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This paper is focused on an open question regarding the correlation and the
power of the NIST statistical test suite. If we found some correlation between these
statistical tests, then we can improve the testing strategy by executing only one of
the  tests  that  are  correlated.  Using  the  Galton-Pearson  “product-moment
correlation coefficient”,  by simulation, we found a high correlation between five
couples of this statistical tests:  (frequency, cumulative sums forward), (frequency,
cumulative  sums  reverse),  (cumulative  sums  forward,  cumulative  sums  reverse),
(random excursions, random excursions variant), and (serial 1, serial 2).
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1. Introduction

When we talk about communications security, we need to cover both the
confidentiality  of  the  transmitted  data  and  the  confidentiality  of  the
communicators  (sender  and receiver).  Statistical  tests  are  an  efficient  tool  for
assigning  the  ownership  of  a  set  of  independent  observations,  called
measurements,  to  a  specific  population  or  probability  distribution;  they  are
commonly used in the field of cryptography, specifically in randomness testing.
Statistics can be useful in showing that a proposed system is weak. Thus, one
criterion in validating ciphers is that there is no efficient method for breaking it by
brute force. That is, if we have a collection of cipher texts (and eventually the
corresponding plain texts) all the keys have the same probability to be the correct
key, thus we have uniformity in the key space. If we are analyzing the output of
the cipher and find non-uniform patterns, then it can be possible to break it. But if
we cannot find these non-uniform patterns, no one can guarantee that there are no
analytical methods for breaking it. Also, statistical tests can be used for analyzing
communication data and detect covert communications (steganographic systems)
and anomalies in TCP flow (cyber-attacks).

The paper will be organized as follows. In section 2 we present statistical
requirements for validating the security of cryptographic primitives. Validation by
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statistical methods is prone to errors due to the samples used in testing. In section
3 we discuss types of errors, sample requirements, and constructions for testing
block  ciphers.  For  a  reference  to  clearly  defined security, the  International
Standardization  Organization  (ISO),  national  standards  organizations  such  as
American National  Standards Institute (ANSI), National Institute for Standards
and  Technologies  (NIST)  standardize  requirements  and  evaluation  criteria  for
cryptographic  algorithms.  The  statistical  methods  used  in  academic  security
evaluation of the AES candidates are generally based on the “de facto” standard
STS SP 800-22 [8], a publication of Computer Security Research Center [9], a
division  of  NIST,  that  initially  describes  sixteen  statistical  (because  improper
evaluation  of  mean  and  variance,  the  Lempel-Ziv  test  was  dropped  from the
revised version).  Besides  the above,  there  exist  other  several  statistical  testing
procedures and tools specified in Donald Knuth’s book [3], The Art of Computer
Programming, Seminumerical Algorithms, the Crypt-XS suite of statistical tests
developed  by  researchers  from  the  Information  Security  Research  Centre  at
Queensland  University  of  Technology from Australia,  the  DIEHARD suite  of
statistical  tests  developed  by  George  Marsaglia  [5],  TestU01,  a  C  library  for
empirical testing of random number generators developed by P. L’Ecuyer and R.
Simard  [4].  In  section  3  we  discuss  about  STS SP 800-22 and the  statistical
cryptographic evaluation standard used in AES candidates’ evaluation. In section
4, we provide experimental  results regarding evaluation of correlation between
statistical tests that were run using three different lengths of the string sample (i.e.
1,  2,  and  5  million  bits).  In  fact,  using  the  Galton-Pearson  “product-moment
correlation  coefficient”  we found a high  correlation  between some couples  of
these  statistical  tests.  This  fact  allows  us  to  improve  the  testing  strategy  by
executing only the uncorrelated statistical tests. Finally, in section 5, we conclude.

2. Statistical Testing of Cryptographic Primitives

When designing cryptographic  primitives  such as  block/stream ciphers,
there are several requirements. One of these requirements is that the cryptographic
primitive has to satisfy several statistical properties:

 strict  avalanche:  changing  one  input  bit  causes  on  average  about  50%
output changes;

 correlation immunity: correlated input gives an uncorrelated output;
 predictability: having a sample of n binary observations it is impossible to

predict (with a different from 0.5 probability) the next bit outcome;
 balance: every output is produced by the same number of inputs.

