fp Subtraction in Fp Clock cycles
1 - - - a0 + a1 b0 − b1 6
2 a0 · b1 a1 · b0 (a0 + a1) · (b0 − b1) - - 110
3 - - - a0 · b1 + a1 · b0 a0 · b1 − a1 · b0 6
4 - - - - (a0 + a1) · (b0 − b1)- 6

(a0 · b1 − a1 · b0)

This requires 4 multiplications, one addition and one subtraction operations in Fp. However,
the number of multiplication operations can be reduced if we apply Karatsuba technique
which is illustrated below:

a×b = (a0+a1 ·i)×(b0+b1 ·i) = ((a0+a1)·(b0−b1)−a1 ·b0+a0 ·b1)+(a0 ·b1+a1 ·b0)·i (11)

In this scenario, we require three multiplication and five addition/subtraction operations in
Fp. Thus, this method will require fewer number of clock cycles compared to straightforward
multiplication methodology as long as the cost of single multiplication operation is more
than the combined cost of three addition/subtraction operations. Assuming that the
architecture has one modular multiplier which can execute three modular multiplication
in Fp simultaneously, one adder and one subtractor in Fp, the scheduling of the modular
multiplication operation in Fp2 is shown in table 1. The total clock cycle requirement to
execute one field multiplication in Fp2 is 128 for prime of size 752. It must be noted that
our implementation of Montgomery multiplier in Fp which can perform three modular
multiplications simultaneously is tailor made for this architecture.

5.3 Field Squaring in Fp2

Squaring of an element a in Fp2 is executed as follows:

a× a = (a0 + a1 · i)× (a0 + a1 · i) = (a2
0 − a2

1) + 2a0 · a1 · i (12)

It requires three field multiplications, one addition and one subtraction operation in Fp.

6 Architectural Details of SIKE Implementation
In this section, we will present the details of the proposed SIKE architecture. The block
diagram of the proposed architecture is shown in figure 6. The major components of this
architecture are: a) Block-RAM (BRAM) based memory modules, b) Three Montgomery
multipliers in Fp, c) Two modular adders in Fp, d) Two modular subtractors in Fp and e)
Control unit

As we have previously mentioned, the implemented Montgomery multiplier requires
one of the multiplicand operands to be in the redundant form with base r2 (in our case
r2 = 16) and other operand to be in the redundant form with base r1 (in our case r1 = 23).
The output of the multiplication result will be a redundant number with base r2. The
base converter module, shown in the figure 6 converts a redundant number in base
r2 into a redundant number in base r1 which ensures smooth execution of Montgomery
multiplication. The control unit is encoded as a finite state machine which can administer
public key generation along with secret key agreement for both Alice and Bob. The details
of the field multipliers, adders and subtractors circuits are already discussed in previous
sections. We will start our discussion with the details of the memory module.

6.1 Memory Optimization
The proposed SIKE architecture is built for SIKEp751 configuration which provides 124
bits quantum security. The supersingular elliptic curve supporting SIKEp751 is built on
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Figure 6: Block Diagram of the Proposed Architecture of SIKE

the field Fp2 where p is a 752 bits prime. Therefore, each element which belongs to this field
is of size 1504 bits. Naturally, we need an efficient implementation of memory architecture
to store different elements of aforementioned finite fields. Fortunately, FPGA provides
block RAM as hard-IP which can be deployed for this purpose. We have implemented the
BRAMs in a true dual port RAM configuration with write first mode.

For the proposed implementation, we can implement the block RAMs in two different
ways. We can either store an element of Fp2 at a particular address location or we can store
an element of Fp at a particular address location. In the first scenario, memory read and
write operation would be simpler as we can access an element in Fp2 in a single cycle. On
the other hand, the second strategy will require two clock cycles to do the same. However,
we have observed that the consumption of the block RAMs increases more rapidly with
the increase in the data width compared to increase in memory depth. We will illustrate
this with an example. Suppose, we want to develop a true dual port RAM using block
RAMs which can store 512 elements of width 1504. We have found that we would require
45 BRAMs to achieve this. However, if we implement a true dual port RAM which can
store 1024 elements with width 752, we would require 22.5 BRAMs only. Motivated by
this observation, we have followed the second strategy where we store an element of a Fp
at a particular address location of the BRAM based memory module.

