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Abstract. Though it is well known that the roots of any affine polyno-
mial over finite field can be computed by a system of linear equations
by using a normal base of the field, such solving approach appears to be
difficult to apply when the field is fairly large. Thus, it may be of great
interest to find explicit representation of the solutions independently of
the field base. This was previously done only for quadratic equations over
binary finite field. This paper gives explicit representation of solutions
for much wider class of affine polynomials over binary prime field.
Keywords: Linear equation · Binary finite field · Base of field · Zeros
of polynomials · Irreducible polynomials.

1 Introduction

Define
T k

l (x) := x + x2l

+ · · ·+ x2l(k/l−2)
+ x2l(k/l−1)

when l|k, and in particular

Tk(x) := T k
1 (x) = x + x2 + · · ·+ x2k−2

+ x2k−1
.

The degree of the polynomial T k
l (x) is 2k−l.

This paper gives the explicit representations of all F2− and F2n−solutions
to the affine equation

T k
l (x) = a, a ∈ F2n .

Obviously, this equation has no multiple roots since (T k
l )′ = 1 6= 0. Throughout

this paper, we set d = gcd(n, k).
To the best of our knowledge, following is the only previous result in this

direction.

Lemma 1. (Page 26 of [1], 11.1.120 of [2]) The quadratic equation

x2 + x + a = 0, a ∈ F2n



has solutions in F2n if and only if

Tn(a) = 0.

Let us assume Tn(a) = 0. Let δ be an element in F2n such that Tn(δ) = 1 (if n
is odd, then one can take δ = 1). Then,

x0 =
n−2∑

i=0

(
n−1∑

j=i+1

δ2j

)a2i

is a solution to the equation.

2 Some useful facts

Lemma 2. For any positive integers k, k′, l, l′ such that s|l|k and l′|k′, follow-
ings hold.

1. (Commutativity)
T k

l ◦ T k′
l′ = T k′

l′ ◦ T k
l .

2. (Transitivity)
T k

l ◦ T l
s = T k

s .

3.
Tk ◦ T2(x) = T 2k

k (x) = x + x2k

.

4.
Tk ◦ Tk ◦ T2 = T2k.

Proof. All statements can be easily checked by direct calculation. ut
Lemma 3. For any positive integers n and k, it holds

Tk(x) ∈ F2n ⇐⇒ Tn(x) ∈ F2k .

In particular, letting k = 1, we have

x ∈ F2n ⇐⇒ Tn(x) ∈ F2 ⇐⇒ Tn ◦ T2(x) = 0.

Proof. Since Tk(x)+Tk(x)2
n

= Tn(x)+Tn(x)2
k

which is checked by direct com-
putation, it follows Tk(x) ∈ F2n ⇐⇒ Tk(x)2

n

= Tk(x) ⇐⇒ Tk(x) + Tk(x)2
n

=
0 ⇐⇒ Tn(x) + Tn(x)2

k

= 0 ⇐⇒ Tn(x) ∈ F2k . ut
Following fact, though already well-known, can be reformulated.

Corollary 4. Let l be a divisor of k. Then,

T k
l (F2k) = F2l .

Proof. This follows from the fact that Tl(T k
l (F2k)) = Tk(F2k) = F2. ut
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Theorem 5. Let us assume gcd(n, k) = 1. Then it holds

Tk(x) ∈ F2n ⇐⇒ x ∈ F2n + F2k ,

where F2n + F2k = {a + b | a ∈ F2n , b ∈ F2k}.
Proof. (⇐=)
Let x = a + b for a ∈ F2n and b ∈ F2k . Then a2n

= a, and Tk(b) ∈ F2 by above
proposition, thus

Tk(a + b)2
n

= (Tk(a) + Tk(b))2
n

= Tk(a)2
n

+ Tk(b)2
n

= Tk(a2n

) + Tk(b)
= Tk(a) + Tk(b) = Tk(a + b),

where the linearity of Tk was exploited. That is Tk(x) = Tk(a + b) ∈ F2n .
(=⇒)

Since the necessity in the statement has been proved, in order to prove the
sufficiency in the statement, it is enough to show

#{x ∈ F2 |Tk(x) ∈ F2n} = #{F2n + F2k},
where F2 is the algebraic closure of F2. To begin with, we have #{x ∈ F2 |Tk(x) ∈
F2n} = 2n+k−1 because for every a ∈ F2n the equation Tk(x) = a has 2k−1

different solutions.
On the other hand, it also holds #{F2n + F2k} = 2n+k−1. In fact, for a, a′ ∈