The validation of these criteria is done by analytical methods or statistical
tests (in case the first  one is not available).  Also, statistical  tests are useful to
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mount distinguishing attacks  that allow an attacker  to distinguish random data
from encrypted data.  Statistical  hypothesis  testing is a mathematical  technique,
based on sample data, used for supporting the decision making on the theoretical
distribution of a population. In the case of statistical analysis of a cryptographic
algorithm, the sample is the output of the algorithm from different inputs for the
key and plain text. Because we deal with sample data from the population, the
decision process of the population’s probability distribution is prone to errors. To
meet this challenge, we model the decision making-process with the aid of two
statistical hypotheses: the null hypothesis, denoted by H0 - in this case, the sample
does  not  indicate  any  deviation  from  the  theoretical  distribution  -  and  the
alternative  hypothesis  HA -  when  the  sample  indicates  a  deviation  from  the
theoretical distribution.  There can be two types of errors:  first type error (also
known  as  the  level  of  significance),  i.e.  the  probability  of  rejecting  the  null
hypothesis when it is true (1):

 trueis|reject 00 HHPr (1)
and the second type error, which represents the probability of failing to reject the
null hypothesis when it is false (2):

 falseis|accept 00 HHPr (2)

These two errors,   and  β, can’t be minimized simultaneously since the
risk  β increases  as  the  risk   decreases  and  vice-versa.  For  this  reason,  one
solution is to have the value of   under control and compute the probability  β.
The analysis plan of the statistical test includes decision rules for rejecting the null
hypothesis. These rules can be described in two ways:

 Decision based on P-value. In this case, we consider  f  to be the value of
the test function and compare the P-value, defined as (3):

 fXPr  (3)
with the value  , and decide on the null hypothesis if  P-value is greater
than ;

 The “critical region” of a statistical test is the set which causes the null
hypothesis to be rejected; the complementary set is called the “acceptance
region”.  In the acceptance region, we shall  find the ideal results  of the
statistical test.
Because for each test statistical test the rejection rate   is a probability,

which is “approximated” from the sample data, we need to compute the minimum
sample size in order to achieve the desired rejection rate . Also, the sample must
be independent and governed by the same distribution. 

A way to construct samples for testing block ciphers is to setup the plain
text and the key (4): 

 iii kPEX , (4)
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where E is the encryption function, Pi is the set of plain texts, and ki is the set of
keys. For each plain text input Pi and each encryption key ki, the output from the
encryption function must have a uniform distribution. To test this assumption, for
AES candidates, in NIST standard [9] the samples are constructed with low/high
density plain text/key (a low density text/key is a text/key with a small number of
1s,  in  opposition  to  a  high  density  text/key  which  is  a  text/key  with  a  small
number of 0s). As we can see, when using this type of construction, the samples
are  not  independent  variables  because  they  are  connected  by  means  of  the
encryption function  E. Are the results of the statistical tests relevant when this
assumption is not true? If the statistical test accepts the null hypothesis, then we
can say that there is not enough evidence for the non-uniformity of the sample.

If a cryptographic primitive passes a statistical test, it does not mean that
the  primitive  is  secure.  For  example,  the  predictable  sequence  01010…01  is
“perfect” if we analyze it with the bit frequency test. This is one of the reasons
why  we  should  be  “suspicious”  if  we  obtain  perfect  results.  To  avoid  these
situations, in some cases it is indicated to include the neighborhood of the ideal
result in the critical region.

NIST SP 800-90A [NIST SP 800-90] contains the specifications of four
cryptographic secure PRBG for use in  cryptography based on:  hash functions,
hash-based  message  authentication  code,  block  ciphers  and  elliptic  curve
cryptography.  Some  problems  with  the  later  one  (Dual_EC_DRBG)  were
discovered since 2006 ([2]): the random numbers it produces have a small bias
and it raises the question if NSA put a secret backdoor in Dual_EC_DRBG. It was
proved, in 2013, that (Dual_EC_DRBG) has flows. Internal memos leaked by a
former NSA contractor, Edward Snowden, suggest that NSA generated a trapdoor
in Dual_EC_DRBG. To restore  the confidence  on encryption  standards,  NIST
reopens the public vetting process for the NIST SP 800-90A.Thus, if algorithm
will fail to certain tests, then it should not be used in cryptographic applications
because an attacker will be able to predict the behavior of the algorithm or, even
worse, may indicate the existence of certain trapdoors.

3. A View on STS SP 800-22

Pseudorandom bit generators (PRBG) are cryptographically secure if pass
next bit test, that is, there is no polynomial time algorithm which, given the first l-
bits of the output, can predict  1l -bit with probability significantly greater than
0.5, and in the situation when a part of PRBG is compromised, then it should be
impossible to reconstruct the stream of random bits prior to the compromising.
Yao  [Yao]  proved  that  PRBG  passes  next  bit  test  if  and  only  if  passes  all
polynomial time statistical tests. Because practically is not feasible to test PRBG
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for all polynomial statically tests, we need to find a representative,  polynomial
time, statistical testing suite such as STS SP 800-22.