6.2 Scheduling of Different Operations For Execution of SIKE
The execution of the complete SIKE protocol involves three steps:
• Generation of public key by Bob.
• Encapsulation of shared secret by Alice using Bob’s public and Alice’s secret key.
• Decapsulation of shared secret by Bob using Alice’s public key and Bob’s secret key.
Each of these steps can be divided into following operation:
• Generation of the kernel generator point ([sk2]P2 +Q2 for Alice and [sk3]P3 +Q3

for Bob)
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Table 2: Scheduling of Field Operations For Computing The Kernel Generator Point

Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2 Modmul-3 Modmul-4

1 t0 = XP + ZP t1 = XP −ZP - - - -
2 t4 = XQ +ZQ t1 = XP −ZP - - - -
3 - - t2 = t20 t6 = t21 t5 = t0 · t3 t7 = t1 · t4
4 t12 = t5 + t7 t8 = t2 − t6 - - - -
5 - t10 = t5 − t7 - - - -
6 - - t13 = t210 t14 = t212 X2P = t2 · t6 t9 = A+

24 · t8
7 t11 = t9 + t6 - - - - -
8 - - Z2P = t11 · t8 ZP +Q =

XQ−P · t13

XP +Q =
ZQ−P · t14

-

• Point doubling and tripling operations
• Computation of degree 4 and degree 3 isogenous curve
• Evaluation of a point on degree 4 and degree 3 isogenous curve.

The algorithm for computing of degree 4 and degree 3 isogenous curves along with evaluation
of a point on degree 4 and degree 3 isogenous curves are shown in algorithm 1, 3, 2, 4. For
details of other algorithms, one can refer to [14]. In this section, we will discuss how to
schedule different field operations involved in the aforementioned algorithms for efficient
execution of SIKE.
• Computing the Kernel Generator Point Table 2 shows the desired scheduling

of different field operations required for computing the kernel generator point. Alice
(or Bob) chooses the secret key sk2 (or sk3) and computes the kernel generator point
R2 = sk2P2+Q2 (or R3 = sk3P3+Q3). As shown in [14], this computation is achieved
by repeated execution of combined doubling and differential addition operation. This
operation takes X and Z coordinates of point P , Q, and Q − P in projective
domain and produces X and Z coordinates of point 2P and P + Q in projective
domain. Each iteration of combined doubling and differential addition requires 11
field multiplications (4 squarings and 7 multiplications), 4 field additions and 3 field
subtractions in Fp2 (as shown in table 2). Moreover, each field multiplication in
Fp2 involves one field addition and subtraction for operand splitting, three field
multiplication , and one field addition, two field subtractions in Fp to produce the
final multiplication result in Fp21.
In our proposed architecture, we have implemented three modular multipliers in
Fp, each capable of performing either three or four parallel modular multiplications.
Therefore, we can actually execute either 9 or 12 field multiplications in parallel.
The clock cycle requirement when we execute 9 parallel field multiplications in Fp
is 110. For 12 parallel modular multiplications, the clock cycle requirement will
be 147. As we have shown in table 2, the 11 field multiplications in Fp2 , required
to accomplish a single iteration of the combined doubling and differential addition,
can be executed in three multiplicative steps (steps 3, 6 and 8). In steps 3 and
6, we need to perform four parallel modular multiplications in Fp2 (12 modular
multiplications in Fp), whereas in step 8, we need to execute three parallel modular
multiplications in Fp2 (9 modular multiplications in Fp). Therefore, in steps 3 and 6,
all the three modular multipliers in Fp are configured to perform 4 parallel modular
multiplications each,whereas in step 8, they are configured to perform three modular
multiplications each. It must be noted that if we had modular multipliers capable of
performing only three modular multiplications in parallel, we would have required
four multiplicative steps, each consuming 110 cycles (Total 440 cycles). On the other
hand, having the flexible multipliers allow us to complete the computation of field
multiplication in Fp2 in three multiplicative steps only. The first two multiplicative

