
 1

When Encryption is Not Enough

Effective Concealment of Communication Pattern, even Existence
(BitGrey, BitLoop)

Gideon Samid

Department of Electrical Engineering and Computer Science
Case Western Reserve University, Cleveland, OH

Gideon.Samid@Case.edu

Abstract: How much we say, to whom, and when, is inherently telling, even if the

contents of our communication is unclear. In other words: encryption is not enough;

neither to secure privacy, nor to maintain confidentiality. Years ago Adi Shamir already

predicted that encryption will be bypassed. And it has. The modern dweller of cyber

space is routinely violated via her data behavior. Also, often an adversary has the power

to compel release of cryptographic keys over well-exposed communication. The front has

shifted, and now technology must build cryptographic shields beyond content, and into

pattern, even as to existence of communication. We present here tools, solutions, methods

to that end. They are based on equivocation. If a message is received by many recipients,

it hides the intended one. If a protocol calls for decoy messages, then it protects the

identity of the sender of the contents-laden message. BitGrey is a protocol that creates a

"grey hole" (of various shades) around the communicating community, so that very little

information leaks out. In addition the BitLoop protocol constructs a fixed rate circulating

bit flow, traversing through all members of a group. The looping bits appear random, and

effectively hide the pattern, even the existence of communication within the group.

 2

Introduction

We have fought for freedom in the physical world, and now the war moved to cyber

space. Thesis: if everything you do, say, move, think -- is known to everyone including

those who wish to limit you in some way -- then you don't live in the land of the free. We

are witnessing the stunning technology of big data that can gobble in the wealth of

personal activity and spit out a chillingly accurate prediction of its subject's next move,

and when he will do what, when smile, when cry, even when die. If someone knows so

much about us, they have a means of controlling us, and freedom it is not. A basic

measure of privacy is essential.

Since the big data technology is unstoppable, the battleground moves to the raw

material -- the data. The only way to protect freedom is by denying others a full view of

everything about us. And we call upon technology to help. We need the means by which

we can conceal at least some of what we do, act, say, and go. And for that encryption is

not enough. We reveal our soul, so to speak, through metadata, through disclosing when

we said what to whom.

What is true on a personal basis, is true on a larger scale, business, organization, and

national security. While each detail of our action by itself is not revealing a whole lot, the

compendium of these unclassified data is what big data uses as raw material to crunch

and simulate our future actions.

It is that important to come up with solutions to hide, to conceal, at least some, of

what we do and say. This discussion is presenting such means.

We present two complementary concepts: BitGrey and BitLoop. In both it is clear

that concealment occurs, and in that it is different from steganography. The claim is that

the apparent communication pattern offers fundamental equivocation that denies its

cryptanalyst the ability to discern who is sending messages to whom, when, and for how

 3

long, as well as who received which message, if at all. The adversary will hammer the

data flow and the BitGrey and BitLoop protocols will keep hiding it. A sufficiently

powerful adversary may obliterate the privacy protocols, but arguably cannot crack them.

There are numerous instances where people wish to hide their communication

pattern in order to successfully achieve a particular goal. However, it is being claimed

that practicing these protocols is also important as generic means to frustrate the

numerous “data vultures” that as a matter of course collect any and all information about

us in order to successfully build a model of our decision making to be exploited for their

aims.

This presentation is focused on the protocol, application discussion will follow.

Related Work: Multi party communication (MPC) is a rich research field with

some proximity to the situation at hand, but too far for any practical reference. [1,11] The

challenge addressed in MPC research is how to emulate a trusted broker to mitigate

among mutually mistrustful participants. And that for the purpose of establishing inner

group communication. To the extent that the participants are not fully mutually revealing,

the resultant communication may hide some patterns by the anonymity of the

communicators. This effort relates more to the well established field of de-anonymizing

communicators, usually by tracking statistical behavior. The idea being that an encrypted

message sent by an unknown sender establishes the desired security. This in practice is

not very convincing. Party identities can be hidden for only so long. Eventually everyone

has an idiosyncratic behavior and is exposed. The fully exposed communication pattern

then would work against them.

A closer research effort relates to the old craft of steganography [18: hiding the very

existence of communication. There is a rich body of literature, and many creative means

are known to communicate in stealth. The practical problem with these methods is that

they generally don't scale well, and often rely on ad-hoc creativity, while being

irreconcilable with a rigid protocol.

 4

The solutions presented here don't hide the fact of communication. In fact the very

application of BitGrey or BitLoop assert the use of hidden communication. The resultant

communication dynamics hides the communication pattern within the communicating

community, accompanied by the assertion that it cannot be cracked beyond the appraised

combinatorial vulnerability of the underlying ciphers. In practice, the claim is that the

protected communication are sufficiently blurred and unextractable by an adversary,

given the underlying cryptographic assumptions.

The closest literary reference to BitLoop is the "winnowing and chaff" by Rivest. On

which this solution is built. [5,13]

This work relies on material presented in the various publications that describe the

underlying ciphers, as well as the fundamental idea of BitLoop. [3, 4, 6, 8, 9,12,14]

 5

BitGrey: Concealing Communication Patterns in a Multi-
Party Community

Hiding the identities of senders and recipients of messages.

Overview: We discuss two variations (chain of delivery, and public ledger) to the

same idea where a large number of recipients of a message would conceal the identity of

the one or few for whom the message was intended and who could properly decipher it.

An eavesdropper would not have means to distinguish between the intended recipient and

the decoy recipients. In one way the message traverses through many recipients, in the

other, the message is downloaded by many from a public ledger. Sender's identity is

concealed by having parties send decoy (random) messages that follow the protocol of

content-loaded messages. The protocol allows for a monetary incentive for the

concealment, paid either by the sender or from a community fund.

