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Abstract—An important primitive in ensuring security of
modern systems-on-chip designs are protocols for authenticated
firmware load. These loaders read a firmware binary image
from an untrusted input device, authenticate the image using
cryptography and load the image into memory for execution if
authentication succeeds. While these protocols are an essential
part of the hardware root of trust in almost all modern computing
devices, verification techniques for reasoning about end-to-end
security of these protocols do not exist.

This paper takes a step toward addressing this gap by
introducing a system model, adversary model and end-to-end
security property that enable reasoning about the security of
authenticated load protocols. We then present a decomposition
of the security hyperproperty into two simpler 2-safety properties
that enables more scalable verification. Experiments on a protocol
model demonstrate viability of the methodology.

I. INTRODUCTION

Many platform security objectives in modern systems-on-
chip (SoC) designs rely on authenticated firmware loaders.
These loaders are programs that read in a binary image (i.e. an
executable file) from an input device and authenticate the im-
age using public key cryptography to ensure it is from a trusted
source. If authentication succeeds, the loader copies the image
into memory for execution. Authenticated firmware loaders are
used in many important security-critical scenarios in modern
SoCs. For instance, they are one of the most important
components of secure boot protocols [2, 15, 24, 27, 28, 44].

Consider the example of Intel Boot Guard [34] used
in Intel’s Trusted eXecution Technology (TXT) [13]. Boot
Guard, when used in the verified boot configuration, loads
an authenticated code module (ACM) as the first component
when booting. The ACM is only loaded if digital signature
verification succeeds; the public key for this operation is hard-
coded in the Intel CPU [34]. The ACM is responsible for
validating subsequent stages of the boot process. Therefore, if
an invalid ACM could somehow be loaded, malicious firmware
and software could take control of the CPU at boot time. This
would render security features of the hypervisor or operating
system — which are loaded after the ACM — meaningless.

A second usage scenario for authenticated loaders is trusted
firmware updates to a system [14, 24, 47]. Suppose an original
equipment manufacturer (OEM) wishes to update trusted but
out-of-date firmware on an SoC. Here too, it is essential
to ensure that only authenticated updates are applied to the
firmware. Otherwise, attackers would just use the update
feature to load malicious firmware onto victims’ devices. In
the worst case, this would result in malicious firmware being

permanently installed and used on victim devices. Even if this
is prevented by secure boot, a vulnerable updater would allow
remote attackers to cause permanent denial of service.

These examples demonstrate the security-critical nature of
authenticated firmware loaders. Unless we harden security of
these loaders, they will become the weakest link among the
security measures available in modern SoCs, and attackers
would exploit these weaknesses to compromise the rest of the
SoC. However, ensuring security of authenticated loaders has
many subtleties associated with it. As prior work by Krstic
et al. [27] has noted and as we discuss in Section II of
this paper, loaders are vulnerable to a number of different
types of bugs: race conditions, time-of-check to time-of-use
(TOCTOU) attacks, confused deputy attacks and control-flow
hijacking attacks. The key challenge here is reasoning about
authenticated loader security in the presence of an active
attacker executing concurrently with the loader protocol. The
attacker may manipulate shared state in order to trick the
loader into validating a bad image.

As a result, formal verification of the security of authen-
ticated loaders is extremely important. Unfortunately, despite
their importance to system security, verification techniques for
end-to-end security verification of authenticated loaders do not
exist. There are two reasons for this. The first is a lack of
techniques for adversary modeling. As we are dealing with
an active adversary, it is important to formulate an adversary
model that captures the full range of attacker behavior. The
second is a security specification problem: it is unclear what
property or class of properties can ensure loader security.
On the one hand, trace properties are too weak to capture
security requirements of authenticated load as they cannot
reason about the flow of information. On the other hand, secure
information flow (hyper-)properties like non-interference [23]
and observational determinism [30, 33, 46] are too strong: they
require the loader to succeed despite adversarial interference.
(We discuss this issue further in Sections II-C and IV-B1.)

In this paper, we address both of the above challenges and
introduce a methodology for the verification of authenticated
loaders. Our solution is based on the formulation of an abstract
model of loader protocols and specification of correct behavior
in the absence of adversary. We extend this model to allow
flexible modeling of adversary interference and introduce a se-
curity property that captures correctness of authenticated load.
Intuitively, it states that every execution where the protocol
verifies an image in the presence of adversarial behavior must
correspond to an equivalent execution in the model without the
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Fig. 1: Overview of authenticated firmware load protocols used in contemporary SoC designs.

adversary. This is a security hyperproperty [11] with quantifier
alternation over trace variables and so it is difficult to verify.
We address this challenge by introducing a decomposition of
the above property into two simpler 2-safety properties [41].
We show that satisfaction of these 2-safety properties implies
satisfaction of the loader security property.