1In the scheduling table, we have not shown the field addition and subtractions operations required for
Karatsuba decomposition
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steps consume 147 cycles each and the third multiplicative step requires 110 cycles
(total 2× 147 + 110 = 404 cycles). This shows the advantage of having the choice of
switching between executing three or four parallel modular multiplications.

• Point Doubling and Point Tripling: The scheduling of point doubling and point
tripling are shown in table 3 and in table 4. Point doubling requires 2 squarings, 4
multiplications, 2 subtractions and 2 addition operations in Fp2 , On the other hand,
point tripling requires 5 squarings, 7 multiplications, 7 subtractions and 5 addition
operations. Point tripling is significantly a more expensive operation compared to
point doubling and this makes Bob’s public key generation more expensive compared
to Alice’s public key generation. The algorithm for computing point doubling and
point tripling are provided in appendix C.

• Computation and Evaluation of Degree 3 and Degree 4 Isogeny: The
scheduling of the computation of degree 3 and degree 4 isogenous curves are shown
in table 7 and in table 5 respectively. Similarly, scheduling of computing the map of
a point on the degree 3 and 4 isogenous curves are shown in table 8 and in table 6.
Details of these algorithms are already discussed in section 3. The field inversions in
Fp are computed using Fermat’s theorem.
One interesting observation is that, apart from computing the kernel generator
point, all other operations (point doubling, point tripling and other isogeny related
functions) does not use the third multiplier at all. Thus, it may seem that that third
multiplier in the architecture is underutilized. Moreover, the point doubling, point
tripling and computation of the isogenous curves can not be executed in parallel.
However, in the execution of SIKE protocol, we need to compute map of multiple
points on the isogenous curves and these can be executed in parallel. Therefore, in
our architecture, we have simultaneously computed the map of two points on the
isogenous curves. This allow us to use all the three multipliers, each executing four
parallel modular multiplications.
Similar strategy has been applied in [8, 9, 10] where the authors have uses multiple
multiplier cores to reduce the latency of the design. However, this comes at the
cost of drastic increase in the DSP block requirement. In next section we will show
that we can achieve similar timing performance of the existing architectures without
paying the penalty of excessive DSP block usage.

Table 3: Scheduling of Field Operations For Point Doubling
Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2

1 t1 = XP + ZP t0 = XP −ZP - -
2 - - t2 = t20 t3 = t21
3 - t6 = t3 − t2 - -
4 - - t4 = C24 · t2 t7 = A+

24 · t6
5 t8 = t4 + t7 - - -
6 - - X2P = t4 · t3 Z2P = t8 · t6

Table 4: Scheduling of Field Operations For Point Tripling
Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2

1 t1 = XP + ZP t0 = XP −ZP - -
2 t4 = t1 + t0 t5 = t1 − t0 t2 = t20 t3 = t21
3 t7 = t2 + t3 - t6 = t24 t9 = t3 · A+

24
3 t6 = t2 + t3 t7 = t2 − t3 - -
4 - t8 = t6 − t7 t10 = t3 · t9 t11 = t2 · A−24
5 - t14 = t9 − t11 - -
6 - - t12 = t2 · t11 t15 = t14 · t8
7 - t13 = t12− t10 - -
8 t16 = t13 + t15 t18 = t13− t15 - -
9 t17 = t216 t19 = t218
10 X3P = t17 · t4 Z3P = t18 · t5
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Table 5: Scheduling of Field Operations For Computing Degree-4 Isogeny
Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2