F2n and b, b′ ∈ F2k , it holds a+b = a′+b′ ⇐⇒ a+a′ = b+b′ ∈ F2n ∩F2k = F2,
i.e., (a = a′ and b = b′) or (a = a′+1 and b = b′+1). Therefore #{F2n +F2k} =
#{a + b | a ∈ F2n , b ∈ F2k} = (2n · 2k)/2 = 2n+k−1. ut

Without the condition gcd(n, k) = 1, we give:

Theorem 6. It holds

{x ∈ F2 |Tk(x) ∈ F2n} = {T [n,k]
n ◦ T

[n,k]
k ◦ T2(x) |x ∈ F22[n,k]}(⊂ F22[n,k]),

where [n, k] is the least common multiple of two integers n and k.

Proof. Let L = [n, k]. Let us set y = TL
n ◦TL

k ◦T2(x) for x ∈ F22L . To begin with,
we will show Tn ◦ Tk(y) ∈ F2 which is equivalent to Tk(y) ∈ F2n by Lemma 3.
In fact,

Tn ◦ Tk(y) = TL
n ◦ Tn ◦ TL

k ◦ Tk ◦ T2(x) = TL ◦ TL ◦ T2(x) = T2L(x) ∈ F2,

where the equalities are from Lemma 3, except for the last equality which is
from Lemma 2.

Obviously, the cardinality of the left side set is 2n+k−1. On the other hand, the
cardinality of the right side set is also 2n+k−1 as it equals 22L−(L−n)−(L−k)−1 =
2n+k−1 and so the two sets coincide. ut
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Example 7. By Theorem 5, we know that {x ∈ F2 |Tk(x) ∈ F2n} ⊂ F2nk = F2[n,k]

when gcd(n, k) = 1. However, it is not always the case. Let us consider the case
n = k = 2.

{x ∈ F2 |T2(x) ∈ F22} = {x ∈ F2 |x + x2 + x4 + x8 = 0}
= {x ∈ F2 | (x + x2)(1 + x + x2)(1 + x + x4) = 0}.

The least field that contains this set is F24 = F22[2,2] .
That is, generally, F22[n,k] is the smallest field including

{x ∈ F2 |Tk(x) ∈ F2n}.
Proposition 8. When a ∈ F2n ,

T
[n,k]
k (a) = Tn

d (a) = T
[n,n−k]
n−k (a).

Proof. By definition T
[n,k]
k (a) =

∑ [n,k]
k −1

i=0 a2ik

, Tn
d (a) =

∑n
d−1
j=0 a2jd

and T
[n,n−k]
n−k (a) =

∑ [n,n−k]
n−k −1

i=0 a2i(n−k)
. Note that the upper bounds of indices in three summations

are identical: [n,k]
k = n

d = [n,n−k]
n−k . It is easy to check {ik mod n | 0 ≤ i ≤

[n,k]
k − 1} = {jd | 0 ≤ j ≤ n

d − 1} = {i(n− k) mod n | 0 ≤ i ≤ [n,n−k]
n−k − 1}. Since

a2n

= a, all three summations are identical. ut

3 Zeros of T k
l

Lemma 9. Followings are facts.

1.
{x ∈ F2 |Tk(x) = 0} = T2(F2k) = {x + x2 |x ∈ F2k}.

2.
{x ∈ F2n |Tk(x) = 0} = T2(F2k) ∩ F2n = {x + x2 ∈ F2n |x ∈ F2k}.

In particular,

– If k
d is odd, then

{x ∈ F2n |Tk(x) = 0} = {x ∈ F2d |Td(x) = 0}.
– If k

d is even, then
{x ∈ F2n |Tk(x) = 0} = F2d .

Proof. For x ∈ F2k , by Lemma 2, Tk(T2(x)) = x+x2k

= 0, and the two sets {x ∈
F2 |Tk(x) = 0} and T2(F2k) have the same cardinality 2k−1 and so they coincide.
As a immediate consequence, we have {x ∈ F2n |Tk(x) = 0} = T2(F2k) ∩ F2n .

Thus, {x ∈ F2n |Tk(x) = 0} = T2(F2k)∩F2n ⊂ F2d , and so {x ∈ F2n |Tk(x) =
0} = {x ∈ F2d |Tk(x) = 0} = {x ∈ F2d | k

dTd(x) = 0}, which completes the proof.
ut
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Lemma 10. Let l be a divisor of k. Followings are facts.