Introduction

Public privacy has been so seriously violated that residents of cyber space all but

reconcile with their data nakedness, and deep exposure. Alas, as much as technology took

our privacy away, it should be called upon to restore it back, at least in part. While

encryption is touted as the main weapon in the privacy arsenal, it is far from being

sufficient. Anyone with a handle on how much we say to whom and what messages we

receive from which source, will have a pretty good reading on who we are. It is therefore

that we need to focus on hiding our communication pattern, which is the topic herein.

Let's first focus on a method to hide the recipient of a message. This applies mostly

for the case where the message one sends is encrypted. A "Dear John" letter is clearly

addressed to John. A cryptogram does not inherently reveal whom it is intended to. If a

powerful adversary is aware that Alice sent an encrypted message to Bob, then the

 6

adversary can apply all sorts of pressures on both Alice and Bob, to reveal the contents of

their message. But if the very same message was read by Bob and by a ten more readers,

then each reader may claim that the message was not meant for him or her, and Alice can

come up with an exculpatory story. Alice defense is even stronger if 1000 readers

consumed her message. So what is left to figure out is a mechanism for getting all those

"non-decoy" readers to take the message in and effect the confusion.

We present two such mechanisms: (1) chain of delivery and (2) public ledger. In the

first Alice messages bounces off the decoy readers and the intended readers, and in the

second all the readers download the protected message from a public ledger. Since in

either way this action is a burden on the decoy readers, this should be accomplished

either (1) through community service where one helps others, expecting others to help

him or her, or (2) through a monetary incentive. The latter enjoys the advantage of

allowing Alice to increase the degree of equivocation (the number of decoys) by offering

a larger sum for these decoy services.

The overall BitGrey equivocation protocol may call on parties to randomly send

random message towards a sufficiently large number of recipients. This practice would

arm an interrogated sender with a valid explanation to any real message he or she sent,

and amount to concealing the identities of parties who send content-loaded messages.

Definitions: The environment of reference is comprised of a community of

communicating, or potentially communicating parties. The parties may be referred to as

"nodes" or "readers" and the community as a "network". This community might in fact be

a sub-community of a larger community, and the parties may be human or devices. There

assumes to be a viable privacy threat: an agent who aims to learn about the community

through its communications: content and pattern. The privacy threat agent (also referred

to as "privacy killer") assumes to have access to the messages that flow back and forth

within the community.

 7

It is generally assumed that the messages involved are

robustly encrypted, and the privacy killer remains

challenged by the encryption, namely the contents of the

message remains secret, only the pattern of their dispatch is

exposed. It is further assumed that the privacy killer is in a

position to extort the nodes and demand full disclosure of

the content and the parties of the messages. The envisioned

defense for the sender is (1) the message is a random string, meaningless, and (2) the

recipients were selected randomly as either participation in the privacy promotion

practice or as a revenue generator. The envisioned defense for the recipient of the

message is that (1) the recipient can't read it because it was not intended for him, and he

has no keys to decipher it, if indeed it is a meaningful message and not a random

sequence.

The term communication pattern reflects information regarding the identities of the

communicating parties (sender and intended recipient), size, timing, and back and forth

sequences of the running messages.

Chain of Delivery BitGrey Privacy Protocol

In this mode we distinguish between "pre-address" and "post address" modes. In the

first mode the sender identifies a series of recipients and releases the message within the

community. Any party (node) that does not find itself on the recipients list passes the

message further. Any party that finds itself identified on the recipients list will mark on

the message that it read it, and then pass it on. The party that is the last to mark itself as

having read the message will return the message to the sender, to assure the sender that

all the designated recipients became aware and read the message. Among the parties who

read the message there exists the one or more who were the target recipients. But this

 8

distinction does not leak outside. Some designated readers will not be able to extract

content from the message because they don’t have the right keys.

In the post address mode the sender releases the message to the community, and

each party marks as 'read' once receiving the message. The message keeps being pushed

from one party to another until the entire community has read it, and then the message

returns to the sender. This is feasible in smaller communities.

Note that this protocol does not specify any particular route for the message within

the community.

Public Ledger BitGrey Mode

In this mode Alice posts its message on a public ledger from which a sufficient

number of readers download it.

Recipient Targeting

For the BitGrey protocol to work it is necessary for reading nodes to be able to

discern between messages intended for them as recipients and messages not intended for

them, or decoy messages that are not intended for any reader, and are there to confuse the

privacy threat agent. This distinction cannot be as a plain tag on the message itself, since

the privacy killer will be able to read it too. Even an encrypted tag is not a very robust

means of distinction. Any such static designation will be quite readily identifies by the

adversary.

We conclude then that the distinction of being an intended reader of a message must

be based on something privately known by each reader (not by anything in the message

 9

itself). A simple way would be to have any reader decrypt an incoming message with its

privately held key, and if it makes sense then it is intended for that reader. If it reads as

gibberish then not. This is not a very clean method because some content may be

borderline; it may look random, but it really is a message of good contents, only with

appearance of randomness. There would be too many errors and the distinction may be

too complex. What is needed is a clear-cut distinction between message intended for a

particular reader, and all other bit strings. This requires a suitable cipher.

Recipient distinction may occur via one of two modes:

1. decoy tolerant ciphers

2. composite ciphertext

The decoy method is simpler and will be discussed below. The composite ciphertext

is a more involved solution, but with rich opportunities for managing the community. It

will be discussed ahead.

We define a "Decoy Tolerant Cipher" as a cipher which quickly, easily and

unequivocally distinguishes between proper message bits and decoy bits. The former it

decrypts the latter it discards.

Decoy Tolerant Cipher

Normally ciphers are designed to decrypt everything fed into them by way of

ciphertext, assuming all the feed is bona fide decryptable material. A Decoy Tolerant

Cipher, by comparison, is a cipher that is designed to quickly winnow the wheat from the

chaff -- to use the expression first introduced by Ron Rivest [13] -- and only decrypt the

wheat. The faster and more efficient the classification (wheat, chaff) the more tolerant the

cipher to very diluted message streams, where the wheat drowns in the chaff. And the

 10

more so, the greater (1) the cryptanalytic challenge for the cryptanalyst, and (2) the

greater the power of the applicable protocol to carry out special tasks, like the one

envisioned in the BitGrey protocol.

