
An abridged version of this paper appears in the proceedings of the 39th International Cryptology
Conference—CRYPTO 2019. This is the full version.

Continuous Space-Bounded Non-Malleable Codes from
Stronger Proofs-of-Space

Binyi Chen∗1, Yilei Chen2, Kristina Hostáková†3, and Pratyay Mukherjee4

1University of California, Santa Barbara, binyichen@cs.ucsb.edu
2Visa Research, yilchen@visa.com

3TU Darmstadt, kristina.hostakova@cs.tu-darmstadt.de
4Visa Research, pratmukh@visa.com

Abstract
Non-malleable codes are encoding schemes that provide protections against various classes

of tampering attacks. Recently Faust et al. (CRYPTO 2017) initiated the study of space-
bounded non-malleable codes that provide such protections against tampering within small-
space devices. They put forward a construction based on any non-interactive proof-of-space
(NIPoS). However, the scheme only protects against an a priori bounded number of tam-
pering attacks.

We construct non-malleable codes that are resilient to an unbounded polynomial number
of space-bounded tamperings. Towards that we introduce a stronger variant of NIPoS called
proof-extractable NIPoS (PExt-NIPoS), and propose two approaches of constructing such a
primitive. Using a new proof strategy we show that the generic encoding scheme of Faust et
al. achieves unbounded tamper-resilience when instantiated with a PExt-NIPoS. We show
two methods to construct PExt-NIPoS:

1. The first method uses a special family of “memory-hard” graphs, called challenge-hard
graphs (CHG), a notion we introduce here. We instantiate such family of graphs based
on an extension of stack of localized expanders (first used by Ren and Devadas in
the context of proof-of-space). In addition, we show that the graph construction used
as a building block for the proof-of-space by Dziembowski et al. (CRYPTO 2015)
satisfies challenge-hardness as well. These two CHG-instantiations lead to continuous
space-bounded NMC with different features in the random oracle model.

2. Our second instantiation relies on a new measurable property, called uniqueness of
NIPoS. We show that standard extractability can be upgraded to proof-extractability
if the NIPoS also has uniqueness. We propose a simple heuristic construction of NIPoS,
that achieves (partial) uniqueness, based on a candidate memory-hard function in the
standard model and a publicly verifiable computation with small-space verification. In-
stantiating the encoding scheme of Faust et al. with this NIPoS, we obtain a continuous
space-bounded NMC that supports the “most practical” parameters, complementing
the provably secure but “relatively impractical” CHG-based constructions. Addition-
ally, we revisit the construction of Faust et al. and observe that due to the lack of
uniqueness of their NIPoS, the resulting encoding schemes yield “highly impractical”
parameters in the continuous setting.

We conclude the paper with a comparative study of all our non-malleable code construc-
tions with an estimation of concrete parameters.

∗Research conducted at Visa Research.
†Research conducted at Visa Research.

Contents

1 Introduction 1
1.1 Our Work 2
1.2 Summary of our Contributions . 4
1.3 Technical Overview 5

2 Related Works 7

3 Preliminaries 8
3.1 Notation 8
3.2 Basic Definitions 8
3.3 Bounded Algorithms 9
3.4 Random Oracles 10

4 Continuous Space-bounded Tam-
pering 10

5 Non-Interactive Proof of Space
(NIPoS) 12

6 Space-bounded NMC from Proof-
Extractable NIPoS 15

7 Constructing Proof-Extractable
NIPoS from CHG 19
7.1 Merkle Commitments 19
7.2 Graph Pebbling and Labeling . . 19
7.3 Challenge-Hard Graphs (CHG) . 22

7.4 Construction of PExt-NIPoS
from CHG 24

7.5 Instantiating CHG 27
7.6 A comparison of the two CHG

constructions 30
7.7 Instantiations of PExt-NIPoS

from CHGs 30

8 PExt-NIPoS from Memory-Hard
Functions 32
8.1 Memory-hard Functions 32
8.2 Publicly verifiable computation . 32
8.3 Partially-unique Ext-NIPoS

from MHF and VC 33
8.4 Instantiating MHF 35
8.5 Instantiating VC 37
8.6 Instantiating partially unique

NIPoS and PExt-NIPoS 38

9 Instantiating and comparing our
NMC constructions 39
9.1 Instantiations from different

PExt-NIPoS 39
9.2 Comparing concrete parameters . 40

A Proof of Theorem 1 47

B Proof of Theorem 2 49

1 Introduction

Non-malleable codes and tamper-resilience. The notion of non-malleable codes (NMC)
was put forward by Dziembowski, Pietrzak and Wichs [DPW10] as an abstract tool for protect-
ing cryptographic devices against tampering attacks (e.g. [BDL01]). Intuitively, an encoding
scheme (Encode,Decode) is called non-malleable with respect to a class of tampering adversaries
(modeled as functions or algorithms) A if for any adversary A ∈ A and any message x, the output
Decode◦A◦Encode(x) is independent of x, unless it is equal to x. It is straightforward to see that
A can not contain all efficiently computable functions because in that case it is always possible
to just decode a codeword c to x, modify (for example add 1) and re-encode x + 1; hence one
must consider a restricted class A which excludes functions able to encode or decode. Therefore,
the NMC literature (for example [LL12, FMNV14, AAG+16, DLSZ15, FMNV15, JW15, ADL14,
CG14]) focuses on constructing encoding schemes that are non-malleable against a meaningful,
broad class of tampering functions; notice that non-malleability against a broader A translates
to protection against stronger tampering attacks.

Leaky NMC for space-bounded tampering. One such interesting tampering class is space-
bounded tampering, in that the only restriction on A is that any (efficient) tampering algorithm
in this class can only use a limited amount of memory. Space-bounded tampering captures the
essence of mauling attacks performed by malware that infect small-space devices like mobile
phones. However, as noticed by Faust et al. [FHMV17a] (henceforth FHMV), for such tamper-
ing class it is unreasonable to assume that a tampering algorithm can not decode. For example,
if decoding requires more space than what is available for the attacker, then the encoded se-
cret becomes unusable inside the device. The encoding algorithm, on the other hand, can be
reasonably space-intense and performed outside the device. Therefore, it is possible to assume
the space-bounded adversary cannot perform encoding, therefore avoiding the aforementioned
impossibility.

Moreover, even if A includes only Decode, “full-fledged” non-malleability is still not achiev-
able. To see this, consider an attacker that decodes c, learns the message x and based on the
first bit of x overwrites the memory of the device with a precomputed encoding — leaking the
first bit (this can be easily extended to an attack that leaks any log(|x|) bits by tampering
once). However, Faust et al. [FHMV17a] observed that all hope may not be lost if it is possi-
ble to guarantee that the leakage is “not too much”. Formally FHMV defines a weaker notion
called leaky non-malleability, which guarantees that an encoding scheme satisfying the notion
would leak only a limited amount of information about x. FHMV also showed that this is suf-
ficient for many applications. For example, they showed how one can use such leaky NMC by
trading-off tampering with leakage when x comes from a high-entropy distribution (see Section 7
of [FHMV17b] for more details).

Continuous space-bounded tampering. Traditional NMC (as defined in [DPW10]) guar-
antees non-malleability when the attacker tampers only once. To use such NMC for tamper-
resilience (see [DPW10] for more details), one needs to refresh the encoding after each tamper-
ing. To combat this issue, in 2014, Faust et al. [FMNV14] proposes the notion of continuous
non-malleable codes that tolerates an unbounded number of tampering attempts, which conse-
quently removes the necessity of re-encoding in the tampering application. Though FHMV’s
definition of (leaky) non-malleability allows continuous tampering, their construction (see The-
orem 3 of [FHMV17b]) only allows an a priori bounded number of tampering attempts (say θ)
because their parameters are related in a way that the leakage (say, `) is directly proportional
to θ. Hence, after a few tampering attempts, the leakage becomes as large as |x|. Coming up

1

with a construction that tolerates an unbounded (polynomially large) θ was left open in FHMV
(see Remark 2 of [FHMV17b]).

1.1 Our Work

Leaky NMC for continuous space-bounded tampering. In this work we address the
open problem by proposing various constructions of non-malleable codes, in all of which the
leakage ` is proportional to the logarithm of the number of tamperings, i.e. log(θ).1 No prior
bound is required for θ in this case. However, we do not claim that our solutions are strictly
stronger than that provided in FHMV, because we assume a “self-destruct” mechanism similar
to the prior works on continuous non-malleability (e.g. [FMNV14]). Roughly speaking, the
“self-destruct” mechanism requires the small-space device to erase its entire state (or make it
non-functional) once a tampering is detected. As already shown by FHMV, this is a necessary
requirement for achieving unbounded continuous space-bounded tampering.

Our approach: Stronger non-interactive proof-of-space. FHMV’s encoding scheme re-
lies on any extractable non-interactive proof of space (simply called NIPoS)2. In contrast, we
introduce a new and stronger property of NIPoS called proof-extractability and prove that when
FHMV’s encoding scheme is instantiated with a proof-extractable NIPoS (PExt-NIPoS), then
we obtain a continuous space-bounded NMC (CSNMC). We take two different approaches to
construct PExt-NIPoS — in the following few paragraphs we choose to outline them through
the natural flow of our attempts, instead of dividing strictly into two distinct approaches.

Proof-extractability from any NIPoS with uniqueness. Our starting point is the con-
struction of FHMV [FHMV17a] which is based on any NIPoS. We show that any NIPoS can be
upgraded to a PExt-NIPoS if it has a special property called uniqueness, which we define as a
quantitative measure of a NIPoS. We notice that the parameters of the resulting PExt-NIPoS
(and consequently the CSNMC scheme yielded via FHMV’s generic construction) is directly re-
lated to the uniqueness parameter of the starting NIPoS. For example, if a NIPoS has “maximal
uniqueness”, then the resulting CSNMC incurs “minimal leakage”, which is equal to p− |c| bits,
where p is the available (persistent) space.3 Unfortunately, we do not know of a provably secure
NIPoS construction with maximal, or even a “reasonably good measure” of uniqueness (later
we propose a construction that satisfies partial uniqueness based on heuristic assumptions). In
fact, we show that the NIPoS used in FHMV (which is in turn based on the PoS proposed by
Ren and Devadas in [RD16]) has poor uniqueness parameters and thus, when adapted to our
proof-extractability technique, yields a CSNMC which suffers from a leakage that is as large as
≈ p− |x|.

Modeling space-bounded adversary with bounded description. The lack of a NIPoS
with “good uniqueness” drives us to revisit the adversarial model of FHMV, in particular, how

1In the rest of the paper whenever we say that an encoding scheme satisfies continuous space-bounded non-
malleability or is a CSNMC, we mean that the encoding scheme is a leaky NMC for space-bounded tampering
with ` ∝ log(θ).

2In this section by NIPoS we informally refer to a (non-interactive) proof-of-space with extractability. Later
while treating formally we also say phrases like “extractable NIPoS” or “NIPoS has extractability” explicitly and
sometimes also use the abbreviation like Ext-NIPoS for that — but in general a NIPoS is assumed to have implicit
extractability.

3We assume that the entire space in the device is split into two parts, the persistent space which is reusable,
and the transient space which is refreshed after each tampering. An impossibility shown in FHMV (see Theorem 1
of [FHMV17b]) restricts the persistent space to remain relatively small when θ is unbounded.

2

they formalize the notion of space. In FHMV, which in turn follows the notion introduced
by Dziembowski et al. [DKW11b], the adversary is separated into two parts: a “big adversary”
which is a PPT adversary with no space-bound, and a “small adversary” that is a space-bounded
poly-time adversary. In a security game, the big adversary starts interacting with the challenger,
and then outputs small adversaries which will then have access to the target codeword (or the
proof, in case of NIPoS) and execute tampering in a space-bounded manner.

We notice that FHMV assumes that the small adversary can have arbitrary amount of
auxiliary information hardcoded in its description (see Page-5 of [FHMV17b]). In reality this
seems to be an overkill, because if the small adversary (e.g. malware) has a huge description, it
might not even fit into a small-space device (e.g. a mobile device), let alone executing tampering.
So, it is reasonable to assume that such adversary has a bounded size description. In particular,
we define a class of space-bounded adversaries as As,fspace containing all poly-time adversaries that
have a description of size at most f -bit and which require at most s-bit to execute.

PExt-NIPoS from Challenge-hard Graphs (CHG). We define a new family of “memory-
hard graphs” called challenge-hard-graphs and construct PExt-NIPoS for the class of space-
bounded adversaries As,fspace from that. We provide two instantiations of CHG: (i) The first one
extends the stack of local expanders (SoLEG), used by Ren and Devadas [RD16] in the context of
proof-of-space. We uses a novel technique to connect a gadget with a standard SoLEG in order to
amplify crucial challenge-hardness parameters. This technique may be of independent interest.
(ii) The second one uses the graph designed by Paul et al. [PTC76] and used by Dziembowski et
al. [DFKP15], who use the notion of challenge-hardness implicitly to construct proof-of-space.
Both of the constructions use standard graph-pebbling techniques to ensure memory-hardness
(and challenge-hardness) and work in the random oracle model. Plugging-in these PExt-NIPoS
constructions into FHMV’s encoding scheme, we obtain CSNMC schemes with “almost minimal
leakage” ` ≈ p− |c|.

A NIPoS with partial uniqueness based on heuristics. The constructions mentioned
above all come with rigorous security proofs (in the random oracle model). However, it turns
out that in order to achieve reasonable security, the concrete parameters of these constructions
are fairly impractical (see Section 9 for a detail analysis). For example, for a message of size
1 MB, the size of a codeword is almost 800 MB for the CHG-based NMC constructions (see Ta-
ble 2). To complement this, we take a step back on our initial idea of constructing NIPoS with
“good uniqueness”, and propose a simple and practical instantiation of NIPoS based on heuristic
assumptions. The construction uses a concrete instantiation of a memory-hard-function (MHF),
and applies a (non-interactive) publicly verifiable computation where the verification requires
small space. When the MHF is instantiated with the SoLEG-based construction of Ren and
Devadas [RD16], the resulting NIPoS has extractability and a “good measure of uniqueness”.
This yields a PExt-NIPoS with very good parameters and, consequently, plugging-in that to
FHMV’s encoding scheme we obtain a CSNMC with very small proof size (in killobytes), that
also allows a leakage, as small as p− 0.99|c|, in certain settings.

While the above scheme is practical, it is not provably secure, since we can not assume that
the hash-functions within the MHF are random oracles, as the prover needs to access the circuit
of the MHF to produce a proof of computation.4 Note that any MHF, while used in practice
with concrete hash functions (for example SHA3) for important practical applications [Tar],
provides provable guarantees only in the random oracle model (see, e.g. [ACP+17]). Instead, we

4This is similar in spirit to the works (e.g., [CGM16b, DFKP16]) that use zero-knowledge proofs of full-
domain-hash signatures — security of such signatures only holds in the random oracle model, while one needs to
have a concrete instantiation before applying zero-knowledge proofs.

3

Approach PExt-NIPoS type Assumptions Leakage Size of A

CHG SoLEG-based RO ≈ p− |c| Bounded
PTC-based RO ≈ p− |c| Bounded

Uniqueness FHMV-based RO ≈ p− |x| Unbounded poly
MHF-based Heuristic ≈ p− 0.99|c| Unbounded poly

Table 1: Among the above constructions, the MHF-based one is the most practical one whereas
the SoLEG-based one has the best concrete parameters among the provably-secure constructions.
For a detail comparison of the concrete parameters please see Table 2 in Section 9.

rely on heuristic assumptions that intuitively state that the MHF remains memory-hard when
the random oracle is instantiated with a standard hash function like SHA3.

Roadmap. We summarize our contributions below in Section 1.2. In Section 1.3 we provide
an elaborative technical overview. Then, after providing preliminaries in Section 3 and basic
definitions of Continuous Space-bounded Tampering in Section 4, we define the new NIPoS
properties (uniqueness and proof-extractability) in Section 5 where we also discuss their relations.
In Section 6, we show that the FHMV’s encoding scheme satisfies continuous space-bounded non-
malleability when instantiated with PExt-NIPoS. Section 7 introduces the notion of challenge-
hard-graphs and shows how to use them to construct PExt-NIPoS. We provide a heuristic
construction of NIPoS with (partial) uniqueness relying on memory-hard functions in Section 8
and finally in Section 9, we conclude with a instantiations and comparison of the important
concrete parameters of different encoding schemes we constructed.

1.2 Summary of our Contributions

Our overall contributions can be summarized as follows:

• We propose the first constructions of continuous space-bounded (leaky) non-malleable
codes (with a necessary “self-destruct” mechanism) and thus resolve an open problem
posed by FHMV [FHMV17a]. Overall we propose four different constructions of different
merits; we provide a comparison in Table 1:

• We introduce various abstract notions of NIPoS, like proof-extractability and uniqueness,
and show relations among them. The abstractions are targeted towards constructing
CSNMC as the main end goal, but may be of independent interests. We prove that
the FHMV encoding scheme is a CSNMC when instantiated with any PExt-NIPoS.

• We propose different techniques to construct a PExt-NIPoS. We introduce the notion
of challenge-hard graphs and show how to build PExt-NIPoS from that. We propose a
novel technique to bootstrap the important challenge-hardness parameters of a CHG by
carefully connecting a gadget to a special type of memory-hard graphs (SoLEG). Further-
more, we provide a simple construction of partially unique NIPoS that yields “reasonably
practical” parameters for the resulting PExt-NIPoS and CSNMC. It is based on heuristic
assumptions on memory-hard functions and complements the provably secure but “rela-
tively impractical” CHG-based constructions.

• Finally we provide a comparative study of the most important parameters of all our
CSNMC constructions with respect to concrete instantiations. This helps us to under-
stand the practical impacts of different techniques and constructions proposed in this
work.

4

1.3 Technical Overview

Revisiting FHMV’s construction. We start by briefly revisiting the construction of FHMV
[FHMV17a]. Recall that FHMV’s generic encoding scheme is based on any extractable (non-
interactive) proof-of-space (NIPoS).

First let us briefly recall the notion of proof-of-space introduced in [ABFG14, DFKP15].
In an interactive proof-of-space (PoS) protocol, a prover P interactively proves that she has
“sufficient amount of space/memory” to a space-bounded verifier V. One can use Fiat-Shamir
transformation [FS87] to make it non-interactive, in that the entire proof can be represented
as one single string, say πid , with respect to an identity id . The verifier is able to verify the
pair (id , πid) within bounded space. Extractability of NIPoS guarantees that: given an honestly
generated pair (id , πid), if a space-bounded “small adversary” A is able to compute another valid
(i.e. correctly verified) pair (id ′, πid ′) such that id 6= id ′, then id ′ can be efficiently extracted
from the RO queries made by the “big adversary” B (that has no space-restriction and may be
represented by a PPT algorithm) given a “small hint”5.

Given a NIPoS, FHMV’s encoding scheme works as follows. On input a message x, the
space-intense encoding algorithm runs the prover of NIPoS on an identity x to generate a proof
πx. The codeword c is simply the pair (x, πx). The space-bounded decoding algorithm, on
receiving c = (x, πx), runs the (space-bounded) verifier. If the verification passes, it returns x,
otherwise it returns ⊥ denoting the invalidity of c. Intuitively, non-malleability follows from
the guarantee provided by NIPoS; namely, whenever the small adversary tampers to a valid
codeword (x′, πx′), the new message x′ must be independent of the input message x.

To be slightly more formal, to show that this encoding scheme is non-malleable against space-
bounded attacker, one needs to simulate the tampering experiment with “a small leakage” on
x. Given the extractability, the simulator can be constructed as follows: the leakage is obtained
using the “small hint”. As guaranteed by the extractability of NIPoS, since the “small hint” (of
length η, say) is sufficient to extract id ′, each tampering can be simulated by first obtaining the
hint as a leakage and then running the NIPoS-extractor to obtain id ′. Clearly, this strategy runs
into problem for unbounded continuous tampering as the overall leakage ` becomes proportional
to θ · η (where θ denotes the number of tampering queries).

Proof-extractability to the recovery. The above discussion shows that we possibly need a
stronger guarantee from the underlying NIPoS to make FHMV’s encoding scheme a CSNMC. To-
wards that, we introduce a stronger property of a NIPoS called proof-extractability (PExt-NIPoS).
It guarantees that, given a “small hint” (of length η′, say), it is possible to construct a stronger
extractor that extracts not only the changed identity, but also the changed proof: (id ′, πid ′).
Intuitively, this means that if a small adversary computes a valid pair (id ′, πid ′), then the “big
adversary” must have computed the entire proof πid ′ (as opposed to a part of the proof as for
NIPoS) outside the small-space device; hence, enabling extracting the entire proof from the RO
queries made by B only.

Given the proof-extractor, the new NMC simulator works as follows: it uses the hint to get a
“small leakage” and then runs the proof-extractor to obtain (id ′, πid ′). Furthermore, the simula-
tor also needs an extra leakage, which consists of the “extra persistent space” (of size p− n)6 —
now the simulator reconstructs the entire persistent tampered state and can continue the rest of

5Note that we made some syntactical change to FHMV’s definition of extractability by introducing an explicit
hint-producing function. We introduce the length of the hint as a new extractability parameter which must be
small for making the definition meaningful. For example, if the leakage function leaks the entire pair (id ′, π′id),
then the definition would be trivially satisfied. Looking ahead, in the proof of CSNMC this hint will be used by
the NMC simulator as a leakage to simulate the tampering experiment. For more details we refer to Section 5.

6As discussed in Remark 3, this leakage is necessary in most of the natural settings.

5

the tampering experiment without having to make any further leakage query. However, to avoid
any leakage before the first tampering takes place (for example, if the first 100 tampering func-
tions are identities), the simulator needs to know the index when the target codeword changes
for the first time in the sequence of tampering and for that the leakage becomes proportional
to log(θ). Overall, the simulator only needs to make a constant number of leakage queries (two,
to be precise) to simulate any (polynomial) number of tampering, as opposed to making one
leakage query for each tampering. The overall leakage becomes ` ∝ log(θ) + η′+ (p−n) thereby
achieving CSNMC. Therefore, the main question that remains is how to construct PExt-NIPoS,
which will be described in the next few paragraphs.