1 K3 = XP4 +
ZP4

K2 = XP4 −
ZP4

t1 = Z2
P4 t3 = X2

P4

2 t2 = t1 + t1 - - -
3 t4 = t3 + t3 - - -
4 K1 = t2 + t2 - C24 = t22 A+

24 = t24

Table 6: Scheduling of Field Operations For Evaluating Degree-4 Isogeny
Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2

1 t0 = XQ +ZQ t1 = XQ −ZQ - -
2 - - t2 = t0 ·K2 t4 = t0 · t1
3 - - t3 = t1 ·K3 t5 = t4 ·K1
3 t6 = t2 + t3 t7 = t2 − t3 - -
4 - - t8 = t26 t9 = t27
5 t10 = t5 + t8 t11 = t9 − t5 - -
6 - - XQ = t10 · t8 ZQ = t9 · t11

Table 7: Scheduling of Field Operations For Computing Degree-3 Isogeny
Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2

1 K2 = XP3 +
ZP3

K1 = XP3 −
ZP3

- -

2 t3 = K1 + K2 - t0 = K2
1 t1 = K2

2
3 t2 = t0 + t1 - t3 = t23 -
4 - t3 − t2 - -
5 t2 = t1 + t3 - - -
6 t3 = t3 + t0 - - -
7 t4 = t3 + t0 - - -
8 t4 = t4 + t4 - - -
9 t5 = t1 + t4 - - -
10 t4 = t1 + t2 - - -
11 t4 = t4 + t4 - - -
12 t4 = t0 + t4 - - -
13 - - A−24 = t2 · t5 t4 = t3 · t4
14 - t0 = t4 − A−24 - -
15 A+

24 = A−24+t0 - - -

Table 8: Scheduling of Field Operations For Evaluating Degree-3 Isogeny
Step
No:

Addition in
Fp2

Subtraction in
Fp2

Modmul-1 Modmul-2

1 t0 = XQ +ZQ t1 = XQ −ZQ - -
2 - - t0 = K1 · t0 t1 = K2 · t1
3 t2 = t0 + t1 t0 = t1 − t0 - -
4 - - t2 = t22 t0 = t20
5 - - XQ = XQ · t2 ZQ = ZQ · t0

7 Implementation Result

Table 9: Clock Cycle Requirement of Different Stages of SIKE Protocol
Work Alice Keygen Bob Keygen Alice Key Agreement Bob Key Agreement Total

Present Work 1757597 2007206 1545357 1812507 7122667

We have implemented the downloaded the bit file of the proposed SIKE architecture on
Xilinx VC 707 evaluation board and verified the correctness of the implementation by
comparing the hardware result with the reference software code obtained from NIST
portal. Such on chip validation ensures that our proposed architecture is working
correctly on the actual hardware (refer appendix D). For comparing the performance
of our design with the exiting implementations, we have also implemented our
proposed architecture on Xilinx Virtex-7 xc7vx690tffg1157-3 FPGA. Table 10 shows
the area and the latency requirement of the proposed architecture. The area and
the timing report has been obtained after executing place and route implementation
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Table 10: Comparison between the Proposed SIKE Design and Existing SIKE Designs
Work #Mult. #FFs #LUTs #Slices #DSPs #BRAMs Freq. Latency Total

Cores (MHz) (cc× 106) time (ms )
[10] 3 38489 27713 11277 288 60.5 204.9 7.46 36.4

4 48688 34742 14447 384 58.5 203.7 6.86 33.7
5 58846 42390 16983 480 56 197.7 6.56 33.2
6 69054 50084 19892 576 54.5 201.5 6.37 31.6

[14] 4 51914 44822 16756 376 56.5 198 6.603 33.35
This 3 62124 49099 18711 294 22.5 225.7 7.123 31.55