BitFlip as a Decoy Tolerant Cipher

BitFlip is a poly alphabet cipher. [12, 9]. Each letter of each alphabet is comprised

of a distinct (secret) bit string that counts m bits. Each letter of each alphabet is

associated with a target Hamming distance h. All the strings that have a Hamming

distance h from a given letter are evaluated to this letter. A string of s bits that does not

evaluate to any letter in a recipient's alphabet is regarded as nonsense and discarded.

Same for strings that evaluate to more than a single letter. BitFlip, hence is inherently a

decoy tolerant cipher.

Composite Cipher

We consider a situation where n plaintext messages, P1, P2,Pn are encrypted via

some ciphers with the respective keys K1, K2, Kn, to generate n respective ciphertexts

C1, C2, Cn. We now consider a "consolidated cipher" , CC, which takes in as input the

n plaintexts, and the n keys, and generates as output a "composite ciphertext", Cn.

Cn = CC (P1, P2,Pn, K1, K2, Kn)

We further consider n corresponding decryption procedures DEC1, DEC2, DECn,

such that DECi (i=1,2,..n) takes in the composite ciphertext and generates Pi as output.

Pi = DECi(Cn)

 11

This is a composite cipher environment.

A composite cipher environment offers a unique security advantage: equivocation.

An attacker in possession of the composite ciphertext may at most 'crack' the ciphertext

to the point where all k keys are identified, and all the plaintexts are known. Yet, the

attacker will not be able to learn from the composite ciphertext which of the n plaintexts,

were actually read by a particular recipient of the composite ciphertext. This distinction

depends on which of the k keys a particular recipient was using. That key is not

communicated, and is not identified in the ciphertext among the other (n-1) keys.

To sharpen the inherent security within a composite ciphertext, we may think of

Alice giving Bob instructions to move in one of the four directions North, South, East, or

West. Alice will identify four plaintexts P1, P2, P3, P4 each directing Bob to take one of

these four directions. Using a composite cipher Alice will generate ciphertext C4. Alice

previously exchanged key K3 with Bob, and so she knows that Bob will evaluate C4 to P3

and therefore move East. However, an attacker capturing C4 will not know which of the

four keys is used by Bob. So for the attacker -- however smart -- the situation is fully

equivocated. Bob will be regarded as having equal chances to go in any of the four

directions. This equivocation is inherent in the composite ciphertext, regardless of the

particulars of the cipher.

A Cn composite ciphertext may in fact be evaluated to 2n-1 plaintext messages. This

is because any combination of 0 < m ≤ n plaintexts selected from the n plaintext P1, P2,

.... Pn may be regarded as a distinct plaintext evaluated from the same composite

ciphertext.

Let plaintext Pi be an instruction from Alice to Bob to move from where he is

located according to a specified vector Vi (length of movement and direction of

movement). For every combination of the 2n-1sets of plaintexts, Bob will be moving to a

 12

particular spot in the space where his motion is taking place. This challenges an attacker

with equivocation marked by 2n-1 distinct spots.

Key combinations allows one to build a confidentiality cascade. An arrangement

where one class of recipients [1], is given key K1 while a second, "higher", class of

recipients, [2], is given keys K1, and K2. Readers from class [2] can read everything class

[1] reads plus more content that class [1] cannot read. Similarly class [i] will be given

keys K1, K2, Ki, so they can read everything that classes [1], [2],....[i-1] reads, plus

content that these lower classes don't read.

We present some ciphers that may be used to construct a composite ciphertext

environment.

Illustration: Let C4 be a composite ciphertext over the four plaintext messages,

relating to movements over a Cartesian map: 1. move 1 meter to the right, 2. move 1

meter upwards, 3. move one meter to the left, and 4. move one meter downwards. Alice

sends this composite ciphertext to Bob. A smart attacker intercepts this composite

ciphertext and prepares a map that lists all the possible locations that Bob may be

instructed to be, following the instructions in the composite ciphertext. The list shows 9

distinct outcomes. The attacker cannot further limit this list by extracting more

information from the captured composite ciphertext.

 Key Combinations Bob's Coordinates:

 1 (1,0)
 2 (0,1)
 3 (-1,0)
 4 (0,-1)
 1, 2 (1,1)
 1, 3 (0,0)
 1, 4 (1,-1)
 2, 3 (-1,1)
 2, 4 (0,0)

 13

 3, 4 (-1, -1)
 1, 2, 3 (0,1)
 1, 2, 4 (1,0)
 1, 3, 4 (0, -1)
 2, 3, 4 (-1,0)
 1, 2, 3, 4 (0,0)

Had the four instructions be +1, to the right, +2 upwards, +3 to the left, and +4

down, the table would look like: .

 Key Combinations Bob's Coordinates:

 1 (1,0)
 2 (0,2)
 3 (-3, 0)
 4 (0, -4)
 1, 2 (1, 2)
 1, 3 (-2, 0)
 1, 4 (1,-4)
 2, 3 (-3, 2)
 2, 4 (0,-2)
 3, 4 (-3, -4)
 1, 2, 3 (-2, 2)
 1, 2, 4 (1,-2)
 1, 3, 4 (-2, -4)
 2, 3, 4 (-1, 0)
 1, 2, 3, 4 (-2, 2)

where the equivocation is over 15 distinct options.

BitMap Composite Ciphertext Cipher

BitMap [Appears as “Denial Cryptography”, as “Cryptography of Things”, as “At

Will Intractability Cryptography” and as “Drone Targeted Cryptography”, see 14, 17, 8,

4] inherently generates a ciphertext larger than its plaintext. It is easy to increase the size

of the ciphertext with many letters sequence that collapses into a single letter. This is

 14

done by marking a path on the BitMap graph where the path traverses vertices which are

of the same letter. This means that for a given decryption key the input (ciphertext) flow

may have as many superfluous letters (bits) as desired.

