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Abstract—An adjustable join (Adjoin) scheme [Popa-Zeldovich 2012] is a symmetric-key primitive that enables a user to securely
outsource his database to a server, and later to issue join queries for a pair of columns. When queries are extended to a list of
columns, 3Partition security of Adjoin schemes [Mironov-Segev-Shahaf 2017] does not capture the expected security. To address
this deficiency, we introduce the syntax and security notion of multi-adjustable join (M-Adjoin) schemes. We propose a new security
notion for this purpose, which we refer to as M3Partition. The 3Partition security of Adjoin extends to the M3Partition security
of M-Adjoin in a straightforward way. The gap between 3Partition and M3Partition is filled with a sequence {M3Pk}k∈N of
security definitions where M3P1 and M3P∞, respectively, correspond to 3Partition and M3Partition. We propose constructions
for achieving both M3Partition and M3Pk security levels. Our M3Partition-secure scheme joins m columns, each containing
n elements, in time O(nm−1). Our M3Pk-secure scheme uses ideas from secret sharing in its construction and does the job in time
O((m−1)nk/k) with some leakage that we refer to as k-monotonous. It remains open if this barrier is inherent to the security definitions.
Our schemes are substantially more efficient than previous ones.

Index Terms—Secure database outsourcing, Symmetric-key primitive, Join query, Monotonicity, Non-tranisitivity.
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1 INTRODUCTION

THERE has been a surge in the usage of cloud services,
especially storage and computing ones in recent years.

In such settings, used by both enterprises and individuals,
a user outsources his data to an external server. Over time,
the user sends queries to the server and receives back the
result of each one. The superiority of these services is that a
user with limited computational and storage power can take
advantage of the unlimited capabilities of the cloud server.

Database management systems (DBMS) are one of these
services with great interests in industry and business. In
such services, since there is no trust to the external servers,
the databases are encrypted prior to outsourcing. CryptDB,
designed by Popa et al. [1], [2], [3], [4], is one such no-
table system that supports a variety of SQL queries over
encrypted databases. One of the most challenging issues in
designing these services is supporting SQL queries, such as
selections, projections, joins, aggregates, and orderings, on
the encrypted database.

In this paper, we focus on the secure join queries on
encrypted databases. Several research such as [4], [5], [6], [7],
[8] have studied secure join queries and provided solutions
with various trade-offs between security and efficiency. The
scenario model for this functionality considers two main
parties: a user and a server. The user outsources a database
to the server, where a database contains a number of tables
and each table includes several data records that are verti-
cally partitioned into columns. When the user would like
to issue a join query on his database, he generates a join
token and sends it to the server. A join query is formulated
as a pair of column labels. Finally, the server executes the
requested join query on the encrypted database and returns
the join result to the user.

The adjustable join scheme (Adjoin), first proposed by
Popa and Zeldovich [4], is a symmetric-key primitive that
supports the secure join queries for a pair of column labels

on an encrypted database. The proposed security definition
in [4] for this primitive does not capture transitivity leakage,
and so it is far from the expected security. An adjustable join
scheme has the transitive leakage, if for any three column
labels li , lj and lk, join tokens for computing the joins
between li and lk and between lk and lj , allow to compute
the join between li and lj without asking his token.

Recently, Mironov et al. [8] proposed a strong and
intuitive notion of security, called 3Partition, for the
adjustable join schemes, and argued that it indeed cap-
tures the security of such schemes (no transitive leak-
age). Also, they introduced natural simulation-based and
indistinguishability-based notions that captured the min-
imal leakage of such schemes, and proved that the
3Partition notion is positioned between their adaptive
and non-adaptive variants with respect to some natural
minimal leakage. The minimal leakage [9] reveals some ac-
cepted information such as the database dimensions (i.e
total number of columns and the length of each column),
the search pattern (i.e., the repetition of columns in different
queries), the result pattern (i.e., the positions in which all
columns of a join query contain identical elements) as well
as the duplication pattern [8] (i.e., the positions in each
column with identical contents for every column in the
database).

In traditional applications of DBMS, the length of the
join queries (m) are small, usually m < 10, although the
databases allow for longer lengths (for example, the maxi-
mum length for the SQL Server is 256 [10]). Nevertheless,
with the development of database applications such as:
decision support system (DSS), online analytical processing
(OLAP) and data mining (DM), join query lengths have
also increased significantly [11]. On the other hand, the
Adjoin schemes are designed for the join queries over a
pair of columns, or multiple pairs of columns. However,
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in the database outsourcing scenario model, since our goal
is not to disclose any useful information about queries and
database elements directly to the server, executing multiple
pairs of columns instead of a list of columns reveals more
information to the server. In other words, the previous se-

curity definitions for the Adjoin schemes have intermediate
leakage and do not meet the expected security. We say an
Adjoin scheme has the intermediate leakage, if the join token
for a list of column labels allows to join a sub-list of column
labels. Table 1, 2 and 3 show a simplified description of the
transitive and intermediate leakages.

Let A and B be two tables. A ▷◁ B denotes join between tables A and B based on columns with the same labels. For
simplicity, we have shown a selection of the join result as the output of the operator ▷◁ on the tables A and B.

TABLE 1: A simplified product database with tables on Orders, Customers and Shippers.

(a) Customers table.
CustID CustName PostalCode PrefShipID

1 Maison Dewey B-1180 100
2 Que Delícia 02389-673 200
3 Vaffeljernet 8200 300
4 Wilman Kala 21240 200

(b) Orders table.
OrdID CustID Date ShipID

10 1 1996-07-04 100
20 2 1996-07-23 200
30 3 1996-08-14 200
40 4 1996-09-13 100

(c) Shippers table.

ShipID ShipName Phone
100 Speedy Express (503) 555-9831
200 United Package (503) 555-3199
300 Federal Shipping (503) 555-9931

TABLE 2: Transitivity leakages for join queries (Customers ▷◁ Orders) and (Orders ▷◁ Shippers) using Adjoin scheme
proposed by Popa and Zeldovich [4].

Expected result

(a) Customers ▷◁ Orders
CustID CustName OrdID Date

1 Maison Dewey 10 1996-07-04
2 Que Delícia 20 1996-07-23

(b) Orders ▷◁ Shippers
OrdID Date ShipID ShipName

10 1996-07-04 100 Speedy Express
20 1996-07-23 200 United Package
30 1996-08-14 200 United Package
40 1996-09-13 100 Speedy Express

Transitive leakage

(c) Customers ▷◁ Shippers
CustID CustName PrefShipID ShipName

1 Maison Dewey 100 Speedy Express
2 Que Delícia 200 United Package
3 Vaffeljernet 300 Federal Shipping
4 Wilman Kala 200 United Package

TABLE 3: Intermediate leakages for join query (Customers ▷◁ Orders ▷◁ Shippers) using Adjoin scheme proposed by
Mironov et al. [8].

