
Cryptanalysis of FlexAEAD

Mostafizar Rahman1, Dhiman Saha2, Goutam Paul1

1Cryptology and Security Research Unit (CSRU), Indian Statistical Institute,
Kolkata 700108, India

mrahman454@gmail.com, goutam.paul@isical.ac.in
2de.ci.phe.red Lab, Department of Electrical Engineering & Computer Science,

Indian Institute of Technology, Bhilai 492015, India
dhiman@iitbhilai.ac.in

Abstract. This paper analyzes the internal keyed permutation of Flex-
AEAD which is a round-1 candidate of the NIST LightWeight Cryp-
tography Competition. In our analysis, we report an iterated truncated
differential leveraging on a particular property of the AES S-box that
becomes useful due to the particular nature of the diffusion layer of the
round function. The differential holds with a low probability of 2−7 for
one round which allows it to penetrate the same number of rounds as
claimed by the designers, but with a much lower complexity. Moreover,
it can be easily extended to a key-recovery attack at a little extra cost.
We further report a Super-Sbox construction in the internal permutation,
which is exploited using the Yoyo game to devise a 6-round deterministic
distinguisher and a 7-round key recovery attack for the 128-bit internal
permutation. Similar attacks can be mounted for the 64-bit and 256-bit
variants. All these attacks outperform the existing results of the designers
as well as other third-party results. The iterated truncated differentials
can be tweaked to mount forgery attacks similar to the ones given by
Eichlseder et al. Success probabilities of all the reported distinguishing
attacks are shown to be high. All practical attacks have been experimen-
tally verified. To the best of our knowledge, this work reports the first
key-recovery attack on the internal keyed permutation of FlexAEAD.

Keywords: AES S-box, Distinguisher, FlexAEAD, Iterated Differen-
tial, Key Recovery, NIST lightweight cryptography competition, Yoyo

1 Introduction

In the modern era, the aim is to connect each of the physical devices, even the
miniature ones, with the internet so that they can be monitored and controlled
remotely for maximum utilization. These devices are powered with the ability
of communicating among themselves. Such a huge interconnected system, con-
sisting of numerous tiny devices, is not free from vulnerabilities. Moreover, a
security breach in such systems can be catastrophic. So, a major concern in the
world of internet-of-things is how to provide security and privacy to each system
with the constraints of limited power and area. SKINNY [9], PRESENT [10],

QARMA [6], KATAN and KTANTAN [11], GIFT [8] are some of the block ci-
phers which are designed for such constrained environments. Until recently, no
standardization process has been introduced (like AES Development [2], SHA-3
Project [4], CAESAR Competition [1]) for cryptographic schemes in lightweight
environments. NIST LightWeight Cryptography (LWC) competition [3] is a ma-
jor step towards addressing these issues. There are a total of 57 submissions in
this competition. Apart from authenticated encryption algorithms in lightweight
environment, some of the designs also comprise of hash functions. Some of them
have also provided new primitives for block cipher design.

FlexAEAD is one of the round-1 candidates proposed by Nascimento and
Xexéo in NIST LWC competition [17]. It is a family of lightweight authenti-
cated encryption schemes with associated data. In this version, the processing of
Associate Data (AD) has been added to the original variants [18, 16, 15]. There
are mainly three variants of FlexAEAD that have been listed with block
sizes of 64, 128 and 256 bits. In general, a FlexAEAD scheme is denoted by
FlexAEAD-b, with b being the block size. The size of nonce and tag is the same
as block size across all variants. The length of key is 128 bits for FlexAEAD-64
and FlexAEAD-128 whereas it is 256 bits for FlexAEAD-256. The nonce in
FlexAEAD is used to generate sequence numbers which are eventually XOR-ed
with associated data, plaintext and intermediate-state to produce ciphertext-tag
pair. The lightweight of FlexAEAD essentially comes from the fact that for
computational purposes it uses XOR operations, a look-up table for substitu-
tion layer and bit reorganizations for BlockShuffle layer. FlexAEAD has an
underlying block cipher; internal keyed permutation (PFk) of 64, 128 and 256
bits. We have analyzed the PFk function and reported several results. A brief
description of PFk has been provided in Section 2.1. The PFk with x-bit state
is referred to as Flex-x.

Existing Security Claims. The designers have claimed that mounting an
attack on Flex-x based on differential and linear characteristics is more diffi-
cult than the brute force attack. According to their analysis, the probability of
best differential characteristic for Flex-64, Flex-128 and Flex-256 is 2−168,
2−204 and 2−240 respectively. The number of chosen plaintext pairs required
for a linear trail in Flex-64, Flex-128 and Flex-256 are 2272, 2326 and 2380

respectively [17]. Eichlseder et al. have claimed several forgery attacks [12, 13]
on FlexAEAD. They have followed several different approaches: like changing
associated data, truncating ciphertexts and reordering ciphertexts. They have
reported differential characteristics for 5-round Flex-64, 6-round Flex-128 and
7-round Flex-256 with probability 2−66, 2−79 and 2−108 respectively. Length
extension attacks based on associated data have also been shown [14]. Table 1
shows the comparison of different trail probabilities reported till date with the
ones furnished in the current work. For uniformity, we have enlisted trail prob-
abilities for same number of rounds.