A. Contributions

This paper makes the following contributions.
• We introduce a formal methodology and adversary model

for reasoning about the security of authenticated load.
• We introduce a hyperproperty that captures security of

authenticated load protocols.
• We introduce a decomposition of the security hyperprop-

erty into two simpler-to-verify 2-safety properties.
• We demonstrate proof of concept verification of the se-

curity hyperproperties on a simple but illustrative model.
The rest of this paper is organized as follows. Section II

describes the class of authenticated load protocols and their
security vulnerabilities. Section III describes the adversary
model and security property. Section IV presents the de-
composition into 2-safety properties. Section V describes the
experimental evaluation. Section VI discusses related work and
finally section VII provides concluding remarks.

II. OVERVIEW OF PROTOCOLS AND VULNERABILITIES

In this section, we present an overview of authenticated
firmware load implementations and describe some of the
associated security requirements and potential vulnerabilities.

A. Authenticated Firmware Load Protocols

Figure 1b shows a simplified flowchart for one example
of an authenticated load protocol while Figure 1a shows the
image data structure the protocol operates on. The protocol we
describe is representative; in particular, it is based on imple-
mentations in commercial SoCs [27] as well as the secure boot
implementation in the open source Sanctum processor [28].

The image data structure depicted in Figure 1a has two
parts. The image header contains the number of blocks and
the hash of each block. This header is signed using a private
key, and this signature can be verified using the corresponding
trusted public key. Typically, this public key is stored in ROM.
The second part of the image is a sequence of blocks whose
authenticity is verified by computing the hash of the block
contents and comparing these with the hashes in the header.
Note that computationally-expensive public key cryptography
need only be performed over the header, which is much smaller
than the rest of image.

The steps involved in the protocol are as follows.

1) The protocol loads a binary image from the untrusted
input device (e.g., flash storage, hard disk or network
interface) to the RAM.

2) It then checks the authenticity of the header of the
loaded image using cryptographic signatures. Often this
authenticity check is implemented using dedicated hard-
ware accelerators.

3) Note that the image stored on the I/O device is a contigu-
ous block of bytes. However, when placed into memory,
the different segments/blocks may not be adjacent to
each other. Therefore, steps 3 and 4 iterate over each
block of the image. Step 3 moves block i of the image
to its eventual location in the RAM.

4) Finally, step 4 computes cryptographic checksums over
the relocated block and compares this checksum with
the checksum stored in the header.

It is important to note that this is one (simplified) instantia-
tion of an authenticated load protocol. Many variants are used
in practice. For example, blocks may need to be decrypted
and/or decompressed before relocation. Some blocks may be
stored as binary diffs [32] w.r.t to an existing binary, rather
than a contiguous block of data. The loader will need to apply
each patch rather than just copy a block of bytes. The loader
may be a multi-stage algorithm where the first stage loads the



second stage loader into memory and the second stage loader
fetches and authenticates the actual binary. These variants all
share a common set of security objectives and are vulnerable
to similar attacks. This paper studies the class of protocols and
not a specific instance of the protocol. Our theoretical results
are not restricted to the specific variant shown in Figure 1b.

1) System and Threat Model: The protocol is typically
executed on a SoC which consists of both trusted and untrusted
components. In the simple SoC shown in Figure 1c, the pro-
tocol executes on a trusted microcontroller (µP1) and makes
use of two trusted crypto engines: SHA256 for computing
cryptograhic checksums and RSA for public key cryptography.
While the protocol is being executed on µP1, untrusted code is
running in parallel on µP2.1 This code can attempt to configure
and initiate operation of the other accelerators and modify
memory arbitrarily.

2) Protocol Security Requirement: A secure implementa-
tion of the protocol must ensure that despite arbitrary adversar-
ial actions from untrusted components, only images with valid
signatures and cryptographic checksums must be loaded. We
will make this informal definition precise in Section III-B2.

B. Potential Vulnerabilities in the Protocol

The protocol as shown in Figure 1b is deceptively simple. In
practice, there are many subtleties to its implementation and if
these are not handled correctly, invalid images may be loaded
and executed with disastrous results for system security. To
help understand some of these subtleties, we now describe
three categories of protocol vulnerabilities.
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Fig. 2: Example of protocol state hijacking.

1) Protocol State Hijacking: The protocol consists of a
sequence of checks, each of which must be carried out
faithfully to ensure its security. If the adversary is able to
modify system state in order to “trick” the loader into skipping
steps, this may allow invalid/insecure images to be loaded.

As a specific example, consider an implementation where
the loader uses a finite state machine (FSM), with state
variables stored on the firmware stack to step through the
various stages of image authentication. Further suppose the
adversary can cause interrupts to occur on the microcontroller
executing the protocol. The interrupt handler may have a buffer
overflow vulnerability which may be exploited to change the
state of the FSM. An example of this vulnerability is shown in

1A reader may wonder why adversarial components execute in parallel with
the loader. One reason is enabling fast boot-up. It may be desirable to have
untrusted components (e.g., camera, GPS ) booted up in parallel with trusted
components (e.g., power management engine, security management engine).

