
About Wave Implementation and its Leakage Immunity∗

Thomas Debris-Alazard1,2, Nicolas Sendrier2, and Jean-Pierre Tillich2

1 Sorbonne Université, Paris , France
2 Inria, Paris, France

{thomas.debris,nicolas.sendrier,jean-pierre.tillich}@inria.fr

October 29, 2019

Abstract

Wave is a recent digital signature scheme [3]. It is based on a family of trapdoor one-
way Preimage Sampleable Functions and is proven EUF-CMA in the random oracle model
under two code-based computational assumptions. One of its key properties is to produce
signatures uniformly distributed of fixed Hamming weight. This property implies that, if
properly implemented, Wave is immune to leakage attack. We describe here the key stages
for the implementation of the Wave trapdoor inverse function to integrate all the features to
achieve leakage-freeness. A proof of concept implementation was made in SageMath and in
C. It allowed us to check that properly generated Wave signatures are uniformly distributed.

Preliminary Statements. We consider here an early version of Wave (v1 of [3]). This version
already had all the features guarantying the absence of leakage. It uses a strict (U,U + V)
code (i.e. not generalized) and has no information set gap. The description of the decoder
for generalized (U,U + V) codes only appeared in the v2. The information set gap (denoted
d) appeared in the third version of Wave. The information set gap was introduced to give a
provably small upper bound for the statistical distance between the signatures distribution and
uniform distribution. We conjecture that this statistical distance is negligible even with a zero
gap.

The description of the sampling stages (§2) is also valid for v2. After that, the gap d was
introduced and stage 2 uses kU − d and kV − d instead of kU and kV . The rest of the paper
remains essentially true for all versions of Wave, but the statistics of §5 are only relevant for
strict (U,U + V) codes. For generalized (U,U + V) codes coefficients must be applied, but
similar arguments could be produced.

A reference implementation is available at the following URL: http://wave.inria.fr.

1 Hash-and-Sign Signatures and Leakage Attacks

A hash-and-sign digital signature scheme uses a trapdoor one-way function f(). The message is
hashed to produce a random element y in the domain of f(). The legitimate user, the signer, uses
the trapdoor to compute a preimage x of y. The signature x is verified by checking f(x) = y.

∗This work was supported by the ANR CBCRYPT project, grant ANR-17-CE39-0007 of the French Agence
Nationale de la Recherche.

1

http://wave.inria.fr

When the one-way function f() is surjective, the trapdoor inverse function will use the secret
trapdoor to select one particular preimage. It may happen that this selection is biased and leaks
information on the secret key.

2 Reaching a Target Distribution for Wave Signatures

The Wave signature scheme is hash-and-sign with a surjective one-way function. Moreover, as
noticed in the design of Surf1, the binary ancestor of Wave, the “native” (U,U + V) decoder is
highly biased and the signature algorithm has to be carefully designed to avoid leakage attacks.
Here the target distribution is the uniform distribution over words a constant weight w. To reach
this distribution we proceed with the following stages.

1. Select parameters, code length and dimension (n, k), signature weight w, but also the
component codes dimension kU + kV = k. This choice is made so that the two related
computational problems are hard enough and the “native” decoder produces an error of
average weight w.

2. The decoder has two successive steps.

2a. The first decoding step draws an integer ` ∈ [0, kV] according to a distribution DV ,
then draws a set of kV random positions and fills them with random values of Hamming
weight `. The word is completed into an output eV of Hamming weight t.

2b. The second decoding step depends of t. It draws an integer k6=0 ∈ [0, kU] according to
a distribution DtU , then draws a set of kU random positions, k6=0 of which are in the
support of eV . The kU positions are filled and completed as specified (Algorithm 4 and
Algorithm 5 in [3]). This is repeated until the final error vector has weight exactly w.

Note that this requires a family of distributions, one for each value the Hamming weight
t of the first step output.

3. After each decoding step we apply a rejection sampling vector. The rejection vectors are
precomputed.

3a. The result of the first decoding step is accepted with probability rV (t), t = |eV |. There
is a single rejection vector.

3b. The result of the second decoding step is accepted with probability rU (t, `), t = |eV |
and ` depends of eU and eV . There is a family of rejection vectors, one for each value
of t.