Here is one way to use BitMap to build a

composite ciphertext. The procedure starts with

generating a BitMap pathway (ciphertext C1) to

represent the first plaintext, P1. Then generating a

BitMap pathway (ciphertext C2) to represent the

second plaintext P2. Let a vertex marked X be any

vertex in the C1 path. One would then expand that

vertex (replace it) with the map used to draw

pathway C2 on, and draw C2 on that map, such that

C2 is grafted into C1. When preparing the key for the P1reader, all the vertices which are

part of the C2 map will be marked as X. This will insure that the combined pathway C1 +

C2will be interpreted as P1. For the reader of P2, one will mark as letter X all the vertices

in the first map, used to draw C1, and leave the vertices in the second map, where C2 is

drawn untouched. This combined map (key) will insure that the intended P2reader will

interpret the combined C1 + C2 composite ciphertext as P2.

This grafting can continue at any spot of the combined C1 + C2 pathway, and

generate C1 + C2 + C3 composite pathway, and so on for all n plaintexts. The composite

ciphertext C1 + C2 +..... Cn will be evaluated to Pi (for i=1,2...n) through Ki constructed as

described herein.

A second method is described here: In order to use BitMap for this purpose it would

be necessary to prepare a key that would be able to handle any message sent for any key.

One way to do so is to construct a BitMap key comprised of (n+1) regions, fitted to

handle n participants with n keys. The BitMap key will be comprised of a central n-sided

polygon, where each edge of the polygon will be a basis for a key that can be used to

 15

describe any message of any size. These n keys will be spread each off their respective

edge of the polygon. They will be regarded as specific keys. All the vertices in the

internal n-sided polygon will be marked with one letter, say X. Also all the vertices that

make up the n edges of the polygons will be marked as letter X.

Each party will receive the same key (comprised of the internal polygon and the n

specific keys). Party i will receive a key such that its specific area will be marked with

the letters of the alphabet according to the terms of the BitMap cipher, namely such that

any message of any length can be fully encrypted in each of the n specific keys. All the

vertices others than those comprising the specific area for the party, will be marked as the

letter X.

In summary, the n parties will be using the same geometric structure as key, only

that for each party only its own specific section will be marked with the full letters of the

alphabet, while all the other specific sections, as well as the internal polygon will be

marked as letter X

It will be required to dictate that every message for every party will start with one

vertex marked X and part of the edge of the polygon. Also all messages will have to end

up at a vertex that is part of the same edge. This can always be achieved, by padding any

message with an agreed upon number of letters that should be discarded upon decryption,

and are there only in order to allow the pathway (the ciphertext) to extend so that it ends

at the edge of the polygon.

To construct the composite ciphertext one will mark the n pathways (ciphertexts, C1,

C2,...Cn) each on its own section of the overall key. Next the n pathways will be threaded

to a single pathway. This will be done by connecting the end point of pathway Ci with the

starting point of pathway Ci+1. (for i=1,2,...(n-1)). The connection will be done in any

way that traverses through only universally X marked vertices on the polygon or its

edges. A universally marked X vertex is a vertex that is marked as X for all the n parties.

 16

Such threading of the n pathways (C1, C2,....C n) to a single composite ciphertext

Cn will conclude the encryption. Cn will then be used in the BitGrey protocol. The

composite ciphertext may be passed to all the parties. Each party i will be blind to all the

individual pathways (C1, C2,..Ci-1, Ci+1,..Cn) that comprise Cn, and see only its own

pathway, Ci which it will correctly decrypt to Pi.

BitMix Composite Ciphertext Cipher

BitMix [17] is a complete transposition cipher. It features a key space of size |K|

=p! applicable to transpose a series of p data elements to any of the possible p!

permutations. Let us now construct a composite plainext as follows:

Pni = P1 - P2 - Pi- * - Pi+1 -..... Pn

comprised of the n plaintexts P1, P2,.... Pn and a 'separator element', "*", which is

placed between Pi and Pi+1. The interpretation of Pni will be as follows: the instructions

expressed in the plaintext messages that are placed left of the "*" separator should be

regarded and followed and all the plaintext messages that are placed right of the "*"

separator should be ignored.

There are 2n -1 distinct such Pni composite plaintexts. Let Pnm be one particular

composite plaintext. Let us now encrypt Pni using BitMix. This will be effected through a

transposition key Km, and will result in a composite ciphertext Cnm.

Because BitMix is a complete transposition ciphertext there is a definite and unique

key that transposes every one of the 2n - 1 possible composite plaintexts to the same

composite ciphertext Cnm. An attacker will not be able to extract from the composite

ciphertext the key that was actually used to create Cnm, and will face an equivocation over

the 2n - 1 possible composite plaintexts.

 17

BitFlip Composite Cipher

BitFlip is a super polyalphabetic cipher. Each of the n recipients is using a set of

distinct alphabet. Each letter of the ciphertext will be evaluated as a proper letter only by

one of the n recipients; the other would discard this letter. So a sender can put together a

composite plaintext comprised of n distinct message, M1, M2,Mn, encrypt the letters of

each message with the key used by the intended recipient such that each recipient will

discard all the letters except the ones intended for her, which she will evaluate correctly.

The BitGrey Protocol

A community of communication parties (a network) may activate the BitGrey

protocol to conceal the information regarding their communication pattern. It is activated

when the community wishes to hide such information from outsiders, and also from

"insiders". The latter refers to the situation where parties in the communities are aware of

messages they send or receive, but know not who sends other messages to whom. This

situation is accomplished by lack of knowledge of cryptographic keys. A community may

share cryptographic keys and thereby hide the communication pattern only from

outsiders, or a community may have degrees of mutual secrecy of such keys.

The BitGrey protocol has two parts: (i) recipient concealment, and (ii) sender

concealment.