Figure 2, where the adversary prevents checking of the hash
of the block 0, by causing state 4 to be skipped.

2) Time of Check to Time of Use (TOCTOU) Vulnerabilities:
This classic attack refers to the scenario where the data
is changed between the time of validation and the time of
its use. In our example, an attacker may wait until header
authenticity is checked and then replace parts of the header
with a malicious payload. This is depicted in Figure 3.
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Fig. 3: TOCTOU attacks on authenticated firmware load.

3) Confused Deputy Attacks: A common technique for pre-
venting TOCTOU attacks is making the object being checked
immutable before the check. This can be accomplished in our
setting by marking regions of memory as read-only.
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Fig. 4: TOCTOU attack mounted using a confused deputy.

However, marking regions of memory read-only has sub-
tleties associated with it in a system containing multiple princi-
pals. Suppose the data is marked as read-only to the untrusted
modules, but read-write to cryptographic engines. This may
seem reasonable because the cryptographic engines are trusted.
However, although the attacker cannot directly alter the image,
she may execute a command on the RSA accelerator which
overwrites the image header with an invalid value. The write
succeeds because the RSA accelerator is allowed to write to
the image; this is despite the fact that untrusted module, which
initiated operation of the RSA accelerator cannot directly
overwrite the image. This is an example of a confused deputy
being used to mount a TOCTOU attack and is depicted in
Figure 4.



C. Challenges in Formal Specification of Protocol Security

As Section II-B demonstrates, protocols in this class have
a number of subtle security vulnerabilities which can only
be prevented by careful reasoning about adversarial actions.
Formal verification of the protocol can help address this
problem, but the property specification research challenge
needs to be addressed: it is not straightforward to come up
with a property specification that captures protocol security.

As a strawman, consider a property which states that au-
thentication must succeed if and only if the initial value of the
image binary has a valid header and each block in the initial
image has a valid hash. While this seems like a reasonable
property, an implementation which satisfies this property need
not be secure. Although the property ensures the initial image
is valid, intermediate steps may replace it with a malicious
payload. Therefore, an implementation satisfying the property
may be vulnerable to TOCTOU and confused deputy attacks.

We will also demonstrate in Sections III and IV-B1 that
security of the protocol is not captured by secure informa-
tion flow properties such as noninterference or observational
determinism. The problem is that secure information flow is
too strong: it requires that regardless of what the adversary’s
actions are, the system must boot a valid image. This needs
strict isolation between the adversary and the trusted loader,
which requires specialized hardware support and is more
expensive in terms of hardware and design cost. Instead, many
practical implementations only ensure that if the image is
marked as verified and loaded for execution, then it must
have been valid. This subtle but important difference means
techniques for verification of secure information flow cannot
be directly applied to the authenticated loader verification.

III. SECURITY SPECIFICATION

In this section, we first present a model for authenticated
firmware load protocols. The first model includes the protocol
but not the adversary. We then extend the model to include
adversary tampering, and then introduce an end-to-end security
property over the extended model that captures security of an
authenticated loader.

A. An Abstract Model of Authenticated Firmware Load

We will model the authenticated load protocol as a transition
system M = 〈Σ, init , tx 〉. The set of states of the transition
system is given by Σ. We use σ0, σ1, σ2 etc. to refer to
individual states of the transition system, where σi ∈ Σ.
init is the set of initial states, while tx is the transition
relation. A trace of the system π is a sequence of states
π = 〈σ0, σ1, . . . , σi, . . . 〉 such that: σ0 ∈ init and for all
i ≥ 0, (σi, σi+1) ∈ tx . We use the notation πi to denote the
ith element of the trace π. In the above example, π3 = σ3.
The set of all traces of a system M is denoted by TR(M).

When the protocol begins execution, it reads the firmware
image from an input device (e.g., flash storage or network
device). Given a state of the transition system σ, we denote
image data stored on the input device in state σ by the term

img(σ). Note here that img(σ) refers to the entire block of
image data, including both headers and data blocks.

For example, for the protocol in Figure 1b, img(σ)
.
=

σ.inputDev [baseAddr : baseAddr + len]. Here inputDev is
an array that models the contents of the input device. We use
notation arr[start : end ] to denote the slice of array between
the indices start and end . We are using the notation σ.var to
refer to the valuation of the state variable var in the state σ.

Viewed abstractly, the protocol has to perform a number of
checks to determine validity and authenticity of the image. The
precise number of checks to be performed may be a function
of the image data and system state. We denote this by the term
#chks(σ). For the protocol in Figure 1b, the number of checks
to be performed is 1 + σ.header .numBlocks: one check for
the header and one for each block contained in the image.