2

Table 1: Comparison of Trail Probabilities of Internal keyed Permutation of Flex-
AEAD

Block
Size

#rounds
Trail

Probability
Technique Reference

64

5 2−66 Differential
Characteristics

[12]

5 2−46 Clustered
Characteristics

[12]

5 2−21 Iterated Truncated
Differential

This Work
Section 3

5 2−13 Yoyo Game
This Work
Section 4.3

128

6 2−79 Differential
Characteristics

[12]

6 2−54 Clustered
Characteristics

[12]

6 2−21 Iterated Truncated
Differential

This Work
Section 3

6 1 Yoyo Game
This Work
Section 4.2

256

7 2−108 Differential
Characteristics

[12]

7 2−70 Clustered
Characteristics

[12]

7 2−21 Iterated Truncated
Differential

This Work
Section 3

9 2−11 Yoyo Game
This Work
Section 4.3

Our Contributions. First of all, we report an iterated truncated differential
for all the variants of PFk using the property of AES Difference Distribution
Table (DDT) where the output difference of a byte is confined to either upper or
lower nibble. The probability of the truncated differential for one round is 2−7.
Its iterative nature makes it possible to penetrate more number of rounds for all
Flex-x. These differentials are further exploited to devise key-recovery attacks
on all the variants.

Next, we explore the application of the Yoyo property which has been intro-
duced by Rønjom et al. [20] on generic 2-round Substitution Permutation Net-
works and further extended on AES-based permutations and block ciphers [21,
7]. We have been able to devise deterministic Yoyo distinguishers for 4, 6 and
8 rounds of Flex-64, Flex-128 and Flex-256 respectively which are further
extended by one more round to mount key recovery attacks. All key recovery
attacks (reported in this work) with their respective complexities are summa-
rized in Table 2. For the iterated truncated differential, the maximum number
of rounds that is penetrable for a Flex-x variant are enlisted in the table. The
attacks with practical complexities are experimentally verified.

3

Table 2: Comparison of Key Recovery Attacks. Encs, Decs, MAs refers to encryption
queries, decryption queries and Memory Accesses respectively. For uniformity, memory
accesses and memory complexity has been provided in terms of Flex-128 state. 1 MA
for Flex-128 corresponds to 2 MA in Flex-64 and 0.5 MA in Flex-256. Memory
complexity is also normalized by the same ratio.

Block

Size
#rounds

Data

Complexity

Time

Complexity
Memory

Complexity

Attack

Type

Section No. of

Current Work
Encs Decs MAs

64
7 230.5 234.5 218.5 Iterated Truncated

Differential
3.2

5 210 216.5 215.5 210 Yoyo

Attack
4.3

128
16 293.5 2108.5 220.5 Iterated Truncated

Differential
3.2

7 210.5 216.5 216.5 211.5 Yoyo

Attack
4.3

256
21 2109.5 2125.5 222.5 Iterated Truncated

Differential
3.2

9 211 216.5 217.5 213 Yoyo

Attack
4.3

Further, we have used the iterated truncated differentials to mount forgery
attacks on FlexAEAD similar to the ones reported by Eichlseder et al. [12, 13].
Finally, to measure the effectiveness of all distinguishers reported in this work,
their theoretical success probabilities are estimated by following the approach
given in [19]. The success probabilities are estimated to be high and some of
them with practical complexities are experimentally verified.

All the attacks presented in this paper exploit the vulnerability that merely
dividing the bytes into nibbles while using AES S-box is susceptible to differential
attacks as diffusion may be slow in some scenarios. Although, FlexAEAD is
out of NIST lightweight cryptography competition, this particular vulnerability
has a far-reaching impact on designing ciphers using AES S-box. Hence, it forms
the basis of continued motivation for this work.

Outline. The necessary details about PFk and Yoyo game are briefly visited
in Section 2. Section 3 describes the key-recovery attacks based on Iterated
Truncated Differential. Section 4 details the attacks based on Yoyo game. The
success probabilities of distinguishing attacks and their experimental verification
are illustrated in Section 5. Forgery attacks based on Iterated Differentials are
described in Section 6. Finally, the concluding remarks are furnished.

4

Fig. 1: Byte Representation of Flex-128 Block Cipher

2 Preliminaries

The analysis in this paper is regarding the PFk of FlexAEAD. So, first of all,
a brief description of PFk is given. Since a major part of this work uses the Yoyo
strategy, for the sake of completeness, a brief description of Yoyo game and its
relevant results are provided.

2.1 Internal keyed Permutation PFk

The design strategy of PFk follows the Feistel construction. Let m be the number
of bytes in a Flex-x state (m = x/8). The state of Flex-x is denoted by B and
is divided into two equal halves: the bytes in the left half being numbered from
B[0] to B[m2 − 1], and the ones on the right half from B[m2] to B[m − 1]. Each
byte is divided into two parts representing the two nibbles with the upper half
(upper nibble) being the most significant one. The other nibble is called as lower
nibble. After the BlockShuffle operation, m nibbles from B[0] to B[m2 − 1]
constitute the upper nibbles of each bytes whereas the nibbles from B[m2] to
B[m − 1] constitute the lower ones. The bytes at position B[i] and B[i + m

2]
are referred to as a “pair of symmetric bytes”. Application of BlockShuffle

operation on state s in r-th round is denoted by BSr(s). Fig. 1 shows the byte
representation in Flex-128 state.