1.
{x ∈ F2 |T k

l (x) = 0} = Tl ◦ T2(F2k) = {x + x2l |x ∈ F2k}.
2.

{x ∈ F2n |T k
l (x) = 0} = Tl ◦ T2(F2k) ∩ F2n = {x + x2l ∈ F2n |x ∈ F2k}.

In particular,

– If k
[d,l] is odd, then

{x ∈ F2n |T k
l (x) = 0} = {x ∈ F2d |T d

(d,l)(x) = 0} = T(d,l) ◦ T2(F2d).

– If k
[d,l] is even, then

{x ∈ F2n |T k
l (x) = 0} = F2d .

Proof. Since T k
l (Tl ◦ T2(F2k)) = Tk ◦ T2(F2k) = 0, the set Tl ◦ T2(F2k) with

cardinality 2k−l is a subset of {x ∈ F2 |T k
l (x) = 0} with the same cardinality

2k−l, i.e., the two sets coincide. Thus, {x ∈ F2n |T k
l (x) = 0} = Tl ◦ T2(F2k) ∩

F2n ⊂ F2d , and we have

{x ∈ F2n |T k
l (x) = 0} = {x ∈ F2d |T k

l (x) = 0}

= {x ∈ F2d | k

[d, l]
T

[d,l]
l (x) = 0}

=

{
F2d , if k

[d,l] is even,

{x ∈ F2d |T d
(d,l)(x) = 0} = T(d,l) ◦ T2(F2d), if k

[d,l] is odd,

where Proposition 8 was used for the last equality. ut

4 Expression of solutions in closed field

Proposition 11. Let L be any positive integer. For any a ∈ F∗2L and ξ ∈ µ2L+1\
{1},

a

ξ + 1
+ F2L = { a

ξ′ + 1
| ξ′ ∈ µ2L+1 \ {1}}.

Proof. Let η ∈ F2L . Then we will show

a

ξ + 1
+ η =

a

ξ′ + 1

for some ξ′ ∈ µ2L+1 \ {1}. Since a
ξ+1 + η = a

aξ+ηξ+η
a+ηξ+η +1

, it is enough to show

ξ′ =
aξ + ηξ + η

a + ηξ + η
∈ µ2L+1 \ {1}.
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In fact, obviously ξ′ 6= 1 and

ξ′2
L

=
aξ2L

+ ηξ2L

+ η

a + ηξ2L + η
=

a/ξ + η/ξ + η

a + η/ξ + η
= 1/ξ′.

ut
Theorem 12. Let a ∈ F∗2n . Let L be any multiple of the least common multiple
[n, k] of two integers n and k. Then, for any ξ ∈ µ2L+1 \ {1},

x0 = TL
k ◦ T2(

a

ξ + 1
)

is a solution to the equation Tk(x) = a. In fact, for any ξ ∈ µ2L+1 \ {1},
{x ∈ F2 |Tk(x) = a} = {TL

k ◦ T2(
a

ζ + 1
) | ζ ∈ µ2L+1 \ {1}}

= TL
k ◦ T2(

a

ξ + 1
+ F2L)

= TL
k ◦ T2(

a

ξ + 1
) + T2(F2k).

Proof. Let us set x = TL
k ◦ T2( a

ξ+1 ) for ξ ∈ µ2L+1. Then, by Lemma 2, one has

Tk(x) = TL
k ◦ Tk ◦ T2(

a

ξ + 1
)

= TL ◦ T2(
a

ξ + 1
)

=
a

ξ + 1
+

(
a

ξ + 1

)2L

=
a

ξ + 1
+

a

ξ2L + 1

=
a

ξ + 1
+

a

1/ξ + 1
= a.

On the other hand, #{x ∈ F2 |Tk(x) = a} = 2k−1, and #TL
k ◦ T2( a

ξ+1 + F2L) =
#TL

k ◦ T2(F2L) = T2(F2k) = 2k−1. This completes the proof. ut
Corollary 13. Let a ∈ F2n and l be a divisor of k. Let L be any multiple of
the least common multiple [n, k] of two integers n and k. Then, for any ξ ∈
µ2L+1 \ {1},

x0 = Tl ◦ TL
k ◦ T2(

a

ξ + 1
)

is a solution to the equation T k
l (x) = a. In fact, for any ξ ∈ µ2L+1 \ {1},

{x ∈ F2 |T k
l (x) = a} = {Tl ◦ TL

k ◦ T2(
a

ζ + 1
) | ζ ∈ µ2L+1 \ {1}}

= Tl ◦ TL
k ◦ T2(

a

ξ + 1
+ F2L)

= Tl ◦ TL
k ◦ T2(

a

ξ + 1
) + Tl ◦ T2(F2k).
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Note that it is easy to take ξ ∈ µ2L+1 \ {1}: Choose any s ∈ F22L \F2L , then
calculate ξ = s2L−1.