Each of the checks is denoted by the predicate validi(σ)
where 1 ≤ i ≤ #chks(σ). Returning to the example protocol
in Figure 1b, valid1(σ) is true if the header signature is valid
in state σ, valid2(σ), . . . , validi(σ), . . . etc. are true if the
appropriate block’s hash is equal to the corresponding value
stored in the header.

valid(σ)
.
=

#chks(σ)∧
i=1

validi(σ) (1)

We will use the predicate valid(σ) to indicate that all the
checks are valid. Like #chks, valid is a predicate over system
state σ rather than just the image data img(σ). This is because
the type and number of checks to be performed may depend
on system state. For example, some patches may load only on
a system with a specific version of firmware.

Finally, when the protocol completes execution it marks
an image as verified and therefore eligible for execution.
Otherwise the protocol aborts. These are denoted by the
state predicates success(σ) and aborted(σ) respectively. If
verification succeeds, the executable data in memory ready
for execution is denoted by the term exec(σ).

Security of Authenticated Load without Adversary: An
implementation of authenticated load without an adversary is
secure if whenever an image is verified, all of the required
validity checks on it pass. Given a trace of the transition
system M , π = 〈π0, π1, . . . 〉, the above informal definition
can be precisely stated as follows:

∀π ∈ TR(M).
(
∃i. success(πi)

)
=⇒ valid(π0) (2)

Property 2 is a trace property and can be expressed in linear
temporal logic as ♦ success =⇒ valid. This property can be
verified using standard model checking techniques. In practice,
it turns out to be somewhat challenging to verify because of
the need for modeling cryptography [4, 8, 19, 29].2 As we will
see in the next subsection, it is the introduction of adversarial
behavior that makes the above property incomplete.

2Our model uses the Dolev-Yao technique [20] and cryptography is modeled
using uninterpreted functions along with axioms that state properties like
collision resistance and pre-image resistance.



Implication vs. Bi-Implication: Property 2 uses an im-
plication rather than a bi-implication. We only require that
if the protocol declares an image as verified, then the image
data be valid. In other words, this property only requires the
detection of invalid images; valid images may sometimes not
be authenticated. The loader cannot always guarantee that a
good image will be loaded even in the absence of adversarial
interference. For example, the loader may run out of memory
or be unable to access shared resources (e.g., cryptographic
accelerators may be unavailable).

B. Abstract Model Including Adversarial Behavior

To extend the model presented in Section III-A to in-
clude adversarial behavior, we augment the transition system
definition with a tamper relation over states. Specifically,
our transition systems is now defined as the tuple Madv =
〈X, init , tx ◦tmpr〉. This system’s transition relation tx ◦tmpr
is the composition of the relations tx and tmpr . Every step of
the system consists of a state update due to the tamper relation
and a state update due to the trusted transition relation tx .
The latter corresponds to transitions initiated by the trusted
components in the system while the former captures the
adversary’s ability to make untrusted updates to system state.
Note that an adversary’s state updates are visible to the trusted
component, so adversary actions may cause a chain reaction
in the trusted code causing so-called confused deputy attacks.

A trace of the augmented transition system Madv is defined
as a sequence of states π = 〈σ0, σ1, . . . 〉 such that:
• σ0 ∈ init is true,
• for all i ≥ 0, there exists σ′i such that (σi, σ

′
i) ∈ tmpr

and (σ′i, σi+1) ∈ tx .
The above definition says that system state starts in some
initial state and then evolves by the composition of the
tampering relation tmpr and the trusted transition relation tx .

The predicates validi(σ), valid(σ), and success(σ) as well
as the terms img(σ),#chks(σ) and exec(σ) all have the same
definitions for Madv as they do for the transition system model
without the adversary M .

1) Defining the Tamper Relation: The tamper relation is the
most crucial component of the adversary model and captures
how an adversary can affect system state. For the example
protocol shown in Figure 1b, our definition of the tamper
relation states that untrusted modules (µP2, flash and network
devices) can make arbitrary reads and writes on the shared
interconnect. This definition simulates all functional attacks
carried out by an adversary involving these modules under
the assumption that trusted modules do not interact with the
untrusted modules except via the shared interconnect.

More interesting definitions of the tamper relation can
capture sophisticated attacks. To illustrate this, consider fault
injection attacks which refer to scenarios where the attacker
induces bit-flips in the SoC. These are typically carried out
by a physical adversary who launches an electromagnetic
pulse at the SoC [3, 31]. If carefully targeted, a crucial bit
may be flipped and security requirements violated. These
attacks could be modelled by defining the tamper relation to

non-deterministically flip a bounded number of bits in each
trace. RowHammer, a software-based fault injection attack on
DRAM can also be modelled in a similar way [26]. Of course,
the specific choice of operations to be included in the tamper
relation depends on the SoC’s threat model.

2) Security of Authenticated Load with Adversary: The
protocol is secure in the presence of adversarial interference
if two conditions are satisfied. The first condition states that
when an image is verified, then it must be valid. This is the
same as Property 2 except it is defined over traces of Madv .