Uniqueness and Proof-extractability. We observe that, if a NIPoS has a special property,
called uniqueness, then it satisfies proof-extractability. Intuitively, uniqueness means for a fixed
identity id , there exists exactly one string πid such that πid verifies correctly with respect to
id . Unfortunately, we do not know how to construct a NIPoS with such property (even under
heuristic assumptions). Therefore, to have a more relaxed and fine-grained notion, we define
uniqueness as a quantitative measure: a NIPoS has upos-uniqueness means that, for any identity
id , the first upos bits of any valid πid are fixed and can be computed efficiently with overwhelming
probability.

We then show (in Lemma 2) that any upos-unique NIPoS satisfies proof-extractability, where
the size η′ of the hint required for PExt-NIPoS depends on upos as: η′ = η + npos − upos, where
η denotes the size of the hint of the starting NIPoS and npos denotes the size of the proof.
This follows naturally from the construction of the hint-producing function of PExt-NIPoS, as
the hint for the proof extractor needs to contain enough information to extract both id ′ and
πid ′ . Now id ′ can be extracted from the hint produced via the starting NIPoS (by standard
extractability); given id ′ the proof-extractor can compute the first upos bits of πid ′ ; but the
remaining part, which has length npos − upos, must be separately output by the hint-producing
function of PExt-NIPoS. Notice that, maximal uniqueness means upos = npos which in turn
implies η′ = η. Hence, if FHMV’s encoding scheme is instantiated with a maximally unique
NIPoS, part of the leakage of the resulting CSNMC would be determined by only η and hence
would be minimal. We leave the task of constructing a maximally unique NIPoS as an interesting
open problem. On the other hand, we observe that the NIPoS considered by FHMV has upos ≈ 0
and hence the leakage is largely dominated by η + npos, resulting in much worse parameters.

Partially unique-NIPoS from memory-hard functions. We are able to construct an
NIPoS with reasonably large upos from heuristic assumptions on memory-hard functions. The
construction is very simple: let M be a concrete instantiation of a memory-hard function, which
guarantees that any space-bounded adversary can not compute the function on a randomly
chosen input in polynomial time. Let us assume a verifiable computation scheme (VC) where
the verification can be done in small-space. Then the NIPoS prover works as follows: given an
identity id , first compute a hash (that is assumed to be a random oracle) to generate a random
value x := H(id), then compute y := M(x) and finally run the VC prover to produce a proof
πvc to prove that y is indeed obtained by computing M(x). The proof-of-space is then defined
to be the pair (M(x), πvc). The NIPoS verifier works naturally by first computing x = H(id)
and then verifying the proof πvc in small-space.

To see that the construction above yields a NIPoS with good uniqueness, first note that the
extractability follows from the fact that the functionM is memory-hard and can not be computed
on a random input by a space-bounded “small adversary”; hence, the “big adversary” must have
queried on id ′ beforehand enabling extraction of id ′ from B’s RO queries. Note that here we
also need to rely on the soundness of VC as otherwise the small adversary could just compute

6

a different “memory-easy” function and “fake” the proof of computation to fool the verifier.
Moreover, note that, the first part of the NIPoS proof is indeed uniquely determined (with
overwhelming probability any other string would fail to verify as guaranteed by the soundness
of the VC scheme), whereas the second part, i.e. the proof πvc, is not. So, overall we have a
NIPoS with upos = |y|. Since the VC produces a short proof to enable small-space verification
(we use Pinocchio [PHGR13] to instantiate), we are able to have a NIPoS with fairly large upos,
which in turn leads to a CSNMC with very good parameters.

PExt-NIPoS from Challenge-hard graphs (CHG). In addition to the heuristic construc-
tion above, we also construct a provably secure PExt-NIPoS in the random oracle model, albeit
with an additional restriction on the class of space-bounded adversaries, namely assuming that
the description size of a small-space adversary is also bounded (as discussed in Section 1.1).

To do so, we define a new notion of memory-hard graphs, called challenge-hard graphs
(CHG). Recall that, special types of DAGs are used for memory-hardness and for constructing
proof-of-space via graph-labeling games. Usually, labels are the output of the hash functions
modeled as random oracles (therefore are not “compressible”). In a graph-based proof of space
constructions (e.g. [RD16]), an honest prover computes the labeling of the entire graph ensuring
the usage of significant amount of space. Small-space verification is done by checking the labels
of a few randomly selected nodes (or challenge nodes) of the graph — this guarantees that the
“small adversary” cannot put too many fake labelings (a.k.a. faults) without storing them and
thereby ending up using less memory.

However, such verification leaves room for computing a small part of the proof inside the
small-space device — for example, consider a multi-layered DAG (e.g. a stack of bipartite
graphs), for which a “big adversary” computes the labeling of the entire graph except for a single
node in the last layer, and the “small adversary” easily computes the label of the node inside the
small-space device. As a result the entire proof can not be extracted only from B’s RO queries,
making proof-extractability impossible.

To remedy this issue, we replace the traditional memory hard graphs with CHG, which
contains another carefully chosen set of challenges and guarantees that, even if a “big adversary”
computes the labeling of the entire graph except for a few nodes and send a bounded hint to the
“small adversary”, it is still infeasible to compute the labels of the new challenge nodes with a
small-space device. Let us remark that such a guarantee is only possible when the small adversary
has a small description size (i.e., the hint from the “big adversary” is small), as otherwise the small
adversary, for example, can hard-code the entire labeling for whole graph including all possible
challenges, making challenge hardness impossible. As discussed in Section 1.1, we propose two
instantiations of CHGs with different merits with respect to their parameters.

2 Related Works

Our work can be categorized among the work on non-malleable codes against global tampering,
where the entire codeword is subject to tampering, as opposed to granular tampering, where
the codeword is split into independently tamperable parts. In the NMC literature, majority
of work, e.g. [LL12, GPR16, ADL14, AAG+16, CG14, KOS18, KOS17, CGM+16a] falls into
the the later category; among them [CGM+16a] considers, a weaker notion (non-malleability
with replacement) of NMC like us (leaky-NMC). A few other works, e.g. [FMVW14, AGM+15,
BDKM16, BDKM18] consider global tampering. Moreover, most of these work consider one-time
tampering. Continuous tampering, first proposed in [FMNV14], is addressed also in [FNSV18,
ADN+17, OPVV18, AKO17, FMNV15]. Except FHMV [FHMV17a], the recent work by Ball et
al. [BDKM18] also considers space-bounded NMC, albeit in a streaming model. Our modeling of

7

space-bounded adversary, which is also adapted in FHMV is used in earlier woks like [DKW11b,
DKW11a] for constructing different schemes. For more detail on different NMC-based compilers
for tamper-resilience we refer to [Muk15].

3 Preliminaries

3.1 Notation

For a string x, we denote its length by |x|; a truncated string from i-th bit to j-th bit is denoted by
x[i . . . j]; for a a ∈ N, bit(a) ∈ {0, 1}∗ is its boolean representation and bit−1 is the corresponding
inverse function; if X is a set, |X | represents the number of elements in X . When x is chosen
randomly in X , we write x←$ X . When A is an algorithm, we write y ← A(x) to denote a run of
A on input x and output y; if A is probabilistic, then y is a random variable and A(x; r) denotes
a run of A on input x and randomness r. An algorithm A is probabilistic polynomial-time (PPT)
if A is probabilistic and for any input x and a randomly chosen r ∈ {0, 1}∗ the computation
of A(x; r) terminates in at most a polynomial (in the input size) number of steps. We often
consider oracle-aided algorithms AO(·), with access to an oracle O(·).

For any string x, and any hash function H, we use the notation Hx to denote the specialized
hash function that accepts only inputs with prefix equal to x. Often the hash function is modeled
as a random oracle.

We consider Turing Machine as our model of computation where any algorithm A is formally
represented as a binary string. Any string w hardwired into A is denoted in the subscript as
Aw and also becomes part of its description. An algorithm A has a state stA ∈ {0, 1}∗ that does
not include the description of A. stA is typically initialized with the input x and (optionally)
some other auxiliary information. At each time step stA is updated. At termination A returns
an output y also denoted as A(x). If A is a stateful algorithm then it also outputs the state stA.

We denote with λ ∈ N the security parameter. In the rest of the paper λ will always be an
implicit security parameter and any other parameter will be a function of λ. A function ν : N→
[0, 1] is negligible in the security parameter (or simply negligible), denoted ν(λ) ∈ negl(λ), if it
vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) = λ−ω(1). A function µ : N→ R
is a polynomial in the security parameter, written µ(λ) ∈ poly(λ), if, for some constant c ≥ 1,
we have µ(λ) ∈ O(λc).

3.2 Basic Definitions

We present a concrete definition of pseudorandom function.

Definition 1 (Pseudorandom Function). For parameters k, µ, n ∈ N and εpr ∈ [0, 1) a keyed
family of functions {Pχ : {0, 1}k → {0, 1}n}χ∈{0,1}µ is called a (k, n, µ, εpr)-pseudorandom func-
tion7 if for any PPT adversary A the probability of the following real-or-random game to output
1 is at most 1

2 + εpr:

Real-or-Random Game for P

• Choose a random key χ←$ {0, 1}µ.
• Choose a random bit b←$ {0, 1}.
• For each query x from A do as follows depending on b:

7Note that εpr would be a function of the security parameter and the number of queries made by A in the
real-or-random game. For simplicity we will fix a upper bound on the number of queries and then choose εpr
accordingly. Concretely we will fix all query-bound to be 264. For more details see Section 9.

8

– b = 0: if x queried earlier, send the same reply as before; otherwise send a
fresh random value y←$ {0, 1}n to A.

– b = 1: send y := Pχ(x) to A.
• Receive a guess b′ from A. Return 1 if and only if b = b′ and 0 otherwise.

Sometimes we will use PRF with arbitrary large domain (that is {0, 1}∗). Such PRF can be
constructed from any PRF satisfying above definition by Merkle-Damgård domain extension
technique and called a (∗, n, µ, εpr)-PRF.

We will be using the following tail bound in the proof of Lemma 7.

Lemma 1 (Hoeffding inequality). Let Z1, . . . , Zn be independent random variables that are
identically distributed, and 0 ≤ Zi ≤ 1 for every i ∈ [n]. Denote by Xn :=

∑n
i=1 Zi. Then, for

any ε ∈ (0, 1), it holds that

Pr [Xn ≤ E [Xn]− εn] ≤ exp(−2ε2n) .

Let us recall the standard definitions of coding schemes for boolean messages.

Definition 2 (Coding schemes/Codes). A (k, n)-code Π = (Init,Encode,Decode) is a triple of
algorithms specified as follows: (i) The (randomized) generation algorithm Init takes as input
λ ∈ N and returns public parameters pp ∈ {0, 1}∗; (ii) The (randomized) encoding algorithm
Encode takes as input hard-wired public parameters pp ∈ {0, 1}∗ and a value x ∈ {0, 1}k, and
returns a codeword c ∈ {0, 1}n; (iii) The (deterministic) decoding algorithm Decode takes as
input hard-wired public parameters pp ∈ {0, 1}∗ and a codeword c ∈ {0, 1}n, and outputs a
value in {0, 1}k ∪ {⊥}, where ⊥ denotes an invalid codeword.

We say that Π satisfies correctness if for all pp ∈ {0, 1}∗ output by Init(1λ) and for all
x ∈ {0, 1}k, Decodepp(Encodepp(x)) = x with overwhelming probability over the randomness of
the encoding algorithm. A codeword c is called valid if Decodepp(c) 6= ⊥.

3.3 Bounded Algorithms

In this paper we will be dealing with algorithms that are restricted in terms of different re-
sources. In particular we consider two main types of resource: time and space. Importantly,
in contrast with [FHMV17a] we split the space-usage into two parts: (i) the space required to
store the algorithm and (ii) additional space used by it. Faust et al. [FHMV17a] only assumes
concrete measure of the later one and the former one was implicitly assumed to be an unbounded
polynomial in the security parameter. We formalize the notion of bounded algorithms below.

Definition 3 (Bounded algorithms). Let A be an algorithm such that (i) f -bits are sufficient
to describe the code of A, (ii) at any time during its execution, the state of A can be described
by at most s bits and (iii) on any input, A runs for at most t time-steps. Then we say that A
is a (s, f, t)-bounded algorithm. For such algorithms we have fA ≤ f, sA ≤ s and tA ≤ t (with
the obvious meaning). Sometimes, for simplicity, we will call an (s, poly(λ),poly(λ))-bounded
algorithm just s-space-bounded, an (s, poly(λ), t)-bounded algorithm (s, t)-space-time bounded
and an (s, f,poly(λ))-bounded algorithm (s, f)-total-space-bounded.

Note that the bound f the size of A is also an upper bound on the hardwired auxiliary informa-
tion. We stress that, similarly to previous works [DKW11a, DKW11b], in case A is modeled as
a Turing machine, we count the length of the input tape and the position of all the tape heads
within the space bound s. Given an input x ∈ {0, 1}n, and an initial configuration σ ∈ {0, 1}s−n,
we write (y, σ̃) := A(x;σ) for the output y of A including its final configuration σ̃ ∈ {0, 1}s−n.

Intuitively, a coding scheme can be decoded in bounded space if the decoding algorithm is
space bounded.

9

Definition 4 (Space-bounded decoding). Let Π = (Init,Encode,Decode) be a (k, n)-code, and
d ∈ N. We call Π a (k, n)-code with d-space-bounded decoding, if for all pp output by Init(1λ)
the decoding algorithm Decodepp(·) is d-space-bounded.

3.4 Random Oracles

All our results are in the random oracle model (ROM). Therefore we first discuss some basic
conventions and definitions related to random oracles. This section is taken almost verbatim
from [FHMV17a]. First, recall that in the ROM, at setup, a hash functionH is sampled uniformly
at random, and all algorithms, including the adversary, are given oracle access to H (unless
stated otherwise). For instance, we let Π = (InitH,EncodeH,DecodeH) be a coding scheme in
the ROM. Second, without loss of generality, we will always consider a random oracle H with a
type H : {0, 1}∗ → {0, 1}nH .

We emphasize that unlike many other proofs in the ROM, we will not need the full pro-
grammability of random oracles in pur proofs. In fact, looking ahead, in the security proof
of our code constructions, we can just assume that the random oracle is non-adaptively pro-
grammable as defined in [BM15].8 The basic idea is that the simulator/reduction samples a
partially defined “random-looking function” at the beginning of the security game, and uses that
function as the random oracle H. In particular, by fixing a function ahead of time, the reduction
fixes all future responses to random oracle calls—this is in contrast to programmable random
oracles, which allow the simulator to choose random values adaptively in the game, and also to
program the output of the oracle in a convenient manner. In particular, in most of our proofs
we will be simulating the random oracles with a PRF.

We additionally make the following convention. Random oracle queries are stored in query
tables. Let QH be such a table. QH is initialized as QH := ∅. Hence, when the random
oracle H is queried on a value u, a new tuple (bit(u), u,H(u)) is appended to the table QH
where bit : {0, 1}∗ → {0, 1}O(log λ) is an injective function that maps each input u to a unique
identifier, represented in bits. We call bit(u) the index of (u,H(u)) in QH. Clearly, for any tuple
(i, u,H(u)) we have that bit−1(i) = u.

4 Continuous Space-bounded Tampering

Space-bounded Tampering algorithms. We assume that tampering algorithms are deter-
ministic9, sequential and (s, f)-total-space-bounded, where s, f ∈ N are tunable parameters and
are usually functions of the security parameter λ. Let us denote the class of all such algorithms
by As,fspace. When the context is clear, we might just refer to As,fspace by Aspace for simplicity.
Generally any A ∈ As,fspace will be often referred to as a space-bounded tampering algorithm.

Oracles. Next we define space-bounded tampering oracle with self-destruct. In contrast with [FHMV17a]
(Definition 5) our tampering oracle has the “self-destruct” mechanism.

Definition 5 (Space-bounded Tampering Oracle with Self-destruct). A space-bounded tampering
oracle with self-destructOΠ,x,pp,s,f,p

real-sd is parametrized by a (k, n)-code Π = (InitH,EncodeH,DecodeH),
a string x ∈ {0, 1}k, public parameters pp ∈ {0, 1}∗ and integers s, p ∈ N (with s ≥ p ≥ n). Ini-
tially, the oracle assigns a flag sd := 0, and sets a state st := (c, σ), where c := EncodeH(pp, x),

8In [BM15], the authors show that such random oracles are equivalent to non-programmable ones, as defined
in [FLR+10].

9This is without loss of generality, as in the tampering setting A is chosen by PPT distinguisher D (“big
adversary” in our case) who can just hardwires its truly random coin to A.

10

and σ := σ0||σ1 := 0p−n||0s−p. Given input a space-bounded tampering algorithm A ∈ As,fspace,
the oracle works as follows:

Oracle OΠ,x,pp,s,f,p
real-sd (A):

Parse st = (c, σ0, σ1)
(c̃, σ̃0, σ̃1) := AH(c;σ0||σ1)
Update st := (c̃, σ̃0, 0

s−p)
x̃ := DecodeH(pp, c̃); If x̃ = ⊥ then sd := 1
If sd = 1 return ⊥
Return x̃.

Remark 1. We assume that the tampering algorithm has access to the public parameter but
we do not explicitly hardwire it inside A and hence it is neither accounted for in the bound f
nor in s. Similar to the setting of non-malleable codes in the common random string model
(cf. [LL12, FMNV14]) pp is considered to be untamperable. In reality pp can be part of a
read-only memory to which the attacker does not have write access. We do not formalize that
explicitly.

We recall from [FHMV17a] the definitions of the leakage O`,xleak that can be queried in order
to retrieve up-to ` bits of information about x and the simulation oracle which would use the
leakage oracle to simulate the output of the tampering experiment.

Definition 6 (Leakage oracle). A leakage oracle O`,xleak is a stateful oracle that maintains a
counter ctr that is initially set to 0. The oracle is parametrized by a string x ∈ {0, 1}k and
a value ` ∈ N. When O`,xleak is invoked on a polynomial-time computable leakage function L,
the value L(x) is computed, its length is added to ctr, and if ctr ≤ `, then L(x) is returned;
otherwise, ⊥ is returned.

Definition 7 (Simulation oracle). A simulation oracle OS2,`,x,s,f,pp
sim is an oracle parametrized

by a stateful PPT algorithm S2, values `, s ∈ N, some string x ∈ {0, 1}k, and public parameters
pp ∈ {0, 1}∗. Upon input a space-bounded tampering algorithm A ∈ As,fspace, the output of the
oracle is defined as follows.

Oracle OS2,`,x,s,f,pp
sim (A):

Let x̃← S
O`,xleak(·)
2 (1λ, pp,A)

If x̃ = same? set x̃ := x.
Return x̃.

Space-bounded Continuous Non-malleability. Our definition is broadly the same as
in [FHMV17a] with slight modifications: here the real tampering oracle Oreal-sd has self-destruct
in it and we consider a concrete non-malleability error-bound εnm.

Definition 8 (Space-bounded continuous non-malleability with self-destruct). For parameters
k, n, `, s, f, p, θ, d, nH ∈ N (with s ≥ p ≥ n) and εnm ∈ [0, 1) let H : {0, 1}∗ → {0, 1}nH be a ran-
dom oracle, then we say a (k, n)-code Π = (InitH,EncodeH,DecodeH) is an `-leaky (s, f, p)-space-
bounded10 (θ, εnm)-continuously non-malleable code with self-destruct with d-space-bounded de-
coding (or (`, s, f, p, θ, d, εnm)-SP-NMC-SD) in the ROM if Π satisfies the following conditions:

10Note that the terminology “space-bounded" is slightly overloaded as we use it both for an encoding scheme
as well as for an algorithm (cf. Definition 3.)

11

• Space-bounded decoding: DecodeH is d-space-bounded.

• (`, θ, εnm)-continuous non-malleability: For any PPT distinguisher D that makes at
most θ queries to the tampering oracle Oreal-sd, there exists a pair of PPT algorithms (also
called the simulator) S = (S1,S2), such that for all x ∈ {0, 1}k and λ ∈ N,∣∣Pr

[
DH(·),OΠ,x,pp,s,f,p

real-sd (·)(pp) = 1 : pp← InitH(1λ)
]

− Pr
[
DS1(·),OS2,`,x,s,f,pp

sim (·)(pp) = 1 : pp← InitS1(1λ)
] ∣∣ ≤ εnm,

the randomness coming from H, Init, D, S = (S1, S2) and encoding of Oreal-sd.

Remark 2. The roles of S1 and S2 are the same as in [FHMV17a]. Intuitively, S1 simulates all
the random oracle queries and S2 simulates the tampering queries with the help of the leakage
oracle. We implicitly assume that S1 and S2 may share states. For readers familiar with the
notion of non-malleable codes in the common reference string model (c.f. [LL12, FMNV14]), we
remark that the simulator is not required to program the public parameters (but is instead allowed
to program the random oracle).

We are interested in constructing an encoding scheme which satisfies Definition 8 with any
choice of θ = poly(λ). Recall from Section 3.2 of [FHMV17a] that, in this case, self-destruct
is necessary in order to achieve a meaningful notion of non-malleability as otherwise whenever
θ ≥ n it is impossible to achieve space-bounded non-malleability for any non-trivial11 leakage `.

Remark 3. We notice that, if the parameter f is such that adversaries from As,fspace can have
valid encodings (c1, c2) of two different messages hard-wired into their description, the leakage `
will be (approximately) at least as big as the size of the “extra persistent space” p−n. Otherwise,
the distinguisher D can send a space-bounded adversary A with hard-wired (c1, c2), which first
copies any p − n bits of the target message into the extra persistent space and then depending
on the first bit of that overwrites the target encoding with c1 or c2. Repeating this process, D
learns the entire extra persistent space after only a few (θ ≈ p−n) tampering. Therefore, in our
setting where we allow sufficiently large f and any unbounded θ ∈ poly(λ), the leakage ` always
contains p− n as an additive factor.

5 Non-Interactive Proof of Space (NIPoS)

As in [FHMV17a], the main building block of our NMC construction is Non-Interactive Proof of
Space (for short NIPoS). Intuitively, a NIPoS allows a prover to convince a verifier that she has
a lot of space/memory. Importantly, the verification done on the verifier’s side is space efficient.