Note that there is some freedom in the choice of the distributions DV and DtU . Each
choice will lead to different rejection vectors. Note also that those distributions must be
chosen carefully else the acceptance ratio may become exponentially small. Here we chose
truncated Laplace distributions.

This framework and more details on the choice of the distributions and of the rejection vectors
are given in [3].

1Surf was later abandoned because one of the computational hardness assumptions was not verified

2

3 Leakage Attacks on Wave

If the three stages of §2 are correctly implemented, signatures are produced according to a
uniform distribution over Sw the set of ternary words of length n and weight w.

In the random oracle model, to perform a leakage attack, an adversary will observe any num-
ber of signatures. After some extra computation, the adversary tries to extract some information
on the secret key.

Full Implementation: Each signature is drawn independently and uniformly in Sw. The
sample is indistinguishable from a random set of words of weight w. Obviously no leakage attack
is possible.

Removing Stage 3: If for some reason no rejection vector is applied, the adversary will still
have a hard time. If the distributions DV and DtU have the correct mean values (see [3]) the
observed distribution will still be close to uniform.

Modifying Stage 2: If the distributions are not correctly chosen, then things can get really
bad. First, the rejection vectors can be computed but this will often lead to an exponentially
small acceptance rate. Without the rejection vectors, the first order statistics on coordinate pairs
(i, j) will reveal some information. We call first order statistic a probability P((ei, ej) = (a, b))
for some (a, b) ∈ F2

3 where ei and ej are the i-th and j-th coordinates of a signature e, here
coming from the modified algorithm. In fact, the first order statistics when (i, j) is a matched
pair (i.e. i and j are symmetric to one another in the non permuted version of the code), are
different from those of the other pairs. This fact was remarked in a previous work in the binary
case [2, §4.1].

We illustrate the various modifications and their impact on first order statistics in §5.

4 Implementing Wave

As proof a proof of concept, we implemented Wave as described in §2. This was done in SageMath
and in C and allowed us to check that the output distribution was not distinguishable from the
uniform distribution over Sw. It is available on Wave’s web page2.

Comments and Limitations.

1. As mentioned above, the choice for the distributions in stages 2a and 2b is free but a bad
choice could lead to a low acceptance rate in stage 3.

2. If the mean values of the distributions are correct (i.e. those that stem from a final output
uniformly distributed in Sw) there is no first order bias even without rejection vectors, but
to completely avoid leakage, rejection vectors are needed in stages 3a and 3b. Moreover,
since the distributions of stage 2 are discretized, truncated, rounded to finite precision, and
possibly shifted to minimize rejection (see [3]) a deviation of the mean value may occur.
This may provoke a small bias and explain the tiny deviation observed in Table 2. Note
that this deviation will be corrected by the rejection vectors.

2http://wave.inria.fr

3

http://wave.inria.fr

3. The acceptance rate is exponentially small if distributions are not well chosen. It is the
case for instance by choosing binomial distributions, even with the correct means. What
happens is that the tails of the output distributions are too low and emulating those tails
correctly will force a low average acceptance rate. The input distribution is best chosen
such that the corresponding output tails augment above those of the target distribution.

4. An open question which we have not fully addressed yet is the precision with which the
rejection vectors must be computed to reach a given security level against leakage attacks.

5. The SageMath version uses the native floating point arithmetic to compute the rejection
vectors. This could result in a small leakage. The rejection vectors of the C implemen-
tation were generated with a multi-precision arithmetic and do not have this potential
problem. Nevertheless, what we present here, though it was computed from the SageMath
implementation, is enough to judge of the feasibility of a leakage-free implementation.

5 Measured Statistics

The tested three categories of signatures. First genuine Wave signatures. Next Wave signatures
in which the stage 3 is not applied. The last one was produced from the Magma script of [1]. It
implements the “raw decoder” (without the rejection sampling feature). Though it is incorrect
to claim an attack from those signatures (and the paper [1] was later withdrawn because of that),
the statistics are interesting to illustrate the need for rejection sampling.

For each of those categories, we generated a set E of signatures (all of them with the same
key) and checked the first order statistics that is, for each (a, b) ∈ F2

3 , each e = (e1, . . . , en) ∈ E,
we counted for each pair of positions (i, j) the proportion of signatures such that (ei, ej) = (a, b).