Expected result

(a) Customers ▷◁ Orders ▷◁ Shippers
CustName OrdID Date ShipName

Maison Dewey 10 1996-07-04 Speedy Express
Que Delícia 20 1996-07-23 United Package

Intermediate leakages

(b) Customers ▷◁ Orders
CustID CustName OrdID Date

1 Maison Dewey 10 1996-07-04
2 Que Delícia 20 1996-07-23

(c) Orders ▷◁ Shippers
OrdID CustID ShipID ShipName

10 1 100 Speedy Express
20 2 200 United Package
30 3 200 United Package
40 4 100 Speedy Express

In this paper, to capture the intermediate leakage, we
propose the multi-adjustable join (M-Adjoin) schemes as
an extension of the adjustable join schemes, and define a
family {M3Pk}k∈N of security notions, where an increase in
parameter k reduces the leakage level.

We emphasize that an M-Adjoin scheme is a general and
independent cryptographic primitive. Although our work
is motivated by the secure join queries on the encrypted
database, the multi-adjustable join schemes can be used by
a variety of real world applications such as Boolean search-
able symmetric encryption (BSSE) [12], private set intersec-
tion in the cloud scenarios (PSI) [13], privacy preserving
data mining [14], and distributed storage systems [6].

1.1 Contributions

In this paper, we extend the notion of the adjustable join
schemes to the multi-adjustable join (M-Adjoin) schemes,

where the join queries are formulated as a list of column
labels instead of a pair of column labels. We then show
that unlike the Adjoin scheme, 3Partition security is not
sufficient for the M-Adjoin schemes. We conclude that an
extension of 3Partition, which we call M3Partition, is
what we are looking for.

We define a family {M3Pk}k∈N of security notions that
fills the gap between 3Partition and M3Partition
security notions. More precisely, M3P1 is exactly the
3Partition security, M3Pk positions between M3Pk−1

and M3Pk+1 but bellow M3Partition. We call a multi-
adjustable join scheme k-monotonous if it allows an adver-
sary to compute the join of an unqueried list of columns
of size k + 1 if it has already queried a superset of the
list. A k-monotonous scheme makes it possible to compute
the join of m ≥ k + 1 columns, each of length n, in time
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O((m− 1)nk/k).
For every integer k, we propose an M-Adjoin construc-

tion with k-monotonous property. In particular, our con-
struction with 1-monotonous property is more efficient than
1-monotonous constructions proposed in [8]. The size of ad-
justment token of our construction is m group elements and
the previous ones are 4m and 2m group elements, where m
is the number of columns in a join query. See Section 6 for
detailed performance comparison and discussion.

Additionally, we propose another construction which is
M3Partition-secure (and hence non-monotonous), but it
requires O(nm−1) join time.

1.2 Paper organization
In Section 2, we provide notations and definitions that
are required throughout this paper. Section 3 present the
M-Adjoin syntax. In Section 4, the security definitions of
M-Adjoin schemes are introduced. Our two proposed con-
structions for M-Adjoin, and their security proofs are pre-
sented in Section 5. The performance analysis for different
M-Adjoin schemes is presented in Section 6. Finally, Sec-
tion 7 concludes the paper and points out future directions.

2 PRELIMINARIES

2.1 Notation
Throughout the paper, we use [m] to denote the set
{1, . . . ,m}, where m is a positive integer. The security
parameter is denoted by λ. Assuming that A is a (possibly)
probabilistic algorithm, y ← A(x) means that y is the output
of A on input x. When A is a finite set, x ← A stands for
uniformly selecting an element x from A. We say that a
function is negligible, if it is smaller than the inverse of any
polynomial in λ for sufficiently large values of λ.

We let {0, 1}λ denote the set of all strings of length λ,
called words, and

(
{0, 1}λ

)∗
denote the set of all finite lists

of λ-bit long words. We use the notation w and l for de-
noting a word and a label, respectively, which for simplicity
both1 are considered to be λ-bit long (i.e., w, l ∈ {0, 1}λ).
The labels are used to identify a column C in a database.
Also, database columns are considered as a list of words
(i.e., C ∈

(
{0, 1}λ

)∗
). As a convention, we denote the output

of a defined experiment by the experiment name itself.

2.2 Computational Indistinguishability
Let Xλ, Yλ be distributions over {0, 1}l(λ) for some poly-
nomial l(λ). We say that the families {Xλ} and {Yλ} are
computationally indistinguishable, and write Xλ ≈ Yλ, if
for all probabilistic polynomial-time (PPT) distinguisher D,
there exists a negligible function ε such that

|Pr[t← Xλ : D(t) = 1]− [t← Yλ : D(t) = 1] ≤ ε(λ).

For a pair of distributions Xλ and Yλ, if Xλ ≈ Yλ then
for any PPT algorithms M , it holds that M(Xλ) ≈ M(Yλ).
This is known as the closure under efficient operations.

Let X1, X2, · · · , Xm be a sequence of probability distri-
butions. Assume that the distinguisher D can distinguish

1. It is easy to remove this assumption and work with long messages
and short labels as it is the case in practice. To keep our discussion
simple, we stick to this conversion.

between X1 and Xm with advantage ε. Then, there exists
some i ∈ [1, · · · ,m − 1] such that the distinguisher D can
distinguish Xi and Xi+1 with advantage ε

m . This is known
as the hybrid lemma.

2.3 Basic primitives
2.3.1 Pseudorandom function
Let X , Y be two sets. A polynomial-time computable func-
tion F : {0, 1}λ × X → Y is a pseudorandom function
(PRF) if for every PPT adversary A, the following quantity
is negligible:

AdvPRFF,A(λ) = |Pr[k ← {0, 1}λ : AFk(·)(1λ) = 1]−
Pr[f ← RF : Af(·)(1λ) = 1]|,

where RF is the set of all functions from X to Y.

2.3.2 Bilinear map:
Let G1, G2, GT be cyclic groups of prime order q, and g1,
g2 be generators for G1, G2, respectively. A bilinear map is
a map e : G1 × G2 → GT , which satisfies the following
properties:

1) Bilinearity: ∀x, y ∈ Zq : e(gx1 , g
y
2 ) = e(g1, g2)

xy,
2) Non-degeneracy: e(g1, g2) ̸= 1,
3) Computability: e can be computed efficiently.

We assume that we have a PPT bilinear map generator
G that on security parameter as input, outputs a tuple
Param = (G1,G2,GT , g1, g2, q, e).

2.4 Adjoin scheme
An adjustable join scheme (Adjoin), first introduced in [4], is
a symmetric-key primitive that enables a client to generate
an encoding of any word relative to any column label, and
to generate a pair of tokens to compute the join of any two
given columns.

Definition 1 (Adjoin syntax). An adjustable join scheme is
a collection of four PPT algorithms Adjoin = (Gen,Encod,
Token,Adjust) such that:

• (Param,K) ← Gen(1λ): is a probabilistic key genera-
tion algorithm that takes as input a security parameter
λ, and returns a secret key K and public parameters
Param.

• w̃ ← EncodK(w, l): is a deterministic encoding algo-
rithm that takes as input a secret key K , a word w and a
column label l, and outputs an encoded-word w̃.