Fig. 2 shows the round function of Flex-128. Each round of Flex-x starts
with the BlockShuffle operation. Then the state is bifurcated and the right
half goes through subbytes operation. AES S-box is used for byte substitution.
The left half is modified by XOR-ing it with the right half and applying the
subbytes operation. The modified values of the left half are XOR-ed with the
right half values and subbytes is applied to get new values of the right half. Then
the left and right half are combined to form the new state and the next round
follows. In Flex-x there are no round keys; there are only two subkeys Kα, Kβ

which are used at the beginning and the end of round functions respectively.
The total number of rounds for Flex-64, Flex-128 and Flex-256 are 5, 6
and 7 respectively [17]. In authenticated encryption modes, three PFk are used
sequentially for encrypting a block of plaintext, which makes the effective number
of rounds 15, 18 and 21 in FlexAEAD-64, FlexAEAD-128 and FlexAEAD-
256 respectively.

Key Generation. Key generation in Flex-x uses the PFk where the master key
K is divided into two parts and used as two subkeys. State is initialized with

5

0|K|/2 and three times PFk is applied to generate part of the subkey to be used
for encryption of the plaintext. This process is repeated several times till the
required number of subkeys is obtained. Apart from the first round, each time
the state is initialized with the output of the previous round. The key generation
algorithm makes it difficult to recover the master key from a known subkey. The
key recovery attacks presented in this paper refers to the recovery of subkeys.

2.2 Yoyo Game

By applying the Yoyo game strategy, a deterministic distinguisher for two generic
Substitution-Permutation (SP) rounds have been reported [20]. This has been
used to devise a 6-round Flex-128 distinguisher and a 7-round Flex-128 key
recovery attack. To apply their results, first Zero Difference Pattern and Swap-
ping of Words need to be defined which were originally given in [20].

Let F : Fnq → Fnq be a permutation with q = 2k and

F (x) = S ◦ L ◦ S ◦ L ◦ S(x).

Here, S is the concatenation of several smaller S-boxes operating on elements
from Fq in parallel and L is the linear layer over Fnq . A state is defined as the
vector of words α = (α0, α1, · · · , αn−1) ∈ Fnq .

Definition 1. Zero Difference Pattern.[20] Let α ∈ Fnq for q = 2k. The
Zero Difference Pattern for α is

ν(α) = (z0, z1, ..., zn−1),

where ν(α) takes values in Fn2 and zi = 1 if αi = 0 or zi = 0 otherwise.

Fig. 2: Round Function of Flex-128 Block Cipher

6

Definition 2. Swapping of Words.[20] Let α, β ∈ Fnq be two states and v ∈
Fn2 be a vector, then ρv(α, β) is a new state in Fnq created from α, β by swapping

components among them. The ith component of ρv(α, β) is defined as

ρv(α, β)i =

{
αi, if vi = 1;

βi, if vi = 0.
(1)

The following theorem describes the deterministic distinguisher for 2 generic
SP-rounds (G2).

Theorem 1. [20] Let p0, p1 ∈ Fnq , c0 = G2(p0) and c1 = G2(p1). For any vector

v ∈ Fn2 , c
′0 = ρv(c0, c1) and c

′1 = ρv(c1, c0). Then

ν(G−12 (c
′0)⊕G−12 (c

′1)) = ν(p
′0 ⊕ p′1) = ν(p0 ⊕ p1).

The notion behind devising such distinguisher is to choose a plaintext pair
according to some Zero Difference Pattern and query this plaintext pair to the
cipher to obtain a ciphertext pair. Words are swapped between the two cipher-
texts on the basis of the substitution layer to produce modified ciphertexts that
are queried to obtain new pair of plaintexts. Theorem 1 states that the Zero
Difference Pattern of the original plaintext pair and the modified plaintext pair
should be the same if the cipher is of the form S ◦L◦S. In the following section,
details regarding iterated truncated differential attacks on PFk are discussed.

3 Iterated Truncated Differential Attacks on PFk

Differential of iterative characteristics can be easily exploited to penetrate full
rounds of a cipher. The fundamental strategy behind devising an iterated differ-
ential is to choose the output differential in a way such that after some operations
the input differential can be produced easily. Alkhzaimi et al. have reported such
differentials for SIMON family of block ciphers [5]. In this work, iterated differ-
entials in truncated form have been considered. First of all, a particular property
of AES S-box which has been exploited needs to be discussed.

Property of AES DDT Table. From AES DDT table it has been observed
that the number of randomly chosen input differences that map to output dif-
ferences, such that the non-zero bits in each output difference are confined to
the upper nibble is 4096. Same is true if they are confined to the lower nibble.
In other words,∣∣{(x1, x2)|

(
S(x1)⊕ S(x2)

)
& 0xf0 = 0,∀x1, x2 ∈ F28

}∣∣ = 4096,∣∣{(x1, x2)|
(
S(x1)⊕ S(x2)

)
& 0x0f = 0,∀x1, x2 ∈ F28

}∣∣ = 4096,

where S is the AES S-box. Therefore, with probability 4096
216 = 2−4 a random

input difference transits to upper nibble in the output difference. With same
probability, random input difference transits to lower nibble. The way this prop-
erty is exploited to devise iterated truncated differential is provided in the next
subsection.