5 Solutions in F2n

Theorem 14. For a ∈ F2n , the linear equation

T 2k
k (x) = a (i.e. x2k

+ x = a) (1)

has solution in F2n if and only if

Tn
d (a) = 0. (2)

When Tn
d (a) = 0, this equation T 2k

k (x) = a has exactly 2d solutions in F2n :

– If k
d is odd, then for any ξ ∈ µ2n+1 \ {1}

{x ∈ F2n |x2k

+ x = a} = T
[n,k]
k (

a

ξ + 1
) + F2d . (3)

– If k
d is even, then for any ξ ∈ µ2n+1 \ {1}

{x ∈ F2n |x2k

+ x = a} = T
[n,n−k]
n−k (

a2n−k

ξ + 1
) + F2d . (4)

Proof. This easily follows from the fact that the linear operator T 2k
k (x) = x2k

+x
on F2n has the kernel of dimension d and, thus, the number of elements in the
image of T 2k

k is 2n−d. For any x ∈ F2n , we have

Tn
d (x2k

+ x) = Tn
d (x2k

) + Tn
d (x)

= Tn
d (x)2

k

+ Tn
d (x)

= Tn
d (x) + Tn

d (x) (since Tn
d (x) ⊂ F2d ⊂ F2k)

= 0

leading to the conclusion that the image of T 2k
k contains such all elements in F2n

since the total number of such elements in F2n is exactly 2n−d.
Let us prove the second part of the theorem. First, let us assume k

d is odd.
Then, x0 = T

[n,k]
k ( a

ξ+1 ) is a solution to the equation since Tk ◦T2(T
[n,k]
k ( a

ξ+1 )) =

T[n,k] ◦T2( a
ξ+1 ) = a

ξ+1 + ( a
ξ+1 )2

[n,k]
= a. On the other hand, under the condition

Tn
d (a) = 0, this solution really belongs to F2n . In fact, x0 + x2n

0 = T
[n,k]
k ( a

ξ+1 +

( a
ξ+1 )2

n

) = T
[n,k]
k (a) = Tn

d (a) = 0.

If k
d is even, then we will consider a new equation x2n−k

+ x = a2n−k

instead
of the original equation x2k

+ x = a. As obvious, this new equation shares the
same F2n-solution set with the original equation. Since n−k

d is odd as k
d is even,

we can apply the solution formula (3) for odd case to this new equation. ut
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Corollary 15. For any ξ ∈ µ2n+1 \ {1}, x0 = Tn( a
ξ+1 ) and x0 + 1 are solutions

of x2 + x + a = 0. These solutions are in F2n if and only if

Tn(a) = 0.

Theorem 16. Let a ∈ F2n . Consider the linear equation

Tk(x) = a (i.e. x + x2 + · · ·+ x2k−1
= a) (5)

1. Let k
d be odd. Then, equation (5) has a solution in F2n if and only if

Tn
d (a) ∈ F2. (6)

When Tn
d (a) ∈ F2, the equation Tk(x) = a has exactly 2d−1 solutions in F2n :

for any ξ ∈ µ2n+1 \ {1}

{x ∈ F2n |Tk(x) = a} = T2 ◦ T
[n,k]
k (

a

ξ + 1
) + T2(F2d). (7)

2. Let k
d be even. Then, equation (5) has a solution in F2n if and only if

Tn
d (a) = 0. (8)

When Tn
d (a) = 0, the equation Tk(x) = a has exactly 2d solutions in F2n :

for any ξ ∈ µ2n+1 \ {1}

{x ∈ F2n |Tk(x) = a} = T2 ◦ T
[n,n−k]
n−k (

a2n−k

ξ + 1
) + F2d . (9)

Proof. Since Tn
d (F2n) = F2d by Corollary 4, one has

Tn
d (Tk(F2n)) = Tk(Tn

d (F2n)) = Tk(F2d) =

{
F2, if k

d is odd
0, if k

d is even.
(10)

Let us assume k
d is odd. By Corollary 9, we have #Tk(F2n) = 2n−d+1. Since

#{x ∈ F2 |Tn
d (x) ∈ F2} = 2n−d+1 as obvious, by (10) we have {x ∈ F2 |Tn

d (x) ∈
F2} = Tk(F2n), i.e. Tk(x) = a has a solution in F2n if and only if Tn

d (a) ∈ F2.
At this time, let us assume k

d is even. Then, by Corollary 9, #Tk(F2n) = 2n−d.
Since #{x ∈ F2 |Tn

d (x) = 0} = 2n−d, from (10) it follows {x ∈ F2 |Tn
d (x) = 0} =

Tk(F2n), i.e., Tk(x) = a has a solution in F2n if and only if Tn
d (a) = 0.