• (ati, atj)← TokenK(li, lj): is a probabilistic token gen-
eration algorithm that takes as input a secret key K and
two column labels (li, lj), and returns a pair (ati, atj) of
adjustment tokens.

• aew ← AdjustParam(w̃, at): is a deterministic algo-
rithm that takes as input the public parameters Param,
an encoded-word w̃ and an adjustment token at, and
outputs an adjusted encoded-word aew.

Adjoin correctness and security. The correctness intuitively
guarantees that no PPT adversary can find two column
labels li, lj ∈ {0, 1}λ and two words w ̸= w′∈ {0, 1}λ such
that their adjusted encoded-words are the same, except with
a negligible probability.
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Adjoin security expresses that no useful information
about the join queries and database elements is directly
revealed. Mironov et al. [8] proposed a strong and intuitive
notion of security, called 3Partition, for the adjustable
join schemes, and argued that it indeed captures the security
of such schemes (no transitive leakage). To this end, they
considered three disjoint groups of columns, and allowed
join queries to be issued on these groups in a particular
order. Since 3Partition notion is also defined for the
M-Adjoin schemes, to simplify and avoid duplication, we
describe it in details in Section 4.

3 M-ADJOIN SYNTAX

A multi-adjustable join scheme (M-Adjoin) is a symmetric-
key primitive that enables to generate an encoding of any
word relative to any column label, and to generate a tuple
of tokens enabling to compute the join of any given set of
columns.

M-Adjoin schemes are used as follows. A user wishing to
outsource his database to a server, first generates a secret key
K and public parameters Param using a key generation
algorithm denoted by Gen. Then, the user computes an
encoded-word w̃ for every word w relative to any database
column label l using an encoding algorithm denoted by
Encod and sends them along with the public parameters
Param to the server. Later, when the user wants to send
a join query q = (l1, · · · , lm) to the server, he computes
a list of adjustment tokens (at1, · · · , atm) using a token
generation algorithm denoted by Token. Upon receiving
adjustment tokens (at1, · · · , atm), the server computes an
adjusted word aw for every encoded-word relative to ev-
ery column label in the join query using an adjustment
algorithm denoted by Adjust. Finally, the server computes
the result set from the adjusted words using an evaluation
algorithm denoted by Eval, and sends them to the user.
Below we formalize the primitive 2.

Definition 2 (M-Adjoin syntax). A multi-adjustable join
scheme is a collection of five polynomial-time algorithms Π =
(Gen,Encod,Token,Adjust,Eval) such that:

• (Param,K) ← Gen(1λ): is a probabilistic key genera-
tion algorithm that takes as input a security parameter
λ, and returns a secret key K and public parameters
Param.

• w̃ ← EncodK(w, l): is a deterministic encoding algo-
rithm that takes as input a secret key K , a word w and a
column label l, and outputs an encoded-word w̃.

• (at1, · · · , atm) ← TokenK(l1, · · · , lm): is a probabilis-
tic token generation algorithm that takes as input a secret
key K and a list of distinct column labels (l1, · · · , lm),
and returns a tuple (at1, · · · , atm) of adjustment tokens.

• aw ← AdjustParam(w̃, at): is a deterministic algorithm
that takes as input the public parameters Param, an
encoded-word w̃ and an adjustment token at, and outputs
an adjusted word aw.

2. We remark that one can merge the Adjust and Eval algorithms into
a single one since they are executed together by the server. However,
for ease of notion, we stick to the convention in [3], [8] and consider
two separate algorithms.

• b← EvalParam(aw1, · · · , awm): is a deterministic eval-
uation algorithm that takes as input the public parameters
Param and a list of adjusted words aw1, · · · , awm, and
outputs a bit b.

Correctness. The scheme is said to be correct, if for any integer
m ≥ 2, any list of column labels (l1, · · · , lm) ∈ ({0, 1}λ)m and
any list of words (w1, · · · , wm) ∈ ({0, 1}λ)m, it holds that

AdvCorΠ (λ) = Pr



(Param,K)← Gen(1λ);

(at1, · · · , atm)← TokenK(l1, · · · , lm);

∀i ∈ [m] w̃i ← EncodK(wi, li);

∀i ∈ [m] awi ← AdjustParam(w̃i, ati) :

Eval(aw1, · · · , awm) = 1


≤ ε(λ),

if wi ̸= wj for some distinct i, j ∈ [m], and that the above
probability is 1 if w1 = · · · = wm.

4 M-ADJOIN SECURITY

In this section, we present the security definitions for the
M-Adjoin schemes. These definitions can be classified in
three categories: 1) the 3Partition security notion, 2) the
M3Partition security notion and 3) a family {M3Pk}k∈N
of security notions. Each of these notions are first explained
informally and then the formal definitions are provided.

4.1 The 3Partition security notion
In this subsection, we adapt the 3Partition security
notion for the Adjoin [8] to M-Adjoin. Recall that the
3Partition security has been proposed to capture the
transitivity leakage (see Table 2).

The adversary of the 3Partition security notion first
defines three disjoint groups of columns, denoted by L
(left), M (middle) and R (right). It can then adaptively
receive encoded-word of every selected word relative to
any chosen column label. The adversary can adaptively
obtain the join tokens related to allowed queries. A query
q = (l1, · · · , lm) is allowed if it is of one of the following
two types:

T1) (l1, · · · , lm) ∈ L ∪ M or,
T2) (l1, · · · , lm) ∈M ∪ R.

The 3Partition notion of security requires that such
an adversary should not be able to compute the join of
any list of column labels (l1, · · · , lm) such that l1, · · · , lm ∈
L ∪ R, {l1, · · · , lm} ∩ L ̸= ∅ and {l1, · · · , lm} ∩ R ̸= ∅.
This is modeled by enabling the adversary to output a pair
of challenge words w∗

0 , w
∗
1 , and providing the adversary

either with the encodings of w∗
0 for all columns in R or with

the encodings of w∗
1 for all columns in R. The adversary

must be unable to distinguish these two cases with a non-
negligible advantage, as long as the adversary did not
explicitly ask for an encoding of w∗

0 or w∗
1 relative to some

column label in M ∪ R. Here is the formal definition.

Definition 3 (3Partition security). An M-Adjoin
scheme such as Π = (Gen,Encod,Token,Adjust,Eval) is
3Partition-secure if for all PPT algorithms A, there exists
a negligible function ε such that

|Pr[Exp3PΠ,A(λ, 0) = 1]− Pr[Exp3PΠ,A(λ, 1) = 1]| ≤ ε(λ),
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where for each b ∈ {0, 1}, the experiment Exp3PΠ,A(λ, b) is defined
as follows:
Setup phase: The challenger Chal samples (Param,K) ←
Gen(1λ), and initialize L = M = R = ∅. The public
parameters Param are given as input to the adversary A.
Pre-challenge query phase: The adversary A may adaptively
issue Addlbl, Encod and Token queries, which are defined as
follows:

1) Addlbl(l,X): adds the column label l to the group X ,
where X ∈ {L ,M ,R}. The adversary A is not
allowed to add a column label into more than one set
(i.e., the groups L ,M and R must always be pairwise
disjoint).