We start by recalling the definition of NIPoS from [FHMV17a] adjusted to (s, f, t)-bounded
algorithms. We split the definitions completeness and extractability here. Then we define
property called proof-extractability. We made some syntactical changes to the definition of
extractability to align it with the proof-extractability definition. Finally we define a new quan-
titative measure of NIPoS called uniqueness and show that uniqueness, when combined with
extractability gives proof-extractability.

Definition 9 (Non-interactive proof of space (NIPoS)). For parameters sP, sV, kpos, npos ∈ N
with sV ≤ s < sP an (kpos, npos, sP, sV)-non-interactive proof of space scheme (NIPoS for short)
in the ROM consists of a tuple of PPT algorithms (SetupH,PH,VH) with the following syntax.

11Recall that for any non-trivial leakage we must have ` ≤ k − ω(log k) as otherwise the tampering adversary
learns (almost) all information about the input rendering the notion useless.

12

• SetupH(1λ): This is a randomized polynomial-time (in λ) algorithm with no space re-
striction. It takes as input the security parameter and outputs public parameters pppos ∈
{0, 1}∗.

• PHpppos(id): This is a probabilistic polynomial-time (in λ) algorithm that is sP-space-
bounded. It takes as input an identity id ∈ {0, 1}kpos and hard-wired public parameters
pppos, and it returns a proof of space π ∈ {0, 1}npos .

• VHpppos(id , π): This algorithm is sV-space-bounded and deterministic. It takes as input an
identity id , hard-wired public parameters pppos, and a candidate proof of space π, and it
returns a decision bit.

We require completeness to hold:

Completeness: For all id ∈ {0, 1}kpos , we have that

Pr
[
VHpppos(id , π) = 1 : pppos ← SetupH(1λ);π ← PHpppos(id)

]
= 1,

where the probability is taken over the internal random coins of the algorithms Setup and
P, and over the choice of the random oracle.

We define the extractability of a NIPoS separately as follows.

Definition 10 (Extractability of NIPoS). Let NIPoS = (SetupH,PH,VH) be an (kpos, npos, sP,
sV)-non-interactive proof of space scheme. Let s, f, t, η ∈ N and εpos ∈ [0, 1) be parameters with
sV ≤ s < sP. Then we say that NIPoS is (s, f, t, η, εpos)-extractable (Ext-NIPoS) if there exists
a polynomial-time deterministic algorithm K (the knowledge extractor) and a deterministic
efficiently computable function Fhint : {0, 1}∗ → {0, 1}η such that for any probabilistic poly-
nomial-time algorithm B, we have

Pr[Gext
B,id (λ) = 1] ≤ εpos,

for the game Gext
B,id (λ) defined as follows:

Game Gext
B,id (λ):

1. Sample pppos ← SetupH(1λ) and π ← PHpppos(id).

2. Let A ← BHpppos(id , π) such that A ∈ As,fspace (if this condition fails, then output
0 and stop).

3. Let (ĩd , π̃) := AH(id , π).

4. Let z := Fhint(pppos,QH(B), ĩd).

5. Let α := K(pppos,QH(B), z).

6. Output 1 if and only if: (i) VHpppos(ĩd , π̃) = 1; (ii) ĩd 6= id and (iii) ĩd 6= α;
otherwise output 0,

where the set QH(B) contains the sequence of queries of B to H and the corresponding answers,
and where the probability is taken over the coin tosses of Setup,B,P and over the choice of the
random oracle.

13

Remark 4. Note that, we made two changes from the one used in FHMV: first we introduce a
new hint-producing function which can return a “small string” (for example, the the index of ĩd
in the RO table QH(B)) and given that hint, the extractor can now find out the target identity
from the same table. Secondly, the extractor here only returns the target identity instead of all
identities found in the table (as done in FHMV). We stress that it is important for the parameter
η to be small, as otherwise the definition is trivially satisfied. Looking ahead, the final measure
of leakage in the NMC construction will be controlled by the size of this hint.

Extractability guarantees that if the space bounded adversary A successfully tampers to a
new pair (ĩd , π̃), the identity ĩd can be extracted from the query table of the algorithm B, i.e.,
the pair (ĩd , π̃) was (partially) precomputed by B. Let us stress that knowledge of ĩd does
not generally imply knowledge of the entire pair (ĩd , π̃). This is because there might be many
different π̃ for which VHpppos(ĩd , π̃) = 1, unless, of course, there is a unique such π̃. In order
guarantee extraction of the entire pair (ĩd , π̃), we need NIPoS to satisfy a stronger extractability
property, which we call Proof-Extractability and define next.

Definition 11 (Proof-Extractability of NIPoS). Let NIPoS := (SetupH,PH,VH) be a (kpos, npos,
sP, sV)-non-interactive proof of space scheme. Let s, f, t, η ∈ N and εp-ext ∈ [0, 1) be parameters
such that sV ≤ s < sP. Then NIPoS is called (s, f, t, η, εp-ext)-proof extractable (PExt-NIPoS) if
there exists a polynomial time deterministic algorithm K (the proof-extractor) and an efficiently
computable deterministic function Fhint : {0, 1}∗ → {0, 1}η such that for any PPT algorithm B
and any identity id ∈ {0, 1}kpos , it holds that

Pr[Gpext
B,id (λ) = 1] ≤ εp-ext,

for the game Gpext
B,id (λ) defined as follows:

Game Gpext
B,id (λ):

1. Sample pppos ← SetupH(1λ) and π ← PHpppos(id).

2. Let A ← BHpppos(id , π) such that A ∈ As,fspace (if this condition fails, then output
0 and stop).

3. Let (ĩd , π̃) := AH(id , π).
4. Let z := Fhint(pppos,QH(B), (ĩd , π̃))

5. Let α := K(pppos,QH(B), z)

6. Output 1 if and only if: (i) VHpppos(ĩd , π̃) = 1; (ii) ĩd 6= id and (iii) (ĩd , π̃) 6= α;
otherwise output 0,

where the set QH(B) is the random oracle query table of B.12 The probability is over the choice
of the random oracle, and the coin tosses of Setup,B.

Remark 5. Note that, in the above definition the hint-producing function takes the pair (ĩd , π̃)
as opposed to only ĩd as in Definition 10. Intuitively this means that, given some small hint,
the extractor does not only return the changed identity, but the identity-proof pair. Clearly this
makes the later definition stronger.

As mentioned above, when there is a unique valid proof corresponding to each identity, then
proof-extractability reduces to simply extractability. Nevertheless, it may also be possible that
only a part of the proof is uniquely determined. We formalize this by the following definition.

12 Note that B does not make RO queries after outputting the small adversary A.

14

Definition 12 (Uniqueness of NIPoS). Let NIPoS := (SetupH,PH,VH) be a (kpos, npos, sP, sV)-
NIPoS. Then NIPoS is called (upos, εunique)-unique (where upos ≤ npos, upos ∈ N and εunique ∈
negl(λ)) if for any λ ∈ N, there is a deterministic function J : {0, 1}∗×{0, 1}kpos → {0, 1}upos such
that for pppos ← SetupH(λ), any identity id ∈ {0, 1}kpos and any π ∈ {0, 1}npos , if VHpp(id , π) = 1,
then J(pppos, id) = π[1 . . . upos] with probability at least 1−εunique (where the probability is over
the randomnesses of SetupH and PH).

Remark 6. Intuitively, the definition says that for a valid proof π, a part of π (first upos bits
in this case) can be uniquely and efficiently determined given the id and the public parameters
pp with overwhelming probability.

In the following lemma, we formally show that uniqueness and extractability together imply
proof-extractability. To see this, observe that, e.g., maximal uniqueness implies that given ĩd ,
the corresponding πĩd is fixed and hence it suffices to provide the PExt-NIPoS hint-producer
only with ĩd .

Lemma 2. Let NIPoS := (SetupH,PH,VH) be a (kpos, npos, sP, sV)-NIPoS that is (upos, εunique)-
unique and (s, f, t, η, εpos)-extractable. Then NIPoS is (s, f, t, η′, εp-ext)-proof-extractable where

η′ = η + npos − upos εp-ext ≤ εpos + εunique

Proof. Given the hint-producing function Fhint and the extractor K for the extractable NIPoS we
construct a hint-producing function F ′hint and an extractor K′ for proof-extractability as follows:

F ′hint: It takes (pppos,QH(B), (ĩd , π̃)) as input and runs Fhint on (pppos,QH(B), ĩd) to obtain `.
It returns `′ where `′ = `‖β for β := π̃[upos + 1 . . . npos].

K′: It takes (pppos,QH(B), `′) as input, parses `′ = `‖β. Then it runs α := K(pppos,QH(B), `)
and γ := J(pppos, α). It returns (α, α′) where α′ = γ‖β.

It is clear that, whenever the standard extractor K is able to extract the correct ĩd , the
proof-extractor will be able to extract the correct pair (ĩd , π̃) as the part of π̃ was uniquely
derived by J and the rest of it is obtained from the additional hint. Therefore, the only case
when K′ would fail is exactly when (i) K fails or (ii) J fails. Hence we have εp-ext ≤ εpos +εunique.
On the other hand, since F ′hint needs to output an additional hint of π̃[upos + 1 . . . npos] the hint
η′ is more than η by exactly npos− upos and hence we have η′ = η+npos− upos. This completes
the proof.

6 Space-bounded NMC from Proof-Extractable NIPoS

We are now prepared to show that the encoding scheme of FHMV satisfies Definition 8 for any
unbounded θ ∈ poly(λ) when instantiated with any PExt-NIPoS. For completeness, we first
recall the FHMV construction. This is taken (almost) verbatim from [FHMV17a].

The Encoding Scheme of [FHMV17a]. Let (SetupH,PH,VH) be a (k, n, sP, sV)-NIPoS in
the ROM where H : {0, 1}∗ → {0, 1}nH denotes the random oracle for some nH ∈ poly(λ). We
define a (k, n)-coding scheme Π = (InitH,EncodeH,DecodeH) as follows.

InitH(1λ): Given as input a security parameter λ, it generates the public parameters for the
NIPoS as pppos←$ SetupH(1λ), and outputs pp := pppos.

15

EncodeHpp(x): Given as input the public parameters pp = pppos and a message x ∈ {0, 1}k, it
runs the NIPoS prover to generate a proof of space π ← PHpppos(x) using the message x as
identity. Then it outputs c := (x, π) ∈ {0, 1}n as a codeword.

DecodeHpp(c): Given a codeword c, it first parses c as (x, π). Then it runs the NIPoS verifier
b := VHpppos(x, π). If b = 1 it outputs x, otherwise it outputs ⊥.

The following theorem formally states that the above construction is a continuous non-malleable
code for any θ ∈ poly(λ).

Theorem 1. Let λ be a security parameter and H : {0, 1}∗ → {0, 1}nH be a hash function
modeled as a random oracle. Let {PRFχ : {0, 1}∗ → {0, 1}nH}χ∈{0,1}nkey be any (∗, nH, nkey, εpr)-
PRF, where nkey ∈ poly(λ). Let (SetupH,PH,VH) be any (kpos, npos, sP, sV)-NIPoS that is
(s, f,poly(λ), η, εp-ext)-proof-extractable. Then for any θ ∈ poly(λ), the (k, n)-code Π = (InitH,
EncodeH,DecodeH) defined above is an (`, s, f, p, θ, sV, εnm)-SP-NMC-SD in the ROM, where

k = kpos

n = kpos + npos

kpos + npos ≤ p < 2n−O(log(λ))

` = p− n+ dlog θe+ η

εnm ≤ εpr + εp-ext

The above theorem together with Lemma 2 imply that the encoding scheme of Faust et al.
satisfies Definition 8 also when instantiated with any Ext-NIPoS with (partial) uniqueness. This
is formalized in the following corollary:

Corollary 1. Let λ be a security parameter and H : {0, 1}∗ → {0, 1}nH be a hash function mod-
eled as a random oracle. Let {PRFχ : {0, 1}∗ → {0, 1}nH}χ∈{0,1}nkey be any (∗, nH, nkey, εpr)-PRF
where nkey ∈ poly(λ). Let (SetupH,PH,VH) be any (kpos, npos, sP, sV)-NIPoS that is (s, poly(λ),
poly(λ), η, εpos)-extractable and (upos, εunique)-unique. Then for any θ ∈ poly(λ), the (k, n)-code
Π = (InitH,EncodeH,DecodeH) of FHMV is an (`, s,poly(λ), p, θ, sV, εnm)-SP-NMC-SD in the
ROM, where

k = kpos n = kpos + npos kpos + npos ≤ p < n+ k −O(log(λ))

` = p− k − upos + dlog θe+ η + 2 εnm = εpr + εpos + εunique.

Proof of Theorem 1. We remark that, due to close similarity with the proof of [FHMV17a,
Theorem 3], we will be using many texts that are taken verbatim from [FHMV17a].

We fix the oracle output length nH ∈ N and the parameters k, n, `, s, f, p, θ = poly(λ)
for the (k, n)-code Π = (InitH,EncodeH,DecodeH). The correctness of the coding scheme is
guaranteed by the perfect completeness of the underlying NIPoS. Moreover, since the decoding
algorithm simply runs the verifier of the NIPoS, it is straightforward to observe that decoding
is sV bounded.

To prove Theorem 1, it is sufficient to show that there exists an explicit construction of
PPT simulator S = (S1, S2) such that the (k, n)-code Π satisfies (`, θ, εnm)-continuous non-
malleability. Before we construct such simulator, let us recall that proof-extractability of the
underlying NIPoS implies existence of a hint-producing function Fhint and a knowledge extractor
K. On high level, the hint-producing function takes as input a valid pair (id , π) and a table
of random oracle queries Q and outputs a string z of length η. Given this hint and the query
table Q, the knowledge extractor K is able to reconstruct the pair (id , π). The simulator we now
define heavily relies on these two algorithms.

16

Constructing the simulator. We now describe the simulator SD = (SD1 , S
D
2), depending on

a PPT distinguisher D.13 A formal definition of the simulator is given in Fig. 1; we provide a
high level description of the simulator below.

Informally, algorithm S1 simulates the random oracle H by sampling a uniform random key
χ←$ {0, 1}nkey for a pseudorandom function (PRF) PRFχ : {0, 1}∗ → {0, 1}nH ; hence, it defines
H(u) := PRFχ(u) for any u ∈ {0, 1}∗.14 S2 receives the description of the RO (i.e., the PRF key
χ) from S1.

The simulator S2 then makes a query to the leakage oracle with the function L1 that has
hard-coded: the coding scheme Π, the description of the simulated RO, the code of D and the
encoding randomness ρenc. The function L1 first encodes (using the randomness ρenc) the target
message x to generate a codeword c. Then it runs the code of D to obtain the first tampering
algorithm A1 which it applies to c and obtains a tampered codeword c̃. In case the tampered
codeword decodes to the target message x, the leakage function continues running D to obtain
the second tampering algorithm A2 which it applies to c̃. Let Aj? be the first tampering algorithm
that tampers to a codeword that does not decoded to the target message x. The leakage function
L1 returns the binary representation of j? to the simulator S2. In case no such Aj? exists, the
L1 signals this to S2 by returning the flag 0`1 .

If the output of the leakage oracle if the flag 0`1 , S2 replies all tampering queries A1, . . . ,Aθ
by outputting the symbol same?. Otherwise, the simulator S2 learns the value j?. In that case,
S2 answers all the tampering queries A1, . . . ,Aj?−1 by outputting the symbol same?. In order
to answer the j?-tampering query, the simulator S2 makes another query to the leakage oracle.
This time with the function L2 which has hard-coded: the coding scheme Π, the description of
the simulated RO, the query table QH(D) consisting of all RO queries made by D (until this
point), the code of all tampering algorithms A1, . . . ,Aj? , the encoding randomness ρenc and the
code of the hint-producing function Fhint.

The function L2 first encodes (using the randomness ρenc) the target message x to generate
a codeword c. Then it applies the composed function Aj? ◦ Aj?−1 ◦ · · · ◦ A1 on c to generate
the tampered codeword c̃ which it decodes to obtain a value x̃ 6= x. If x̃ is equal to ⊥, i.e. c̃ is
an invalid codeword, then the leakage function signals this fact by returning the flag 0`2 to the
simulator S2. Otherwise, the leakage function runs the hint-producing function Fhint to obtain a
string z defining how to reconstruct the tampered codeword from the query table QH(D). The
leakage function returns z and p− n bits of the additional persistent space.

If the output of the leakage oracle is the flag 0`2 , the simulator S2 replies to all tampering
queries Aj? , . . . ,Aθ by ⊥. Otherwise, the simulator S2 replies to the j?-th tampering query by
the message x̃, where (x̃, π̃) = c̃ := K(pp,QH(D), z). S2 recovers the entire persistent space and,
hence, is able to answer all follow up tampering queries without any further leakage query.

Some intuitions. Firstly, note that in the real experiment the random oracle is a truly random
function, whereas in the simulation random oracle queries are answered using a PRF. However,
using the security of the PRF, we can move to a mental experiment that is exactly the same as
the simulated game, but replaces the PRF with a truly random function.

Secondly, observe that if none of the tampering algorithms Ai tampers with the codeword
or none of the algorithms tampers to a codeword c̃ which decodes to a different message than
the target message x, i.e. the first leakage function returns 0`1 , then the simulator perfectly
simulates the real experiment since it answers all the tampering queries by the symbol same?

which is exactly what the tampering oracle does.
13In the rest of the proof we drop the superscript D, and just let S = (S1,S2).
14Such a PRF can be instantiated using any PRF with fixed domain, and then applying the standard Merkle-

Damgård transformation to extend the input domain to arbitrary-length strings.

17

Simulator S = (S1, S2)

1. Let PRFχ : {0, 1}∗ → {0, 1}nH be a PRF. The simulator S1 samples a uniform random key
χ← {0, 1}nkey and defines H := PRFχ. The query table QH(D) is initially empty.

2. S2 receives χ from S1. Then it queries the leakage oracle on the following leakage function:

Leakage function L1 : {0, 1}∗ → {0, 1}`1

L1 is hard-coded with the description of H (i.e. with PRFχ) and thus it consis-
tently answers all RO queries from D and all Ai. Furthermore, it is hard-coded
with the encoding scheme Π, the code of D and the encoding randomness ρenc.

(a) Produce the codeword c←$ EncodeHpp(x) using randomness ρenc and initialize
the auxiliary space σ := σ0||σ1 := 0p−n||0s−p. Let i := 1 and j? := 0.

(b) If i ≤ θ, do as follows:
i. Run D to get tampering algorithm Ai. Let (c̃, σ̃0||σ̃1) := Ai(c;σ0||σ1).
ii. Compute x̃ := DecodeHpp(c̃).
iii. If x̃ 6= x, then set j? := i and go to Step 2c. Else increment i by 1,

define (c, σ0||σ1) := (c̃, σ̃0||0s−p) and go back to Step 2b.
(c) Return ζ1 := bit(j?).

3. Once S2 obtains ζ1 ∈ {0, 1}`1 , it proceeds as follows. If ζ1 = 0`1 , then it sets j? := θ + 1,
else it sets j? := bit−1(ζ1). Then it returns same? for all queries Ai, where 0 < i < j?. If
j? = θ + 1, then the simulator stops. Else it proceeds to Step 4.

4. For the j?-th tampering query Aj? , S2 makes another call to its leakage oracle with the
following leakage function:

Leakage function L2 : {0, 1}∗ → {0, 1}`2 :

L2 is hard-coded with the description of H (i.e., with PRFχ), the table QH(D),
the code of (A1,A2, . . . ,Aj?), the encoding scheme Π, the code of the hint-
producing function Fhint of the NIPoS and the same encoding randomness ρenc.

(a) Produce the codeword c←$ EncodeHpp(x) using the same ρenc and initialize
the auxiliary space σ := σ0||σ1 := 0p−n||0s−p.

(b) Let Ã := Aj? ◦ Aj?−1 ◦ · · · ◦ A1. Run Ã to get (c̃, σ̃0||σ̃1) := Ã(c;σ0||σ1).
(c) Compute x̃ := DecodeHpp(c̃). If x̃ = ⊥, output the flag 0`2 , otherwise run

z := Fhint(pp,QH(D), c̃) and return ζ2 := z ‖ σ̃0 ‖ 1.

5. Depending on the `2-bit string ζ2, the simulator S2 proceeds as follows:

(a) If ζ2 = 0`2 , then S2 returns ⊥ for all tampering queries Ai, where i ≥ j?.
(b) Else S2 parses ζ2 as z ‖ σ̃0 ‖ 1, runs (x̃, π̃)← K(pp,QH(D), z) and outputs x̃ for the

j?-th tampering query Aj? . S2 it reconstructs the entire memory (c, σ) as c := (x̃, π̃)
and σ := σ̃0||0s−p. It answers all the follow up tampering queries Ai, where i > j?,
without any further access to the leakage oracle, as follows

i. Run Ai to obtain (c̃, σ̃0||σ̃1) := Ai(c;σ0||σ1).
ii. Output DecodeHpp(c̃) and set (c, σ0||σ1) := (c̃, σ̃0||0s−p).

Figure 1: Description of the simulator S = (S1, S2)

18

Assume now that the first leakage query returns bit(j?) such that 0 < j? ≤ θ. Intuitively, the
only case in which the simulation strategy of answering the j?-th tampering query goes wrong
is when the tampered codeword c̃ is valid, but the knowledge extractor K fails to reconstruct
the codeword c̃. We denote this event as NotExtr. We prove that NotExtr occurs exactly
when the adversary D violates the proof-extractibility property of the underlying NIPoS, which
happens only with negligible probability.

Finally, if the simulator answers reconstructs the tampered codeword after the j?-th tam-
pering query, it can answer all the follow up tampering queries perfectly.

The detailed formal analysis is given in Appendix A.

7 Constructing Proof-Extractable NIPoS from CHG

In this section, we present a concrete Proof-Extractable NIPoS construction whose main building
blocks are: (i) a novel family of hard-to-pebble graphs called challenge-hard graphs (CHG) and
(ii) Merkle Commitments. For completeness, we first recall the definition of Merkle Commit-
ments and the concept of graph pebbling. Thereafter, we introduce and formally define CHGs
in Section 7.3. Our NIPoS construction is then presented in Section 7.4 and the proof that it
satisfies Proof-Extractablility in given in Appendix B. We conclude this section by presenting
and comparing two concrete CHG constructions and stating the concrete parameters of the
resulting Proof-Extractable NIPoS.