For a random e of Hamming weight w we have for all pairs of position (i, j) and all pair of
values (a, b) (of weight δ ∈ {0, 1, 2})

πδ = P((ei, ej) = (a, b)) =

(
n−2
w−δ

)(
n
w

)
2δ

When the set E is generated with a bias, it may happen that some pairs have different
values. As mentioned in [2, §4.1], the “native” (U,U + V) decoder is biased and some of the
above statistic differ from their expectation for matched pairs. A matched pair of position has
the form (`, `+ n/2) in the non permuted version of the code (the secret).

We chose the parameters n = 5172 and w = 4980 from the first version of Wave. This is
good enough to provide evidence that the Wave signatures are correctly distributed. For those
parameters, we have π0 = 0.0013712, π1 = 0.017876, and π2 = 0.231781.

All the statistics produced below can be easily reproduced from publicly available software.

5.1 Wave Signatures

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 400 000 signatures produced by our
SageMath full implementation of Wave. Note that there are n(n − 1)/2 distinct pairs and only
n/2 − 1 are matched pairs. Thus the average percentages for the matched pairs are made with
a smaller population and may deviate (slightly) more from theory than the average for all pairs.
Here the deviation from theory is within the tolerance given the sample of size.

4

(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)
matched 0.13710 1.7876 1.7876 1.7878 1.7874 23.1780 23.1797 23.1768 23.1780

all 0.13712 1.7875 1.7875 1.7877 1.7877 23.1783 23.1782 23.1780 23.1780
theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

Table 1: Wave

5.2 Wave Signatures without Rejection Vectors

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 100 000 signatures produced by
our SageMath implementation of Wave in which all decoding results are accepted (i.e. stage 3
is completely cancelled). The statistics for the matched pair are very close to the expectation

(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)
matched 0.14259 1.7847 1.7844 1.7846 1.7856 23.1730 23.1867 23.1839 23.1744

all 0.13712 1.7871 1.7871 1.7880 1.7881 23.1773 23.1784 23.1779 23.1790
theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

Table 2: Wave without Stage 3

for a uniform distribution. However small deviations can be observed. Note that using those
deviations to produce an attack won’t be easy, several order of magnitude harder than those
described below when the stage 2 is incorrectly implemented. Still, with the distributions we
chose here (truncated Laplace) it is unsafe to make the economy of stage 3.

5.3 Raw (U,U + V) Decoder Output

Below the percentage for each value of (a, b) on average over all pairs and on average over all
matched pairs. Those values were obtained from a sample of 1 200 signatures using an unmodified
decoder. As expected, we observe a huge bias, especially in the last 4 columns. In [1] the observed

(a, b) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)
matched 1.24320 1.2236 1.2286 1.2324 1.2488 16.0742 30.8580 30.8703 16.0209

all 0.13706 1.7857 1.7835 1.7887 1.7878 23.1986 23.1704 23.1907 23.1575
theory 0.13712 1.7876 1.7876 1.7876 1.7876 23.1781 23.1781 23.1781 23.1781

Table 3: Raw Decoder

statistic is P(ei = −ej)−P(ei = ej). In other words, one counts for a given position pair (i, j) the
number of occurrences of the values (1, 2) or (2, 1) minus the number of occurrences of the values
(1, 1) or (2, 2). The resulting number should be 0 on average (columns (2, 1) and (1, 2) minus
columns (1, 1) and (2, 2)) for a random pair, and almost 30% (≈ 30.85 + 30.87− 16.07− 16.02)
of the sample size on average when the pair is matched. This will reveal the matched pairs even
with a small sample size. Note that this bias is completely absent in the Wave signatures.

References

[1] Paulo S. L. M. Barreto and Edoardo Persichetti. Cryptanalysis of the Wave signature scheme.
Cryptology ePrint Archive, Report 2018/1111, 2018. Withdrawn July 2019.

5

[2] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Surf: a new code-based
signature scheme. preprint, September 2017. arXiv:1706.08065v3.

[3] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of
trapdoor one-way preimage sampleable functions based on codes. Cryptology ePrint Archive,
Report 2018/996.

6

	Hash-and-Sign Signatures and Leakage Attacks
	Reaching a Target Distribution for Wave Signatures
	Leakage Attacks on Wave
	Implementing Wave
	Measured Statistics
	Wave Signatures
	Wave Signatures without Rejection Vectors
	Raw (U,U+V) Decoder Output