2) Encod(w, l): computes and returns an encoded-word
w̃ ← EncodK(w, l) to the adversary A, where l ∈
L ∪ M ∪ R.

3) Token(l1, · · · , lm): computes and returns a list (at1,
· · · , atm)← TokenK(l1, · · · , lm) of adjustment tokens
to the adversary A, where l1, · · · , lm ∈ L ∪ M or
l1, · · · , lm ∈M ∪ R.

Challenge phase: The adversary A chooses words w∗
0 and w∗

1

subject to the constraint that A did not previously issue a query
of the form EncodK(w, l) where w ∈ {w∗

0 , w
∗
1} and l ∈M ∪R.

As a response, the adversary A obtains an encoded-word w̃ ←
EncodK(w∗

b , l) for every l ∈ R.
Post-challenge query phase: As in the pre-challenge query
phase, with the restriction that the adversary A is not allowed
to issue a query of the form Encod(w, l), where w ∈ {w∗

0 , w
∗
1}

and l ∈ M ∪ R. In addition, for each Addlbl(l,R) query, the
adversary A is also provided with w̃ ← EncodK(w∗

b , l).
Output phase: The adversary A outputs a value σ ∈ {0, 1}
which is defined as the output of the experiment.

4.2 The M3Partition and M3Pk security notions

Recall that the 3Partition-security notion only requires
that for any three disjoint sets L ,M ,R, the ability to
compute the joins in L ∪ M and M ∪ R does not allow
to compute the join between any column in L and any
column in R. However, this notion has intermediate leakage
and does not meet the sufficient and expected security (see
Table 3). The reason is that the token generation algorithm
may leak some undesirable information to the adversary
without violating the 3Partition (and more generally
M3Pk) security. To see how this could happen, consider an
M-Adjoin scheme that has the following property.

Definition 4 (k-monotonicity property). Let k be an inte-
ger. We say that an M-Adjoin scheme has the k-monotonicity
property, or it is k-monotonous, if the following holds: for every
m ≥ k + 1, for every query q = (l1, · · · , lm), for every valid
token (at1, · · · , atm) for q, and for every subset A ⊆ [m] of size
at least k+1, it holds that (ati)i∈A is a valid token for the query
(li)i∈A.

The k-monotonicity property allows an adversary to
compute the join of an unqueried list of size k + 1 if it
has already queried a superset of the list of size at least
k + 2. For our convenience, we define a weaker version of
the monotonicity property.

Definition 5 (Weak k-monotonicity property). It is the same
as the k-monotonicity property except that the condition “for ev-
ery subset A ⊆ [m]” is replaced with “for some subset A ⊆ [m]”.

An illustrative example. Consider an M-Adjoin scheme
with the 2-monotonicity property. Suppose an adversary
obtains a tuple (at1, · · · , at5) of adjustment tokens gener-
ated by the Token algorithm for join query (l1, · · · , l5). In
this case, the adversary can extract the valid tokens listed
in Table 4 from the tuple (at1, · · · , at5) without requesting
them.

TABLE 4: Valid extractable tokens.

(at1, at2, at3) (at1, at2, at4) (at1, at2, at5) (at1, at3, at4)
(at1, at3, at5) (at1, at4, at5) (at2, at3, at4) (at2, at3, at5)
(at2, at4, at5) (at3, at4, at5)

The M-Adjoin schemes of [8] have the 1-monotonicity
property with the adjustment token size O(m). For ev-
ery integer k, we propose a k-monotonous scheme with
adjustment token size O(m) (the difference in the hidden
constant factor is huge). It is easily seen that a k-monotonous
scheme makes it possible to compute the join of m > k + 1
(resp. 2 ≤ m ≤ k + 1) columns, each of length n, in time
O(⌈m−1

k ⌉n
k) (resp.O(nm−1)). The security of such schemes

is captured by the M3Pk-security. Below, we provide a de-
tailed description of this time complexity.

For a k-monotonous scheme with M3Pk security level,
since we can get the join results for each k + 1 column,
we first make

⌈
(m−1)

k

⌉
sub-lists, each of length k + 1.

Then for each sub-list, we first invoke Algorithm Adjust
for all elements of all the columns included in the sub-
list, and then invoke Algorithm Eval to check the equality
of elements. Therefore, to compute the join of m columns,
each of length n, Algorithm Adjust is invoked

(⌈
(m−1)

k

⌉
(k+

1)n
)

times and Algorithm Eval is invoked
(⌈

(m−1)
k

⌉
nk

)
times. Hence,the time complexity of the join queries is
O(⌈m−1

k ⌉n
k).

4.2.1 Informal definition
Our previous discussions leads us towards a new secu-
rity definition which we refer to as the M3Partition-
security. Its experiment considers an adversary similar to
the 3Partition experiment but with less constraints on
the join tokens. Again, the adversary adaptively defines
three disjoint groups of columns, denoted by L (left), M
(middle) and R (right). It adaptively requests an encoded-
word of his selected word relative to any column and
join tokens related to allowed queries. Recall that in the
3Partition experiment a join query q = (l1, · · · , lm) was
allowed to be of any of the following two types:

T1) l1, · · · , lm ∈ L ∪ M or,
T2) l1, · · · , lm ∈M ∪ R.

Here we further allow the adversary to issue the following
third type:

T3) l1, · · · , lm ∈ L∪M∪R and {l1, · · · , lm}∩M ̸=
∅.

The game then continues as in the 3Partition experi-
ment.
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For every integer k, we define the M3Pk security by
modifying the third type of allowed queries as follows:

T3’) l1, · · · , lm ∈ L ∪M ∪R, {l1, · · · , lm}∩M ̸= ∅
and m ≤ k + 1.

That is, the query length must be at most k + 1. Notice
that when k = 1, the allowed queries of third type are
essentially those of the first and second types; i.e., the
experiment is exactly the 3Partition experiment. The
M3Partition experiment can be viewed as the limit of the
M3Pk experiment when k goes to infinity. Therefore, we use
M3Partition and M3P∞ interchangeably.

4.2.2 Formal definition
Below, we provide a formal definition of the M3Partition
and M3Pk security notions.

Definition 6 (M3Pk security, k ∈ N ∪ {∞}). Let k ∈
N ∪ {∞}. An M-Adjoin scheme such as Π = (Gen,Encod,
Token,Adjust,Eval) is M3Pk-secure if for all PPT algorithms A,
there exists a negligible function ε such that

|Pr[ExpM3PkΠ,A (λ, 0)]− Pr[ExpM3PkΠ,A (λ, 1)]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment ExpM3PkΠ,A (λ, b) is defined
as follows:
Setup phase: The challenger Chal samples (Param,K) ←
Gen(1λ), and initialize L = M = R = ∅. The public
parameters Param are given as input to the adversary A.
Pre-challenge query phase: The adversary A may adaptively
issue Addlbl, Encod and Token queries, which are defined as
follows:

1) Addlbl(l,X): adds the column label l to the group X ,
where X ∈ {L ,M ,R}. The adversary A is not
allowed to add a column label into more than one set
(i.e., the groups L ,M and R must always be pairwise
disjoint).