7

Fig. 3: Iterated Truncated Differential with One-round probability of 2−7. Note that
the key-addition is not shown, since it has no effect on the trail

3.1 One Round Probabilistic Iterated Truncated Differential

Refer to Fig. 3 for the iterated differential of Flex-128. In X1, keeping the differ-
ence in B[0] ensures that in Y1 difference are in B[0] and B[8]. With probability
2−7 both differences are confined in either upper nibble or lower nibble in those
bytes. Therefore, after BlockShuffle only one byte is active in X2. In X2 the
active byte can be either B[0] or B[1], depending on whether the upper or lower
nibbles in Y1 are active. The iterative nature of the differential comes from the
fact that in X2 only one byte is active at the cost of 2−7 probability under the
constraints that only one byte is active in X1, and this particular event can be
repeated an infinite number of times. Similar kinds of iterated truncated differ-
ential with the same probability exists for Flex-64 and Flex-256. Now, how
these one round differentials are exploited to penetrate more number of rounds
is discussed.

8

Table 3: Iterated Differential Trails

Block Size f rmax Trail Probability

64
1 7 2−42

2 6 2−28

128

1 16 2−105

2 15 2−91

3 12 2−63

256

1 21 2−140

2 21 2−123

3 21 2−126

4 21 2−119

Table 4: Comparison of Differential Probabilities

BlockSize #Rounds Active S-boxes P†D Q∗D
64 15 28 2−168 2−98

128 18 34 2−204 2−119

256 21 40 2−240 2−119

† Probability of the classical differential trail claimed by the designers

∗ Probability of the iterated truncated differential trail

Application to Variants of PFk. The one round iterated truncated differ-
ential can be applied to all the versions of PFk. The iterated differential occurs
with probability 2−7. Depending on the blocksize, last few rounds can be made
free as no byte to nibble transition is needed for those rounds.
Let the iterated truncated differential is kept free for last f rounds for Flex-x.
Then the probability of the trail is 2−7×(r−f). For uniform random discrete dis-

tribution, the same event will occur with probability 2−8×(
x
8−2

f) = 2−(x−8×2
f).

For devising a distinguisher for x-bit flex,

2−7×(r−f) > 2−(x−8×2
f)

=⇒ r <
(x− 8× 2f)

7
+ f. (2)

Then, the probability of the iterated truncated differential trail for r-round
Flex-x is 2−7×(r−f). Table 3 shows the trail probabilities for different Flex-x.
rmax denotes the maximum number of rounds reachable under the constraints
of fixed f . Table 4 compares the differential probabilities claim of the designers
with our claim using the iterated differential. PD denotes the designers’ claim
whereas QD denotes our claim.

Another aspect of such kind of trails is the position of active byte in each
round. As mentioned in 3.1, if B[0] is active in X0, then either B[0] or B[1] is

9

active in X2. If B[1] is active in X2, then either B[2] or B[3] is active in X3. In
general, for Flex-x if B[m] or B[x

2×8 + m] is active in Xi, then either B[2m]
or B[2m + 1] is active in X(i+1). Now, the mechanism of transforming these
distinguishers to key recovery attacks is detailed.

3.2 Key Recovery Using Iterated Truncated Differential

At the end of each round, the difference in a pair of symmetric bytes after S-
box transits to the same nibble with probability 2−7. This has been used as a
filtering technique to eliminate wrong key bytes. Let the first subkey, Kα for
Flex-128 is being recovered. Using iterated truncated differential for r rounds
a right pair can be identified with probability 2−7×(r−f), where f is number free
rounds. Suppose, in the right pair the initial difference is in B[i] and B[i+8]. So,
we guess key byte Kα[i] and Kα[i+ 8]. There are 216 possible guesses and these
are used to verify whether at the end of first-round byte to nibble transition
occur. Out of 216, 29 key-byte candidates remain. For further filtering, two more
right pairs are used. The second right pair reduces the candidate numbers to 22.
After filtering using three different right pairs, it is expected only one candidate
should remain for the key byte pair

(
216× (2−7)3 = 2−5 < 1

)
. For the remaining

symmetric key bytes, the procedure is repeated 7 more times. In the end, it is
expected that only one key candidate should pass the test. The other subkeys
can be recovered in the same way (After recovering the first subkey, the value of
plaintexts is exactly known till the second subkey whitening). Same key recovery
attacks are applicable for Flex-64 and Flex-256. In the next subsections, details
about the complexities of all attacks and experimental verification of practical
ones are provided.

3.3 Complexity Evaluation

Distinguisher. To distinguish iterated truncated differential for r rounds, 27×(r−f)

number of plaintext pairs are required, where f is the number of free rounds at
the end. In devising the distinguishers, difference can be kept in 2 bytes only

in X1, which yields
(
216

2

)
≈ 231 pairs of plaintexts. For distinguishers requiring

more than 231 pairs, a different set of states is needed. So, the data complexity is
27×(r−f)

231 ×216 = 27×(r−f)

215 encryption queries. Time complexity involves the mem-
ory accesses required to compute the specified collisions, which is the number of
plaintext pairs needed, i. e., 27×(r−f). Memory complexity is 216 Flex-x states,
which is the memory required for storing different states.
Consider a particular case for 21-round Flex-256. According to Inequality 2,
the value of f can be set to 4. For this case

1. Data Complexity is 27×17

215 = 2104 encryption queries..