7.1 Merkle Commitments

For completeness, we adapt the notations from [FHMV17a] and briefly recall the construction
of Merkle commitment [Mer88] from there. Merkle commitment is built upon a hash function
Hcom which will be modeled as a random oracle throughout our paper. Intuitively, during the
committing phase, a sender exploits a so-called hash tree to commit a vector of N elements
z := (z1, . . . , zN) using N − 1 invocation of Hcom. At a later point, one can open any of the
values zi by providing the hash labels of a Merkle tree path with size logarithmic in N .

Definition 13 (Merkle commitment). An (nH, N)-Merkle commitment scheme (or MC scheme)
in the ROM is a tuple of algorithms (MComHcom ,MOpenHcom ,MVerHcom) described as follows.

• MComHcom(z): On input an N -tuple z = (z1, . . . , zN), where zi ∈ {0, 1}nH , this algorithm
outputs a commitment φ ∈ {0, 1}nH .

• MOpenHcom(z, i): On input a vector z = (z1, . . . , zN) ∈ {0, 1}nHN , and i ∈ [N], this
algorithm outputs an opening (zi, ψ) ∈ {0, 1}(1+logN)nH .

• MVerHcom(i, φ, (z, ψ)): On input an index i ∈ [N], and a commitment/opening pair (φ, (z, ψ)),
this algorithm outputs a decision bit.

7.2 Graph Pebbling and Labeling

We recall basic definitions, facts and lemmas regarding graph pebbling from prior works, in
particular from [FHMV17a]. Throughout this paper G = (V,E) is considered to be a directed
acyclic graph (DAG), where V is the set of vertices and E is the set of edges of the graph G.
Without loss of generality we assume that the vertices of G are ordered lexicographically and are
represented by integers in [N], where N = |V |. Vertices with no incoming edges are called input
vertices or sources, and vertices with no outgoing edges are called output vertices or sinks. We

19

Merkle Commitment

MComHcom(z0, . . . , zN−1): Output φ := RootHcom(N, (z0, . . . , zN−1)).

MOpenHcom((z0, . . . , zN−1), i):

• If i ≡ 0 mod 2 then ψ1 := zi+1; else ψ1 := zi−1.

• For j = 2 to log(N) do

– i := i div 2

– If i ≡ 0 mod 2 then ψj := RootHcom(2j−1, (z(i+1)2j−1 , . . . , z(i+2)2j−1−1));
else ψj := RootHcom(2j−1, (z(i−1)2j−1 , . . . , zi2j−1−1)).

• Output (zi, (ψ1, . . . , ψlogN)).

MVerHcom(i, φ, (z, (ψ1, . . . , ψlogN))):

• If i ≡ 0 mod 2 then φ′ := Hcom(z||ψ1); else φ′ := Hcom(ψ1||z).
• For j = 2 to log(N) do

– i := i div 2

– If i ≡ 0 mod 2 then φ′ := Hcom(φ′||ψj); else φ′ := Hcom(ψj ||φ′).
• If φ = φ′ then output 1, otherwise output 0.

Figure 2: Construction of a Merkle commitment scheme

denote deg(v), the set of all predecessors of the vertex v. Formally, deg(v) = {w ∈ V : (w, v) ∈
E}.

In this section we briefly explain the concept of graph labeling and its connection to the
abstract game called graph pebbling which has been introduced in [DNW05]. For more details
we refer to [RD16, ABFG14, DFKP15]. We follow the conventions from [RD16] and will use
the results from the same. Sometimes for completeness we will use the texts verbatim from the
same paper.

Labeling of a graph. Let H : {0, 1}∗ → {0, 1}nH be a hash function (often modeled as a
random oracle). The H-labeling of a graph G is a function which assigns a label to each vertex
in the graph; more precisely, it is a function label : V → {0, 1}nH which maps each vertex v ∈ V
to a bit string label(v) := H(qv), where we denote by |

{
v(1), . . . , v(deg)

}
| = deg(v) and let

qv :=

{
v if v is an input vertex,
v || label(v(1)) || . . . || label(v(deg)) otherwise.

An algorithm A labels a subset of vertices W ⊆ V if it computes label(W). Specifically, A labels
the graph G if it computes label(V).

Additionally, for m ≤ |V |, we define the H-labeling of the graph G with m faults15 as a
function label : V → {0, 1}nH such that, for some subset of vertices M ⊂ V of size m,

label(v) 6= H(qv), for every v ∈M
label(v) = H(qv), for every v ∈ V \M.

15One can also define an analogy of faults in the pebbling game by adding a second kind of pebbles. These
pebbles are called red pebbles in [DFKP15] and wild cards in [ABFG14].

20

Sometimes we refer to labeling with faults as partial labeling.
When H is modeled as a random oracle one can show an interesting property about graph

labeling as we present next as a lemma that appeared in form of a discussion in [RD16]. It is
based on an observation previously made in [DFKP15].

Lemma 3 ([RD16, Section 5.2]). Suppose H is modeled as a random oracle. Let AH be an
(s, t)-bounded algorithm which computes the labeling of a DAG G with m ∈ N faults. Then there
exists an (s+m ·nH, t)-bounded algorithm ÃH that computes the labeling of G without faults but
gets m correct labels to start with (they are initially stored in the memory of ÃH and sometimes
called initial labels).

Intuitively the above lemma follows because the algorithm ÃH can overwrite the additional
space it has, once the initial labels stored there are not needed.

Pebbling game. The pebbling of a DAG G = (V,E) is defined as a single-player game. The
game is described by a sequence of pebbling configurations P = (P0, . . . , PT), where Pi ⊆ V
is the set of pebbled vertices after the i-th move. In our model, the initial configuration P0

does not have to be empty. The rules of the pebbling game are the following. During one move
(translation from Pi to Pi+1), the player can place one pebble on a vertex v if v is an input
vertex or if all predecessors of v already have a pebble. After placing one pebble, the player can
remove pebbles from arbitrary many vertices.16 We say that the sequence P pebbles a set of
vertices W ⊆ V if W ⊆

⋃
i∈[0,T]Pi.

The time complexity of the pebbling game P is defined as the number of moves t(P) := T .
The space complexity of P is defined as the maximal number of pebbles needed at any pebbling
step; formally, s(P) := maxi∈[0,T]{|Pi|}.

Ex-post-facto pebbling of a DAG (in the ROM). Let H : {0, 1}∗ → {0, 1}nH be a
random oracle. Let AH be an algorithm that computes the (partial) H-labeling of a DAG G.
The ex-post-facto pebbling bases on the transcript of the graph labeling. It processes all oracle
queries made by AH during the graph labeling (one at a time and in the order they were made).
Informally, every oracle query of the form qv, for some v ∈ V , results in placing a pebble on
the vertex v in the ex-post-facto pebbling game. This provides us a link between labeling and
pebbling of the graph G. The formal definition follows.

Let H : {0, 1}∗ → {0, 1}nH be a random oracle and QH a table of all random oracle calls
made by AH during the graph labeling. Then we define the ex-post-facto pebbling P of the graph
G as follows:

• The initial configuration P0 contains every vertex v ∈ V such that label(v) has been used
for some oracle query (e.g. some query of the form H(· · · ‖label(v)‖ · · ·)) at some point in
the transcript but the query qv is not listed in the part of the transcript preceding such
query.

• Assume that the current configuration is Pi, for some i ≥ 0. Then find the next unprocessed
oracle query which is of the form qv, for some vertex v, and define Pi+1 as follows:

1. Place a pebble on the vertex v.

2. Remove all unnecessary pebbles. A pebble on a vertex v is called unnecessary if
label(v) is not used for any future oracle query, or if the query qv is listed in the

16Similar to [RD16] in our model we assume that removing pebbles is for free as it does not involve any oracle
query

21

succeeding part of the transcript before label(v) is used in an argument of some other
query later. Intuitively, either label(v) is never used again, or AH anyway queries qv
before it is used again.

The lemma below appeared in several variations in the literature (see, for example, [ABFG14,
RD16]), depending on the definition of graph pebbling.

Lemma 4 (Labeling Lemma (in the ROM)). Let H : {0, 1}∗ → {0, 1}nH be a random oracle.
Let G be a DAG. Consider an (s, t)-bounded adversary AH which computes the H-labeling of the
graph G. Also assume that AH does not guess any correct output of H without querying it. Then
the ex-post facto pebbling strategy P described above pebbles the graph G, and the complexity of
P is

s(P) ≤ s

nH
and t(P) ≤ t.

Proof. By definition of ex-post-facto pebbling, it is straightforward to observe that if AH com-
putes the H-labeling of the graph G, then the ex-post-facto pebbling P pebbles the graph. Since
we assume that the adversary does not guess the correct label, the only way AH can learn the
label of the vertex v is by querying the random oracle. The bound on t(P) is immediate. Again,
by definition of the ex-post-facto pebbling, there is no unnecessary pebble at any time. Thus,
the number of required pebbles is equal to the maximum number of labels that AH needs to
store at once. Hence, the space bound follows directly from the fact that each label consists of
nH bits and that the algorithm AH is s-space bounded.

Localized expander graphs. A (Nc, γ1, γ2)-bipartite expander, for 0 < γ1 < γ2 < 1, is a
DAG with Nc sources and Nc sinks such that any γ1Nc sinks are connected to at least γ2Nc

sources. We can define a DAG G′Nc,kG,γ1,γ2
by stacking kG (∈ N) bipartite expanders. Informally,

stacking means that the sinks of the i-th bipartite expander are the sources of the i+1-st bipartite
expander. It is easy to see that such a graph has Nc(kG + 1) nodes which are partitioned into
kG + 1 sets (which we call layers) of size Nc. A Stack of Localized Expander Graphs (SoLEG)
is a DAG GNc,kG,γ1,γ2 obtained by applying the transformation called localization (see [RD16,
Section 3.4] for a definition) on each layer of the graph G′Nc,kG,γ1,γ2

.
We restate two lemmas about pebbling complexity of SoLEG from [RD16]. The latter

appeared in [RD16] in the form of a discussion.

Lemma 5 ([RD16, Theorem 4]). Let H : {0, 1}∗ → {0, 1}nH be a random oracle. Let GNc,kG,γ1,γ2

be a SoLEG where β := γ2− 2γ1 > 0. Let P = (P0, . . . , Pt(P)) be a pebbling strategy that pebbles
at least γ1Nc output vertices of the graph GNc,kG,γ1,γ2 which were not initially pebbled, where the
initial pebbling configuration is such that |P0| ≤ βNc, and the space complexity of P is bounded
by s(P) ≤ βNc. Then the time complexity of P has the following lower bound:

t(P) ≥ 2kGγ1Nc.

Lemma 6 ([RD16, Section 5.2]). Let GNc,kG,γ1,γ2 be a SoLEG and H : {0, 1}∗ → {0, 1}nH be
a random oracle. There exists a polynomial time algorithm AH that computes the H-labeling of
the graph GNc,kG,γ1,γ2 in NcnH-space.

7.3 Challenge-Hard Graphs (CHG)

In this section we introduce the concept of challenge-hard graphs (CHG for short) which we use
it to construct proof-extractable NIPoS. Informally challenge-hard graphs satisfy the following
property with respect to graph pebbling: with small budget on the number of pebbles available

22

(for example if an algorithm is space-bounded) no pebbling strategy can put pebbles on multiple
random challenge vertices of the graph in a reasonable amount of time. The property should hold
even if the player gets a few (but not too many) pebbles on arbitrary vertices at the beginning.
We remark that the notion of challenge hardness has similarities with a notion introduced in
[DFKP15]. In particular, in Section 4 of [DFKP15], the authors informally described a pebbling
game which is similar to the game in our notion (Definition 14).

Challenge hard graphs are parameterized by the following variables: Nc, β,N, τc, t, ε, where
N is the size of the graph; τc is the number of challenge nodes, where all the challenges are in
a pre-defined target set Vc; Nc is the size of the target set Vc; β ·Nc = Ω(Nc) is the budget on
the number of pebbles available; t is an upper bound on the running time of pebbling strategies;
and ε is an upper bound on the winning probability of the pebbling challenge game.

Definition 14 (Challenge Hard Graphs (CHG)). A family of directed acyclic graphs {Gλ}λ∈N
(with constant in-degree)17 is (β,Nc, N, τc, t, ε)-challenge-hard (where β ∈ (0, 1) is a constant,
and other parameters are functions of λ), if for every λ ∈ N and graph G = Gλ = (V,E) (with
N = N(λ) vertices), there exist τc target sets (possibly with overlapping) V (1)

c , . . . , V
(τc)
c ⊆ V

such that the union of the target sets

Vc := V (1)
c ∪ · · · ∪ V (τc)

c ⊆ V

has Nc vertices, and the following property is satisfied:

For any pebbling strategy B = (B1,B2) it holds that

AdvpebB,β,t,τc,G
(λ) := Pr

[
Gpeb

B,β,t,τc,G
(λ) = 1

]
≤ ε ,

where the pebbling game Gpeb
B,β,t,τc,G

(λ) is defined as follows.

Game Gpeb
B,β,t,τc,G

(λ):

1. Let P0 ← B1 be a pebbling configuration, where |P0| ≤ β ·Nc.
2. Let chal← Dτc be τc random challenge vertices (possibly with overlapping),

where Dτc is the uniform distribution over V 1
c × · · · × V

(τc)
c .

3. Let P = (P0, . . . , Pt(P))← B2(P0, chal) be a pebbling strategy.
4. Output 1 iff
• P follows the rule of a sequential pebbling strategy.
• For every i ∈ {0, . . . , t(P)}, it holds that |Pi| ≤ β ·Nc.
• chal ⊆ P0 ∪ · · · ∪ Pt(P).
• t(P) ≤ t.

We define Nc/τc and N/Nc as the challenge sparseness and graph compactness of G.

Intuitively, challenge sparseness defines what fraction of the target nodes will be challenged.
Graph compactness determines what fraction of all node in the graph are in the target set.
Looking ahead, these two metrics of CHG will play crucial roles in determining the parameters
of the NIPoS and the encoding schemes.

17We require the in-degree of the graph to be a constant, because for graph-labeling in the ROM this captures
the essence of the standard model. To see this assume that H is implemented by an iteration-based scheme (e.g.,
Merkle-Damgård extension), and thereby to compute the hash output, it is sufficient to store only a few labels at
each iteration step. However, while in the ROM computing a label label(v) := H(v, label(pred(v))) is only possible
if the entire labeling label(pred(v)) is stored. If the in-degree is high (e.g. super-constant) this distinction would
affect the parameters. We refer to Appendix B.3 in [BCS16] for more discussions.

23

7.4 Construction of PExt-NIPoS from CHG

Now we present our main PExt-NIPoS construction based on challenge-hard graphs and show
that it satisfies proof-extractability. The construction is quite similar to the one presented
in [FHMV17a] with only a few minor modifications.

The scheme consists of three algorithms (SetupH,PH,VH) that use the following ingredients:

• a DAG G = (V,E) with N = |V | vertices and maximal in-degree deg ∈ O(1), which has
τc target sets 18V

(1)
c , . . . , V

(τc)
c ⊆ V such that

Vc := V (1)
c ∪ · · · ∪ V (τc)

c ⊆ V

and Vc has Nc vertices.

• a set of random oracles {Hid}id∈{0,1}kpos ∪ {Hcom} ∪ {Hchal} defined as follows: Hid :

{0, 1}≤logN+deg·nH → {0, 1}nH for every id ∈ {0, 1}kpos ; Hcom : {0, 1}2nH → {0, 1}nH ;
Hchal takes as input a {0, 1}kpos+nH-bit string and outputs a random challenge set check
plus τc challenge nodes:

(check, chal := (chal1, . . . , chalτc)) ∈ V τ × V (1)
c × · · · × V (τc)

c .

For simplicity of explanation, we assume that the output length of Hchal is exactly nH
(where nH ≥ τ · log |V | + τc · log |Vc|), and we define the corresponding challenge sets
(check, chal) as the first τ · log |V | + τc · log |Vc| bits of the RO output.19 Note that by
a typical domain separation technique (e.g., used in [ABFG14] and [MMV13]), we can
instantiate the three random oracles using a unified random oracle H : {0, 1}∗ → {0, 1}nH .

The construction is presented in detail in Figure 3. We provide a high-level overview here.
The prover first computes the labeling of a graph G = (V,E), and then commits the labeling
using a Merkle tree. From the merkle root value φ̃`, the prover computes the Fiat-Shamir
challenge H(φ̃`), which consists of two sets (check, chal). The set check contains τ random nodes
in V , and the set chal has τc random nodes in a target set Vc ⊆ V . The proof is the Merkle
tree opening paths for nodes in check ∪ pred(check) ∪ chal, where pred(check) are the parents of
nodes in check.

Remark 7. Our scheme can be viewed as a generalization of the NIPoS scheme in [FHMV17a].
In particular, besides opening nodes’ labels (Merkle-commitments) for checking graph consis-
tency, the proof also includes the labels for a small challenge set chal. In particular, setting chal
empty we can obtain the FHMV NIPoS which in turn is based on the proof-of-space construction
from [RD16].

Memory usage of the prover and the verifier. In our PExt-NIPoS construction, the
honest prover has to store the complete labeling of the graph G plus the entire Merkle tree, thus
the size of the prover’s space is

sP := N · nH + (N − 1) · nH ,

where nH is the random oracle output length. On the other hand, the verifier only needs to
store a single proof-of-space, which consists of a Merkle root value, two challenge sets, and

18Note that the target sets can have overlapping parts, that is they may share some nodes.
19For ease of explanation, we assume that |V | and |Vc| are powers of 2.

24

PExt-NIPoS Construction

SetupH(1λ): On input the security parameter 1λ output a set of public parameters pppos ∈
{0, 1}∗, which consist of values τ, τc, Nc, N ∈ N, the DAG G as described above.

PHpppos(id): Given public parameters pppos ∈ {0, 1}∗ and identity id ∈ {0, 1}kpos , do as follows:

1. For every node v ∈ V , compute a Hid -labeling of v as label(v) :=
Hid (v, label(pred(v)) , where label(pred(v)) are the Hid -labelings of v’s parents in G.
Let ` := (label(v))v∈V ∈ {0, 1}N ·nH be the Hid -labeling of the graph G.

2. Given labeling ` compute the Merkle commitment φ` := MComHcom(`), where φ` ∈
{0, 1}nH is the Merkle root.

3. Determine the set of challenges (check, chal) := Hchal(id , φ`).

4. Output the proof-of-space π which consists of two parts:

• The Merkle-root value and the two challenge sets

(φ`, check, chal) ∈ {0, 1}nH × V τ × V (1)
c × · · · × V (τc)

c .

• Let pred(check) be the set of predecessors for nodes in check. For every node
v ∈ check ∪ pred(check) ∪ chal, output the Merkle-tree opening path from the v-
th leaf (with label label(v)) to the Merkle-root (with value φ`): MOpenHcom(`, v) .

VHpppos(id , π): Given public parameters pppos, identity id ∈ {0, 1}kpos and a candidate proof-of-
space π ∈ {0, 1}npos , check the correctness of π with respec to id as follows:

1. Parse [
(φ`, check, chal),

{
(zv; (y(1)

v , . . . , y(logN)
v))

}
v∈check∪pred(check)∪chal

]
:= π

2. Check (check, chal) = Hchal(id , φ`).

3. For every node v ∈ check, denote by zv the opening for v, and zpred(v) the openings
for v’s parents in graph G. The check: zv = Hid (v, zpred(v))

4. For every node v ∈ check ∪ pred(check) ∪ chal, denote by (zv, (y
(1)
v , . . . , y

(logN)
v)) the

opening path for v, V checks that

MVerHcom(v, φ`, zv, (y
(1)
v , . . . , y(logN)

v)) = 1 .

5. Output 1 if and only if all of the above check passes; otherwise output 0.

Figure 3: Our PExt-NIPoS construction: Denoting by ν the number of RO input-output pairs in
the proof we call this construction a (τc, τ, ν)-Merkle-tree-based PExt-NIPoS scheme built
upon the DAG G.

τ · (deg + 1) + τc tree paths. Since each tree path is of length logN , the size of the verifier’s
space is given by:

sV := nH + τ · logN + τc · logNc + (τ · (deg + 1) + τc) · logN · nH .

It is not hard to see that our PExt-NIPoS scheme satisfies completeness. We formally show

25

that our NIPoS scheme satisfies proof extractability by proving the theorem stated next.

Theorem 2. Let λ be a security parameter. Suppose G := Ghard is a (β,Nc, N, τc, t, εpeb)-
challenge hard graph with indegree deg = O(1); H : {0, 1}∗ → {0, 1}nH is a hash function
modeled as a random oracle; and ΠG is a (τc, τ, ν)-Merkle-tree-based PExt-NIPoS scheme (defined
in Figure 3) built upon G, where

ν := (τ · (deg + 1) + τc) · logN + 1 .

For any s, f ∈ N such that there exists a constant δ∗ ∈ (0, 1) where

s+ f ≤ (β − δ∗ − 0.01) ·Nc · nH ,

it holds that ΠG is a (kpos, npos, sP, sV)-NIPoS that is (s, f, t, η, εp-ext)-proof-extractable, as long
as20

sP ≥ kpos + (2N − 1) · nH s ≥ sV ≥ kpos + ν · nH η = O(ν log λ)

npos = ν · nH εp-ext ≤ poly(λ) ·
(
2−nH + exp(−κ) + εpeb

)
,

where κ = τ ·Nc · δ∗/N .

Remark 8. To guarantee that the verifier space sV := ν ·nH is smaller than the tampering space
s, we require τc to be significantly smaller than Nc/ logN . Hence we need the underlying CHG
to be at least Ω(logN)-challenge sparse (defined as Nc/τc).

Proof intuition. Consider the game Gpext
B,id (λ), denote by (ĩd , π̃) the adversary’s output iden-

tity and proof-of-space, and φ̃` the Merkle root value in π̃. To explain intuitively, we consider
the simpler case where φ̃` is the commitment of the Hĩd -labeling of the graph.21 To argue proof
extractability, observe that in the game Gpext

B,id (λ):

• If the big adversary B computes the graph labeling and the Merkle commitment herself,
that is, the RO input-output pairs in (ĩd , π̃) are queried by B, then a knowledge extractor
can extract (ĩd , π̃) from the query table of B.