2) Encod(w, l): computes and returns an encoded-word
w̃ ← EncodK(w, l) to the adversary A, where l ∈
L ∪ M ∪ R.

3) Token(l1, · · · , lm): computes and returns a list (at1,
· · · , atm)← TokenK(l1, · · · , lm) of adjustment tokens
to the adversary A, where

• l1, · · · , lm ∈ L ∪ M ,
• or l1, · · · , lm ∈M ∪ R,
• or l1, · · · , lm ∈ L ∪ M ∪ R, {l1, · · · , lm} ∩

M ̸= ∅ and m ≤ k + 1.

Challenge phase: The adversary A chooses a pair of challenge
words w∗

0 and w∗
1 subject to the constraint that A did not previ-

ously issue a query of the form Encod(w, l) where w ∈ {w∗
0 , w

∗
1}

and l ∈ M ∪ R. As a response, the adversary A obtains an
encoded-word w̃∗ ← EncodK(w∗

b , l) for every l ∈ R.
Post-challenge query phase: As in the pre-challenge query
phase, with the restriction that the adversary A is not allowed
to issue a query of the form EncodK(w, l), where w ∈ {w∗

0 , w
∗
1}

and l ∈ M ∪ R. In addition, for each Addlbl(l,R) query, the
adversary A is also provided with w̃ ← EncodK(w∗

b , l).
Output phase: The adversary A outputs a value σ ∈ {0, 1}
which is defined as the output of the experiment.

Definition 7 (M3Partition security). An M3P∞-secure
M-Adjoin scheme is simply called M3Partition-secure.

4.3 Security relations
The following corollary trivially follows by security defini-
tions.

Corollary 8 (Trivial implications). Let k be an integer. Then,

(a) (M3Partition =⇒ M3Pk) Any M3Partition-
secure M-Adjoin scheme is M3Pk-secure, too.

(b) (M3Pk+1 =⇒ M3Pk) Any M3Pk+1-secure M-Adjoin
scheme is M3Pk-secure, too.

(c) (Limit cases) M3P1 ≡ 3Partition and M3P∞ ≡
M3Partition.

The following lemma is useful for a separation between
M3Partition and M3Pk and between M3Pk and M3Pk+1.

Lemma 9 (Weak k-monotonicity =⇒ ∼ M3Pk+1). An
M-Adjoin scheme with the weak k-monotonicity property is not
M3Pk+1-secure.

Proof. Without loss of generality assume that the weak k-
monotonicity property holds for the set A = {1, · · · , k+1}.
In the pre-challenge phase, the adversary chooses k+2 dis-
tinct labels ℓ1, . . . , ℓk+2 at random and issues the following
queries: Addlbl(ℓi,L ), for every i ∈ [k], Addlbl(ℓk+1,R)
and Addlbl(ℓk+2,M ). In the challenge phase, he chooses
a pair of distinct challenge word (w∗

0 , w
∗
1) at random and

receives an encoded-word w̃k+1 = EncodK(w∗
b , ℓk+1), for

some randomly chosen b ∈ {0, 1}, which is unknown to
him. In the post-challenge phase, he issues the queries w̃i =
EncodK(w∗

0 , ℓi) for every i ∈ [k]. He also requests the ad-
justment token (at1, . . . , atk+2) for the query (ℓ1, . . . , ℓk+2).
By the weak k-monotonicity property, (at1, . . . , atk+1) is
a valid adjustment token for the query (ℓ1, . . . , ℓk+1). The
adversary can then determine if w∗

0 = . . . = w∗
0 = w∗

b by
executing the adjustment algorithm and then the evaluation
algorithm; that is, he learns b and outputs it. Therefore, his
advantage in the M3Pk+1 experiment is 1.

Proposition 10 (Separations). Let k be an integer. Then,

(a) (M3Pk ≠⇒ M3Pk+1) An M3Pk-secure M-Adjoin
scheme is not necessarily M3Pk+1-secure.

(b) (M3Pk ≠⇒ M3Partition) An M3Pk-secure
M-Adjoin scheme is not necessarily M3Partition-
secure.

Proof. Let Π be an M3Pk-secure M-Adjoin scheme. We mod-
ify Π to get a scheme Π̃ which is weakly k-monotonous
but retains its M3Pk-security. By Lemma 9, it is not M3Pk+1-
secure, proving Part (a). Part (b) follows by Lemma 9.

The key generation algorithms of Π and Π̃ are the same.
Let q = (l1, . . . , lm) be a query that is given to the token
generation algorithm of Π̃. A token (at1, . . . , atm) for q is
first computed using the token generation algorithm of Π
which will be the output of if m ≤ k+1. Otherwise, a token
(at′1, . . . , at

′
k+1) is also generated for q′ = (ℓ1, . . . , ℓk+1)

using Π and the adjustment token of q in Π̃ will be(
(at1, at

′
1), . . . , (atk+1, at

′
k+1), atk+2, · · · , atm

)
.

The other algorithms are modified accordingly. The
weak k-monotonicity property of Π̃ is clear.

It remains to prove that the modified scheme remains
M3Pk-secure. To see this, recall the constraints in the M3Pk
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experiment. The adversary is allowed to issue a join query
q = (ℓ1, · · · , ℓm) of one of the following types:

T1) l1, · · · , lm ∈ L ∪ M or,
T2) l1, · · · , lm ∈M ∪ R.
T3) l1, · · · , lm ∈ L ∪M ∪R, {l1, · · · , lm}∩M ̸= ∅
and m ≤ k + 1.

Notice that our modification (i.e., including an adjustment
token for the sub-query q′ = (ℓ1, . . . , ℓk+1) when m ≥ k+2)
does not provide anything new to adversary since he was
already allowed to issue such a query.

5 OUR M-ADJOIN CONSTRUCTIONS

In this section, we present two M-Adjoin schemes. The
first construction is M3Partition secure (and hence, non-
monotonous) but the second one is k-monotonous where
k ≥ 1 is an arbitrary parameter but it is M3Pk+1-secure

We use a bilinear group generator G that takes as input
the security parameter λ, and outputs a tuple (G1,G2,GT ,
g1, g2, q, e), where G1, G2, GT are cyclic groups of prime
order q, and g1, g2 are generators of G1 and G2, respectively.
The mapping e : G1 × G2 → GT is a non-degenerate
efficiently computable bilinear map. We also use a pseudo-
random function F : {0, 1}λ × {0, 1}λ → Z∗

q .

5.1 A non-monotonous scheme
Our main scheme is non-monotonous and indeed it is
M3Partition-secure assuming the truth of a new com-
putational hardness assumption, called MXDHV (Assump-
tion 11), which is a variant of the XDH assumption [15],
[16], [17], [18]. The algorithms of our main scheme Π =
(Gen,Encod,Token,Adjust) are defined as follows:

• (Param,K = (lk,wk))← Gen(1λ) : It runs Param
← G(1λ), and chooses a label-key lk ∈ {0, 1}λ and a
word-key wk ∈ {0, 1}λ uniformly at random.