2. Time Complexity is 2119 memory accesses.

3. Memory Complexity is 216 Flex-256 states = 217 Flex-128 states.

10

Key Recovery. Complexities of key recovery attack of Flex-x depends on
distinguisher. To recover each pair of key-byte, three different right pairs are
required. This procedure also needs to be repeated x

16 times for recovering the
full key. Therefore, data complexity, time complexity and memory complexity of
distinguisher needs to be multiplied by a factor of 3 × x

16 . Moreover, candidate
key-byte recovery for each pair of byte can be computed in parallel. To recover
the other subkey, a plaintext, ciphertext pair

(
p1, c1

)
is chosen and PFk round

functions till the second subkey whitening is computed offline and XOR-ed with
c1. So, the complexities of r-round Flex-x with f free rounds are-

1. Data Complexity is 3× x
16 ×

27×(r−f)

215 encryption queries.

2. Time Complexity is 3× x
16 × 27×(r−f) memory accesses.

3. Memory Complexity is 3× x
16 × 216 Flex-x states.

The complexities of particular cases for 7-round Flex-64 with f=1, 16-round
Flex-128 with f=1 and 21-round Flex-256 with f=4 have been listed in Ta-
ble 2.

3.4 Experimental Verification

The key recovery attack using iterated differentials has been experimentally ver-
ified for 8 rounds Flex-128 with f=3. The attack initiates after a key is chosen
randomly. The number of key candidates after using the first right pairs for
each pair of symmetric bytes (from (Kα[0],Kα[8]) to (Kα[7],Kα[15])) are 316,
520, 632, 448, 568, 484, 368 and 356 respectively. It conforms to the theoretical
analysis, which states that the number of candidates should be around 29. After
using the second right pairs, the number of candidates is reduced to 2, 12, 4, 4,
6, 5, 2 and 5 respectively which is close to the theoretical value of 22. The third
right pair reduces the number for all pairs of bytes to 1. The key recovery attack
correctly recovers the subkeys.

In the next section, details regarding attacks on PFk using Yoyo game strategy
are provided.

4 Yoyo Attacks on PFk

The Yoyo distinguishing attack has been briefly described in Section 2.2. First,
the result of Yoyo game on 2-generic SP rounds has been applied for devising
r-round Flex-x deterministic distinguisher. Then cipher specific properties has
been exploited to penetrate one more extra round and recover the key. Here, r
is 4, 6 and 8 for Flex-64, Flex-128 and Flex-256 respectively. First, details
about Super-Sbox of Flex-x is given.

11

Fig. 4: Super-Sbox of Flex-128 Block Cipher

4.1 Super-Sbox

Refer to Fig. 4 for the Super-Sbox construction in Flex-128 block cipher. Con-
sider the bytes {B[0], B[2], · · ·B[7]} at X1. Due to round function, only the
symmetric bytes affect each other. So, in Y1 every symmetric bytes depends
on every symmetric bytes at X1. Due to BS2, B[2i], B[2i + 8] (0 ≤ i ≤ 3)
from Y1 constitutes the B[4i], B[4i + 1] (0 ≤ i ≤ 3) at X2. Due to applica-
tion of BS3, {B[2i], B[2i + 1], B[2i + 8], B[2i + 9]}, (0 ≤ i ≤ 1) at Y2 affects
{B[8i], B[8i + 1], B[8i + 2], B[8i + 3]}, (0 ≤ i ≤ 1) at X3. This constitutes a
Super-Sbox which spans over 2.5 rounds (omitting the initial BlockShuffle).
There are two 64-bit Super-Sbox in the Flex-128 state. In similar way, Flex-
64 and Flex-256 has 32-bit and 128-bit Super-Sbox which span over 1.5 and 3.5
rounds respectively. In the next subsection, how these Super-Sboxes are used to
design deterministic Yoyo distinguishers is discussed.

4.2 Deterministic Distinguisher for r-round Flex-x

In devising this distinguisher, Theorem 1 has been used directly. For this pur-
pose, the S ◦ L ◦ S layers need to be identified in this construction. The S here
corresponds to Super-Sbox described in Section 4.1 whereas the L corresponds
to the BlockShuffle layer. A pair of plaintexts is chosen such that only one of
the Super-Sbox is active at X1. Yoyo game is played using these two plaintexts
to obtain a new pair of texts. The same Super-Sbox should be active in the new
pair of texts and the other should be inactive. For a uniform random discrete
distribution, this occurs with probability 1

2
x
2

. Next, attack procedures and their

corresponding complexities are provided. In the attack procedure, steps pertain-
ing to Flex-128 has been described. Same attack strategy follows for Flex-64

12

and Flex-256.

Attack Procedure.

1. Choose two 128-bit plaintexts p1, p2 such that, wt(ν(p1 ⊕ p2)) = 1. Inverse
BlockShuffle is applied to p1, p2 and then they are queried to encryption
oracle to obtain c1, c2.

2. As there is two Super-Sboxes, so only one swapping is possible. One of the
Super-Sbox is swapped between c1 and c2 to form c′1, c

′
2, which are queried

to decryption oracle and p′1, p
′
2 is obtained.

3. Check whether wt(ν(BS(p′1)⊕BS(p′2))) = 1 or not. If it is 1, then distinguish
it as Flex-128; otherwise it is a random permutation.

Complexity Evaluation. The attack needs 2 encryption queries and 2 decryp-
tion queries; its time complexity is 2 BlockShuffle, 2 inverse BlockShuffle

operation and 2 Flex-128 state XOR, and the memory complexity is negligible.