Recipient Concealment

 18

Recipient concealment happens either through decoy-tolerant ciphers or through

composite ciphers. In both ways a message can be sent to as many parties as desired, and

only the intended party, or parties will interpret the communicated ciphertext into the

plain message sent out by the sender. The others will either treat such message as random

bits, or realize it is a message not intended for them.

Since the ciphertext is evaluated by each party in private, an outsider who traces all

the communication among the parties will not be the wiser as to who is the party that

evaluated the ciphertext to its intended message.

Upon interrogation each party that received the message can claim that it checked it

out and it did not amount to any message they could read.

The larger the number of recipients of the ciphertext, the greater the equivocation,

the greater the cryptanalytic confusion, and the greater the entropy.

Sender Concealment

In order to conceal the event of sending a meaningful message within the

community, the protocol calls for the parties to randomly compose decoy messages

(random bits) and execute the recipient concealment protocol, sending that decoy

message to others as if it were a meaningful message. All the recipients of this decoy

message will discard it.

This randomized decoy operation will allow each sender to respond to interrogation

with the claim that what they sent was part of this sender concealment as called for by the

protocol. Thereby insist that there is no plaintext to be revealed, since the ciphertext is

meaningless.

 19

Shades of Grey

The interplay between sender-concealment and recipient-concealment will

determine the 'shade of grey' in the protocol. We first discuss the boundary conditions:

'almost white grey' and 'black grey'.

'Almost white grey' state is when sender-concealment is practiced at a minimum, or

even not at all. As long as the protocol calls upon parties to randomly send decoy

messages to parties in the community then any sender, under interrogation can say -- that

what I did. If that is the state of sender concealment then an outside observer will have

good reading on the level of communication that transpires within the community. The

recipient concealment will prevent the observer from finding out who received which

message, but the overall intensity and characteristics of the community communication

will be rather exposed.

The 'black grey' state is when sender concealment overwhelms real messaging. So

much so that the latter becomes an undetected 'noise' within the dynamics of the former.

To practice a 'black grey' protocol a community at time point ts will start a barrage of

sender concealment decoy messages, and continue with it until some end point te. At

Some time point tb > ts the community will begin to send real messages among its parties,

as needed by their circumstances. At time point tf < te the community will finish sending

the real messages. During the interval of ts to tf the flow rate of meaningful messages will

have to be much smaller than the decoy messages so that the real messages will be

concealed through having no statistical distinction over the normal noise of the decoy

messages. So practiced, the 'black grey' state will reveal to an outside observer that some

time between ts and te there was probably some meaningful communication within the

community, but the window tb to tf will not be exposed, and neither will the pattern of

such communication.

 20

Black-grey state may be expensive to uphold, it requires a lot of stray flow of

random bits, so in practice communities will decide per the significance of the matter

they wish to conceal, what is the optimal shade of grey for their situation, namely to

decide how many decoy messages to use.

Applications (BitGrey)

Applications of the BitGrey protocol may be classified by whether they are used for

internal segregation or for defense from external eavesdroppers. Also, whether the

community involved is large or small.

The protocol may be operated with a monetary incentive.

Key Management

The BitGrey protocol calls for n parties to have n cryptographic keys. Some or all of

these keys may be the same. If all the keys are the same (just to prevent outsiders from

reading the community messages) then the addressee must be identified in the plaintext.

If no two keys are the same, there is no need to identify the recipient (addressee) in the

plaintext. Some parties may possess the keys of all the rest, some may posses the keys of

only a few of the parties. Even if a party has only the key of one other party, it can still

participate in the BitGrey protocol, because the adversary does not know how many keys

each party has.

The community may be managed through a key management table that identifies

which keys are known to which party. For example a community comprises of parties A,

 21

B, C, and D having keys Ka, Kb, Kc, and Kd respectively may be managed through a

matrix like below

Key / Party A B C D

 Ka X X
 Kb X X
 Kc X X
 Kd X X X X

Party A can send message to everyone. Parties B and C can only send messages to

party D, and party D can send messages to everyone except to party C.

Monetary Incentivized BitGrey

We consider two options: (i) community funds, and (ii) peer to peer payment. In the

first mode one establishes a community fund from which to incentivized parties to

participate in the BitGrey protocol. In the second mode the parties themselves pay to

other parties. A combination of these two modes is also possible.

Community Funds: The community funds will pay parties to send decoy

messages that look like content-loaded messages, and do so in order to achieve the

desired "shade of grey" as discussed above. The community funds will incentivize parties

to pass read messages forward to marked readers who have not yet read the message.

Peer to Peer Payment: A sender may wish to protect its message with a very

active BitGrey protocol and to that end will pay other parties the way a community fund

would have paid them.

BitGrey Money: The money incentivizing BitGrey practitioners will be digital

money. BitMint platform is ideal because it pays at any desired resolution in a frictionless

manner, and requires participation of only the payer and the payee, no need for a third

party authenticator.

 22

Enterprising BitGrey

The BitGrey protocol may be enterprised and monetized as a service for a

community. The BitGrey service provider will design the details, select ciphers, assign

keys, and incentivize parties to support the protocol through monetary compensation.

 23

BitLoop: Zero Information Leakage of Network

Communication Activity

Multi-Party Communication Where the content, the pattern, and even the existence of any

inter-party communication is concealed despite complete capture of all the communicated bits.

A group comprised of g of well ordered members i=1,2,...g will experience a

circular fixed bit rate, C (bits/sec) communication flow such that each party, i, contributes

ci = C/g bits/sec, and removes its bits when they are returned to it following a full circle.

The ci bits/sec comprise mij for j=1,2,..(i-1),(i+1),...g bits/sec which carry content

(message bits) for up to each of the other (g-1) parties, and di bits/sec which are decoy

(random) bits. ci = Σ mij + di. Each party j identifies all the messages intended to it: m1j,

m2j,..... mnj, and ignores all the other bits. An eavesdropper will see a fixed circular bit

flow which may be totally decoy -- meaningless, or may harbor any pattern of

communication between any two or more of the n members group. As long as all the

circulating bits appear random enough, the group does not leak any information regarding

their internal communication.