• w̃← EncodK(w, l) : It computes encoded-word as
w̃ := g

Flk(l)·Fwk(w)
1 .

• (at1, · · · ,atm)← TokenK(l1, · · · , lm) : It chooses
random values r1, · · · , rm ∈ Zq subject to r1 + · · ·+
rm = 0 and computes a list of adjustment tokens

(at1, · · · , atm) as follows ati = g
P

Flk(li)
·ri

2 , where

P =
m∏
j=1

Flk(lj).

• aw← AdjustParam(w̃,at) : It computes the ad-
justed word as aw = e(w̃, at) ∈ GT .

• b← EvalParam(aw1, · · · ,awm) : It outputs 1 if and

only if
m∏
i=1

awi = 1.

Correctness. For any integer m ≥ 2, any list of column
labels (l1, · · · , lm) ∈ ({0, 1}λ)m and any list of words
(w1, · · · , wm) ∈ ({0, 1}λ)m, it holds that

awj = AdjustParam

(
EncodK(wj , lj), atj

)
= e(g

Flk(lj)·Fwk(wj)
1 , g

P
Flk(lj)

·rj
2 ) = e(g1, g2)

Fwk(wj)·P ·rj ,
(1)

for every j ∈ [m], where P =
m∏
j=1

Flk(lj), (Param,K)

is the output of Gen(1λ), (at1, · · · , atm) is the output of

TokenK(l1, · · · , lm), and r1, · · · , rm are random values from
Zq subject to r1 + · · ·+ rm = 0. Therefore, if w1 = · · · = wm

then the following equality always holds
m∏
i=1

awi = 1.

Moreover, if wi ̸= wj for some distinct i, j ∈ [m], then
with an overwhelming probability Fwk(wi) ̸= Fwk(wj),
since F is a pseudo-random function. It is easy to show

that AdvCorM-Adjoin(λ), that is the probability that
m∏
i=1

awi = 1,

is at most 2
q + ε(λ), where ε(λ) is some negligible function.

5.2 A k-monotonous scheme

For every integer k, we present a modified version of our
non-monotonous scheme which is M3Pk-secure assuming
the truth of MXDHV assumption (Assumption 11). All
the algorithms are exactly the same as that of the non-
monotonous scheme, except the token generation and eval-
uation algorithms. Let us give an intuition of the required
modifications.

The token generation algorithm of the main scheme
chooses m random values r1, · · · , rm ∈ Zq subject to
r1 + · · · + rm = 0. One can view it as a simple (m,m)-
threshold secret sharing of the value 0 ∈ Zq . By using an
(m, k+1)-threshold scheme we will get what we want. Here
are the modified algorithms:

• (at1, · · · ,atm)← TokenK(l1, · · · , lm) : If m ≥ k+1,
then share the value 0 ∈ Zq using a linear (m, k+1)-
threshold scheme (such as Shamir’s) to get the shares
r1, · · · , rm ∈ Zq . If 2 ≤ m ≤ k, then share the value
0 ∈ Zq using a linear (m,m)-threshold scheme to get
the shares. Then, output a list of adjustment tokens
(at1, · · · , atm) as before.

• b← EvalParam(aw1, · · · ,awm) : If m ≥ k+1, then

output 1 if and only if
k+1∏
i=1

aw
αi+j

i+j = 1, for every j =

0, k, 2k, 3k, . . . , ⌈m−1
k ⌉k, where (αi1 , . . . , αik+1

) ∈
Zk+1
q are the (fixed) coefficients that makes it pos-

sible to compute the secret (i.e., 0) from the shares
(ri1 , . . . , rik+1

). If 2 ≤ m ≤ k, then output 1 if and

only if
m∏
i=1

awαi
i = 1.

Correctness. The proof is similar to the correctness of
the non-monotonous scheme. As we saw above in Equa-
tion (1), for any integer m ≥ 2, any list of col-
umn labels (l1, · · · , lm) ∈ ({0, 1}λ)m and any list of
words (w1, · · · , wm) ∈ ({0, 1}λ)m, it holds that awj =
e(g1, g2)

Fwk(wj)·P ·rj , where here r1, · · · , rm ∈ Zq are the
shares generated by the threshold secret sharing scheme that
correspond to the secret value 0.

When m ≥ k + 1 and a (m, k + 1)-threshold scheme is
used, for every subset A = {i1, . . . , ik+1} ⊂ {1 . . . ,m}, we
have αi1ri1 + . . .+ αik+1

rik+1
= 0. Therefore, if w1 = · · · =

wm then we have:
k+1∏
i=1

aw
αi+j

i+j = 1, j = 0, k, 2k, 3k, . . . , ⌈m− 1

k
⌉k .

Moreover, if w1, . . . , wm are not all the same, then there
exists some j ∈

{
0, k, 2k, 3k, . . . , ⌈m−1

k ⌉k
}

and i, i′ ∈
{1, . . . , k+1} such that wj+i ̸= wj+i′ . Consequently, with an
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overwhelming probability Fwk(wj+i) ̸= Fwk(wj+i′), since
F is a pseudo-random function. It is easy to show that the

probability that
k+1∏
i=1

aw
αi+j

i+j = 1, is at most 2
q + ε(λ), where

ε(λ) is some negligible function. Therefore, AdvCorM-Adjoin(λ) ≤
2
q + ε(λ) is negligible.

The case where 2 ≤ m ≤ k and a (m,m)-threshold
scheme is used is similar.

5.3 Security analysis
The M3Partition-security of our non-monotonous scheme
and the M3Pk-security of our k-monotonous scheme both
rely on a new computational hardness assumption, that we
call the mixed external Diffie-Hellman variant (MXDHV)
assumption, which is a variant of the XDH assumption,
formalized in [15], [16], [17], [18].

Assumption 11. MXDHV assumption for the bilinear map
generator G states that it is hard to distinguish gcm0

1 from
a random group element gr1 given random group elements
ga1 , g

c
1, g

am0
1 , gr

′

2 , gr
′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 and gacr
′′

2 .

We have examined the validity of our new assumption in
the group generic model. The generic group model, introduced
by Shoup [19], provides some confidence on the hardness of
group-based hardness assumptions in cryptography. In this
model, group elements are encoded by random bit-strings
and the adversary has oracle access to some basic operations
(e.g., multiplications and inversions). Very recently, Barthe
et al. [20] have provided an automated tool which takes as
input an assumption and outputs either a proof or an alge-
braic attack against the assumption. We have tested validity
of our hardness assumption using an implementation of this
method 3.

Theorem 12. Suppose that F is a pseudo-random function and
the MXDHV assumption holds relative to G. Then,

• The proposed non-monotonous construction of Section 5.1
is M3Partition-secure.

• The proposed k-monotonous construction of Section 5.2 is
M3Pk-secure.

Proof. The proof of both claims are quite similar and the
differences will be made clear in the course of our argument.