4.3 Key Recovery for (r + 1)-round Flex-x

For attacking (r + 1)-round Flex-x, Yoyo distinguishing attack on r-round is
composed with the one round trail of iterated truncated differential. The attack
for Flex-128 is shown in Fig. 5. With probability 2−7 only one Super-Sbox is ac-
tive at X2. By virtue of Yoyo game, only one Super-Sbox should be active in W2.
Due to inverse BlockShuffle, the differences should be confined to either upper
nibbles or lower nibbles in Z1; the other half should be free. With probability
2−8, two symmetric bytes become free at Z1. There are 8 (4 and 16 for Flex-64
and Flex-256 respectively) choices for symmetric byte positions which increases
the probability to 2−5

(
2−6 and 2−4 for Flex-64 and Flex-256

)
. Therefore, at

the cost of 2−12, two symmetric bytes become free for the 7-round Flex-128.
Probability of the same event for 5-round Flex-64 and 9-round Flex-256 is
2−13 and 2−11 respectively. Now, the attack steps of Flex-128, it’s correspond-
ing complexities and experimental verifications are discussed.

Attack Procedure.

1. Choose 26 plaintexts such that they differ only in B[0] and B[8]. Apply in-
verse BlockShuffle on them and query them to encryption oracle to obtain
corresponding ciphertexts. Consider all ciphertext pairs, swap bytes between
them according to the Super-Sbox output and query them to the decryption
oracle to obtain new pairs of plaintexts. Check whether the pair has a pair
of free symmetric bytes. At least one such pair is expected.

2. Repeat step 1 two more times to obtain two more right pairs. Let (c1, c2),
(c3, c4) and (c5, c6) be such pairs and their corresponding plaintexts are
(p1, p2), (p3, p4) and (p5, p6). After byte swapping, (c1, c2), (c3, c4) and (c5, c6)

13

Fig. 5: 7-round Yoyo Distinguisher for Flex-128

becomes (c′1, c
′
2), (c′3, c

′
4) and (c′5, c

′
6). BlockShuffle is applied on the de-

crypted value of these modified ciphertexts to obtain (p′1, p
′
2), (p′3, p

′
4) and

(p′5, p
′
6).

3. Guess key bytes 0 and 8 for Kα, run one round encryption for p′1, p
′
2 and

observe whether same nibble in B[0] and B[8] remains free or not for the
pair. Using nibble transition, out of 216 candidates, 27 are filtered out. Then
the remaining two right pairs subsequently reduces the number of candidates
for Kα[0] and Kα[8] to 22 and 1 respectively.

4. For the remaining 7 symmetric pairs of bytes, step 3 is repeated 7 more
times. At, the end 1 key candidates are expected for Kα. For each Kα, Kβ

is computed by using a plaintext-ciphertext pair. If there is more than one
Kα, Kβ pair, they are exhaustively tried for finding the right key candidate.

Complexity Evaluation. Let probability of the event that “two symmetric
bytes become free” is 2−p. So, for retrieving a right pair, 2

p
2 encryption queries

and 2p decryption queries are required. For guessing each pair of key byte, 3 such
right pairs are needed and to recover the key, this process need to be repeated x

16

times. Therefore, data complexity of the attack is 3×x
16 × 2

p
2 encryption queries

and 3×x
16 × 2p decryption queries.

Time complexity is 3×x
16 × 2p memory accesses for retrieving the stored cipher-

texts.
Memory complexity is 3×x

16 × 2
p
2+1 Flex-x states for storing the plaintexts and

ciphertexts.
The complexities of 7-round Flex-128 key recovery attack are-

1. Data Complexity is 24× 26 ≈ 210.5 encryption queries and 24× 212 ≈ 216.5

decryption queries.

2. Time Complexity is 216.5 memory accesses.

3. Memory Complexity is 211.5 Flex-128 states.

14

Experimental Verification. The Yoyo attack for 7-round Flex-128 has been
experimentally verified. Initially the oracle chooses a master key randomly and
computes the subkeys. Adversarial algorithm queries according to attack steps in
Section 4.3 and retrieves right pairs. The number of key candidates corresponding
to each symmetric bytes

(
from (Kα[0],Kα[8]) to (Kα[7],Kα[15])

)
after filtering

with first right pairs are 502, 618, 546, 496, 510, 486, 552 and 538 respectively
which conforms to the theoretical value of 29. The second right pairs further
reduces it to 6, 7 6, 7, 7, 3, 3 and 5 respectively which is close to the theoretical
value of 22. The third pairs reduces all these values to 1. This reduction in
the number of key candidates using the right pairs conforms to the theoretical
analysis. At last, the algorithm successfully recovers the subkeys.

In the next section, we discuss the success probability of distinguishing at-
tacks reported in this work.

5 Success Probability of Distinguishing Attacks

The effectiveness of an attack depends on its success probability. First, the suc-
cess probability of all reported distinguishers is computed. Then, the success
probability of practical ones is experimentally verified. To deduce the theoreti-
cal estimation of success probabilities, the following theorem from [19] has been
applied.

Theorem 2. [19] Suppose, the event e happens in uniform random bitstream
with probability p and in keystream of a stream cipher with probability p(1 +
q). Then the data complexity of the distinguisher with false positive and false
negative rates α and β is given by

n >

(
κ1
√

1− p+ κ2

√(
1 + q

)(
1− p(1 + q)

))2
pq2

(3)

where Φ(−κ1) = α and Φ(κ2) = 1− β.