Introduction to BitLoop

We address a situation where a group of g members, agents, wish to hide their

internal communication in a situation where the communicated traffic is exposed. If all

the communicated bits are content-loaded, then their flow is quite revealing, even if the

bit flow retains their content concealed owing to uncompromised encryption. The

content-laden bits identify who is talking to whom, how often, and in what configuration

relative to other messages back and forth.

To prevent this leakage of information the group of g members may mix their

content-laden bits with random, or so called, decoy bits. The mixing will have to be such

 24

that the eavesdropper will not be able to distinguish between decoy bits and content bits,

but the group members (agents) will readily carry out this distinction.

To achieve this goal, we propose the BitLoop protocol. It will render the group into

a "black hole" in as much as they won't leak information about their communication

pattern throughout the application of this protocol.

The BitLoop protocol requires encryption, which in turn can be used to send

messages to one or few designated recipients, and not to the others -- depending on key

distribution. In the basic mode the agents share a single encryption key, and hiding is

projected only toward outsiders.

Loop Flow

We consider g members of a group fitted in

order: 1,2,....g. Member i is considered as

communicating C bits/sec to member (i+1), for

i=1,2,...(g-1). Member g is passing C bits/sec to

member 1. So described there forms a flowing

loop, in a steady state, given that the identities of

the bits is ignored.

We first assume the baseline state where all

the bits in the loop are randomly selected, and the

bits that flow from one member to the next are

the same. In that case the only information that leaks outside the group is the order of the

group and the rate of bit circulation. However such a state does not allow the members of

the groups (the nodes) to exchange any messages. We therefore advance the state by

allowing several bits to flip between nodes. An outside observer will be able to monitor

how many and which bits have flipped. This observation will amount to information

leakage if the bit flipping correlates to content, to communicated messages. However, if

 25

the bits flipped by each node are also randomized, then they leak no information, except

the count of how many bits flipped. Alas, this will be the only information gathered by

the nodes themselves.

The interesting state happens when the nodes use a protocol where the flipped bits

are indistinguishable from a random flow, but in fact they convey information. We

present a content-hiding bit-flipping protocol: BitFlip [5, 9,12]. The BitFlip protocol is

activated within the BitLoop protocol that insures a loop flow of a fixed bit rate, where a

random number of bits are flipped as they pass from one node to another. Overall the

group runs a communication regimen where each member of the group communicates

with any other, and none of the prevailing patterns leaks.

The BitLoop Protocol

We first describe this protocol in its steady state then how to get it started and how

to stop it.

In a steady state a flow rate of C bits/seconds circulates through the members of the

group. The members are set in a fixed order 1,2,...g. Each member passes the full bit flow

of C bits/sec to the next member in order. Member g circulates back the C bits/sec to

member 1. So the bit stream flows from member i to member (i+1) for i=1,2,...(n-1).

Each node contributes C/g bits/seconds to the flow. Each node in turn removes the bits it

contributed to the flow in the previous round, and replaces them with new bits. That way

the flow rate is kept stable (C bits/sec), but the contents is refreshed every cycle.

In its steady state each of the participating circulating nodes takes in the incoming

bits as a sequence of blocks, each block comprises s spans, and each span comprises n

bits. The span is the basic data unit processed by BitLoop. The number of bits in a block

is |b|=ns. Each node analyzes the s spans in a block one by one. For each span the node

 26

first decides if this is a span of bits it put in, in the previous round. If it is -- then the span

is removed, and another span replaces it (how to choose the replacement span will be

discussed ahead). If the span is not one that was put there by the examining node, then it

will be evaluated by the BitLoop cipher. The BitLoop cipher is either a composite cipher,

or a decoy-tolerant cipher. Either way the result of the evaluation is either null (no

message taken in), or positive -- namely the evaluated span is converted to a content-

laden message (plaintext) or part thereto. Message parts in such plaintext form are then

concatenated to form the full message sent to the examining node. That is how messages

from other members in the group are passed to the examining node.

So operated the Loop Flow is a fixed bit rate moving in order from group member to

group member (node to node). Each span flows through each member in n/C seconds.

Assuming no delay in the communication lines, the time it takes a span to fulfill a full

round is gn/C seconds. Every circulating span (and every circulating bit) has a life span

of one round. The circulating bits are removed by the member that put them up when

they are returned to the member that put them. Every span of bits put up by any member

is passing through all other members. Such spans may be completely random (comprised

of random bits) and so no member will extract any meaning (plaintext) from it. A span

can be a ciphertext, which does hold the content of its respective plaintext. In that case all

the members who are equipped with a fitting decryption key will extract from it the

encrypted meaning. Others would not.

The idea of this loop protocol is that from the outside the flow is at constant rate

with a random number of bits that get flipped as one member passes the flow to the next.

The users of this loop protocol intend to deny any visibility to an outside observer as to

which member talks to whom, how much, how often, in what configuration. The

appearance of the flow is the same whether all the circulating bits are perfectly

randomized or fully content-loaded and for anything in between. This veil is the object of

the protocol.

 27

We first describe the "Null State", defined as the state of no communication. None

of the g group members communicates with the other. In that state group member i

(i=1,2,...g) receives spans at a rate of C/n spans/seconds. (g-1)/g of these spans were put

in the stream by some other group members, ("foreign members"), and 1/g of these spans

were put into the stream by group member i ("home members"). When member i

encounters a foreign span, it regards it as a cryptogram and processes it with her

cryptographic key, Ki. Because she uses a BitLoop cipher the output of this process is

null -- no plaintext comes out because the bits were randomized. The member then

discards the output, but pushes the original (cryptogram) span further, to member (i+1).