Work

on Xilinx Vivado 2017.4 tool. The synthesis was done using Vivado default option,
whereas the implementation has been optimized by the Performance Explore option.
The clock cycle requirements of different phases of SIKE protocol are shown in table 9.
Among the existing implementations of SIKE, the work in [10] shows the best timing
performance till now. The authors in [10] achieves this timing performance by
computing multiple isogeny map in parallel, for which they needed to replicate their
proposed dual systolic Montgomery modular multiplier multiple times. Their first
implementation uses three multiplier cores and requires around 36.4 ms for one
complete execution of SIKE (involving key generation and key agreement of both
Alice and Bob). They improve their timing performance by around 20% when they
use six multiplier cores with penalty of almost twice resource usage compared to the
design with three multiplier cores.
In our proposed architecture, we compute two isogeny map in parallel and uses only
three multiplier cores. However, when we compare our design with the design of [10],
we observe that the timing performance of the design is nearly same with that of [10].
More specifically, latency of our proposed architecture is less than the latency of
the architectures of [10] using 3, 4 and 5 multiplier cores. Only the design with six
multiplier cores exhibit the latency similar to our proposed architecture. However,
we can achieve this timing performance with much less area overhead compared to
the design of [10] using six multiplier cores. More specifically, our design consumes
10% less flip-flops (FFs), around 2% less LUTs, 6% less slices, 49% less DSPs and
58.7% less BRAMs than the design of [10] while exhibiting same latency. This shows
that our architecture is more efficient that the design of [10] as we can achieve the low
latency requirement of SIKE protocol by paying significantly less resources. It must
be noted that the clock cycle requirement of the proposed design is more compare to
the six multiplier core design of [10]. However, as we employ efficient compressor
circuits for multi-operand addition during Montgomery multiplication along with
fast adders with efficient usage of carry chains for ripple carry adders, the critical
path of the proposed architecture is low. This offsets the disadvantage of increased
clock cycle requirement of the proposed architecture.

8 Conclusion
The existing implementations of SIKE architectures offer low latency in exchange of
drastic increase in DSP and BRAM blocks requirement. The proposed architecture of
SIKE addresses this issue as it provides low latency (same as that of the existing best
implementation of SIKE from latency point of view) while consuming around 49%
less DSP blocks and 58% less BRAM modules. The modular multiplier, which is the
most critical component of the proposed architecture, is built on redundant number
system. Additionally, the application of compressor circuits to support computation
in carry save form increase the efficiency of the design significantly. Moreover, the
architecture provides user the choice between performing either three or four parallel
modular multiplications in Fp which is one of the unique feature of the design. The
proposed architecture is more efficient than the existing implementation of SIKE as
it can achieve the low latency requirement without requiring excessive number of
DSP blocks and BRAMs.
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Appendix A
Addition Operation in Redundant Number System
Addition of two d digit redundant number X ′ and Y ′ can be computed as follows

Z′[0] = X ′0[r − 1 : 0] + Y ′0 [r − 1 : 0]
Z′[i] = X ′i[r − 1 : 0] + Y ′i [r − 1 : 0] + X ′i−1[r + 1 : r] + Y ′i−1[r + 1 : r] (1 ≤ i < d)

In [15], the authors have shown how to perform multiplication operation using 18×18
multipliers in redundant number system. This was later updated in [2] where the
authors modified it. We discuss this below.

Redundant Base Multiplication using Asymmetric Multipliers
Let X ′ = (X ′d−1, . . . X

′
1, X

′
0) be a d digit redundant number where the length of each

X ′i is (r2 + 2) bits. Similarly Y ′ is a single digit redundant number having length
(r1 +2), where 2r2 < r1 +r2 +4 < 3r2. For DSP blocks containing 24×17 asymmetric
multipliers, the maximum value of r1 is 22 and r2 is 15 with two bits as redundant
bits. Such value of r1 and r2 will satisfy the relation 2r2 < r1 + r2 + 4 < 3r2. We
can compute the partial products Pi = X ′i · Y ′ using the asymmetric multiplier of
dimension (r1 + 2)× (r2 + 2). The length of each Pi would be (r1 + r2 + 4). We can
compute the multiplication result X ′ · Y ′ = K = {Kd+1,Kd, . . .K0} as follows:

K0 = P0[r2 − 1 : 0]
K1 = P0[2r2 − 1 : r2] + P1[r2 − 1 : 0]
Ki = Pi−2[r1 + r2 + 3 : 2r2] + Pi−1[2r2 − 1 : r2] + Pi[r2 − 1 : 0] (2 ≤ i ≤ d− 1)
Kd = Pd−2[r1 + r2 + 3 : 2r2] + Pd−1[2r2 − 1 : r2]

Kd+1 = Pd−1[r1 + r2 + 3 : 2r2]

The value of any Ki = Pi−2[r1 + r2 + 3 : 2r2] + Pi−1[2r2 − 1 : r2] + Pi[r2 − 1 : 0] <
3 · 2r2 < 2r2+2. This ensures that K is a valid redundant number with radix 2r2 and
there is no overflow. For computation of each X ′i · Y , we will require one DSP block.
Therefore, for the entire computation we will require d number of DSP blocks. It
must be noted that if we would have considered only one bit as a redundant bit,
overflow would have occurred if we implement the multi-operand additions using
ripple carry adders. This is the reason behind using carry save adders while handling
redundant number with only one bit as a redundant bit.

Multiplication and Accumulation

Let X ′ = (X ′d−1, . . . X
′
1, X

′
0) be a d digit and C = (Cd, . . . C1, C0) be a d + 1 digit

redundant number where the length of eachX ′i and Ci is (r2+2) bits. Additionally, Y ′
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Figure 7: 3:2 Compressor Circuit

is a single digit redundant number having length (r1 + 2). The result of X ′ ·Y ′+C =
T = {Td+1, Td, . . . T0} can be computed as follow:

T0 = P0[r2 − 1 : 0] + C0[r2 − 1 : 0]
T1 = P0[2r2 − 1 : r] + P1[r2 − 1 : 0] + C1[r2 − 1 : 0] + C0[r2 + 1 : r2] (2 ≤ i ≤ d− 1)
Ti = Pi−2[r1 + r2 + 3 : 2r2] + Pi−1[2r2 − 1 : r2] + Pi[r2 − 1 : 0] + Ci[r2 − 1 : 0] + Ci−1[r2 + 1 : r2]
Td = Pd−2[r1 + r2 + 3 : 2r2] + Pd−1[2r2 − 1 : r2] + Cd[r2 − 1 : 0] + Cd−1[r2 + 1 : r2]

Td+1 = Pd−1[r1 + r2 + 3 : 2r2] + Cd[r2 + 1 : r2]

The value of Ti = Pi−2[r1 +r2 +3 : 2r2]+Pi−1[2r2−1 : r2]+Pi[r2−1 : 0]+Ci[r2−1 :
0]+Ci−1[r2 +1 : r2] < 3 ·2r2 +2r1+r2+4−2r2 +22 < 2r2+2. Thus T is a valid redundant
number with radix 2r2 and there is no overflow.

Appendix B
3:2 Compressor
3:2 compressor takes three single bit input ai, bi and di and produces the corresponding
sum and carry output (si and ci+1). Implementation of 3:2 compressor is shown
in Figure 7. The modern FPGAs contain 6 input look up tables which can be also
configured to implement a dual function of five inputs. Therefore a single LUT is
enough to implement a 3 : 2 compressor.