• Otherwise, we can bound the advantage of the proof extractability game by the advantage
of a pebbling challenge game. By challenge-hardness of the graph, the probability that a
space-bounded adversary A generates a new proof-of-space in time bound t is negligible.

We provide the formal proof of Theorem 2, that is, our NIPoS scheme satisfies proof extractability
in Appendix B.

Remark 9. Similar to [FHMV17a] and [RD16], we consider a restricted storage model where the
adversary always stores the graph labels in their entirety before using them, that is, the adversary
never compress the graph labels. We leave the proof of Theorem 2 in the general storage model
(where the adversary can store arbitrary function of the graph labels) as an interesting open
question.

20 The polynomial factor in εp-ext depends on the number of RO queries made by the adversary. We refer to
Inequality 7 for the exact probability upper bound.

21 The more complicated case, where a labeling with faults is committed, can be handled by requiring the
adversary to open a few random nodes and their neighborhoods.

26

Proof outline. To bound the advantage of proof-extractability game, we first bound the
probability of a few bad events. Conditioned on bad events do not happen, it is guaranteed
that the space-bounded adversary A wins the game only if it outputs a (ĩd , π̃) such that i) the
merkle root value φ̃` ∈ π̃ is a commitment of a graph labeling that is mostly consistent with
the Hĩd -labeling of graph G, and ii) π̃ contains the opening labels of a few random challenge
nodes, that is, the challenge nodes set is unpredictable for A. Hence the winning probability
can be naturally bounded by the advantage of a labeling challenge game, which in turn can be
in transformed to a pebbling challenge game. And thus we can finally bound the advantage of
proof-extractability game by the advantage of pebbling challenge game, which finishes the proof.

7.5 Instantiating CHG

In this section we present two constructions of challenge-hard graphs. First, we propose a new
construction of CHG from Stack of Localized Expander Graphs (SoLEG) used by Ren and
Devadas [RD16] in the context of proof-of-space. We refer to Section 7.2 for more details on
SoLEGs. Then we also show that the graph constructed by Paul, Tarjan and Celoni [PTC76]
and used by [DFKP15] satisfies the notion of challenge-hardness, but with different parameters.

First note that a family of SoLEG (with constant in-degree) is already challenge hard if
the number of challenge nodes (i.e., τc) satisfies that τc > (β + γ1) · Nc. This follows right
away from Lemma 5. However, the challenge sparseness of the graph (i.e., Nc/τc) is O(1) which
too small for our application.22 As discussed in Remark 8, we need a challenge-hard graph
with Ω(logN)-challenge sparseness. We resolve this by constructing challenge-hard graphs with
larger challenge sparseness by extending a family of SoLEGs. For ease of explanation, in the
following we assume that Nc is divisible by τc. We note that a similar result holds if Nc/τc is
not an integer.

Our SoLEG-based Construction. GivenNc, τc ∈ N (whereNc/τc is an integer), the challenge-
hard graph Ghard is a τc-extension of a SoLEG. It consists of a SoLEG, τc gadget graphs, and
edges from SoLEG’s sink vertices to the gadget graphs.

For every i (1 ≤ i ≤ τc), the ith gadget graph H
(i)
Nc

= (V (i), E(i)) consists of Nc/τc lines. For
every j (1 ≤ j ≤ Nc/τc), the jth line line

(i)
j (in H

(i)
Nc

) consists of Nc/τc vertices and a path from

the first vertex to the last vertex. For every j (1 ≤ j ≤ Nc/τc), we denote by end
(i)
j the sink of

line
(i)
j , the ith target set V (i)

c is then defined to be

V (i)
c := end

(i)
1 ∪ · · · ∪ end

(i)
Nc/τc

.

And we see that the union of the target sets

Vc := V (1)
c ∪ · · · ∪ V (τc)

c

contains Nc vertices.
Besides the edges in the SoLEG and gadget graphs, there are also edges from SoLEG’s sink

vertices to the gadget graphs. In particular, for every i (1 ≤ i ≤ τc) and every k (1 ≤ k ≤ Nc/τc),
the ((i−1)Nc/τc+k)-th sink vertex of the SoLEG has Nc/τc outgoing edges to the gadget graph
H

(i)
Nc

, where the jth (1 ≤ j ≤ Nc/τc) outgoing edge points to the kth vertex of the jth line line(i)
j .

Let GNc,kG,γ1,γ2 be the SoLEG, the number of vertices in Ghard is

N := kG ·Nc + τc ·
(
Nc

τc

)2

= kG ·Nc +
N2
c

τc
.

22Recall that β is a constant, thus Nc/τc is O(1) if τc > (β + γ1) ·Nc.

27

SoLEG

H
(1)
Nc

H
(τc)
Nc

Nc sinks

line
(1)
1

line
(1)
Nc/τc line

(τc)
1

line
(τc)
Nc/τc

Figure 4: A τc-extension of a SoLEG with τc = 2 and Nc = 4. We ignore the graph structure
of SoLEG and only show the sink vertices. Each of the first Nc/τc = 2 sink vertices has two
outgoing edges, each edge pointing to a line of the first gadget graph H

(1)
Nc

:= line
(1)
1 ∪ line

(1)
2 .

Similarly, each of the next Nc/τc = 2 sink vertices has two outgoing edges, each edge pointing
to a line of the second gadget graph H

(2)
Nc

:= line
(2)
1 ∪ line

(2)
2 . The left 2 gray nodes consist of the

first target set V (1)
c . The right 2 gray nodes consist of the second target set V (2)

c . The union of
the targets has |Vc| = Nc = 4 nodes.

We provide a simple example (Figure 4) of a CHG based on a SoLEG below.
It is easy to observe that the challenge sparseness is Nc/τc and the graph compactness of

the graph is kG + Nc/τc for the above construction. We prove the following lemma about our
construction.

Lemma 7. Let GNc,kG,γ1,γ2 be a SoLEG with parameters Nc, kG ∈ N, γ1, γ2 ∈ (0, 1). Denote
by β := γ2 − 2γ1 > 0 and ε := 1 − β − γ1 > 0. For any τc ∈ N (such that Nc/τc is an
integer), let Ghard := (V,E) be the τc-extension of GNc,kG,γ1,γ2 . Then it holds that Ghard is
(β,Nc, N := kG ·Nc +N2

c /τc, τc, 2
kG · γ1 ·Nc, exp(−ε2 · τc))-challenge hard.

Proof. Fix any adversary B = (B1,B2) and consider the pebbling challenge game Gpeb
B,β,t,τc,G

(λ).
Denote by P0 ⊆ V the initial pebbled set output by B1. Denote by n0 := δ0 ·Nc the number of
output vertices (in GNc,kG,γ1,γ2) that were initially pebbled. For every i (1 ≤ i ≤ τc), recall that
the target subset V (i)

c consists of Nc/τc lines, and we denote by ni := δi ·Nc/τc the number of
lines that have at least one pebble on it (i.e., the lines whose intersection with P0 are non-empty).
Since |P0| ≤ β ·Nc, by definition of the game, we have

|P0| ≤
τc∑
i=0

ni = δ0 ·Nc +

τc∑
i=1

δi ·
Nc

τc
≤ β ·Nc .

By rewriting the second inequality, we have

τc∑
i=1

δi ·
Nc

τc
≤ (β − δ0) ·Nc . (1)

28

For every i (1 ≤ i ≤ τc), we define a random variable Xi ∈ {0, 1} for the ith challenge node:
Denote by chali ⊆ V

(i)
c the challenge node in the ith target set V (i)

c ; we set Xi := 1 if the line
that contains chali has no initially pebbled vertex (i.e., the line has no intersection with P0);
and we set Xi := 0 otherwise. We define

X :=

τc∑
i=1

Xi .

Note Pr[Xi = 1] = 1 − δi (over the randomness of chali), and random variables {Xi}i∈[τc] are
independent. Recall that ε := 1− β − γ1 > 0, thus by Hoeffding inequality, we have

Pr [X ≤ E [X]− ε · τc] ≤ exp(−2 · ε2 · τc) .

Next we show that if X ≥ E [X]−ε · τc, then it takes at least t := 2kG ·γ1 ·Nc steps to pebble
all the challenge vertices, and hence finish the proof.

Claim 1. Denote by ε := 1− β − γ1 > 0. If the challenge set chal is chosen so that

X ≥ E [X]− ε · τc =

τc∑
i=1

(1− δi)− (1− β − γ1) · τc = (β + γ1) · τc −
τc∑
i=1

δi ,

then it takes the adversary B2 at least t := 2kG · γ1 ·Nc steps to pebble all the challenge vertices.

Proof. First, we show that the adversary B2 has to pebble at least X ·Nc/τc output vertices (in
GNc,kG,γ1,γ2) to answer all challenges: For every i (1 ≤ i ≤ τc), if Xi = 1, then the line that
contains chali has no initially pebbled vertex. Thus to pebble the sink node chali, the adversary
has to pebble the vertices (on the line) step by step, which in turn requires the pebbling of
the output vertices [(i − 1) · Nc/τc + 1, . . . , i · Nc/τc] of GNc,kG,γ1,γ2 . Since X =

∑τc
i=1Xi, the

adversary has to pebble at least X ·Nc/τc output vertices in total.
On the other hand, if the challenge set chal is chosen so that X ≥ (β + γ1) · τc −

∑τc
i=1 δi,

then by Inequality 1, we have

X · Nc

τc
≥ (β + γ1) ·Nc −

τc∑
i=1

δi ·
Nc

τc
≥ (β + γ1) ·Nc − (β − δ0) ·Nc = (γ1 + δ0) ·Nc .

Since at most δ0 · Nc output vertices were pebbled initially, B2 has pebbled at least γ1 · Nc

output vertices that were not initially pebbled. By Lemma 5, we have the time lower bound
t ≥ 2kG · γ1 ·Nc.

Combining the above arguments, with probability at least 1−exp(−2 ·ε2 ·τc) (over the choice
of the challenge set), it takes at least t := 2kG · γ1 ·Nc steps to pebble all the challenge vertices,
and thus the graph Ghard is (β,Nc, N, τc, 2

kG · γ1 ·Nc, exp(−ε2 · τc))-challenge hard.

Construction of CHG from PTC [PTC76]’s graphs As observed by [DFKP15] (in Sec-
tion 6.1 of [DFKP15]), the graph introduced by Paul, Tarjan and Celoni [PTC76] (in short,
PTC’s graph) does satisfy challenge hardness. Adapting Theorem 1 of [DFKP15] into the mul-
tiple challenge setting, we obtain the following lemma.

Lemma 8 ([DFKP15, Theorem 1]). Let {G}λ∈N be a family of PTC’s graph (DAG) with graph
parameters Nc = Nc(λ), N := Nc logNc and in-degree 2. Then for any τc ∈ N and any λ ∈ N,
Gλ is (β,Nc, N, τc,∞, (1− β)τc)-challenge-hard where β = 1/512.

29

7.6 A comparison of the two CHG constructions

We provide a brief comparison between the two CHG constructions described above. First we
provide asymptotic bounds on the parameters. Setting Nc = λ2, kG = λ0.5, and τc = Θ(λ1.5)
in Lemma 7, we observe that the CHG based on SoLEGs has Ω(λ0.5)-challenge sparseness,
O(λ0.5)-graph compactness and exponential security.23 Formally,

Corollary 2 (CHG based on SoLEGs). Let GNc,kG,γ1,γ2 be a SoLEG with parameters Nc =
λ2, kG = Θ(λ0.5), γ1, γ2 = O(1). The Θ(λ1.5)-extension of GNc,kG,γ1,γ2 is (O(1), λ2, O(λ2.5),Θ(λ1.5),

2Θ(λ0.5), 2−ω(λ))-challenge hard. The challenge sparseness is Ω(λ0.5), and the graph compactness
is O(λ0.5).

Under the same level of security, the CHG based on [PTC76]’s graphs achieves better graph
compactness asymptotically. In particular, setting Nc = λ2, τc = Θ(λ1.5) in Lemma 8 we
observe that the CHG based on PTC’s graphs has Ω(λ0.5)-challenge sparseness, O(log λ)-graph
compactness and exponential security. Formally,

Corollary 3 (CHG based on PTC’s graphs). Let Gλ be a PTC’s graph with graph parameters
Nc = Nc(λ), N := Nc logNc and in-degree 2. Then it satisfies (O(1), λ2, O(λ2 log λ),Θ(λ1.5),
∞, 2−ω(λ))-challenge hardness. The challenge sparseness is Ω(λ0.5), and the graph compactness
is O(log λ).

It is worth noting that, asymptotically, PTC’s graph supports better parameters than our
SoLEG-extension graphs for the same security. However due to the presence of a large constant
factor (that is 1/β = 512), the graph-size of PTC’s graph becomes much larger than the SoLEG-
extension graph— this affects the concrete parameters of NIPoS significantly (see, Corollaries 8
and 9).

By setting ε = 2−80, the pebbling budget β · Nc := 210, and time bound to be 280, we
calculate the concrete values of the other parameters. We present two corollaries below.

Corollary 4 (CHG based on SoLEGs (concrete)). For the SoLEG-extension construction, set-
ting γ2 := 2/3, γ1 := 1/6, we obtain β = 1/3 and ε = 1/2. To obtain 80-bit security in the
pebbling game (i.e., AdvpebB,β,t,τc,G

(λ) ≤ 2−80), the challenge parameter τc can be approximated to
28. For the pebbling budget bound β ·Nc := 210 and a typical time bound t := 280, the target set
size Nc is no more than 212, and the graph size N is about 218.

Corollary 5 (CHG based on PTC’s graphs (concrete)). For the PTC’s graph, for a typical
80-bit security of the pebbling game (i.e., AdvpebB,β,t,τc,G

(λ) ≤ 2−80), the challenge parameter τc
can be approximated to ≈ 215. For a typical pebbling budget β · Nc := 210, we have to set the
target set size Nc to be 219, and the graph size should be at least N := 223.

7.7 Instantiations of PExt-NIPoS from CHGs

We obtain two PExt-NIPoS constructions by plugging-in the parameters from two CHG con-
structions, namely the SoLEG-extension (Corollary 2) and the PTC’s graph (Corollary 3) re-
spectively into Theorem 2.

Corollary 6 (PExt-NIPoS from SoLEG-extension). Let H : {0, 1}∗ → {0, 1}nH be a hash
function modeled as a random oracle (where nH = ω(λ)). Let Ghard be the τc-extension of

23Note that choosing τc = Θ(λ) is already sufficient for exponential security. We choose τc to be Θ(λ1.5) only
for shrinking the graph compactness N/Nc = kG +Nc/τc which is an important factor in constructing NIPoS.

30

a SoLEG with graph parameter Nc = λ2. The (τc, τ, ν)-Merkle-tree-based PExt-NIPoS scheme
built upon Ghard, where

τc = ω(λ1.5) τ = ω(λ1.5) ν = ω(λ1.5 log λ) ,

is a (kpos, npos, sP, sV)-NIPoS that is (s, f, t, η, εp-ext)-proof extractable, where

kpos = O(λ1.5 log λ) · nH npos, sV = ω(λ1.5 log λ) · nH sP = O(λ2.5) · nH
s, f = Θ(λ2) · nH t = Ω(2

√
λ) εp-ext = 2−ω(λ) η = ω(λ1.5 log2 λ) .

Corollary 7 (PExt-NIPoS from PTC’s graph). Let H : {0, 1}∗ → {0, 1}nH be a hash function
modeled as a random oracle (where nH = ω(λ)). Let Ghard be the PTC’s graph [PTC76] with
graph parameter Nc = λ2. The (τc, τ, ν)-Merkle-tree-based PExt-NIPoS scheme built upon Ghard,
where

τc = ω(λ) τ = ω(λ log λ) ν = ω(λ log2 λ) ,

is a (kpos, npos, sP, sV)-NIPoS that is (s, f, t, η, εp-ext)-proof extractable, where

kpos = O(λ log2 λ) · nH npos, sV = ω(λ log2 λ) · nH sP = O(λ2 log λ) · nH
s, f = Θ(λ2) · nH t =∞ εp-ext = 2−ω(λ) η = ω(λ log3(λ) .

We complete the comparison of the two PExt-NIPoS constructions based on CHG, we instantiate
the above corollaries with concrete parameters.

Corollary 8 (PExt-NIPoS from SoLEG-ext.(concrete)). Let us fix:24

|QH(B)| ≤ 264 |QH(A)| ≤ 264 nH = 216 t = 280 εp-ext = 2−160 ,

and consider the NIPoS built upon SoLEG-based CHGs. To guarantee that sV ≤ s, the graph
size of the SoLEG-based CHG is at least N ' 100, 000, 000. The resulting NIPoS is a (kpos, npos,
sP, sV)-NIPoS that is (s, f, t, η, εp-ext)-proof extractable, where

kpos ≈ 1MB npos, sV ≈ 800MB sP ≈ 1TB s+ f ≈ 1.1GB η ≈ 750KB .

Corollary 9 (PExt-NIPoS from PTC (concrete)). Let us fix:

|QH(B)| ≤ 264 |QH(A)| ≤ 264 nH = 216 t = 280 εp-ext = 2−160 ,

and consider the NIPoS built upon CHGs in [PTC76]. To guarantee that sV ≤ s, the graph size
of the CHG is at least N ' 300, 000, 000, 000. The resulting NIPoS is a (kpos, npos, sP, sV)-NIPoS
that is (s, f, t, η, εp-ext)-proof extractable, where

kpos ≈ 256MB npos, sV ≈ 256GB sP ≈ 2.5PB s+ f ≈ 256GB η ≈ 250MB .

Remark 10. Observe that concrete parameters of the above constructions turn out to be better
than the asymptotics, due to the presence of a “large” constant factor (1/β = 512) in PTC’s
graph. This phenomenon is an effect of the same phenomenon observed in the CHG constructions
(c.f. Section 7.6).

24We set the bound for εp-ext to be 2−160 because later in Section 9.1, for instantiating the SP-NMC-SD with
the desired security.

31

8 PExt-NIPoS from Memory-Hard Functions

In this section we propose a simple construction of NIPoS with extractability. Our construction
is based on memory-hard functions (MHF for short) and verifiable computations. Intuitively, an
MHF requires that any time-bounded algorithm needs to use significant memory to compute such
function on a randomly chosen input. We remark that, in contrast to the previous works [AS15,
ACK+16, ACP+17], we treat the hash functions inside the MHF as concrete hash functions
and not modeled as random oracles. In particular, we require that an MHF is concretely
described and can be represented as a circuit. This is crucial in our context as we use verifiable
computation which requires non-black-box access to the function (i.e. an MHF) to be verified.
Indeed, we pay a price for that: unlike [AS15, ACK+16, ACP+17] we do not have a provable
guarantee for the memory-hardness, because the only known way to have such guarantee is to
use ROM (that gives provable guarantees based on pebbling-games) which is not compatible
with our setting. Instead, we heuristically assume that a hash-based MHF construction, that
has provable memory-hardness guarantee in the ROM, is memory-hard when the random oracle
is instantiated with a standard hash function (for example SHA3).

8.1 Memory-hard Functions

Here we formalize memory-hard functions.

Definition 15 (Memory-hard Functions (MHF)). Let H : {0, 1}∗ → {0, 1}k be a random
oracle. For parameters k, n, smhf , tmhf , s, f, t ∈ N and εmhf ∈ [0, 1), where smhf ≥ s, a function
M : {0, 1}k → {0, 1}n is called a (k, n, smhf , tmhf , s, f, t, εmhf)-memory-hard function (or MHF
for short) in the ROM if:

• M is computable by a (smhf , tmhf)-space-time-bounded algorithm.

• for any (s, f, t)-bounded deterministic algorithm AH, any x ∈ {0, 1}∗ we have that:

Pr
H

[M(H(x)) = AH(x)] ≤ εmhf

Remark 11. It is worth noting that, though our definition is in the ROM, the function M itself
does not have access to random oracles, but in the security game the adversary A has access to
the random oracle. Looking ahead, since our notion of NIPoS is also in random oracle model,
we stick to random oracle model here. Nevertheless our definition can be generalized to standard
model straightforwardly.

8.2 Publicly verifiable computation

We describe publicly verifiable computation below. Our definition follows prior work in verifiable
computation literature (e.g. [PHGR13]), but adjusted to our setting. In particular, we will be
explicit about space and time use of each algorithm and the algorithms involved will follow the
notion of bounded algorithms (cf. Definition 3).

Definition 16 (Publicly verifiable computation). For parameters sF , tF , svcP , t
vc
P , s

vc
V , t

vc
V , k, n, nvc ∈

N, with svcV < sF ≤ svcP , tvcV < tF ≤ tvcP let F : {0, 1}k → {0, 1}n be a deterministic function that
is computable by an (sF , tF)-space-time bounded algorithm. Then an (sF , tF , s

vc
P , t

vc
P , s

vc
V , t

vc
V ,

k, n, nvc, εvc)-non-interactive publicly verifiable computation (or VC for short) for F , where
εvc ∈ [0, 1), consists of a tuple of PPT algorithms (Gen,Prove,Ver) with the following syntax.

32

• GenF (1λ) → (ekF , vkF): This randomized algorithm, hardwired with the description of
F , takes as input the security parameter and outputs a public verification key vkF and a
public evaluation key ekF .

• ProveekF (x)→ (y, πvc): This is a (svcP , t
vc
P)-space-time bounded randomized algorithm with

the public evaluation key ekF hard-coded which takes an input x ∈ {0, 1}k and returns
the value y = F (x) ∈ {0, 1}n and a proof of computation πvc ∈ {0, 1}nvc .

• VervkF (x, y, πvc) =: 1/0: This is a (svcV , t
vc
V)-space-time bounded deterministic algorithm

that takes as input the public verification key vkF , an input x ∈ {0, 1}k, an output
y ∈ {0, 1}n and a candidate proof πvc ∈ {0, 1}nvc and returns a decision bit.

We require the following properties to hold for any security parameter λ ∈ N:

Completeness: for all x ∈ {0, 1}k we have that:

Pr
[
VerekF (x, y, πvc) = 1 | (ekF , vkF)← GenF (1λ); (y, πvc)← ProveekF (x)

]
= 1,

where the probability is over the internal random coins of the algorithms Gen and Prove.