When member i encounters a span that it recognizes as one it added to the stream in the

previous round, then it replaces it with a new randomized span. Note: an issue arises

regarding the probability that another member will by chance put up a span that the

member falsely recognizes as its own. This probability can be well managed, and at any

rate this coincidence will be spotted real time, and handled via a resolution protocol.

So prescribed, it is clear that the lifetime of a revolving span is one round. As soon

as it is being returned to the member that put it up, it is removed and replaced. Every

member does so, the flow rate of C

bits/sec remains fixed, and the Loop is in

steady state.

The null state as described involves

no information exchange between the

members.

We now describe the method of

conversation within the loop protocol.

Alice and Bob, two members of the

group, Alice is in position i and Bob in

position j, (in the group order) wish to run a conversation. Both have unique

 28

cryptographic keys, Ka, Kb respectively. They both know each other keys (the keys may,

or may not be the same). Alice first message is ma1. She encrypts it with Bob's key to

generate its encrypted version ea1 = Enc(ma1, Kb). Alice will then divide the cryptogram

(ea1) to bit strings comprised of n bits each (padding the last span as necessary): ea11, ea12,

....aa1u. The cryptogram is then written as a sequence of u= ta1 spans.

Alice (in position i in the order of group members) now wishes to load the

cryptogram ea1 to the loop, so that it will reach Bob at position j. To do so Alice waits

until she encounters a span she herself loaded up to the flow. Since it is her span, she

removes it, but now instead of loading up a randomized span, Alice loads up the first

span of her cryptogram for Bob: ea11. This content-laden span, will run with the flow

from Alice at position i to member (i+1), then to (i+2). And since the flow is circular, ea11

will eventually reach Bob at position j. Since for Bob this span is foreign, he will apply it

to a decryption process with his key, Kb. The result will be the respective plaintext ma11.

When Alice encounters the next span she recognizes as her own, she replaces it with

the next span from the cryptogram ea12, and this span, similarly, reaches Bob who will

decrypt it with his key, Kb to extract the respective plaintext ma12.

This will continue span after span: ea11, ea12ea1u. When all the u spans of the

cryptograms have been processed, Bob extracts the full message ma1.

All other members of the groups not applying Bob's key to the flowing cryptograph

spans from Alice, will interpret these spans as 'null', and simply push them further to their

next member.

The loop has a finite capacity, which may be less than u -- the span count of Alice

cryptogram -- and in that case Alice will remove from the flow earlier message spans

(which Bob has already read), and secure room for subsequent spans of the message.

 29

Bob, wishing to respond to Alice, will activate the same protocol on his part, using

Alice's key, Ka, to encrypt his message, and thereby Alice reads Bob's message. To which

she can reply.

While conversing with Bob Alice can send messages to Carla and David, and others,

using their specific cryptographic keys.

All members of the group will run the same procedure when they wish to

communicate with anyone within the group. This is the 'live state' of the loop. It's

nominal objective is to hide the communication pattern from outside observers. The idea

being that external monitors of the loop (unaware of the cryptographic keys used) will see

a random-looking flow that looks the same over time, whether it is in the null state, or in

the live state, and regardless of how 'live' the state.

Having described the basic run of the loop, we now discuss the issues of (i) starting

up and closing down the loop, (ii) capacity, (iii) probability of confusion. The prime issue

of quality and features of the BitLoop ciphers will be addressed in a dedicated section.

Starting Up And Closing Down The Loop

The loop circulation protocol may start with setting up a clear order of the g group

members: 1,2,...g. The number of spans per second in the loop is C/n (C is the bit rate of

the loop, and n is the number of bits in a span). Member 1 will activate a random number

generator and construct consecutive bits strings, counting C/g bits, spread as C/gn spans,

(C is the number of bits/second for the loop flow rate). Member 1 will push the generated

random bits to member 2, all in a time frame of one second.

 30

Member 2 in the order will prepare the same number of spans, C/gn, also by

invoking a source of

randomness. When member

#2 receives the C/gn spans

from member 1, it pushes

them on to member 3,

adding its own C/gn spans.

Member 3 now receives

2C/gn spans. It too

generates C/gn spans and adds them to the 2C/gn that came to it from member 2. What

goes forth to member 4 is a stream of 3C/gn spans. The described process repeats such

that every member in turn passes through the bit flow coming its way, and adds to it, its

contribution of C/gn spans (all random bits). The flow thus swells from member to

member until it reaches a throughput of C/n spans, pushes from member-g, the last, back

to member -1, the first. When member 1 receives the full flow rate of C/n spans (or C

bits/sec), then the steady state has been achieved. Next member 1, recognizes the C/gn

spans it uploaded in the previous round, removes them and replaces them with new C/gn

randomized spans. All subsequent members do the same -- recognizing their own

contribution from before and replacing such spans with new ones.

This is the steady state, null state (no communication takes place within the group).

It will last until some member decides to say something to another member, and then the

loop protocol as described above is activated.

When the BitLoop session comes to its end (the last message was exchanged in this

mode), the flow will continue for a while the way it worked before the first message

transpired -- a flow of C bits/seconds of randomized bits that contain no content. To end

this “after-duty” phase, the start-up protocol will be activated in reverse. The first

member would remove the spans it contributed in the previous round, but will not replace

 31

them with new spans. As a result the flow from this member 1 to member 2 will be

decreased from C/n spans/sec to (g-1)C/gn spans/second. This reduced flow then arrives

at member 2. Member 2 does the same, namely it removes the C/gn spans it contributed

to the flow in the previous round and offers no substitution for them. The bit flow that

goes then from member 2 to member 3 is at a rate of (g-2)C/gn spans/second, Each

member in turn will remove the spans it contributed in the last round and push further the

remaining span. By the time member g exercises this span removal routine -- there are no

more circulating bits left, and the BitLoop platform (the null state) is closing down.