For computing success probability, we consider κ1 = κ2 in theorem 2, which
gives us α = β. Then the success probability is given by (1 − β). Note that,
in the theorem data complexity essentially refers to sample complexity. Table 5
lists the success probabilities of different distinguishers presented in this paper.

Experimental Verification. For experimental verification of success probabil-
ities, the strategy from [21] has been followed. First, consider a blackbox which
can act as either a cipher C or a uniform discrete random permutation R. Then
the experiment is run two times in the following ways:

1. Consider the blackbox as C and repeat the experiment ac times.
2. Consider the blackbox as R and repeat the experiment ar times.

15

Table 5: Success Probabilities of Various Distinguishers

Distinguisher

Type

Block

Size
f #rounds p× (1 + q) p

Success

Probability

Iterated

64 1 7 2−42 2−48 0.8

128 1 16 2−105 2−112 0.82

256 4 21 2−119 2−192 0.84

Yoyo

64 n/a 5 2−13 2−14 0.61

128 n/a 7 2−12 2−13 0.61

256 n/a 9 2−11 2−12 0.61

Table 6: Confusion Matrix of C and R

Actual

Observed
C R

C oc − nFP nFN

R nFP or − nFN

Table 7: Experimental Verification of Success Probability

Distinguisher #rounds f #n Blackbox
Detected as

C
Detected as

R

Experimental

Success

Probability

Estimated

Success

Probability

Flex-64 5 2 100
Flex-64 65 35

0.8 0.83
R 5 95

Flex-64 6 2 100
Flex-64 79 21

0.76 0.77
R 27 73

Let out of (ac+ar) experiments, distinguisher decides it as C oc times and as R
or times. nFP and nFN denotes the number of false positives and false negatives
respectively. Based on this parameters, the confusion matrix is shown in Table 6.

Then the success probability is calculated by:

Pr[Success] =
(oc − nFP) + (or − nFN)

oc + or

=
(oc − nFP) + (or − nFN)

ac + ar
.

The values of success probabilities for 5-round and 6-round Flex-64 derived
using experiments and theoretical estimations are listed in Table 7.

Trade-off between Success Rate and Free Rounds. The iterated truncated
differentials can have a different number of free rounds at the end. More number

16

Table 8: Comparison of Success Rate for Flex-64

f #rounds p× (1 + q) p
Success

Probability

1 6 2−35 2−48 0.83

2 6 2−28 2−32 0.77

Table 9: Comparison of Success Rate for Flex-256

f p× (1 + q) p
Success

Probability

1 2−140 2−240 0.84

2 2−133 2−224 0.84

3 2−126 2−208 0.84

4 2−119 2−192 0.84

of free rounds reduces the trail complexity at the expense of success rate. For
analysis, consider the case pertaining to 6-round Flex-64 with the number of
free rounds 1 and 2. The success rate for both cases is listed in Table 8.

For 21-round Flex-128, the number of free rounds can take any value be-
tween 1 and 4. For each of the cases, the theoretical estimation of success prob-
ability is almost equal. The estimated success probabilities have been shown in
Table 9. The difference between the distribution of random bitstream and 21-
round Flex-128 for each case is so huge, that it has a negligible effect on the
success probability.

In the following section, we show how to mount forgery attacks on Flex-
AEAD variants using the idea of iterated truncated differentials.

6 Forgery Attacks on FlexAEAD

Eichlseder et al. have shown forgery attacks on FlexAEAD by applying several
strategies [12]. All those strategies are also applicable using the differentials
described in this paper. The main difference between these two approaches is
the differential characteristics for the sequence generation. First, the differential
characteristic of the sequence generation step is shown.

6.1 Differential Characteristics in Sequence Generation

A sequence of bits is used by FlexAEAD for authenticated encryption. These
sequences are generated by using PFk, with initial state being the nonce. For
details on sequence generation refer to [17]. The difference between two consecu-
tive sequence numbers is that their last call to PFk differ by a INC32 call. INC32
is a 32-bit word operation which acts as an XOR operation with probability 2−1.

17

Fig. 6: Differential Characteristics of Sequence Generation for FlexAEAD-128. Note
that, plaintext difference or associated data difference can cancel out difference in
Si ⊕ Si+1 with probability 2−8.

Consider, m 32-bit words in a r-round Flex-x state. Due to INC32 with prob-
ability 2−m, m nibbles at m

2 symmetric positions become active between two
subsequent sequence generation steps. Due to BlockShuffle, those m active
nibbles is converted to m

2 active bytes which occupies m
4 symmetric positions.

In the next round, those active bytes transits to m
8 symmetric positions (m4 ac-

tive bytes) at the cost of 2−2m. In the next round, m
16 symmetric positions get

occupied at the cost of 2−m. After repeating the process,
(

log2(m) − 2
)

times,
only one symmetric position remains occupied by the active byte. For the rest(
r − log2(m) + 2

)
rounds, with probability 2−8 for each round the position of

two active nibbles in the output get fixed (Note that, in the iterated truncated
differential, the position of active is not fixed and that is why the probability of
2−7 is paid). With 2−8 probability the value of the active nibbles can be fixed
to a specific value.