Soundness: for all probabilistic polynomial time adversaries A, we have that

Pr

[
VervkF (x∗, y∗, π∗vc) = 1

F (x∗) 6= y∗

∣∣∣ (ekF , vkF)← GenF (1λ);
(x∗, y∗, π∗vc)← A(ekF , vkF)

]
≤ εvc,

where the probability is over the internal random coins of the algorithms Gen and A.

8.3 Partially-unique Ext-NIPoS from MHF and VC

In this section, we construct a partially-unique NIPoS with extractability based on a MHF
and a VC with space-bounded verification. At a high level, the NIPoS scheme is designed as
follows. Let M be a memory-hard function and (Gen,Prove,Ver) a publicly verifiable scheme.
The NIPoS prover on input id first queries the random oracle to obtain x := H(id) and then
runs the algorithm Prove on input x and outputs whatever the algorithm outputs, i.e. the value
y := M(x) and the proof of correct computation πvc. The NIPoS verifier on input id and the
proof of space (y, πvc) first queries the random oracle to obtain x := H(id) and the runs the
algorithm Ver on input x, y, πvc and outputs whatever the algorithm outputs.

Our Construction. Let M be a (k, n, smhf , tmhf , s, f, t, εmhf)-MHF, (Gen,Prove,Ver) be a
(smhf , tmhf , s

vc
P , t

vc
P , s

vc
V , t

vc
V , k, n, nvc, εvc)-VC scheme for M and H : {0, 1}∗ → {0, 1}k be a hash-

function modeled as random oracle such that tmhf , t
vc
P , t

vc
V ∈ poly(λ) and svcV ≤ s < svcP . Then

define the following algorithms:

Setup(1λ): On input the security parameter, run (vkM , ekM) ← GenM (1λ) and set pppos :=
(vkM , ekM).

PHpppos(id): Given public parameters pppos := (vkM , ekM) and an identity id ∈ {0, 1}kpos , compute
the proof-of-space as follows:

1. Obtain x := H(id) by querying H.
2. Compute (y, πvc) := ProveekM (x).

3. Return π := (y, πvc).

33

VHpppos(id , π): Given public parameters pppos := (vkM , ekM) an identity id ∈ {0, 1}kpos and a
candidate proof π ∈ {0, 1}npos , check the correctness of π with respect to id as follows:

1. Obtain x := H(id) by querying H.
2. Parse (y, πvc) := π.
3. Return VervkM (x, y, πvc).

In the following lemma, we formally state that the above construction satisfies uniqueness
and extractability properties.

Lemma 9. The above construction is (kpos, npos, sP, sV)-NIPoS with (upos, εunique)-uniqueness
and (s, f, t, η, εpos)-extractability as long as:

kpos ∈ poly(λ) npos = n+ nvc sP ≥ max(svcP , kpos)

sV ≤ svcV + k + n+ kpos + nvc η = log |QH(B)|

upos = n εunique ≤ εvc εpos ≤ εvc + εmhf +
1

2k − |QH(B)|

where |QH(B)| is the the total number of random-oracle query made by B.

Proof. The bounds on npos, upos are obvious. The parameter kpos can be set to any polynomial
in λ as the random oracle’s input domain is unrestricted. If kpos is smaller than svcP , then sP can
be set to svcP , otherwise it must be set to at least the length of the id (as it needs to store the
entire input to make an RO query). The upper bound on sV is obtained just by summing up
lengths of all the parameters used with the space required to run the verifier. The uniqueness
error εunique can be set up to εvc because as long as soundness of the VC-scheme does not fail
uniqueness holds. It only remains to argue about εpos which we do next.

Let us first give some intuition. Since the no (s, f, t)-bounded adversary can compute the
function M on a random input H(id), B’s best bet to make the output of the Gext

B,id (λ) = 1 is to
either (i) compute another function, that is not memory-hard and “fake” the proof or (ii) guess
the random-oracle output H(id) correctly. The probabilities are bounded by εvc and ≈ 1/2k

respectively for those events and hence the probability of Gext
B,id (λ) outputting 1 can be bounded

by ≈ εvc + 2−k. We formalize Gext
B,id (λ) (Definition 10) with respect to the above construction:

Game Gext
B,id (λ)

1. Sample pppos ← Setup(1λ) where pppos = (ekM , vkM).
2. Compute x = H(id) and run (y, πvc)← ProveekM (x).
3. Let A← BH(pppos, id , (y, πvc)).

4. Let (ĩd , ỹ, π̃vc) := AH(id , y, πvc).
5. Let z := Fhint(pppos,QH(B), ĩd).
6. Let α := K(pppos,QH(B), z).

7. Compute x̃ := H(ĩd) and output 1 if an only if (i)VervkM (x̃, ỹ, π̃vc) = 1, (ii)
id 6= ĩd and (iii) id 6= α. Otherwise output 0.

where the hint-producer just leaks the index of ĩd from the table, and if ĩd is not found, then it
returns 0η. The extractor, on receiving z would return id from the table QH(B), unless z = 0η,
in which case it returns 0 . . . 0. Clearly we have that: η = log |QH(B)|.

For a fixed id ∈ {0, 1}kpos define the following events with respect to the above game where
randomness comes from the randomized procedures and B:

34

Event Unsound: ỹ 6= M(x̃) and VervkM (x̃, ỹ, π̃vc) = 1

Event Guess: B guesses x̃ correctly without asking the RO on ĩd .

Now we have that:

Pr[Gext
B,id (λ) = 1] ≤ Pr[Gext

B,id (λ) = 1 | ¬Unsound ∧ ¬Guess] + Pr[Unsound] + Pr[Guess].

However since M is a (k, n, smhf , tmhf , s, f, t, εmhf)-MHF we have:

Pr[Gext
B,id (λ) = 1 | ¬Unsound ∧ ¬Guess] ≤ εmhf .

Furthermore from the soundness of VC we have that Pr[Unsound] ≤ εvc and by a simple
counting argument, we get Pr[Guess] ≤ 1

2k−|QH(B)| where |QH(B)| is the total number of random
oracle queries asked by B. Combining the above results, we obtain that

εpos ≤ εvc + εmhf +
1

2k − |QH(B)|
which concludes the proof.

8.4 Instantiating MHF

Our MHF instantiation is a slight variant of a graph-based proof of space construction;25 in
particular, we choose the one provided in [RD16] (also used in [FHMV17a]). However, similar
formal arguments of space-hardness does not work in our case. Instead, we rely on a heuristic as-
sumption (and also Assumption 1) that our construction, provided below, satisfies our definition
of MHF (cf. Definition 15) for useful parameters.

Our construction MG,Hash: On input x ∈ {0, 1}k, define the MHF MG,Hash as follows:
consider the SoLEG GNc,kG,γ1,γ2 ; recall that the number of nodes of GNc,kG,γ1,γ2 is given by
N = Nc(kG + 1) and the in-degree is deg ∈ O(1). Let Hash : {0, 1}∗ → {0, 1}nhs be a standard
hash function (for example SHA3) with collision-probability εhs. On input x ∈ {0, 1}k, first
compute a Hashx-labeling of GNc,kG,γ1,γ2 . Denote the labeling by z = (z1, . . . , zN) ∈ {0, 1}nhsN ,
where each zi ∈ {0, 1}nhs . Output y where y := Hx(z) ∈ {0, 1}nhs .

For a standard instantiation of H, we assume the following facts about labeling a SoLEG.
For basic definitions and facts about graph labeling we refer to Section 7.2. Our first assumption
is essentially a concrete version of Lemma 6, in that the hash function is modeled as a random
oracle. Instantiating that with a concrete hash function, we loose that provable guarantee.
Nevertheless, we assume that the same property holds.

Assumption 1 (Efficient labeling with Hash). Let GNc,kG,γ1,γ2 be a SoLEG and H : {0, 1}∗ →
{0, 1}nH be a “standard hash function” like SHA3. There exists a polynomial time algorithm A
that computes the H-labeling of the graph GNc,kG,γ1,γ2 in at most NcnH-space.

Assumption 2 (Memory-hardness of Graph-labeling with Hash). Suppose that Assumption 1 is
true for the hash function Hash : {0, 1}∗ → {0, 1}nhs (with collision-probability εhs). Then for any
k, smhf , tmhf , s, f, t ∈ poly(λ) such that t < 2kGγ1Nc and s ≤ δNcnhs for some δ ∈ [0, γ2 − 2γ1),
the above construction is (k, n, smhf , tmhf , s, f, t, εmhf)-MHF where:

n = nhs smhf ≥ k + nhs(Nc+ log(N) + 1) + n

εmhf ≤ exp

(
−nhsNc(β − δ)
N log(N)

)
+(s+ f)εhs + 2−γhsnhs + 2−k

for β = γ2 − 2γ1 and a constant γhs ∈ (0, 1
2].

25Since popular memory-hard functions like SCrypt [Tar] are not conjectured to provide exponential space-time
trade-off, we are unable to use them here.

35

Notes on Assumption 2. First notice that, by our construction and Assumption 1, which
says that there exists a polynomial-time algorithm that can label the graph GNc,kG,γ1,γ2 , it is
straightforward to see the bounds on n and smhf . In fact those are not even part of Assumption 2,
although for simplicity we state them as assumption. The main conjecture is made on the upper-
bound of εmhf . Note that it has an expression similar to the the bound of NIPoS-error νpos in
Theorem 2 of [FHMV17a] (see Page-17 of [FHMV17b]). First let us focus on the final three
three terms (s+ f)εhs + 2−γhsnhs + 2−k. These terms are derived provably (again made part
of the assumption for simplicity) from the collision resistance of Hash, guessing probability of
the output of MG,Hash (assuming that it’s output has min-entropy at least γhsnhs for some
γhs ∈ (0, 1

2]) and the guessing probability of RO output (without querying). For the term

exp
(
−nhsNc(β−δ)
N log(N)

)
we use the same expression from NIPoS-error νpos in Theorem 2 of FHMV.

Essentially we assume that if the labeling of the same graph (used in Theorem 2 of FHMV)
is done with respect to a concrete hash function (namely Hash) instead of a random oracle,
then its space-hardness remains approximately the same. Since a concrete instantiations of a
random oracle will definitely not meet all its properties we use a more “conservative” bound: first
note that since our MHF-definition (Definition 15) does not have a small-space verification, the
adversary’s task is harder compared to the extractability game (Definition 10). In particular,
in the MHF-definition the adversary wins if and only if it returns exactly the value that is the
correct output of the MHF on a random input. In contrast, the NIPoS requires that the returned
value (that is the proof π̃ in Definition 10) has to be verified correctly only by a “low-space”
verifier (leaving room for some “faults”). However, if we naïvely put the number of faults to
be zero in the expression from Theorem 2 of [FHMV17a] the corresponding probability would
have been equal to zero as well. A closer look into the proof of the same theorem reveals that
this would implicitly assume similar graph-labeling and pebbling Lemmas (see Section 7.2 for
details) for the concrete hash function Hash. We feel that this would have been a rather strong
assumption as we do not know how to even define a pebbling game with respect to a concrete
hash function which is not modeled as a random oracle. Therefore, intuitively we just assume
that instantiating the random oracle with a standard hash function is somewhat equivalent to
allowing a few faults. We leave further analysis on our assumption as an interesting direction
for future work.

From Assumption 2 we get the following corollary about our MHF-candidate:26

Corollary 10. Suppose that Assumption 1 holds for the hash function Hash : {0, 1}∗ → {0, 1}nhs

and based on that Assumption 2 holds for our construction based on a SoLEG GNc,kG,γ1,γ2 with
N = Nc(kG + 1) nodes and deg = O(1) in-degree such that:

nhs = λ2 β = γ2−2γ1 ∈ (0, 1) kG = λ− 1

Nc = λ3 εhs ∈ negl(λ).

Then, for any δ ∈ (0, β), any ε > 0 and any γhs ∈ (0, 1
2] our construction is a (k, n, smhf , tmhf ,

s, f, t, εmhf)-MHF for t, f, tmhf ∈ poly(λ) and:

k = O(λε) n = λ2 smhf = O(λ5)

s ≤ δ · λ5 εmhf ≤ exp

(
−(β − δ)λ

log(λ)

)
+ negl(λ) ∈ negl(λ)

26We remark that this corollary is very similar to Corollary 1 of [FHMV17b] as one may expect. However the
parameters here are much better in terms of efficiency.

36

Furthermore, for making εmhf ≈ 2−80, we need to have λ ≈ 2300. Choosing standard values
for other parameters, δ = 0.1, β = 0.9, γhs = 0.001 we get concrete parameters for our MHF-
construction as:

k ≥ 80 n ≈ 670 KB smhf ≈ 8000 TB s ≤ 800 TB εmhf ≈ 2−80

8.5 Instantiating VC

Our NIPoS construction can be instantiated with any VC for which the verification can be done
in small space (compared to computing the function itself). In this work we concretely consider
such a scheme, known as Pinocchio [PHGR13].

Space requirements of Pinocchio Verifier. Without giving formal arguments on the space-
bound, we rely on the following assumption on the Pinocchio verification algorithm. Note that
these bounds are independent of the space-bound of the function (in this case that is MG,Hash)
to be verified. We briefly provide some justifications of that afterwards. We refer the reader for
more details about the algorithm and the time complexity to the original paper [PHGR13].

Assumption 3 (Space-bounded Verification). Let G be a (as considered in [PHGR13]) cyclic
subgroup of points in E(Fp); E(Fp) denotes an elliptic curve over Fp where p ∈ exp(λ) is a
prime.27 Then for a function F : {0, 1}k → {0, 1}n, the Pinocchio verification algorithm (see
Protocol 2 of [PHGR13]) requires k+n+O(λ)-bit space asymptotically and ≈ k+n+300·dlog pe
bits concretely.

Notes on Assumption 3. First notice that the size of the proof is equal to 8 elements
of a group G. Hence, the size of the proof is upper bounded by 16 · dlog(p)e. The verifier
has the verifiaction key vkF hardcoded and it gets as input (i) the input and output values
of the function F , i.e. k + n bits in total, and (ii) a proof of correct computation, πvc which
consists of 8 group elements. Thus, on high level, the verifier needs to store the input and
output,28 has to be able to further store constant number of group elements, have enough space
to add two points on the curve and compute a non-trivial bilinear map e : G×G′ → GT [BF01]
where G′ is subgroup of E(Fp2) and the target group GT is a subgroup of F∗p2 . A point on
an elliptic curve can be stored using constantly many field elements. Addition of two curve
points requires only constantly more space than performing an arithmetic operation in the
field for which we need O(log(p)) space. Computing the bilinear map requires constantly more
space than adding two curve points. Thus, asymptotically, the space complexity of the verifier
can be assumed to be k + n + O(log(p)) = k + n + O(λ). It is more challenging to have a
reasonable measurement of the concrete space complexity of the verifier since it depends not
only on the concrete implementation of the verification algorithm itself but also on the concrete
implementation of all its subprotocols including the basic arithmetic operations in the finite field
Fp. Assuming that Ver is implemented in a sequential manner, e is the modified Weil pairing as
defined in [BF01] computed using Miller’s algorithm [Mil86], we can roughly assume the space
complexity of the verifier as svcV ≤ k + n+ 300 · dlog(p)e.

27To achieve 128-bits of security, as suggested by [Aur], we will set dlog(p)e ≈ 1536.
28An space-optimized verification algorithm might be used to ensure that the verifier never has to read the

entire input (or to write the entire output), if those are parsed in a “streaming manner”. But we choose to follow
a rather conservative approach and assume that the verifier needs to store the input/output at all time.

37

Space requirement of Pinocchio Prover. The space requirement of the prover algorithm
ProveekF (with hardcoded evaluation-key ekF) mainly depends on the space-complexity of the
function F to be verified. Suppose that F can be computed by a (sF , tF)-bounded algorithm,
then the space requirement of ProveekF must be at least max(sF , nvc) because the prover also
outputs the proof of computation of length nvc. For Pinocchio, nvc is equal to 16dlog pe. But
since we are concerned with memory-hard functions, we simply assume that sF � nvc. However,
in reality it could be much larger than that as the prover has to (i) evaluate the circuit (ii)
interpolate a polynomial of degree d, that is upper bounded by the number of gates in the
circuit (more precisely, it is equal to the number of multiplication gates in the circuit) (iii)
divide two polynomials of degree d (iv) finish the computation of the proof (that consists of 8
group elements of size dlog pe) by scalar multiplications and additions of points on elliptic curve
(for more details we refer to [PHGR13]). We will be assuming a (possibly loose) lower bound of
Pinocchio prover’s space requirement as stated in the assumption below.

Assumption 4 (Lower-bound on Prover’s space). Let G be a (as considered in [PHGR13]) cyclic
subgroup of points in E(Fp), where E(Fp) denotes an elliptic curve over a Fp where p ∈ exp(λ)
is a prime. Consider a function F that is computable by a (sF , tF)-bounded algorithm for
sF , tF ∈ poly(λ) and also assume that sF � d16 log(p)e. Then the Pinocchio prove algorithm
(see Protocol 2 of [PHGR13]) requires at least sF -bit space.

Combining Assumption 3 and Assumption 4 we conclude:

Corollary 11. Let λ ∈ N be the security parameter and let F : {0, 1}k → {0, 1}n be a deter-
ministic function that is computable by an (sF , poly(λ))-space-time bounded algorithm. Then
there exists an explicit (sF ,poly(λ), svcV ,poly(λ), svcP ,poly(λ), k, n, nvc, negl(λ))-non-interactive
publicly verifiable computation construction, where:

svcV = k + n+O(λ) svcP ≥ sF nvc = O(λ)

Furthermore, in concrete terms, to get εvc ≈ 2−128, choosing dlog pe ≈ 1536 (following [Aur]) we
can have estimations of the verifier’s space svcV ≈ 58 KB + k+ n and the proof-size nvc ≈ 3 KB.

8.6 Instantiating partially unique NIPoS and PExt-NIPoS

Putting together the instantiations of MHF and VC, we can get a (partially) unique extractable
NIPoS based on four heuristic assumptions (Assumptions 1–4). Plugging in the parameters from
Corollary 10 and Corollary 11 into Lemma 9, we obtain the following corollary:

Corollary 12 (MHF-based NIPoS with uniqueness). For any ε > 0 and a δ ∈ (0, 1) there
is an explicit construction of (kpos, npos, sP, sV)-NIPoS which has (upos, εunique)-uniqueness and
(s, f, t, η, εpos)-extractability for any f, t ∈ poly(λ) as long as:

kpos ∈ poly(λε) npos = O(λ2) sP = Ω(λ5) s ≤ δλ5

sV = O(λ2) upos = λ2 εunique ∈ negl(λ) η = O(log(λ)) εpos ∈ negl(λ).

Instantiating this construction with λ = 2300 to get εpos ≈ 2−80, and setting kpos = 4 KB,
|QH(B)| ≤ 264 and δ = 0.1, we obtain a (kpos, npos, sP, sV)-NIPoS which has (upos, εunique)-
uniqueness and (s, f, t, η, εpos)-extractability where f, t can be set to any large enough value and

kpos = 4 KB npos ≈ 673 KB sP ≥ 8000 TB s ≤ 800 TB

sV ≈ 740 KB upos ≈ 670 KB εunique ≈ 2−128 η = 64 εpos ≈ 2−80.

38

9 Instantiating and comparing our NMC constructions

We propose four constructions of space-bounded (leaky) non-malleable codes that support un-
bounded tampering. All of them are based on non-interactive proof of space. Two require
proof-extractability whereas the other two are based on standard extractability. I this section
we provide asymptotic bounds for parameters of each construction. Additionally, we compare all
constructions with respect to concrete values. Although our constructions have different merits,
we believe this comparison is important. Let us begin by summarizing all our constructions
briefly:

• Construction-1 (based on SoLEG-extension): This encoding scheme is constructed
from poof-extractable NIPoS using Theorem 1. The proof-extractable NIPoS is instantiated
with the challenge-hard graph built in this paper via SoLEG-extension. The parameters
of the proof-extractable NIPoS where stated in Corollary 6.

• Construction-2 (based on PTC’s graph): This encoding scheme is also constructed
from poof-extractable NIPoS using Theorem 1. The proof-extractable NIPoS is instantiated
with the PTC’s challenge-hard graph proposed in [PTC76]. See Corollary 7 for parameters
of the NIPoS.

• Construction-3 (based on FHMV’s NIPoS): This encoding scheme is constructed
from an extractable NIPoS using Corollary 1. The underlying NIPoS is an instantiation is
from FHMV [FHMV17a] which is in turn a variant of [RD16]’s proof-of-space construction.
The parameters of the NIPoS can be found in [FHMV17b, Corollary 1].

• Construction-4 (based on MHF): This encoding scheme is again constructed from
an extractable NIPoS with partial uniqueness using Corollary 1. The underlying NIPoS is
instantiated by a (heuristic) memory-hard function and a verifiable computation scheme.
Corollary 12 summarizes the parameters of this NIPoS construction.

9.1 Instantiations from different PExt-NIPoS

Let us now discuss each code construction in more detail and formally state asymptotic bounds
for code parameters.

Instantiating with CHG-based NIPoS. Instantiating with the CHG-based PExt-NIPoS
from Section 7.4 we obtain two encoding schemes. Plugging-in the parameters from the SoLEG-
based NIPoS (Corollary 6) and the PTC-based NIPoS (Corollary 7) into Theorem 1 respectively
we obtain the following two corollaries with asymptotic bounds.

Corollary 13 (Construction-1 based on SoLEG-extension). Let nH ∈ ω(λ) be the RO out-
put length. Assume the existence of a (∗, nH,poly(λ), negl(λ))-PRF. Then, for any θ ∈ poly(λ)
the (k, n)-code built upon the NIPoS in Corollary 6 is (`, s, f, p, θ, d, negl(λ))-SP-NMC-SD in the
ROM, where

` = ω(λ1.5 log2 λ) `+ ω(log λ) ≤ k ≤ O(λ1.5 log λ) · nH n = ω(λ1.5 log λ) · nH
s, f = Θ(λ2) · nH n ≤ p ≤ n+ k −O(log λ) d = ω(λ1.5 log λ) · nH .