Because STS SP 800-22 is a standard,  we shall  focus on it  rather than
other statistical test suites ([3], [4], or [5]). STS SP 800-22 (the revised version)
consists of fifteen statistical tests, which highlight a certain fault type proper to
randomness deviations.  Each test  is based on a computed test statistic value  f,
which is a function of the sample. A statistical test is used to compute (5):

 0| HfPrValueP  (5)
that summarizes the strength of the evidence against the null hypothesis. If the P-
value is greater, then the null hypothesis is accepted (the sequence appears to be
random). The tests are not jointly independent, making it difficult to compute an
overall rejection rate (i.e. the power of the test). Recall that the tests T1,…,T15 are
jointly independent if (6) is true for every subset {i1,…,ik} of {1,…,15}:

   iki1iki1 TPrTPrTTPr  )(,..., (6)
Obviously,  jointly  independent  tests  are  pair  wise  independent.  The

converse is  not  true [1].  If  the statistical  tests  would be independent,  then the
overall  rejection  rate,  would  be  computed  using  the  probability  of  the
complementary event (7):

  14.011 15   (7)
STS SP 800-22 provides two methods for integrating the results  of the

tests,  namely  percentage  of  passed  tests  and  the  uniformity  of  P-values.  The
experiments  revealed  that these decision rules were insufficient  and, therefore,
researchers  considered  their  improvement  would be useful.  Therefore,  in  [10],
new integration methods for these tests were introduced:

 Maximum  value  decision,  based  on  the  max  value  of  independent
statistical test Ti, ni ,...,1 . In this case, the maximum value of the random
variables was computed; the repartition function of the max value being
the product of the repartition functions of the random variables Ti (8):

    xTPrxTTmaxPr i

n

i
n1  

1

,..., (8)

 Sum of square decision, based on the sum of squares S of the results of the
tests (which have a normal distribution). The distribution of S, in this case,
is 2, the freedom degrees given by the number of partial results which are
being integrated.
Weak points of STS SP 800-22:

 Fixed first order error 01.0 ;
 The tests are not evaluating the second order error, which represents the

probability to accept a false hypothesis.
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In [7], the possibility of extending STS SP 800-22 tests to arbitrary level
of significance   (and computing  ) is presented by computing, for  30n , the
second order probability (9):
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In  [6],  there  are  some  comments  about  NIST  statistical  testing
methodology: ambiguous hypothesis (does not specify the family of distribution
and/or the alternative), error quantification (NIST does not give the size of the
category-test decisions), power of the test suite, dependencies of tests, invariant
test  (cryptographically  equivalent  tests  performed  on  the  same  sample  do  not
necessary give the same result),  and inadmissible  tests (the existence of better
tests).

After  the  process  of  evaluation  of  AES  candidates,  researchers  [Kim]
reported that the test setting of Discrete Fourier Transform test (designed to detect
periodic features in the tested sequence that would indicate a deviation from the
assumption of randomness) and Lempel-Ziv test (designed to see if the sequence
can  be  compressed  and  will  be  considered  to  be  non-random  if  it  can  be
significantly compressed) of the STS SP 800-22 are unsuitable: 

 threshold value and the variance σ2 of theoretical distribution, and
 the setting of standard distribution,  which has no algorithm dependence

(SHA-1 for million bit sequences) and the re-definition of the uniformity
of P-values (based on simulation).
Because the mean and variance of Lempel-Ziv test were evaluated using

samples generated by an algorithm, in the revised version of STS SP 800-22 the
Lempel-Ziv was dropped.

4. Experimental Analysis of Correlation Between Statistical Tests

In [10], we studied the variation of the second order error β, with respect
to  p1 and the length  n of  the bit  stream Frequency test  within  a  block,  Runs,
Discrete Fourier transform (spectral), and Serial test (2 components). For the rest
of statistical tests, it is difficult to find an analytical formula for the second order
error β. For this reason, one proposal is the following procedure for checking the
independence of tests i and j:

i) implement the NIST SP 800-22 testing suite;
ii) use a “good” pseudorandom generator GPA to test N binary

samples;
iii) for  each  test  i,  define  the  Bernoulli  random  variable  Ti

which gives 1 if the sample passes the test, otherwise 0;
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iv) estimate the value of (10):
     jiji TPrTPrTTPr and (10)

If the tests are independent, then this value should be close
to zero.

v) find the highest value of the above value for i and j.

On the other hand, the result of a statistical test, denoted as P-value, as a
measure  of  randomness,  ranges  between [0,1],  and is  calculated  by a  specific
formula given for each test by NIST’s specification. With a P-value close to 1, we
have a high level of randomness.