∀π ∈ TR(Madv).
(
∃i. success(πi)

)
=⇒ valid(π0) (3)

The second condition requires that every execution that
results in the image being verified in Madv also have a
corresponding execution in M starting from the same input
image data. This corresponding execution in M should also
result in the image being verified, and the executable data
loaded into memory should be identical in Madv and M .

(
∀π1 ∈ TR(Madv). ∃i. success(πi1)

)
=⇒(

∃π2 ∈ TR(M). img(π0
1) = img(π0

2) =⇒
∃j. success(πj2) ∧ exec(πi1) = exec(πj2)

)
(4)

Property 4 makes the above definition precise. What is the
intuition behind the property? First, there must be no way for
an adversary to trick the system into loading a bad image.
This is captured by success(πi1) =⇒ success(πj2). Second,
the executable loaded into memory upon validation should not
be influenced by the adversary, i.e. exec(πi1) = exec(πj2).

Unfortunately, Property 4 is challenging to verify due to two
reasons. The first problem is quantifier alternation, specifically
the existential quantification over traces of M . If implemented
naı̈vely this could devolve into explicit exhaustive search over
traces of M . This is why tools for symbolic model checking
of temporal hyperproperties, e.g. MCHyper [22], do not allow
existential quantification over traces. A reader may wonder
why have the existential quantifier at all. Recall the discussion
in Section III-A regarding the use of implication rather than
bi-implication in Property 2. The same reasoning applies for
the use of existential quantification: a loader may not be able
to guarantee that a good image is loaded in all executions in
the absence of adversarial interference.

The second problem is hidden in the term exec(πi1) =
exec(πj2). Note that exec refers to a region of memory, so this
comparison of two memory ranges typically involves universal
quantification over memory addresses. This is also challenging
for symbolic model checking algorithms.

IV. DECOMPOSING THE SECURITY PROPERTY

In this section, we present a technique for more scalable ver-
ification of the authenticated load security property applicable
to certain common scenarios. We first present an overapprox-
imation of the transition system modeling the protocol and
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adversary. This overapproximation ensures the tamper relation
is reflexive, which in turn allows overapproximation of the
existential quantifier in Property 4 by a universal quantifier.
We then decompose Property 4 into two 2-safety properties.
Finally, we show that if the 2-safety properties are satisfied,
then so is Property 4.

A. Overapproximating the Adversary Model

Let us define the transition system Madv+ = 〈Σ, init , tx+ ◦
tmpr+〉. Here, Σ and init are the same as in Madv . tx+ is
the reflexive closure of the relation tx : (σi, σj) ∈ tx+ if either
σi = σj or (σi, σj) ∈ tx . tmpr+ is defined similarly.

Proposition 1. M and Madv both refine Madv+.

Since Madv+ simulates both Madv and M , any k-safety
property proven over Madv+ holds on both M and Madv .
Further, note that M does not refine Madv due to the inclusion
of the tamper relation in the transitions of Madv .

B. Decomposition into 2-Safety

In the rest of this section, we present two 2-safety properties
over Madv+ that imply Property 4.

Given a trace π = 〈σ0, . . . , σi, σi+1, . . . 〉 of Madv+, we
define the predicate tmprNOP(σi) to be true either when
(σi, σi+1) ∈ tx or σi = σi+1. In other words, if a trace
satisfies ∀i. tmprNOP(πi) (or equivalently � tmprNOP), that
means all adversary operations in the trace are “no-ops.”

1) The No Hijacking Property: This property states that
for every image and every execution which results in the
image being verified with adversary interference, an execution
without adversary interference must also result in the image
being verified. This is specified as follows.

∀π1 ∈ TR(Madv+).

∀π2 ∈ TR(Madv+).

img(π0
1) = img(π0

2) =⇒
resourceAvail(π2) =⇒(
∀i. tmprNOP(πi2)

)
=⇒(

∀i. success(πi1) =⇒ success(πi2)
)

(5)

In the above, resourceAvail is a trace property that guar-
antees resources are available for validation to succeed; thus
ensuring there are no failures unrelated to adversarial actions
in π2. The property ensures that adversary operations can never
turn a “bad” initial image into one that is eventually executed.
This property is violated when protocol state hijacking occurs.
Note that unlike Property 4, this is a 2-safety property [11, 41]
and as a result, it is relatively easier to verify.

Noninterference vs. No Hijacking: To understand why
the property uses success(πi1) =⇒ success(πi2) rather than
success(πi1) ⇐⇒ success(πi2) which would be similar to
noninterference [23], consider the protocol shown in Figure 5a.
This protocol deals with one block of data and authenticates
the block by validating the block signature using a trusted
public key (step 3). In order to prevent TOCTOU attacks,
it marks the region of memory containing the block as read
only before signature validation (step 2). This ensures that
the signature is computed over the block of data that will be
executed, so if signature validation succeeds, then there must
not have been any adversary interference. The memory region
containing the image is world-writable when it is being loaded
from memory.