4:2 Compressor and 5:2 compressor
A 4 : 2 compressor takes four single bit input ai+1, bi+1, di+1, ei+1 and produces the
corresponding sum and carry output (si+1 and ci+2 respectively). The basic building
block of a 4 : 2 compressor circuit is 3 : 2 compressor module as shown in Figure 8(a).
The LUT implementation of the shaded region is shown in Figure 8(b).
We have extended the design of 4 : 2 compressor to implement the 5 : 2 compressor
as shown in Figure 9(a). The LUT implementation of the shaded region is shown in
Figure 9(b).
We will now focus on the application of the aforementioned compressor circuits on the
architecture of the proposed Montgomery multiplier. As we have already mentioned,
multiple multi-operand additions are involved in the computation of the Montgomery
product value. These multi-operand additions can be classified as follows:
– Three input addition: This is used during the computation of ai.B. Partial

products of ai.B can be added using 3 : 2 compressor modules.
– Five input addition:. This is used during the computation of Si + qi.M . It

can be implemented using 5 : 2 compressor.
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(a) 4:2 Compressor (b) LUT implementation

Figure 8: 4:2 Compressor Module and LUT Implementation

(a) 5:2 Compressor (b) LUT implementation

Figure 9: 5:2 Compressor Module and LUT Implementation

– Four Input addition: This is used to add the result of the three input and
five input addition blocks ((Si + qi.M)/2r + ai.B). As the addition results are
in redundant representation, this can be implemented using 4 : 2 compressor.

Appendix C

Algorithm 6: Computing le Isogeny Using Optimum Computational Strategy
1 Input:Starting curve E, kernel generator point R corresponding to le isogeny map, computational

strategy {s1, s2, . . . , se−1} and a list of points (P1, P2, . . .) [14] Result: Image curve
E′ = E/ < R > corresponding to isogeny map (φ) of degree le, the ;ist of image points
(φ(P1), φ(P2), . . .) on E′

2 if e == 1 (empty strategy) then
3 φl : E′ = E/ < R > (Compute degree l isogeny)
4 Return E′, (φl(P1), φl(P2), . . .)
5 end
6 n = s1
7 Left = s2, . . . , se−n and Right = se−n+1, . . . , se−1
8 T = [ln]R
9 Compute E, (U, P1, P2, . . .)= Recurse on E, T, (R,P1, P2, . . .) with strategy Left

10 Compute E, (P1, P2, . . .)= Recurse on E,U, (P1, P2, . . .) with strategy Right
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Algorithm 7: Point Tripling
Input: (XP : ZP ) and (A+

24 : A−24)
Output: (X[3]P : Z[3]P )

1 t0 = XP − ZP ;
2 t2 = t20;
3 t1 = XP + ZP ;
4 t3 = t21;
5 t4 = t1 + t0;
6 t0 = t1 − t0;

7 t1 = t24;
8 t1 = t1 − t3;
9 t1 = t1 − t2;

10 t5 = t3.A
+
24;

11 t3 = t5.t3;
12 t6 = t2.A

−
24;

13 t2 = t2.t6;
14 t3 = t2 − t3;
15 t2 = t5 − t6;
16 t1 = t2.t1;
17 t2 = t3 + t1;
18 t2 = t22;

19 X[3]P = t2.t4 ;
20 t1 = t3 − t1;
21 t1 = t21;
22 Z[3]P = t1.t0;
23 return X[3]P : Z[3]P ;

Algorithm 8: Point Doubling
Input: (XP : ZP ) and (A+

24 : C24)
Output: (X[2]P : Z[2]P )

1 t0 = XP − ZP ;
2 t1 = XP + ZP ;
3 t0 = t20;

4 t1 = t21;
5 Z[2]P = C24.t0;
6 X[2]P = Z[2]P .t1;

7 t1 = t1 − t0;
8 t0 = A+

24.t1;
9 Z[2]P = Z[2]P + t0;

10 Z[2]P = Z[2]P .t1;
11 return X[2]P : Z[2]P ;

Appendix D
Figure 10 shows the VC 707 evaluation board on which we have validated the
developed SIKE architecture. The board communicates with a PC to get the
required inputs and produces the desired output. We have developed a python script
which controls the communication between the PC and the VC 707 board.

Figure 10: VC 707 Evaluation Board on which we have performed the on chip validation
of SIKE protocol
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