Our work improves the results of [11] and [12] and, based on the Galton-
Pearson “product-moment  correlation  coefficient”  ([13]),  evaluates  pairs  of  P-
values, and produces a result which ranges between [-1, 1]. A correlation of +1
means that there is a perfect positive linear relationship between variables, or a
direct proportion, while a correlation of -1 means that there is a perfect negative
linear  relationship  between  them,  or  an  inverse  proportion.  With  a  correlation
which is close to the absolute value of 1, we have a strong relationship between
the variables. In case of a correlation close to 0, the variables are independent.
The reciprocal is not always true ([14]). For the evaluation of correlation between
statistical test results, the chosen method was Galton-Pearson formula, that is, the
correlation  coefficient.  In  order  to  produce  reliable/effective  results  and
conclusions, this was done by calculating and analyzing three sets of correlation
coefficients,  corresponding to the application of NIST statistical  tests over 100
binary samples of different lengths (i.e. 1, 2, and 5 million bits). The correlation
coefficients that resulted from the application of NIST statistical tests, and showed
a strong correlation (close to or greater than 0.5) between a test situated on the
horizontal line and one on the vertical line, are contained by Table 1, 2, and 3
shown below (only the tests with correlations), that is, for a sample length M =
1,000,000, 2,000,000, and 5,000,000 bits.

Table 1
Correlation coefficients for M = 1,000,000 bits

Tests T1 T3F T3R T12 T13 T14.1 T14.2

T1 1 0.738 0.722 0.287 0.248 0.031 -0.002

T3F 0.738 1 0.765 0.371 0.313 -0.087 -0.245

T3R 0.722 0.765 1 0.235 0.180 -0.049 -0.149

T12 0.287 0.371 0.235 1 0.725 -0.010 -0.037

T13 0.248 0.313 0.180 0.725 1 -0.011 -0.079

T14.1 0.031 -0.087 -0.049 -0.010 -0.011 1 0.690

T14.2 -0.002 -0.245 -0.149 -0.037 -0.079 0.690 1
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Table 2
Correlation coefficients for M = 2,000,000 bits

Tests T1 T3F T3R T12 T13 T14.1 T14.2

T1 1 0.790 0.767 0.286 0.324 0.022 -0.052

T3F 0.790 1 0.705 0.421 0.348 -0.092 -0.116

T3R 0.767 0.705 1 0.236 0.201 -0.043 0.033

T12 0.286 0.421 0.236 1 0.623 0.128 0.036

T13 0.324 0.348 0.201 0.623 1 0.049 -0.098

T14.1 0.022 -0.092 -0.043 0.128 0.049 1 0.690

T14.2 -0.052 -0.116 0.033 0.036 -0.098 0.690 1

Table 3
Correlation coefficients for M = 5,000,000 bits

Tests T1 T3F T3R T12 T13 T14.1 T14.2

T1 1 0.716 0.733 0.199 0.139 -0.123 -0.111

T3F 0.716 1 0.637 0.267 0.099 -0.107 -0.117

T3R 0.733 0.637 1 0.086 0.014 -0.164 -0.106

T12 0.199 0.267 0.086 1 0.498 -0.056 -0.135

T13 0.139 0.099 0.014 0.498 1 -0.013 -0.023

T14.1 -0.123 -0.107 -0.164 -0.056 -0.013 1 0.746

T14.2 -0.111 -0.117 -0.106 -0.135 -0.023 0.746 1

where:  T1 -  Frequency (Monobit),  T3F -  Cumulative  Sums (Forward),  T3R -
Cumulative  Sums  (Reverse),  T12  -  Random  Excursions,  T13  -  Random
Excursions  Variant,  T14.1  -  Serial  1  (where  a  P-value1 was  evaluated  for

12  m
1K degrees of freedom, with m being the number of bits in a pattern that

appears in the n-bit stream), and T14.2 - Serial 2 (where a P-value2 was evaluated
for 2

2 2  mK degrees of freedom); the values that are close to or greater than 0.5
were filled with grey color.

We found a high correlation between five couples of these statistical tests:
(frequency,  cumulative  sums  Forward),  (frequency,  cumulative  sums  reverse),
(cumulative  sums  forward,  cumulative  sums  reverse),  (random  excursions,
random excursions variant) and (serial 1, serial 2). This allows us to improve the
testing strategy by “dropping” one of the correlated tests.

Looking  at  the  correlation  coefficients,  concerning  only  the  presumed
dependencies (correlations), we found different patterns of variation (depending
on the sample length), as follows:

 Oscillation pattern: T1-T3F: 0.738  0.790  0.716
 Oscillation pattern: T1-T3R: 0.722  0.767  0.733
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 Decrease pattern: T3F-T3R: 0.765  0.705  0.637
 Decrease pattern: T12-T13: 0.725  0.623  0.498
 Increase pattern: T14.1-T14.2: 0.690  0.690  0.746

These patterns will be object of our future work in order to mathematically
describe the variance of correlation coefficients with the length of string sample.

6. Conclusions

In this article we focused on an open question regarding the correlation of
the NIST statistical test suite and improved the results obtained in [10], [11] and
[12].  Using  the  Galton-Pearson  “product-moment  correlation  coefficient”  we
found  a  high  correlation  between  five  couples  of  these  statistical  tests.  This
allowed us to improve the testing strategy.
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