For proving the first claim, let Π denote the non-
monotonous M-Adjoin construction of Section 5.1 and let
ExpΠ,A(λ, b) denote the experiment ExpM3P∞Π,A (λ, b) where A
is an adversary, λ is the security parameter and b ∈ {0, 1}.

For the second claim, Π denotes the k-monotonous
scheme of Section 5.2 and ExpΠ,A(λ, b) stands for the ex-
periment ExpM3PkΠ,A (λ, b).

We need to show that ExpΠ,A(λ, 0) ≈c ExpΠ,A(λ, 1),
for every PPT adversary A. Let Exp$F,A(λ, b) denote the
experiment obtained from ExpΠ,A(λ, b) by replacing the
pseudo-random functions Flk and Fwk with truly random
functions f and h, respectively. By the pseudo-randomness
property of F , it holds that the advantage of the adversary
in distinguishing between the experiments ExpΠ,A(λ, b) and
Exp$F,A(λ, b) is negligible, for b = 0, 1. Therefore, to prove

3. This tool is available at: https://github.com/
generic-group-analyzer/gga (Accessed August 2019).

the M3Partition security of the Π scheme, it is sufficient
to show that Exp$F,A(λ, 0) ≈c Exp$F,A(λ, 1).

By hybrid lemma and under the MXDHV assumption, it
holds that

Xλ ≜ (ga1 , g
c
1, g

am0
1 , gam1

1 , gcm0
1 , gr

′
2 , gr

′′
2 , gar

′
2 , gcr

′′
2 , gacr

′
2 , gacr

′′
2 ) ≈c

(ga1 , g
c
1, g

am0
1 , gam1

1 , gcm1
1 , gr

′
2 , gr

′′
2 , gar

′
2 , gcr

′′
2 , gacr

′
2 , gacr

′′
2 ) ≜ Yλ,

where Param = (G1,G2,GT , g1, g2, q, e) is the output of
G(1λ) and a, c,m0,m1, r, r

′, r′′ are independently and uni-
formly chosen from Z∗

q . For simplicity, we suppose that dur-
ing the pre-challenge query phase, the adversaryA does not
issue a query of the form EncodK(w∗

0 , l) or EncodK(w∗
1 , l),

from any column label l, where w∗
0 and w∗

1 are the challenge
words. Similar to [8], we handle this exception at the end
of the proof. We claim that there exists a polynomial-time
challenger (or distinguisher) Chal, with oracle access to A,
such that it holds that ChalA(Xλ) ≡ Exp$F,A(λ, 0) and
ChalA(Yλ) ≡ Exp$F,A(λ, 1). Given a sample Xλ or Yλ as an
input, and A as an oracle, the challenger Chal manages to
simulate the random functions f and h as follows (without
knowing a, c, m0 and m1 explicitly):

f(l) =

 a · fl l ∈ L
fl l ∈M
c · fl l ∈ R

, h(w) =

 m0 w = w∗
0

m1 w = w∗
1

hw w ̸= w∗
0 , w

∗
1

, (2)

where fl and hw are randomly chosen elements of Z∗
q , and

w∗
0 and w∗

1 are the challenge words. In Appendix A, we
describe the challenger in details.

Since we assumed that the adversary A does not query
w∗

0 or w∗
1 in the pre-challenge query phase, we suppose

that hw0
= m0 and hw1

= m1. Therefore, in the case that
the challenger is given a sample of Xλ as an input, the
challenger responds the challenge with encoded-word of
w∗

0 , so we get the experiment Exp$F,A(λ, 0). Similarly, in the
case the challenger is given as input a sample of Yλ, we get
the experiment Exp$F,A(λ, 1).

We now consider the general case where the adversary
A may query w∗

0 and w∗
1 in the pre-challenge phase. This is

done the same way as in [8]. In this case, the challenger does
not know when A queried on w∗

0 and w∗
1 . If the challenger

knew when A queried on w0 and w1, then he could have
responded in the same way as in the post-challenge query
phase. But if he does not know, the challenger guesses when
it is queried with w∗

0 or w∗
1 . Formally, let p(λ) be a bound on

the number of queries that adversary A performs. Also, let
the challenger chooses t0, t1 ← {0, · · · , p(λ)} in the setup
phase. During the pre-challenge phase, if the challenger is
queried for an encoding EncodK(w, l) of a word w that is the
t0-th or t1-th distinct word so far, then he acts as if it was
queried on w∗

0 or w∗
1 , respectively, and returns the encoded-

word (gam0
1 )fl or (gam1

1 )fl to the adversary A, respectively.
Then, in the challenge phase, if it turns out that the guess
was wrong, or if the challenger was queried on less than
max{t0, t1} distinct words, then the challenger aborts and
outputs 0. Since the view of adversary A is independent of
the sampling of t0 and t1, it holds that the guess of the
challenger succeeds with probability of exactly 1

(p(λ)+1)2 ,
i.e., the success probability is independent of the behavior
of A. Consequently, it holds that

https://github.com/generic-group-analyzer/gga
https://github.com/generic-group-analyzer/gga
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|Pr[Exp$F,A(λ, 0) = 1]− Pr[Exp$F,A(λ, 1) = 1]| (3)

= (p(λ) + 1)2 · |Pr[ChalA(Xλ) = 1]− Pr[ChalA(Yλ) = 1]| . (4)

For any PPT adversary A, the bound p(λ) on its number
of queries is polynomial in the security parameter λ. The
MXDHV assumption then implies that the expression in
Equation (4) is negligible, and therefore also the expression
in Equation (3) is negligible as well, completing the proof of
the theorem.

6 PERFORMANCE ANALYSIS

In this section, we provide detailed efficiency comparisons
between the M-Adjoin constructions of [8] and our proposed
constructions: i.e., the non-monotonous scheme of Section
5.1 and the k-monotonous scheme of Section 5.2.

The two constructions presented in [8] satisfy the same
security notion, 3Partition, under two different assump-
tions in bilinear groups. The security of the first construc-
tion is proved under the decision linear assumption [16]
and requires four group elements for encoding and four
bilinear maps for the adjustment operation. The second
construction presented to improve performance, and its
security is proved under the seemingly stronger matrix-
DDH assumption [21]. The second construction requires two
group elements for encoding and two bilinear maps for the
adjustment operation.

Table 5 compares all schemes in terms of the underlying
hardness assumption, the time complexity of the Encod,
Token, Adjust and Eval algorithms (for t columns of length n
and a join query of length m in terms of group operations),
storage complexity (encoded word size and token size both
in terms of group elements), and the achieved security level.

The assumptions in [8] are based on symmetric bilin-
ear maps whereas our assumption is based on asymmetric
bilinear maps. For achieving the same security level, the
symmetric bilinear maps require much longer group sizes
than the asymmetric ones (3072 bits versus 512 bits for
128-bit security level [22], [23]). This difference makes a
significant difference in the computation and storage over-
heads. Rouselakis and Waters [24] have shown that the
assumptions and the security proofs in a symmetric bilinear
setting can be translated to an asymmetric bilinear setting
in a generic way. Therefore, to make the comparisons fair,
we consider the most efficient construction proposed in [8],
i.e. M-Adjoin II, with asymmetric pairing and compare our
constructions with it.