Figure 5b shows two executions of the protocol. In (i), the
adversary is overwrites the image as it is being loaded into
memory before the region is set to be read-only. However,
this causes authentication to fail and the loader aborts and no
damage is done. In (ii), there is no adversary interference and
authentication succeeds. This pair of traces satisfies Property 5.
However, if the property was success(πi1) ⇐⇒ success(πi2),
then the depicted pair would violate this strawman property.
This violation occurs even though the protocol is secure.

This example demonstrates why noninterference is too
strong for security verification of authenticated loaders. From
an implementation perspective, satisfying noninterference re-
quires designing a MMU that allows fine-grained page per-
missions such that a page can be written to by the loader and
its deputies but not by the attacker nor by attacker-invoked
deputies. (Note some deputies may be invoked by both attacker
and the loader, so in order to enforce noninterference the
deputies would need to propagate the “original requester” for



each operation.) In contrast, Property 5 only requires that page
permissions not be modifiable by the attacker. The latter is
much easier to implement and requires less hardware support.

2) The No TOCTOU Attack Property: This property states
that for every pair of traces which start with identical images
stored in flash such that both eventually validate the image, the
executables loaded into memory for these must be identical.

∀π1 ∈ TR(Madv+).

∀π2 ∈ TR(Madv+).

img(π0
1) = img(π0

2) =⇒(
∀i. success(πi1) ∧ success(πi2) =⇒ exec(πi1) = exec(πi2)

)
(6)

Property 6 is violated by TOCTOU bugs and confused
deputy attacks which exploit TOCTOU bugs. Satisfaction
of this property ensures that the loaded images cannot be
tampered with by an adversary. This is also a 2-safety property.

C. Verification of Authenticated Firmware Load

The 2-safety properties of no hijacking and no TOCTOU
attacks are important because if they are satisfied for the
extended transition system Madv+, then we know that M and
Madv satisfy Property 4.

Lemma 2. If the transition system Madv+ satisfies the no
hijacking (Property 5) and the no TOCTOU attack (Property 6)
properties then Madv and M satisfy Property 4.

Proof Sketch: The proof is by contradiction. Suppose it is pos-
sible to satisfy Properties 5 and 6 while violating Property 4.
Then there must be a counterexample trace π1 of Madv in
Property 4. This trace could be one of two types.

In the first case, there exists no trace π2 ∈ TR(M) which
starts with the same image data as π1 and results in successful
validation. This means there exists a trace π′2 ∈ TR(M) which
starts with the same image data as π1 but fails validation. Then
π1 and π′2 are a counterexample to Property 5. Contradiction!

In the second case, there does exist a trace π2 ∈ TR(M)
which successfully validates the image. However, this trace
does not have the same executable data in memory. In this case
too, the trace π2 can be padded with an appropriate number
of “no-ops” to construct the trace π′2 such that π1 and π′2 are
counterexamples to Property 6. This is also a contradiction.

1) Simplification of Property 3: Notice that if Properties 5
and 6 are satisfied, we do not need to consider adversarial
interference in Property 3. This enables more scalable verifi-
cation by reducing the state space for verification.

∀π1 ∈ TR(Madv+).(
∀i. tmprNOP(πi) ∧ resourceAvail(π)

)
=⇒(

∃i. success(πi)
)

=⇒ valid(π0) (7)

Proposition 3. If Properties 5, 6 and 7 are satisfied then so
is Property 3.

To see why this is true, suppose Property 7 is satisfied
but Property 3 is not. Consider the counterexample to Prop-
erty 3. This counterexample along with any satisfying trace of
Property 7 violates Property 5. Intuitively, Properties 6 and 7
show that each execution which results in a valid executable
being loaded in the presence of an adversary corresponds to
a equivalent execution without an adversary. Therefore, when
proving that all validity checks are performed on the image, we
do not need to consider adversarial operations; if the adversary
were able to introduce new behaviors, those would lead to
violations of the other two properties.

2) Verification Methodology: Lemma 2 points to a method-
ology for the verification of authenticated firmware load.

1) Construct the extended transition system Madv+.
2) Verify Properties 5, 6 and 7 on Madv+.
3) If they are satisfied, then the protocol is also secure.

Our methodology has reduced the verification problem to
that of verifying two 2-safety properties and a safety property.
Unlike Property 4, these properties are all subset-closed and
hence preserved by refinement [11]. This means well-studied
notions of abstraction and refinement [7] can be applied for
scalable verification of the security property.

V. EVALUATION

In this section, we describe our evaluation of the method-
ology presented in this paper.