Capacity

The set capacity of the loop C bits/seconds limits the communication throughout of

the protocol. One would first determine what is the expected communication load to be

served by the loop, and use this figure to design the capacity. In its limit all the revolving

spans will be content-laden, no room for sheer randomness. However, if practiced as

routine, then this fact will likely leak and the advantage of the loop will be lost.

The span throughput of the loop is C/n spans/seconds, which comes to allocating to

each of the g members of the group a communication capacity of C/ng spans/seconds. If

this throughput is not enough for a particular member, then it will develop backlog,

which can always be alleviated by streaming it outside the loop. We may be looking here

at a need to allocate the more sensitive communication for loop-compliance, while

routing the rest to more traditional ways of communications.

A problem arises if there is a great variance in communication needs between the

members. Some may have a lot to communicate and the loop will not suffice, adn other

 32

have little to say, and most of the life of the loop they are 'spinning water' namely

uploading sheer randomness, with very little actual communication.

Usually a member that is a target for a lot of communication is also a heavy duty

communicator itself, but in times, it may be that a member received a heavy load of loop-

communicated messages while it itself is saying very little in return.

Such variety should be well considered for the determination of the desired

throughput.

Other considerations include the load to keep the null state and the overall random

bit communication.

In some ways the important count is spans rather than bits, and so the value of n

(bits per span) is critical too. Especially so in the case where the BitFlip cipher is being

used. Generally the decoy-tolerant and the composite ciphers require a large span to

operate correctly. Large spans reduce the span throughput per a given bit rate. Also large

spans reduce the likelihood that the same span will be issued by two different members.

This will slow down the operation, but not stop it. So because either one of the two

involved members will identify the problem, and notify the source of this message,

requesting a re-send.

BitLoop Ciphers

BitLoop ciphers must satisfy the same requirements stated for BitGrey protocol,

namely decoy-tolerant ciphers or composite ciphers. The choice of cipher determines the

size of the span. Composite ciphertexts may require large spans.

Implementation

BitLoop needs a project manager to implement it. This manager may be external, or

may be member number 1. Activities include system design, and operation control.

 33

Design includes setting up the bit rate, the span size and the required ciphers. It also

includes rules of behavior in case of difficulties like a broken chain, or incantation of a

member. In such cases the project manager will need to make sure that a notification of

the arising difficulty is disseminated through the group along with a mention of which

rule of behavior applies.

In the event that the set bit rate is insufficient, it is always possible to close down the

BitLoop session, and restart another with a higher bit rate.

Applications

BitLoop may be used for intense high level communication concealment, or for low-

intensity long term application. It may be used on a stand alone basis or in an embedded

form.

When applied in an embedded form the

communicating spans will have to be identified as

such, since they are embedded in additional

communication. In that case the spans may be

encapsulated in a bit-frame consisting of a header

and a trailer. Will be used mostly for low intensity

applications.

The BitLoop protocol may be used with

complete internal visibility, or with zero internal

visibility, or anywhere in between.

Visibility Status Applications

 34

The BitLoop protocol may be used with complete internal visibility, or with zero

internal visibility, or anywhere in between.

The case of full internal visibility can be constructed through either a shared key, or

a shared key matrix. In a shared key the addressee needs to be identified in the message

itself. In a shared key matrix, the identity of the key that properly evaluates the incoming

span is the indication of addressee.

References

1. "Topology-Hiding Computation" Tal Moran1,, Ilan Orlov, and Silas Richelson
Efi Arazi School of Computer Science, IDC Herzliya, Israel,
https://link.springer.com/content/pdf/10.1007/978-3-662-46494-6_8.pdf

2. G. Samid "Randomness Rising" 14th International Conference on Foundations of
Computer Science (FCS'18: July 30 - August 2, 2018, Las Vegas, USA)

3. G. Samid Trans Vernam Cryptography: Round One
4. G. Samid “Drone Targeted Cryptography” https://eprint.iacr.org/2016/499.pdf
5. G. Samid “Rivest Chaffing and Winnowing Cryptography Elevated into a Full-

Fledged Cryptographic Strategy” Int'l Conf. e-Learning, e-Bus., EIS, and e-Gov. |
EEE'18 |

6. G. Samid “User Centric Cryptography”
https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/SAM9741.pdf, Int’l
Conf. on Security and Management, SAM’16

7. G. Samid, "Randomness as Absence of Symmetry",
8. G. Samid, “Cryptography of Things” http://worldcomp-

proceedings.com/proc/p2016/ICM3312.pdf ICOMP16 International Concerence.
9. G. Samid, “Threat Adjusting Security” https://eprint.iacr.org/2018/084.pdf
10. M. BELLARE AND A. BOLDYREVA, “The security of chaffing and winnowing,”

Full ver- sion of this paper, available via http://www- cse.ucsd.edu/users/mihir.
11. Martin Hirt1, Ueli Maurer1, Daniel Tschudi1⋆, and Vassilis Zikas2⋆⋆ "Network-

Hiding Communication and Applications to Multi-Party Protocols" ETH Zurich
2016

12. Popov Samid 2017 “BitFlip: A Randomness-Rich Cipher”
https://eprint.iacr.org/2017/366.pdf

13. R. RIVEST, “Chaffing and winnowing: Confidentiality without
encryption,”http://theory.lcs.mit.edu/ ̃rivest/publications. html.

 35

14. Samid 2002: " At-Will Intractability Up to Plaintext Equivocation Achieved via a
Cryptographic Key Made As Small, or As Large As Desired - Without
Computational Penalty " G. Samid, 2002 International Workshop on
CRYPTOLOGY AND NETWORK SECURITY San Francisco, California, USA
September 26 -- 28, 2002

15. United States Patent Application 20170250796
16. US Patent #6,823,068 “Denial Cryptography based on Graph Theory”
17. G. Samid “Equivoe-T: Transposition Equivocation Cryptography”

https://eprint.iacr.org/2015/510.pdf
18. N. Provos “Hide and Seek: An Introduction to Steganography”

http://honeyman.org/u/provos/papers/practical.pdf