We have implemented asymmetric M-Adjoin II and our
k-monotonous M-Adjoin construction in Java on an Ubuntu
17.04 desktop PC with an Intel Processor 2.9 GHz. We have
used Type-F curves4 for the asymmetric pairing setting of
the JPBC library [25]. For our performance analysis, we use
the recommended parameters as listed in [22], [23] for the
128-bit security level.

Remark 13. Since our goal of performance analysis is to compare
existing M-Adjoin constructions with the security defined in
Section 4 (and not for use in large-scale applications due to the

4. Type-F curves are commonly used for the asymmetric pairing
settings [22], [23].

high cost of bilinear map operations in these constructions), we
consider our experiment in a small-scale scenario. To this end, we
consider columns with sizes 10 to 50, join queries with length 2
to 10 and security levels M3P1 to M3P5. Also, since the Adjust
and Eval algorithms, for computing join result, are applied to
all elements of the queried columns and the distribution of these
elements does not matter, we randomly initialize the elements of
each column.

The output size and execution time of the encoding
algorithms over 10 to 50 words are illustrated in Fig. 1a
and 1b, respectively. As it can be seen, the output size and
execution time are approximately linear with the number
of words for each column. Also, the achieved gains are
approximately 50% for the output size, and approximately
65% for the execution time.

The output size and execution time of the token gen-
eration algorithms over 2 to 10 columns are showed in
Fig. 1c and 1d, respectively. As we expected, the output
size and execution time are approximately linear with the
number of columns for the join query. As it can be seen, our
M-Adjoin reduces the storage and computation overheads
by approximately 50% and 48%, respectively, compared to
asymmetric M-Adjoin II.

10 20 30 40 50

20

60

100

140

180

220

Our M-Adjoin

Asymmetric M-Adjoin II

10 20 30 40 50

50

55

Fig. 2: The join time for achieving M3P1 security level.

Fig. 2 shows the join time over 10 to 50 words for
achieving M3P1 security level. As it can be seen, the achieved
gain is approximately 48% better.

Finally, we consider Table 6 to illustrate the effect of
security level and query length on performance. To this end,
we consider the columns of size 50, the join queries of length
4 and 6, and the security levels M3P1 to M3P5. Generally,
performance is expected to decrease at a certain rate as
security level increases. But for the settings mentioned, we
see that we have less execution time for the security levels
M3P2 and M3P3 than level M3P1. In the following, we discuss
the reasons for this reduction.

Recall that two algorithms Adjust and Eval are used to
compute a join query. According to the required security
level (M3Pk), column size (n) and query length (m), Algo-
rithm Adjust is invoked

(⌈
(m−1)

k

⌉
(k + 1)(n)

)
times and

Algorithm Eval is invoked
(⌈

(m−1)
k

⌉
(nk)

)
times. Therefore,
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TABLE 5: Asymptotic comparison.

Construction Assumption Encod Token Adjust Eval
(Encoded word, Token)
size (group elements) Security

Our non-monotonous MXDHV (tn) exp (m) exp (mn) bm (nm−1) mul (tn,m) M3P∞

Our k-monotonous MXDHV (tn) exp (m) exp
(⌈

(m−1)
k

⌉
(k + 1)(n)

)
bm

(⌈
(m−1)

k

⌉
(nk)

)
mul (tn,m) M3Pk

M-Adjoin II [8] matix-DDH [21] (2tn) exp (2m) exp
(
2n(m− 1)

)
bm

(
2n(m− 1)

)
mul (2tn, 2m) M3P1

M-Adjoin I [8] Decision Linear [16] (4tn) exp (4m) exp
(
4n(m− 1)

)
bm

(
4n(m− 1)

)
mul (4tn, 4m) M3P1

t: the total number of the columns in the database, n: the maximum size of each column in the database, m: the maximum length of each join
query, exp: group exponentiation, bm: bilinear map, mul: group multiplication.

10 20 30 40 50
0

2

4

6

8
Our M-Adjoin

Asymmetric M-Adjoin II

10 20 30 40 50
48

50

52

(a) The output size of the Encod algorithm.

10 20 30 40 50
0

1

2

3

4

5
Our M-Adjoin

Asymmetric M-Adjoin II

10 20 30 40 50
60

65

70

(b) The execution time of the Encod algorithm.

2 4 6 8 10
0

0.5

1

1.5

2

2.5 Our M-Adjoin

Asymmetric M-Adjoin II

(c) The output size of the Token algorithm.

2 4 6 8 10
0

1

2

3

4
Our M-Adjoin

Asymmetric M-Adjoin II

2 4 6 8 10

50

55

60

(d) The execution time of the Token algorithm.

Fig. 1: Experimental results for the Token and Encod algorithms.

the reason for reducing the execution time of the security
levels M3P2 and M3P3 relative to M3P1 is that the execution
time of algorithm Adjust for all three levels is dominant over
the execution time of algorithm Eval. However, for the rest
of the security levels, Algorithm Eval has more execution
time. It should be noted that for large size columns, the join
time is always increased when the security level is raised.

Table 6 also shows that, for the considered settings,
the performance of our constructions is higher despite the
higher security levels, i.e. M3P2, M3P3, compared to the
asymmetric M-Adjoin II with the security level M3P1.

The reason for the decrease of overheads is the difference
in the employed assumptions. Our constructions use one

TABLE 6: The join time for achieving various security levels.

Construction k = 1 k = 2 k = 3 k = 4 k = 5

Our k-monotonous 306 307.5 241.5
Asymmetric M-Adjoin II 630 − − − −

(a) The join time for 4 columns of length 50.

Construction k = 1 k = 2 k = 3 k = 4 k = 5

Our k-monotonous 510 461.25 483 4260 94056
Asymmetric M-Adjoin II 1050 − − − −

(b) The join time for 6 columns of length 50.

group element for encoding and one bilinear map for the
adjustment operation whereas the asymmetric M-Adjoin II
uses two group elements for encoding and two bilinear
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maps for the adjustment operation.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we first introduced the syntax and security
notion of the multi-adjustable join scheme as a symmetric-
key primitive that enables a user to securely outsource his
database and to privately issue his join queries on it. We also
proposed the M3Partition and M3Pk security notions and
studied their hierarchical relations. Additionally, we pro-
posed a main scheme that achieves M3Partition security
but requires O(nm−1) time for joining m columns, each of
length n. It remains open if there is a way to get round of
this exponential time complexity. On the other hand, our
modified scheme, which is only M3Pk-secure, with join time
O
(
(m − k)nk/k

)
, is quite efficient and might merit to be

used in real applications, especially for k = 1. But the paid
price is a larger leakage.

The future contributions can be considered in several
areas such as extending the M-Adjoin schemes to the multi-
user models, supporting dynamic storage mechanism and
developing the M-Adjoin schemes to the case in which the
server is malicious.
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