A. Methodology

We implemented a model of the protocol shown in Figure 5
with only one data block in the UCLID5 modeling and verifi-
cation framework [36, 43]. UCLID5 uses the Z3 SMT solver to
discharge the verification conditions [17]. Our model contains
the protocol state machine, an input device, shared memory
and a model of the byte-wise cryptographic hash calculation.
Cryptography was modelled using uninterpreted functions
along with Dolev-Yao axioms [20]. The adversary is a bus
master who issues an unbounded number of writes to arbitrary
memory addresses with arbitrary payloads. Depending on the
memory management unit (MMU) configuration some of these
writes update memory while others are blocked by the MMU.

Since Properties 5 and 6 are 2-safety properties, we used
the standard technique of self-composition [5]. Proofs were
done using induction, and several strengthening invariants had
to be stated in order to prove the properties of interest. Since
many invariants are quantified, we specified several quantifier
patterns to assist the SMT solver with these invariants. The
pattern is an annotation provided along with each instance of
a quantifier. The solver instantiates the quantifier for each term
that matches the pattern. This technique is called E-matching
and Z3’s implementation of it is described in [18]. Models and
proof scripts are publicly available [42].

Experiments were run on an Intel Core i7 5500U CPU
operating at 2.4 GHz with 16 GB of RAM.



B. Results

Verification results are shown in Table I. The address and
data widths for the memory and I/O devices used in our model
of the protocol are parameterizable. We show results for these
widths ranging from 8 to 32 bits. The size and location of the
image are unconstrained symbolic constants.

TABLE I: Verification Time.

Bit- Prop. 5 Prop. 6 Property 7 Resultwidth Prop. 7a Prop. 7b Prop. 7c

8 4.3s 5.2s 8.2s 3.0s 2.8s
12 4.9s 12.9s 12.1s 3.0s 2.7s
16 4.6s 15.0s 9.0s 3.4s 2.9s
24 6.4s 13.8s 26.2s 3.4s 3.2s
32 7.8s 16.5s 18.5s 4.3s 3.2s

Property 7, which is a standard safety property is proved
compositionally by splitting it up into three sub-properties:
properties 7a, 7b and 7c. Property 7a states that
digest value = mem region hash(mem, base addr, index).
Property 7b shows that in the absence of adversary tampering
the contents of memory region where the image is stored are
equal to the contents of the input device. This proof is done
assuming 7a. Finally, Property 7c states ♦ success =⇒ valid
and its proof assumes both Properties 7a and 7b. The proofs
required a total of 17 unique strengthening invariants across
the three different proofs. We had to add 23 strengthening
invariants for properties 5 and 6. The strengthening invariants
for these properties were quite similar. Of the 23 strengthening
invariants, 19 invariants were relational and among the 19, four
involved universal quantification over addresses.

C. Discussion of Results

The verification results shown in this paper are by no
means a complete verification of an authenticated loader.
However, they are a necessary and important first step towards
producing a secure authenticated loader. Given the importance
of authenticated loaders to SoC security, we believe it is
important to produce a fully-verified implementation of such
a loader. However, prior to this work it was unclear what
proof obligations would need to be discharged for a fully-
verified implementation. Our paper solves this problem by
the introduction of Properties 5 and 6. Each of these can be
verified on an abstract model of the loader protocol and a
refinement proof can then show that the protocol’s security
properties also hold for the implementation. We also wish
to emphasize that an important contribution of this paper is
formal specification of security of authenticated load. This
specification is useful by itself even if unbounded model
checking is infeasible; it can be used with scalable bug-finding
techniques like BMC and concolic execution.

Our work also points towards a new and important class
of 2-safety properties that are not secure information flow. It
opens up new avenues of research into the verification of this

new class of properties, and provides challenging new bench-
marks for verification tools. For example, more sophisticated
approaches to self-composition have been proposed and it is
likely these methods may enable more scalable verification of
the properties introduced by this work [1, 21, 37, 38, 45].

VI. RELATED WORK

1) Secure Boot/Authenticated Load Verification: The most
closely related effort to ours is Krstic et al. [27] who verify
models of authenticated loaders.. They develop a system model
and security property that captures TOCTOU attacks. Their
work also provides a wonderful exposition of the subtleties
involved in the design of authenticated load protocols.

Huang et al. [25] also perform verification of the secure boot
implementation in a commercial SoC design. Their innova-
tions include use of the instruction-level abstraction (ILA) for
co-verification of hardware and firmware [39] and techniques
for analyzing parallel firmware. However, their verification
is limited to certain access control properties of the secure
boot implementation. Cook et al. [12] verify memory safety
of the boot code running in Amazon data centers. The main
difference between our work and the above efforts is that our
paper develops an end-to-end security property that implies
security of the loader, rather than necessary (but insufficient)
properties for loader security.