Corollary 14 (Construction-2 based on PTC’s graph). Let nH ∈ ω(λ) be the RO output
length. Assume the existence of a (∗, nH, poly(λ),negl(λ))-PRF. Then, for any θ ∈ poly(λ) the

39

(k, n)-code built upon the NIPoS in Corollary 7 is (`, s, f, p, θ, d, negl(λ))-SP-NMC-SD in the
ROM, where

` = ω(λ log3 λ) `+ ω(log λ) ≤ k ≤ O(λ log2 λ) · nH n = ω(λ log2 λ) · nH
s, f = Θ(λ2) · nH n ≤ p ≤ n+ k −O(log λ) d = ω(λ log2 λ) · nH .

Instantiating with FHMV’s NIPoS. First we observe that the NIPoS used in FHMV,
that is the one proposed by Ren and Devadas [RD16], has ≈ 0 uniqueness. Combining this
observation and plugging-in the asymptotic parameters from FHMV [FHMV17b, Corollary 1]
to our Corollary 1, we obtain an encoding scheme that satisfies continuous space-bounded non-
malleability with the following parameters.

Corollary 15 (Construction-3 from FHMV’s NIPoS). Consider a (∗,poly(λ), negl(λ))-
PRF. Then for any θ ∈ poly(λ) and any f ∈ poly(λ) and δ ∈ (0, 1) the (k, n)-code built upon the
NIPoS of [FHMV17b, Corollary 1] is (`, s, f, p, θ, d, negl(λ))-SP-NMC-SD in the ROM, where

O(λ4) = k > `+O(log(λ)) n = O(λ4) d = O(λ4)

` = p− k+O(log λ) = O(λ4) O(λ4) ≤ p < n+ k −O(log λ) O(λ4) ≤ s ≤ δλ5 .

We provide a remark comparing the above corollary with Theorem 3 of [FHMV17b].

Remark 12. There are two major differences compare to [FHMV17b, Theroem 3]. First here
the leakage grows with dlog(θ)e compared to in [FHMV17a] where ` = θ ·O(log(λ)), which grows
linearly with θ – this implies that we can set θ to be any unbounded polynomial function of
λ. Second, here we achieve a weaker notion, in that a self-destruct is present. As explained
in Section 4, in our case self-destruct is inevitable as otherwise it is impossible to tolerate an
unbounded θ. For a more detail discussion we refer to [FHMV17a].

Instantiating with MHF-based NIPoS. Finally, let us discuss parameters of our cod-
ing scheme based the extractable NIPoS with partial uniqness built from heuristic MHF and
VC. Plugging-in Corollary 12 into Corollary 1, we obtain an encoding scheme satisfying space-
bounded continuous non-malleability for parameters provided in the following corollary.

Corollary 16 (Construction-4 based on heuristic MHF). For any ε > 0 and a δ ∈ (0, 1)
there is an explicit construction of a (k, n)-code which is (`, s, f, p, θ, d, εnm)-SP-NMC-SD as long
as θ, f ∈ poly(λ) and:

O(λ2) = k > `+O(log λ) n = O(λ2) ` = p− k − λ2 +O(log λ)

O(λ2) < s ≤ δλ5 n ≤ p < n+ k −O(log λ) d = O(λ2) εnm ∈ negl(λ)

9.2 Comparing concrete parameters

Assumptions. The first three constructions are based on “memory-hard graphs”. The hard-
ness can be proven in the random oracle model via standard pebbling games (see a discussion
in Section 7.2). The main proof relies on combinatorial arguments. In contrast Construction-
4 relies on heuristic arguments for space bounds. The main assumptions are (Assumption 2
and 1) that memory-hard graphs retain their space-hardness when instantiated with concrete
hash functions. This is needed because the standard pebbling arguments fall short when the hash
function is not modeled as a random oracle. We also rely on a few other assumptions (namely
Assumption 3 and 4) regarding the underlying verfiable computation. For all our constructions
we need a PRF with standard security as the proofs depend on the pseudorandomness guarantee
of the PRF.

40

Our setting. Since our constructions are obtained from different techniques and achieve dif-
ferent bounds, it is important to fix a common measure with respect to which a comparison
makes sense. We choose to fix a standard security measure. In particular, we set εnm = 2−80

in the Definition 8 — that is how we can estimate the values of the other parameters (namely,
k, n, `, s, f, p, d) to get 80-bit security. We also choose a reasonable values for the number of tam-
pering queries: θ = 216.29 Whenever there is a term that depends on the number of RO queries
made by a poly-time adversary, (for example |QH(A)|) we set that to 264. We assume that a
poly-time adversary runs for 280 time steps. Since in our setting (as discussed in Remark 3) ` is
always as big as p − n we compare the parameters considering p ≈ n to have minimal leakage.
We choose small values for k (close to `) within the supported range, although for most of our
constructions much higher k is supported.

Using concrete instantiations of PExt-NIPoS (resp. Ext–NIPoS) and plugging-in them to
Theorem 1 (resp. Corollary 1), we get the concrete parameters for the resulting CSNMCs. We
provide a comparative study in Table 2.

Technique NIPoS-type k n, (≈ p) ` d s(+f)

CHG SoLEG-based 1 MB 801 MB 0.8 MB 801 MB 1.1 GB(+f)
PTC-based 257 MB 256 GB 256 MB 256 GB 256 GB(+f)

Ext FHMV-based 226 TB 415 TB 225 TB 452 TB 800 TB
MHF-based 4 KB 677 KB 3 KB 740 KB 800 TB

Table 2: This table shows approximate concrete parameters for the setting when p ≈ n. Note
that for PExt-NIPoS-based constructions the last column has bound on s + f , whereas for
Ext-NIPoS-based constructions the bound is only on s as f can be set to arbitrary large value.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant
Pandey, and Manoj Prabhakaran. Optimal computational split-state non-malleable
codes. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory
of Cryptography Conference, Part II, volume 9563 of Lecture Notes in Computer
Science, pages 393–417, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg,
Germany.

[ABFG14] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of
space: When space is of the essence. In Michel Abdalla and Roberto De Prisco,
editors, SCN 14: 9th International Conference on Security in Communication Net-
works, volume 8642 of Lecture Notes in Computer Science, pages 538–557, Amalfi,
Italy, September 3–5, 2014. Springer, Heidelberg, Germany.

[ACK+16] Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof
Pietrzak, and Stefano Tessaro. On the complexity of scrypt and proofs of space
in the parallel random oracle model. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 358–387, Vienna, Austria, May 8–12,
2016. Springer, Heidelberg, Germany.

29We stress that this value can be set much higher without affecting the main parameters significantly.

41

[ACP+17] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.
Scrypt is maximally memory-hard. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part III, volume
10212 of Lecture Notes in Computer Science, pages 33–62, Paris, France, April 30 –
May 4, 2017. Springer, Heidelberg, Germany.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In David B. Shmoys, editor, 46th Annual ACM Symposium
on Theory of Computing, pages 774–783, New York, NY, USA, May 31 – June 3,
2014. ACM Press.

[ADN+17] Divesh Aggarwal, Nico Dottling, Jesper Buus Nielsen, Maciej Obremski, and Erick
Purwanto. Continuous non-malleable codes in the 8-split-state model. Cryptology
ePrint Archive, Report 2017/357, 2017. https://eprint.iacr.org/2017/357.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. Explicit non-malleable codes against bit-wise tampering and permu-
tations. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 538–557, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[AKO17] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-
malleable codes stronger. In Yael Kalai and Leonid Reyzin, editors, TCC 2017:
15th Theory of Cryptography Conference, Part II, volume 10678 of Lecture Notes
in Computer Science, pages 319–343, Baltimore, MD, USA, November 12–15, 2017.
Springer, Heidelberg, Germany.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-
hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual
ACM Symposium on Theory of Computing, pages 595–603, Portland, OR, USA,
June 14–17, 2015. ACM Press.

[Aur] Aurore Guillevic and François Morain. Discrete logarithms. Book Chapter 9.
https://hal.inria.fr/hal-01420485v1/document.

[BCS16] Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. Balloon hashing: A
memory-hard function providing provable protection against sequential attacks.
Cryptology ePrint Archive, Report 2016/027, 2016. http://eprint.iacr.org/
2016/027.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-
malleable codes for bounded depth, bounded fan-in circuits. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part II, volume 9666 of Lecture Notes in Computer Science, pages 881–908, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[BDKM18] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-
malleable codes from average-case hardness: AC0, decision trees, and streaming
space-bounded tampering. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 618–650, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany.

42

https://eprint.iacr.org/2017/357
https://hal.inria.fr/hal-01420485v1/document
http://eprint.iacr.org/2016/027
http://eprint.iacr.org/2016/027

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101–119,
2001.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. In Proceedings of the 21st Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’01, pages 213–229, London, UK, UK, 2001.
Springer-Verlag.

[BM15] Rishiraj Bhattacharyya and Pratyay Mukherjee. Non-adaptive programmability of
random oracle. Theor. Comput. Sci., 592:97–114, 2015.

[CG14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. In Yehuda Lindell, editor, TCC 2014: 11th Theory
of Cryptography Conference, volume 8349 of Lecture Notes in Computer Science,
pages 440–464, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg,
Germany.

[CGM+16a] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj
Upadhyay. Block-wise non-malleable codes. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016: 43rd
International Colloquium on Automata, Languages and Programming, volume 55
of LIPIcs, pages 31:1–31:14, Rome, Italy, July 11–15, 2016. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

[CGM16b] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-knowledge
proof of algebraic and non-algebraic statements with applications to privacy pre-
serving credentials. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer
Science, pages 499–530, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 585–605, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[DFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
Cinderella: Turning shabby X.509 certificates into elegant anonymous credentials
with the magic of verifiable computation. In 2016 IEEE Symposium on Security
and Privacy, pages 235–254, San Jose, CA, USA, May 22–26, 2016. IEEE Computer
Society Press.

[DKW11a] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes
resilient to space-bounded leakage. In Phillip Rogaway, editor, Advances in Cryp-
tology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
335–353, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Ger-
many.

[DKW11b] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-
erasing functions. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography

43

Conference, volume 6597 of Lecture Notes in Computer Science, pages 125–143,
Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany.

[DLSZ15] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally
decodable and updatable non-malleable codes and their applications. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part I, volume 9014 of Lecture Notes in Computer Science, pages 427–
450, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Vic-
tor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 37–54, Santa Barbara, CA, USA, August 14–18,
2005. Springer, Heidelberg, Germany.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In Andrew Chi-Chih Yao, editor, ICS 2010: 1st Innovations in Computer Science,
pages 434–452, Tsinghua University, Beijing, China, January 5–7, 2010. Tsinghua
University Press.

[FHMV17a] Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi.
Non-malleable codes for space-bounded tampering. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume 10402
of Lecture Notes in Computer Science, pages 95–126, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany.

[FHMV17b] Sebastian Faust, Kristina Hostakova, Pratyay Mukherjee, and Daniele Venturi.
Non-malleable codes for space-bounded tampering. Cryptology ePrint Archive,
Report 2017/530, 2017. http://eprint.iacr.org/2017/530.

[FLR+10] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Mar-
tijn Stam, and Stefano Tessaro. Random oracles with(out) programmability. In
Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477
of Lecture Notes in Computer Science, pages 303–320, Singapore, December 5–9,
2010. Springer, Heidelberg, Germany.

[FMNV14] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
Continuous non-malleable codes. In Yehuda Lindell, editor, TCC 2014: 11th Theory
of Cryptography Conference, volume 8349 of Lecture Notes in Computer Science,
pages 465–488, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg,
Germany.

[FMNV15] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A
tamper and leakage resilient von neumann architecture. In Jonathan Katz, editor,
PKC 2015: 18th International Conference on Theory and Practice of Public Key
Cryptography, volume 9020 of Lecture Notes in Computer Science, pages 579–603,
Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany.

[FMVW14] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Effi-
cient non-malleable codes and key-derivation for poly-size tampering circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 111–128,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

44

http://eprint.iacr.org/2017/530

[FNSV18] Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi. Continu-
ously non-malleable codes with split-state refresh. In ACNS 18: 16th International
Conference on Applied Cryptography and Network Security, Lecture Notes in Com-
puter Science, pages 121–139. Springer, Heidelberg, Germany, 2018.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
– CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194,
Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable com-
mitments. In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Sym-
posium on Theory of Computing, pages 1128–1141, Cambridge, MA, USA, June 18–
21, 2016. ACM Press.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-
malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part I, volume 9014 of Lecture Notes in
Computer Science, pages 451–480, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany.

[KOS17] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-
state non-malleable codes with explicit constant rate. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part II,
volume 10678 of Lecture Notes in Computer Science, pages 344–375, Baltimore,
MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-
malleable randomness encoders and their applications. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 589–617, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
517–532, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Ger-
many.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293
of Lecture Notes in Computer Science, pages 369–378, Santa Barbara, CA, USA,
August 16–20, 1988. Springer, Heidelberg, Germany.

[Mil86] Victor Miller. Short programs for functions on curves. Unpublished manuscript,
1986.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs
of sequential work. In Robert D. Kleinberg, editor, ITCS 2013: 4th Innovations in
Theoretical Computer Science, pages 373–388, Berkeley, CA, USA, January 9–12,
2013. Association for Computing Machinery.

45

[Muk15] Mukherjee, Pratyay. Protecting Cryptographic Memory against Tampering Attack.
PhD thesis, 2015.

[OPVV18] Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Con-
tinuously non-malleable codes in the split-state model from minimal assumptions.
Lecture Notes in Computer Science, pages 608–639, Santa Barbara, CA, USA, 2018.
Springer, Heidelberg, Germany.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 238–252, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society
Press.

[Pie18] Krzysztof Pietrzak. Proofs of catalytic space. IACR Cryptology ePrint Archive,
2018:194, 2018.

[PTC76] Wolfgang J Paul, Robert Endre Tarjan, and James R Celoni. Space bounds for a
game on graphs. Mathematical systems theory, 10(1):239–251, 1976.

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Con-
ference, Part I, volume 9985 of Lecture Notes in Computer Science, pages 262–285,
Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[Tar] Tarsnap. The scrypt key derivation function. Webpage. https://eprint.iacr.
org/2017/1125.

46

https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125

A Proof of Theorem 1

To simplify the notation in the proof, let us write

Dr := DH(·),OΠ,x,pp,s,p
real-sd (·), Dm := DH(·),OS2,`,x,s,pp

sim (·), Ds := DS1(·),OS2,`,x,s,pp
sim (·)

to denote the interaction in the real, resp. mental, resp. simulated experiment.
Consider an adversary D which makes θ queries to Oreal-sd. By Definition 8, we need to

prove that the simulator SD = (SD1 , S
D
2) defined in Fig. 1 is such that, for all values x ∈ {0, 1}k

satisfying∣∣∣Pr
[
Dr(pp) = 1: pp←$ InitH(1λ)

]
− Pr

[
Ds(pp) = 1: pp←$ InitS1(1λ)

]∣∣∣ ≤ εnm(λ).

A straightforward reduction to the pseudorandomness of the PRF yields:∣∣∣Pr
[
Ds(pp) = 1: pp←$ InitS1(1λ)]− Pr[Dm(pp) = 1: pp←$ InitH(1λ)

]∣∣∣ ≤ εpr(λ).

Hence, our goal is to show that∣∣∣Pr
[
Dr(pp) = 1: pp←$ InitH(1λ)]− Pr[Dm(pp) = 1: pp←$ InitH(1λ)

]∣∣∣ ≤ εpos(λ).

Let us now fix some arbitrary x ∈ {0, 1}k and over the randomnesses of the randomized
procedures Init, Encode, the distinguisher D and the simulators S1,S2 let us define an event
NoTamp as

NoTamp := L1(x) = 0`1 .

In other words, the event NoTamp occurs when the first leakage function outputs 0`1 which
signals that none of the tampering algorithm tampers to a codeword that decodes to something
else than the target message x.

Claim 2. It holds that

|Pr [Dr(pp) = 1 | NoTamp]− Pr [Dm(pp) = 1 | NoTamp]| = 0

Proof. In case of the event NoTamp, the simulator answers all tampering queries by the symbol
same? which is exactly what the tampering oracle does in the real experiment.

The above claim implies that:

|Pr [Dr(pp) = 1]− Pr [Dm(pp) = 1]| (2)
≤ |Pr [Dr(pp) = 1 | ¬NoTamp]− Pr [Dm(pp) = 1 | ¬NoTamp]| .

If the event ¬NoTamp occurs, then j? := bit−1(L1(x)) is such that 0 < j? ≤ θ which means
that Aj? is the first tampering algorithm that tampers to a codeword c̃ which decodes to x̃ 6= x.
As a next step, we define an event

Invalid := DecodeHpp(c̃) = ⊥

and prove the following claim.

Claim 3. It holds that

|Pr [Dr(pp) = 1 | ¬NoTamp ∧ Invalid]− Pr [Dm(pp) = 1 | ¬NoTamp ∧ Invalid]| = 0

47

Proof. If the tampering algorithm Aj? tampers to an invalid codeword, then the second leakage
oracle returns the flag 0`2 . The simulator S2 outputs the symbol same? for all tampering queries
A1, . . . ,Aj?−1 and ⊥ for all tampering queries Aj? , . . . ,Aθ. This is exactly what the tampering
oracle does in the real experiment (recall that we consider non-malleable codes with self-desctruct
mechanism).

Let us denote E := ¬NoTamp∧¬Invalid. Using the claim from above and Eq. (2), we can
bound the the probability that D succeeds as follows:∣∣Pr [Dr(pp) = 1]−Pr [Dm(pp) = 1]

∣∣ (3)
≤
∣∣Pr [Dr(pp) = 1 | E]− Pr [Dm(pp) = 1 | E]

∣∣.
If the event E occures, then Aj? tampered to a valid codeword c̃ that decodes to x̃ 6= x. Next,
we define the event

NotExtr := K(pp,QH(D), z) 6= c̃,

where z := Fhint(pp,QH(D), c̃). In other words, the event NotExtr happens when c̃ is not
extraxtable from the oracle query table QH(D). Using Eq. (3), we can bound the probability
that D succeeds as follows:

|Pr [Dr(pp) = 1]− Pr [Dm(pp) = 1]| (4)

≤
∣∣∣Pr [Dr(pp) = 1 | E ∧ ¬NotExtr]− Pr [Dm(pp) = 1 | E ∧ ¬NotExtr]

∣∣∣
+ Pr [NotExtr | E] .

We complete the proof by showing the following two claims.

Claim 4. It hold that Pr [NotExtr | E] ≤ εpos.

Proof. We construct a PPT algorithm B running in game Gpext
B,x (λ), that attempts to break the

proof-extractability of the NIPoS with probability εpos:

Algorithm BHD :

1. Receive as input pppos←$ SetupH(1λ), x ∈ {0, 1}k, and π←$ PHpppos(x).

2. Assign (c, σ) := (x||π, 0s−n), QH(D) := ∅, and define A := Id, where Id : {0, 1}s
→ {0, 1}s is the identity function.

3. For i ∈ [θ] proceed as follows:
(a) Answer random oracle queries made by D, before Ai is chosen, by querying
H in game Gpext

B,x (λ) and forwarding the answers to D; in addition, store
these queries in the table QH(D).

(b) On receiving Ai, set A := A ◦ Ai and run (c̃, σ̃) := Ai(c;σ).
(c) Compute x̃ := DecodeHpp(c̃) and run z := Fhint(pp,QH(D), c̃). If x̃ 6= {x,⊥}

and c̃ 6= K(pp,QH(D), z), then output A and stop. Otherwise let (c, σ) :=
(c̃, σ̃0||0s−p), where σ̃0||σ̃1 := σ̃, and send x̃ to D if x̃ 6= x and same? if
x̃ = x.

We observe that B perfectly simulates the view of D. So, if the event NotExtr happens, then
B wins the game Gpext

B,x (λ). By proof-extractability, we have

εpos ≥ Pr[Gpext
D,x (λ) = 1] ≥ Pr[NotExtr | E].

48

Claim 5. It holds that∣∣∣Pr
[
Dr(1λ) = 1 | E ∧ ¬NotExtr

]
− Pr

[
Dm(1λ) = 1 | E ∧ ¬NotExtr

] ∣∣∣ = 0.

Proof. When the simulator is able to reconstruct the codeword c̃ = (x̃, π̃) from the query table
QH(D), then the simulator answers same? to all tampering queries A1, . . . ,Aj?−1 and outputs
the value x̃ to the tampering query Aj? which is exactly was the tampering oracle does in the
real experiment. What remains to discuss is how the simulator answers the follow up tampering
queries Aj?+1, . . . ,Aθ. Since the additional persistent space σ̃0 is leaked by the leakage function
L2 the simulator is able to reconstruct the entire internal memory as (c̃, σ̃0, 0

s−p). Hence, it can
perfectly simulate the behavior of the tampering oracle and answer all the remaining tampering
queries correctly.

Combining the above two claims together with Eq. (4), we obtain∣∣∣Pr
[
Dr(pp) = 1 : pp← InitH(1λ)

]
− Pr

[
Dm(pp) = 1 : pp← InitS1(1λ)

]∣∣∣ ≤ εpos
as desired.

To complete the security analysis, it remains to argue about the size of leakage. The first
leakage query L1 outputs a `1-bit string which is equal to either the zero bit string or the binary
representation of j?. Since 0 < j? ≤ θ, we have `1 := |bit(θ)| = dlog θe+ 1. The second leakage
query L2 returns an `2-bit string which is either the zero bit string or contains (i) the hint z
which is of length η, (ii) the additional persistent space which is of length p − n and (iii) a bit
1.30 Hence `2 = η + p− n+ 1. To conclude, the size of the leakage is

` = `1 + `2 = dlog θe+ η + p− n+ 2.

B Proof of Theorem 2

From now on, for the proof-extractability game, we fix the random oracle length nH ∈ N, the
(β,Nc, N, τc, t, εpeb)-challenge-hard graph G := Ghard = (V,E) with maximal indegree deg =

O(1), the target sets V (1)
c , . . . , V

(τc)
c ⊆ V , the parameters sP, sV, kpos, ν, τ, τc ∈ N for the NIPoS

scheme, the identity id ∈ {0, 1}kpos , and the parameters s, f, t ∈ N for the tampering class.
In the proof extractability game Gpext

B,id (λ), we denote by B the outside adversary, A the
(s, f, t)-bounded tampering algorithm, and (ĩd , π̃) the output of A. To make the bound more
explicit, we denote by QB ∈ poly(λ) (resp. Q ∈ poly(λ)) an upper bound on the number of RO
queries made by B (resp. A).