The assertions about the solution number are consequences of Corollary 9.
The solution formulas were deduced from (3), (4) and the fact that if Tk◦T2(x) =
a, then y = T2(x) is solution to Tk(y) = 0. ut
Theorem 17. Let a ∈ F2n . Consider the linear equation

T k
l (x) = a (i.e. x + x2l

+ · · ·+ x2l( k
l
−1)

= a) (11)

8



1. Let k
[d,l] be odd. Then, the equation (11) has a solution in F2n if and only if

Tn
d (a) ∈ F2(d,l) . (12)

When Tn
d (a) ∈ F2(d,l) , the equation (11) has exactly 2d−(d,l) solutions in F2n :

– If k
d is odd, then for any ξ ∈ µ2n+1 \ {1}

{x ∈ F2n |T k
l (x) = a} = Tl ◦ T2 ◦ T

[n,k]
k (

a

ξ + 1
) + T(d,l) ◦ T2(F2d). (13)

– If k
d is even, then for any ξ ∈ µ2d+1 \ {1}

{x ∈ F2n |T k
l (x) = a} = Tl◦T2◦T [n,n−k]

n−k (
a2n−k

ξ + 1
)+T(d,l)◦T2(

Tn
d (a)

ξ + 1
)+T(d,l)◦T2(F2d).

(14)
2. Let k

[d,l] be even. Then, the equation (11) has a solution in F2n if and only if

Tn
d (a) = 0. (15)

When Tn
d (a) = 0, the equation (11) has exactly 2d solutions in F2n : for any

ξ ∈ µ2d+1 \ {1}

{x ∈ F2n |T k
l (x) = a} = Tl ◦ T2 ◦ T

[n,n−k]
n−k (

a2n−k

ξ + 1
) + F2d . (16)

Proof. It holds

Tn
d (T k

l (F2n)) = T k
l (Tn

d (F2n))

= T k
l (F2d) =

k

[d, l]
T

[d,l]
l (F2d)

=
k

[d, l]
T d

(d,l)(F2d) by Proposition 8

=

{
0, if k

[d,l] is even,

F2(d,l) , if k
[d,l] is odd,

and on the other hand, Corollary 10 let us know

#T k
l (F2n) =

{
2n−d, if k

[d,l] is even,

2n−d+(d,l), if k
[d,l] is odd.

Since Tn
d (x) = a has 2n−d solutions in the closed field (indeed in F2n), thus we

conclude

T k
l (F2n) =

{
{a ∈ F2n |Tn

d (a) = 0}, if k
[d,l] is even,

{a ∈ F2n |Tn
d (a) ∈ F2(d,l)}, if k

[d,l] is odd,
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which is just the sufficient and necessary condition for existence of solution in
F2n .

When k
[d,l] be odd and k

d is even, the solution formula can be checked as

follows: Consider Tn
d (a) ∈ F2d . First, it can be checked that z0 = T(d,l)◦T2(

T n
d (a)
ξ+1 )

is a solution in F2d of T k
l (z) = Tn

d (a), i.e. T l
[d,l](z) = Tn

d (a) i.e. T d
(d,l)(z) = Tn

d (a).

For y0 = Tl ◦T2 ◦T
[n,n−k]
n−k (a2n−k

ξ+1 ) ∈ F2n , it is an easy exercise to check by direct
calculation T k

l (y0) = Tn
d (a) + a. So x0 = y0 + z0 is a solution in F2n .

In remained cases, the solution formulas are deduced from theorem 16, re-
garding the fact that Tl(x0) is solution in F2n of T k

l (x) = a if x0 ∈ F2n is solution
of Tk(x) = a. ut

As an immediate consequence of these facts, one has (confirms):

Corollary 18. Followings are true.

– T k
l (x) is a 2-to-1 mapping on F2n if and only if d = 1 and k

l is even, or,
d = 2 and both l and k

2l are odd.
– T k

l (x) is a permutation on F2n if and only if k
l is odd and d|l.

Hence, when k
l is odd, T k

l (x) is an exceptional polynomial over F2.
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