2) Noninterference and Hyperproperties: Seminal work in
verification of secure information flow was done by Goguen
and Meseguer who introduced noninteference [23]. Noninter-
ference and observational determinism [30, 33, 46] are both
instances of hyperproperties [11]. Noninterference on a multi-
user system is defined as the commands of one group of
users having no effect on what other groups of users can see.
Observational determinism, in the context of integrity, means
that a trusted component’s outputs are a deterministic function
of its inputs. These properties are too strict to capture the
security of authenticated load. In particular, we want adversary
interference to be detected, but not necessarily prevented.
These properties cannot express this requirement. k-safety
properties were introduced by Terauchi and Aiken [41] while
self-composition was introduced by Barthe et al. [5]. We use
simple self-composition but more sophisticated approaches
have been proposed [1, 21, 37, 38, 45].

3) SoC and Firmware Verification: A number of efforts
have studied techniques for firmware verification and many
of these have focused on security properties of firmware. For
example, S2E [10] allows symbolic execution of system soft-
ware. Bazhaniuk et al. [6] verify security properties of system
management mode software in x86 systems. FIE [16] intro-
duces novel optimizations for scalable symbolic execution of
firmware in TI MSP430 microcontrollers. Schmidt el al. [35]
introduced the notion of a program netlist and used this for co-
verification of firmware and hardware. Chen et al. [9] introduce
CRETE, which also enables concolic testing of firmware. These
efforts focus on checking safety properties of firmware and are
not applicable to our scenario where we are verifying k-safety
properties. Subramanyan et al. [40] use symbolic simulation



of product programs to check information flow assertions.
These assertions encode observational determinism which is
not expressive enough to capture our properties of interest.

VII. CONCLUSION

This paper introduced a methodology for verification of end-
to-end security of authenticated firmware loaders. Authenti-
cated loaders are an important class of programs which are part
of the hardware root of trust in almost all modern systems-on-
chip (SoC) devices. Our methodology introduced a system and
adversary model along with an end-to-end security property
that captures security of this class of programs. We presented
a decomposition of the security property into two simpler 2-
safety properties that in combination with a novel abstraction
enabled more scalable verification of the end-to-end security
property. Experiments demonstrated the initial feasibility of
our approach. Our work paves the way for the construction of
a fully-verified authenticated bootloader.
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tal Approaches to Software Engineering, pages 281–298,
Cham, 2018. Springer International Publishing.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A
Platform for In-vivo Multi-path Analysis of Software
Systems. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2011.

[11] Michael R. Clarkson and Fred B. Schneider. Hyperprop-
erties. Journal of Computer Security, 18(6):1157–1210,
September 2010. ISSN 0926-227X.

[12] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar
Tasiran, Michael Tautschnig, and Mark R Tuttle. Model
checking boot code from aws data centers. In Interna-
tional Conference on Computer Aided Verification, pages
467–486. Springer, 2018.

[13] Intel Corp. Intel Trusted Execution Technology. https:
//www.intel.com/txt, 2019.

[14] Andrew Cottrell, Jithendra Bethur, Timothy Markey,
M Srikant, and Lakshmanan Srinivasan. Secure firmware
update, June 29 2006. US Patent App. 11/026,813.

[15] Ang Cui, Michael Costello, and Salvatore J. Stolfo.
When Firmware Modifications Attack: A Case Study of
Embedded Exploitation. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24-27, 2013, 2013.

[16] D. Davidson, B. Moench, S. Jha, and T. Ristenpart.
FIE on Firmware: Finding Vulnerabilities in Embedded
Systems Using Symbolic Execution. In Proceedings of
the 22nd USENIX Security Symposium. USENIX Asso-
ciation, 2013.

[17] L. De Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

[18] Leonardo de Moura and Nikolaj Bjørner. Efficient E-
Matching for SMT Solvers. In Frank Pfenning, ed-
itor, Proceedings of the International Conference on
Automated Deduction (CADE), pages 183–198, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-73595-3.

[19] R. DeLine and K. R. M. Leino. BoogiePL: A typed pro-
cedural language for checking object-oriented programs.

http://doi.acm.org/10.1145/3062341.3062378
https://www.intel.com/txt
https://www.intel.com/txt


Technical Report MSR-TR-2005-70, Microsoft Research,
2005.

[20] D. Dolev and A. C. Yao. On the security of public key
protocols. In Proceedings of the 22Nd Annual Symposium
on Foundations of Computer Science, SFCS ’81, pages
350–357, Washington, DC, USA, 1981. IEEE Computer
Society. doi: 10.1109/SFCS.1981.32.

[21] Azadeh Farzan and Anthony Vandikas. Automated hy-
persafety verification. In Computer Aided Verification -
31st International Conference, CAV 2019, New York City,
NY, USA, July 15-18, 2019, Proceedings, Part I, pages
200–218, 2019. doi: 10.1007/978-3-030-25540-4\ 11.
URL https://doi.org/10.1007/978-3-030-25540-4 11.

[22] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez.
Algorithms for Model Checking HyperLTL and Hy-
perCTL*. In Proceedings of the 27th International
Conference on Computer Aided Verification (CAV 2015),
pages 30–48, July 2015.

[23] Joseph A. Goguen and José Meseguer. Security Policies
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