Step 1: First, we consider a bad event where the adversary guesses the RO output without
making the random oracle query.

Event Guess: There exists a random oracle input-output pair (inp,H(inp)) ∈ QH(π̃)∪
QH(A) ∪QH(B), such that B or A guesses the output H(inp) (i.e., using the output
H(inp) as a part of an RO query input (or the proof-of-space) before H(inp) is ever
queried).

Claim 6.
Pr [Guess] ≤ deg · (QB +Q) · (QB +Q + ν)

2nH
,

The probability is over the choice of the random oracle, and the coin tosses of Setup,B.
30This additional bit is needed to distinguish the string from the flag 0`2 .

49

Proof. Denote by E∗i (1 ≤ i ≤ QB +Q+ ν) the event that B (or A) guesses the ith input-output
pair (inpi,H(inpi)) in QH(π̃) ∪ QH(A) ∪ QH(B). We first bound Pr[E∗i] for every i: At the
moment that the adversary determines/queries inpi, H(inpi) is uniformly random as it has not
been queried before; since the adversary has at most deg·(QB+Q) input slots to guess the output
before knowing H(inpi), the probability of guessing correctly is at most (deg · (QB +Q))/2nH .

Finally, since there are at most QB+Q+ν RO input-output pairs in QH(π̃)∪QH(A)∪QH(B),
the claim holds by union bound.

Step 2: We consider the second bad event that the adversary opens the merkle root value φ̃`
to different labelings, i.e., the binding property is violated.

For a vector z ∈ {{0, 1}nH ∪ {⊥}}N and a value φ` ∈ {0, 1}nH , we say that the adversary
maximally committed z to φ`, iff 1) for every v ∈ [N] such that zv 6= ⊥, the adversary computed
(via querying RO) a Merkle tree path from position v (with label zv) to the root value φ̃`; 2) for
every v ∈ [N] such that zv = ⊥, the adversary has never computed (via querying RO) a Merkle
tree path from position v to the root value φ`. We consider the following event.

Event Unbind: Denote by φ̃` the Merkle root value in the output proof-of-space
π̃. There exist two different31 vectors z1, z2 ∈ {{0, 1}nH ∪ {⊥}}N , such that the
adversary maximally committed both z1 and z2 to the Merkle root value φ̃`.

Claim 7.
Pr [Unbind] ≤ εcol ,

where εcol := (QB+Q)2/2nH is the collision probability of the hash function Hcom. The probability
is over the choice of the random oracle, and the coin tosses of Setup,B.

Proof. First, we show that if the event Unbind happens, then the adversary outputs an RO
collision pair. We denote by z1 and z2 the two vectors that the adversary maximally committed
to the Merkle root value φ̃`, and denote by v ∈ [N] the minimal index such that z1,v 6= z2,v.

Since at least one of z1,v, z2,v is an nH-bit string, by the second requirement in the definition of
the maximally committing, both z1,v and z2,v are nH-bit strings. Hence, there exist two opening
paths (from leaf v to the root), which have different leaf labels (i.e., z1,v, z2,v ∈ {0, 1}nH), but
have the same Merkle root value φ̃`. Therefore, it must be the case that there exists an RO
collision pair.

Second, we show that the collision probability εcol is at most (QB + Q)2/2nH . For every
i, j ∈ [QB +Q] (where i < j), we denote by E∗i,j the event that 1) the output of the adversary’s
ith RO query collides with that of the jth RO query; 2) the jth RO query (inpj ,H(inpj)) is
the first query with input inpj . We bound Pr[E∗i,j] for every i, j (i < j): At the step where
the adversary makes the jth RO query (but does not receive the answer), the input inpj was
fixed, the output H(inpi) was fixed, but H(inpj) has not been queried yet and thus is uniformly
random. Thus the probability that H(inpj) collides with H(inpi) is at most 1/2nH .

Since there are at most (QB +Q)2 choices for (i, j), by union bound, the collision probability
εcol is at most (QB +Q)2/2nH .

Since

Pr
[
Gpext

B,id (λ) = 1
]
≤ Pr [Guess] + Pr [Unbind]

+ Pr
[
(Gpext

B,id (λ) = 1) ∧ ¬Guess ∧ ¬Unbind
]
,

31By different we mean there exists an index v ∈ [N] such that z1,v 6= z2,v.

50

to bound Pr[Gpext
B,id (λ) = 1], it is now sufficient to bound the probability of the event E1 :=

(Gpext
B,id (λ) = 1) ∧ ¬Guess ∧ ¬Unbind. Intuitively, E1 implies that the adversary A generates

a valid proof that is not extractable by the knowledge extractor. Moreover, the proof is bound
with a unique graph labeling.

Step 3: Next, we consider the third bad event that the labeling committed by the adversaries
is significantly different from the graph labeling of G, that is, the labeling has large number of
faults.

Let m ∈ N be a parameter that will be clear later, we define an event NoFaultm.

Event NoFaultm: Denote by ĩd the output identity, and φ̃` the Merkle root value
in the output proof-of-space π̃. It happens that the adversaries (including both B
and A) maximally committed (altogether) a vector z into the Merkle root value φ̃`
such that: z is an Hĩd -labeling (of the graph G) with at most m faults.

Claim 8. Denote by event E1 := (Gpext
B,id (λ) = 1) ∧ ¬Guess ∧ ¬Unbind, it holds that

Pr [E1 ∧ ¬NoFaultm] ≤ (QB +Q) ·
(

1− m

N

)τ
≤ (QB +Q) · exp

(
−τ ·m

N

)
,

where the probability is over the choice of the random oracle, and the coin tosses of Setup,B.

Proof. Denote by E∗i (1 ≤ i ≤ QB + Q) the event that the ith RO query input to Hchal is
(ĩd , φ̃`), where ĩd is the output identity and φ̃` is the Merkle root value in π̃. We first bound
Pr[E∗i ∧ E1 ∧ ¬NoFaultm].

If the event ¬Unbind happens, then there exists a unique vector z that the adversary
maximally committed to the Merkle root value φ̃`. Moreover, as the event Guess does not
happen, the adversary already committed the vector z to the Merkle root value φ̃` before querying
Hchal(ĩd , φ̃`). Since NoFaultm does not happen, z is an Hĩd -labeling (of the graph G) with
more than m faults, i.e., there are at least m false nodes that will fail the graph consistency
check. Note that the game Gpext

B,id (λ) outputs 1 only if the uniformly chosen set check checks no
false node, therefore we have

Pr [E∗i ∧ E1 ∧ ¬NoFaultm] ≤
(

1− m

N

)τ
≤ exp

(
−τ ·m

N

)
.

Finally, we note that the adversary must have queried (ĩd , φ̃`) to Hchal as Guess does not
happen. Since there are at most QB+Q random oracle queries, the claim holds by union bound.

Since
Pr [E1] ≤ Pr [E1 ∧ ¬NoFaultm] + Pr [E1 ∧NoFaultm] ,

to bound Pr[E1], it is now sufficient to bound the probability of the event E2 := E1∧NoFaultm.
Intuitively, E2 implies that the adversary A generates a valid proof that is not extractable by
the knowledge extractor. Moreover, the proof is bound with a unique graph labeling that has
no more than m faults.

Step 4: To bound Pr[E2], we first show a useful claim that if the adversary wins the game, the
outside adversary B should not have known the challenge set Hchal(ĩd , φ̃`). We define an event
called OpenChal, meaning that the challenge sets were computed by the outside adversary B.

51

Event OpenChal: The RO input-output pair ((ĩd , φ̃`),Hchal(ĩd , φ̃`)) is queried by
the outside adversary B (i.e., ((ĩd , φ̃`),Hchal(ĩd , φ̃`)) ∈ QH(B)), where ĩd is the out-
put identity, and φ̃` is the Merkle root value in the output proof-of-space π̃.

Claim 9. Denote by event E1 := ¬Unbind ∧ ¬Guess ∧ (Gpext
B,id (λ) = 1), it holds that

Pr [E1 ∧OpenChal] = 0 ,

where the probability is over the choice of the random oracle, and the coin tosses of Setup,B.

Proof. If the event ¬Guess ∧ OpenChal happens, the adversary must have 1) followed the
topological order when computing the Merkle commitment; 2) computed the Merkle root value
φ̃` ∈ π̃ herself. On the other hand, since Unbind does not happen, the τ · (deg+ 1) + τc opening
paths in proof π̃ must have been computed by B already, as otherwise, if there is a new opening
path in π̃, the binding property is violated and an RO collision pair would appear. Therefore
we have QH(π̃) ⊆ QH(B). By the winning condition of the game, Gpext

B,id (λ) outputs 0, thus the
claim holds.

Note that Claim 9 implies that OpenChal will never happen if the event E2 := E1 ∧
NoFaultm occurs. Thus we can bound Pr[E2] by analyzing a simpler labeling game where the
challenge set is uniformly random.

The labeling challenge game. At the beginning of the labeling game, an outside adversary
B outputs a graph labeling ` (with m faults) and a space-time bounded algorithm A. Then a
set of random challenge nodes is revealed, and the game wins if the algorithm A can recover the
labeling of the random challenge nodes.

Let parameters nH, kpos, s, f, t, Q, τc ∈ N, graph G (plus the corresponding target sets), and
random oracle H be the same as in the proof-of-space scheme ΠG. Denote by s∗ := s+ nH and
f∗ := f + logQ. For any PPT adversary B (in the restricted storage model), and any m ∈ N,
we define the labeling challenge game Glab

B,s∗,f∗,t,Q,τc,m,G
(λ) as follows.

Game Glab
B,s∗,f∗,t,Q,τc,m,G

(λ):

1. Let (σ,A, id∗, `)← BH, where σ is a memory state with no more than s∗ bits, A
is a (s∗, f∗, t)-bounded deterministic algorithm (that is in the restricted storage
model and makes at most Q RO queries), id∗ ∈ {0, 1}kpos is an identity, and `
is an Hid∗-labeling (of graph G) with no more than m faults.

2. Let chal←$ V
(1)
c × · · · × V (τc)

c be a uniformly chosen challenge set.

3. Let ({zv}v∈chal)← AH(σ, chal).

4. Output 1 if and only if for every v ∈ chal, it holds that zv = `v (where `v is the
vth element of labeling `).

We define the advantage of Glab
B,s∗,f∗,t,Q,τc,m,G

(λ) as

AdvlabB,s∗,f∗,t,Q,τc,m,G(λ) := Pr
[
Glab

B,s∗,f∗,t,Q,τc,m,G(λ) = 1
]
,

where the probability is over the choice of the random oracle, and the coin tosses of chal,B.
Next we show that Pr[E2] can be bounded by the advantage of labeling challenge game.

52

Claim 10. Fix parameters nH, kpos, s, f, t, Q, τc ∈ N, graph G, PPT adversary B (in the re-
stricted storage model) and identity id in the game Gpext

B,id (λ). For any m ∈ N, we define event

E2 := ¬Guess ∧ (Gpext
B,id (λ) = 1) ∧ ¬Unbind ∧NoFaultm .

Let s∗ := s+nH and f∗ := f +logQ. There exists a PPT adversary B′ (in the restricted storage
model) such that

AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≥ Pr [E2] /Q .

Proof. Intuitively, from the adversary B, we build the adversary B′ by programming an RO
query output with the random challenge set, and hope that B will output a proof-of-space that
contains the correct labels for the challenge set.

More formally, the adversary B′ (inGlab
B′,s∗,f∗,t,Q,τc,m,G

(λ)) determines the output (σ,A, id∗, `)
as follows.

1. The initial state σ is (id , π := PHpppos(id)), where id is the identity in the game Gpext
B,id (λ).

2. B′ samples a uniformly random index q←$ [Q].

3. Next, B′ determines the identity id∗ and the labeling ` as follows.

• With access to the random oracle H, B′ simulates the execution BH until B outputs
a tampering algorithm A. Let QH(B) be the query table of B.

• B′ runs AH(σ := (id , π)) until A made q RO queries to Hchal. If A terminates before
making q RO queries to Hchal, B′ outputs ⊥ and halts.

• Let inpq := (id∗, φ∗`) be the qth query input to Hchal, and let QH(A) be the query
table of A. B′ uses QH(B)∪QH(A) to compute ` – the sequence of labels underlying
the merkle commitment φ∗` . If B

′ finds more than one vector that maximally commits
to the value φ∗` (i.e., the binding property is violated), B′ outputs ⊥ and halts.

• If ` is an Hid∗-labeling with more than m faults, B′ outputs ⊥ and halts.

4. Then from the tampering algorithm A, the adversary B′ builds an algorithm A′ that hard-
wires the index q. Given inputs a state σ and a challenge set chal, A′H(σ, chal) runs AH(σ).
After A made the qth RO query to Hchal (with input inpq := (id∗, φ∗`)), instead of directly
replying with Hchal(inpq), A′ programs the RO output so that it is consistent with the
input challenge set chal. Then A′ continues running A. Denote by (ĩd , π̃) the output of
AH(σ). A′ extracts the label values {zv}v∈chal from π̃, and outputs the labeling.

5. Finally, the adversary B′ outputs (σ,A′, id∗, `).

Note that the algorithm A′ is (s∗, f∗, t)-bounded since A′ requires only the extra memory
space to store the challenge set chal, and the hardwired index q has no more than logQ bits.

Next we argue that AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≥ Pr [E2] /Q. Consider the execution ofGpext
B,id (λ).

Given the randomly chosen q←$ [Q], we define a good event E∗q .

Event E∗q : A’s qth query to Hchal (with input (id∗, φ∗`)) is the first Hchal’s query (by

B or A) that satisfies id∗ = ĩd and φ∗` = φ̃`, where ĩd is the ouptut identity by A,
and φ̃` is the merkle commitment in the output proof-of-space by A.

53

Define Bad as the event that in the execution A′(σ, chal), after A made the qth queries to
Hchal, the query input inp := (id∗, φ∗`) was queried by B (or A) before. Note that B′ wins the
labeling game if E∗q ∧ E2 happens and Bad does not happen, hence

AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≥ Pr
[
E∗q ∧ E2 ∧ ¬Bad

]
. (5)

On the other hand, if Bad happens, then the event E∗q does not happen. Thus Pr[E∗q ∧ E2 ∧
Bad] = 0, and we have

Pr
[
E∗q ∧ E2

]
= Pr

[
E∗q ∧ E2 ∧ ¬Bad

]
. (6)

Combining Inequality 5 and Inequality 6, we have

AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≥ Pr
[
E∗q ∧ E2

]
.

Next, we show that
Pr
[
E∗q ∧ E2

]
≥ Pr [E2] /Q .

By Claim 9, E2 implies that OpenChal does not happen (i.e., ((ĩd , φ̃`),Hchal(ĩd , φ̃`)) /∈ QH(B)),
thus (ĩd , φ̃`) can only match to some RO query of A. Since q ∈ [Q] is chosen independetly and
uniformly, conditioned on E2, it holds that with probability at least 1/Q, the qth Hchal query
(made by A) is the first Hchal query that has input (ĩd , φ̃`). Hence we have Pr[E∗q ∧ E2] ≥
Pr[E2]/Q.

In summary, we have

AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≥ Pr
[
E∗q ∧ E2

]
≥ Pr [E2] /Q ,

and the claim holds.

Since an upper bound of Pr[E2] can be obtained from the advantage of labeling challenge
game, to bound Pr[E2], it is now sufficient to analyze the advantage of the labeling challenge
game.

Step 5: Finally, we exploit challenge-hard graphs to bound the advantage of the labeling chal-
lenge game. The idea is to generically transform any (sequential) labeling algorithm that wins
the labeling challenge game with probability p, into a (sequential) pebbling strategy that wins
the pebbling challenge game with probability at least p.

Claim 11. Fix parameters nH, kpos, s∗, f∗, t, Q, τc,m ∈ N, graph G (with N vertices) and the
corresponding target sets. Let B′ be any PPT algorithm (in the restricted storage model). Define

β∗ :=
s∗ + f∗ +m · nH

Nc · nH
.

There exists a pebbling strategy B′′, such that

AdvpebB′′,β∗,t,τc,G
(λ) ≥ AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ,

where AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) is the advantage of the labeling challenge game Glab
B′,s∗,f∗,t,Q,τc,m,G

(λ),
and AdvpebB′′,β∗,t,τc,G

(λ) is the advantage of the pebbling challenge game Gpeb
B′′,β∗,t,τc,G

(λ) (see Defi-
nition 14).

54

Proof. Suppose B′ outputs (σ,A, id∗, `) in the labeling game Glab
B′,s∗,f∗,t,Q,τc,m,G

(λ). We deter-
mine the pebbling strategy accordingly as follows. Given id∗ and `, let F ⊆ V be the set of false
nodes (i.e., the set of nodes whose labels are inconsistent with the graph). For every possible
challenge set chal, we denote by Tr(A(σ, chal)) the transcript of A(σ, chal), and P ∗(chal) the set
of necessary nodes at step 0 in the ex-post-facto pebbling of Tr(A(σ, chal)). We define

P ∗ :=
⋃

chal∈V (1)
c ×···×V

(τc)
c

P ∗(chal) ,

and define the initial pebbled set as P0 := P ∗ ∪ F .
We show that |P0| ≤ β∗ · Nc: First, |F | ≤ m as ` is an Hid∗-labeling with at most m

faults. Second, since we assume that A never compresses or guesses graph labels, by definition
of ex-post-facto pebbling, it holds that |P ∗| ≤ (s∗ + f∗)/nH. Therefore we have

|P0| ≤ m+
s∗ + f∗

nH
= β∗ ·Nc .

Next, in the pebbling game, given a uniformly chosen challenge set chal, we determines
a sequential pebbling strategy as follows. Let Tr(A(σ, chal)) be the transcript of A(σ, chal),
and P be the ex-post-facto pebbling of Tr(A(σ, chal)). We define the pebbling strategy P∗ :=
(P0, . . . , Pt) as follows: The initial pebbled set is the set P0 := P ∗ ∪F defined before. For every
step i (1 ≤ i ≤ t), let P ′i be the pebbling configuration in P (at step i), we define the pebbling
configuration as Pi := F ∪ P ′i .

Since |F | ≤ m and A is a (s∗, f∗, t)-bounded sequential algorithm in the restricted model, it
holds that P∗ is a strategy that i) follows the rule of a sequential pebbling, ii) runs at most t
steps, and iii) uses at most m+ (s∗ + f∗)/nH = β∗ ·Nc pebbles.

Finally, we note that the winning probability of the transformed pebbling strategy is at least
AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ), as P∗ pebbles all the challenge vertices if and only A(σ, chal) answers
all the challenge labels. And thus the claim holds.

Recall that the graph G is (β,Nc, N, τc, t, εpeb)-challenge hard, and

s+ f ≤ (β − δ∗ − 0.01) ·Nc · nH .

Thus for Nc ≥ 200, we can set m := δ∗ ·Nc, s∗ := s+ nH, f∗ := f + logQ so that

β∗ :=
s∗ + f∗ +m · nH

Nc · nH
≤ s+ f +m · nH + 2nH

Nc · nH
= β − 0.01 + 2/Nc ≤ β .

By Claim 11 and by (β,Nc, N, τc, t, εpeb)-challenge-hardness of G, it holds that

AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≤ AdvpebB′′,β∗,t,τc,G
(λ) ≤ AdvpebB′′,β,t,τc,G

(λ) ≤ εpeb .

Thus, by Claim 10, we have that

Pr [E2] ≤ Q · AdvlabB′,s∗,f∗,t,Q,τc,m,G(λ) ≤ Q · εpeb .

Wrap-up: In summary, let m := δ∗ · Nc and κ := τ · m/N , define event E1 := (Gpext
B,id (λ) =

1) ∧ ¬Guess ∧ ¬Unbind and event E2 := E1 ∧NoFaultm, we have

Pr
[
Gpext

B,id (λ) = 1
]
≤ Pr [Guess] + Pr [Unbind] + Pr [E1 ∧ ¬NoFaultm] + Pr [E2]

≤ deg · (QB +Q) · (QB +Q + ν)

2nH
+

(QB +Q)2

2nH
(7)

+ (QB +Q) · exp (−κ) +Q · εpeb ,

and Theorem 2 holds because Q,QB ∈ poly(λ).

55

Remark 13. In the general storage model where the adversary can store arbitrary function of
the graph labels, Pietrzak [Pie18] presented an elegant proof that transforms any parallel labeling
algorithm into a parallel pebbling strategy. However, the reduction proof does not extend to the
sequential setting, because even if the original labeling strategy is sequential, the transformed
strategy is still a parallel pebbling strategy. A possible approach to avoid the issue seems to con-
struct a graph that is challenge hard against parallel pebbling strategies. We found that Pietrzak
[Pie18] indeed defined a similar notion of challenge hard graphs for parallel pebbling strategies.
Unfortunately, the graph that they constructed only achieves a time bound that is linear to the
graph size, which is too weak to fit into our setting where a tampering algorithm typically has
polynomial running time.

56

	Introduction
	Our Work
	Summary of our Contributions
	Technical Overview

	Related Works
	Preliminaries
	Notation
	Basic Definitions
	Bounded Algorithms
	Random Oracles

	Continuous Space-bounded Tampering
	Non-Interactive Proof of Space (NIPoS)
	Space-bounded NMC from Proof-Extractable NIPoS
	Constructing Proof-Extractable NIPoS from CHG
	Merkle Commitments
	Graph Pebbling and Labeling
	Challenge-Hard Graphs (CHG)
	Construction of PExt-NIPoS from CHG
	Instantiating CHG
	A comparison of the two CHG constructions
	Instantiations of PExt-NIPoS from CHGs

	PExt-NIPoS from Memory-Hard Functions
	Memory-hard Functions
	Publicly verifiable computation
	Partially-unique Ext-NIPoS from MHF and VC
	Instantiating MHF
	Instantiating VC
	Instantiating partially unique NIPoS and PExt-NIPoS

	Instantiating and comparing our NMC constructions
	Instantiations from different PExt-NIPoS
	Comparing concrete parameters

	Proof of Theorem 1
	Proof of Theorem 2