By following this approach, the difference of two consecutive sequence num-
bers can be fixed to a specific value with probability 2−50 for FlexAEAD-64,
2−60 for FlexAEAD-128 and 2−80 for FlexAEAD-256 (Corresponding com-
plexities of forgery attacks are computed by taking the inverse of these probabil-
ities). Differential characteristics of sequence generation for FlexAEAD-128 is
shown in Fig 6. Once the output difference value is fixed, the techniques (Chang-
ing Associated Data, Truncating Ciphertext, Reordering Ciphertext) in [12] can
be applied to forge ciphertext-tag pair. Comparison between several approaches
regarding forgery attack is enlisted in Table 10.

18

Table 10: Comparison of Forgery Attacks on FlexAEAD

Scheme Complexity Technique Reference

FlexAEAD-64
250

Changing Associated Data/

Truncating Ciphertext/

Reordering Ciphertext

Current Work

246 [12]

FlexAEAD-128
260 Current Work

254 [12]

FlexAEAD-256
280 Current Work

270 [12]

7 Conclusion

In this work, we analyzed all variants of PFk of FlexAEAD. We reported a
one round differential characteristic of PFk, which due to its iterative nature
was exploited to penetrate a large number of rounds. We also showed that the
generalized Yoyo distinguishing attack on SPN ciphers was applicable for PFk.
While deploying Yoyo attack, a Super-Sbox construction of 1.5, 2.5 and 3.5
rounds in 64-bit, 128-bit and 256-bit PFk respectively were reported. All these
attacks were easily exploited to recover the subkeys. In addition, the iterated
truncated differential attack strategy was applied to the nonce-based sequence
number generator which was exploited to devise similar kinds of forgery attacks
on FlexAEAD as given by Eichlseder et al. [12]. The success probabilities of all
distinguishing attacks were shown to be high. All attacks reported in this work
with practical complexities were experimentally verified. All these attacks have
exploited a vulnerability in the design which is based on dividing the nibbles
into two parts while using AES S-box.

References

1. CAESAR Competition. https://competitions.cr.yp.to/caesar.html
2. National Institute of Standards and Technology (NIST): AES Development (1997).

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-
crypto-projects/aes-development

3. National Institute of Standards and Technology (NIST): Lightweight cryp- tog-
raphy standardization process (2019). https://csrc.nist.gov/projects/ lightweight-
cryptography

4. National Institute of Standards and Technology (NIST): SHA-3 Standardization
Process (2007). https://csrc.nist.gov/projects/hash-functions/sha-3-project

5. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON Fam-
ily of Block Ciphers. Cryptology ePrint Archive, Report 2013/543 (2013),
https://eprint.iacr.org/2013/543

6. Avanzi, R.: The QARMA Block Cipher Family. Almost MDS Matrices Over Rings
With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-
Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes. IACR
Transactions on Symmetric Cryptology 2017(1), 4–44 (Mar 2017)

19

7. Banik, S., Bossert, J., Jana, A., List, E., Lucks, S., Meier, W., Rahman, M., Saha,
D., Sasaki, Y.: Cryptanalysis of ForkAES. In: Applied Cryptography and Network
Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June 5-7,
2019, Proceedings. pp. 43–63 (2019)

8. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
Small Present - Towards Reaching the Limit of Lightweight Encryption. In: CHES
(2017)

9. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: CRYPTO (2016)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007. pp. 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007)

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2009. pp.
272–288. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

12. Eichlseder, M., Kales, D., Schofnegger, M.: Forgery Attacks on FlexAE
and FlexAEAD. Cryptology ePrint Archive, Report 2019/679 (2019),
https://eprint.iacr.org/2019/679

13. Eichlseder, M., Kales, D., Schofnegger, M.: Official Comment: FleaxAEAD. Posting
on the NIST LWC mailing list (2019)

14. Mege, A.: Official Comment: FLEXAEAD. Posting on the NIST LWC mailing list
(2019)

15. do Nascimento, E.M., Xexéo, J.A.M.: A Flexible Authenticated Lightweight Cipher
using Even-Mansour Construction. In: IEEE International Conference on Commu-
nications, ICC 2017, Paris, France, May 21-25, 2017. pp. 1–6 (2017)

16. do Nascimento, E.M., Xexéo, J.A.M.: A Lightweight Cipher with Integrated
Authentication. In: CONCURSO DE TESES E DISSERTAES - SIMPSIO
BRASILEIRO EM SEGURANA DA INFORMAO E DE SISTEMAS COMPUTA-
CIONAIS (SBSEG), 18., 2018 (2018)

17. do Nascimento, E.M., Xexéo, J.A.M.: FlexAEAD -A Lightweight Cipher with Inte-
grated Authentication. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf (2019)

18. do Nascimento, E.: Algoritmo de Criptografia Leve com Utilizao de Autenticao.
Ph.D. thesis, Instituto Militar de Engenharia, Rio de Janeiro (2017)

19. Paul, G., Ray, S.: On data complexity of distinguishing attacks versus message
recovery attacks on stream ciphers. Des. Codes Cryptogr. 86(6), 1211–1247 (2018)

20. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo Tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp. 217–243.
Springer International Publishing, Cham (2017)

21. Saha, D., Rahman, M., Paul, G.: New Yoyo Tricks with AES-based Permutations.
IACR Trans. Symmetric Cryptol. 2018(4), 102–127 (2018)

20

