
Protecting against Statistical Ineffective Fault
Attacks

Joan Daemen1, Christoph Dobraunig1, Maria Eichlseder2, Hannes Gross3,
Florian Mendel4 and Robert Primas2 ∗

1 Radboud University, Netherlands ({joan,cdobraunig}@cs.ru.nl)
2 Graz University of Technology, Austria (first.last@iaik.tugraz.at)

3 SGS Digital Trust Services GmbH, Austria (hannes.gross@sgs.com)
4 Infineon Technologies AG, Germany (florian.mendel@infineon.com)

Abstract. At ASIACRYPT 2018 it was shown that Statistical Ineffective Fault
Attacks (SIFA) pose a threat for many practical implementations of symmetric
primitives. In particular, countermeasures against both power analysis and fault
attacks typically do not prevent straightforward SIFA attacks that require only
very limited knowledge about the concrete attacked implementation. Consequently,
the exploration of countermeasures against SIFA that do not rely on protocols
or physical protection mechanisms is of great interest. In this paper, we explore
different countermeasure strategies against SIFA. First, we introduce an abstraction
layer between the algorithmic specification of a cipher and its implementation in
hardware or software to study and describe resistance against SIFA. We then show
that by basing the masked implementation on permutations as building blocks, we
can build circuits that withstand single-fault SIFA and DPA attacks. We show how
this approach can be applied to 3-bit, 4-bit, and 5-bit S-boxes and the AES S-box.
Additionally, we present a strategy based on fine-grained fault detection suitable for
protecting any circuit against SIFA attacks. Although this approach may lead to a
higher implementation cost due to the fine-grained detection needed, it can be used
to protect arbitrary circuits and can be generalized to cover multi-fault SIFA.
Keywords: Fault countermeasures · Implementation security · Fault attack · Masking
· SFA · SIFA

1 Introduction
Motivation. Fault attacks [11, 14] and passive side-channel attacks, like power [40]
or electromagnetic (EM) analysis [45], are real-world threats for implementations of
cryptographic primitives. Therefore, devices like smart cards that are potentially physically
accessible by an attacker typically implement countermeasures against these attacks.

The common countermeasure at algorithmic level is the combination of masking (against
side-channel attacks) and some kind of redundancy (against fault attacks). In masking one
splits input and intermediate variables of cryptographic computations into d+ 1 random
shares such that the observation of up to d shares does not reveal any information about
their corresponding native value [4,5,25,33–35,38,46]. Redundant computation, on the
other hand, is used to detect malicious or environmental influences that could lead to
faulty cipher outputs. If a fault is detected, either the cipher output is not released or
in a form that prevents its exploitation (so-called infection) [2, 53]. Examples of recent
∗The list of authors is in alphabetical order (https://www.ams.org/profession/leaders/culture/

CultureStatement04.pdf)

mailto:{joan,cdobraunig}@cs.ru.nl
mailto:first.last@iaik.tugraz.at
mailto:hannes.gross@sgs.com
mailto:florian.mendel@infineon.com
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf


works that propose combinations of such countermeasure techniques include, among others,
ParTI [48], Private Circuits II [24, 37], and M&M [26]. A quite different approach was
chosen with CAPA, an actively secure MPC protocol that was adapted to cryptographic
computations to provide strong protection against implementation attacks but at a cost
that makes its usage of limited interest for practical applications [47].

Up until recently, implementations combining masking with fault countermeasures
were typically assumed to offer protection against both power analysis and fault attacks.
However, recently a new type of attack was introduced that combines the principles of
Ineffective Fault Attacks (IFA) [16] and Statistical Fault Analysis (SFA) [30]. This attack
is called Statistical Ineffective Fault Attack (SIFA) [28] and in [27] it was shown that it can
break ciphers protected with masking as well as fault detection or infection. SIFA succeeds
in doing this by exploiting the dependence of faults propagating to the cipher output
on the value of intermediate variables. The mere presence of a fault and the non-faulty
outputs of the cipher computations provide sufficient information to retrieve the value of
these intermediate variables.

Our contribution. The contribution of this paper is two-fold. First, we thoroughly analyze
the general root causes that lead to successful SIFA attacks. To study these causes and
also describe resistance against SIFA and DPA, we introduce an abstraction layer between
the algorithmic specification of a cipher and its implementation in hardware or software.
In this layer, we express the cipher as a circuit, taking as input an array of variables and
returning as output an array of variables. We split this circuit into sub-circuits where
each sub-circuit takes as input variables that are either the cipher’s input or the other
sub-circuit’s outputs. This is done recursively until we get to the level of circuits that we
no longer split into sub-circuits and that we call basic circuits. In the implementation of
these basic circuits it is then essential to keep the computations and internal variables of
the different basic circuits separated. Thus, basic circuits are the natural place to define
the concept of faults and their effectiveness in an unambiguous way, and it is also insightful
to describe DPA resistance similar to the probing model [38].

Second, we present two different approaches that, starting from the algorithmic de-
scription, allow to specify circuits that mitigate SIFA and DPA. The first approach relies
on finding descriptions of ciphers that restrict basic circuits to permutations which only
operate on an incomplete set of shares. In particular, those permutations are either linear
or variants of the Toffoli gate [52], the simplest invertible non-linear function. This strategy
allows for fault detection at the end of a cipher, e.g., by means of redundant computation
and comparison of the outputs. We then show that masked 3-bit, 4-bit, and 5-bit S-boxes
can be built using Toffoli gates as their only non-linear component, thus offering protection
against SIFA. A similar strategy can be applied to the AES S-box, however, for AES, we
require fault detection at the output of the AES S-box. We verified the correctness of the
masking of our Toffoli-based circuits for S-boxes of Keccak and AES using maskVerif,
a tool for formal verification of masking schemes [3]. The second approach does not
restrict basic circuits to be permutations and is based on fine-grained detection. This
countermeasure can be used to protect arbitrary circuits and can be generalized to cover
multi-fault SIFA, albeit at a higher implementation cost.

Outline. We start with a description of our abstraction layer and discuss how we model
fault and side-channel attacks on it in Section 2. Then, we show how to describe some
ciphers only relying on incomplete permutations as basic circuits in Section 3. Afterwards,
we describe a circuit for the AES that can withstand single-fault SIFA and first-order DPA
in Section 4. Section 5 deals with the protection of arbitrary circuits. In Section 6, we
verify the correctness of the circuits for the S-boxes of AES and Keccak using maskVerif
and discuss considerations when implementing the circuits in software or hardware.

2



2 The Circuit Abstraction Layer and Fault Model
In this section, we define the abstract circuit model that we propose as a tool for building
hardware or software cipher implementations that offer resistance against statistical fault
analysis (SIFA) and side-channel attacks. By the term cipher, we mean block ciphers,
tweakable block ciphers, or permutations. After a short introduction on masking, we define
the circuit abstraction layer and the subsequent fault model. Then we show how masking
can be modeled and side-channel attacks can be described at the circuit abstraction layer.

2.1 On Masking
Masking is an algorithmic-level countermeasure against power analysis attacks also relevant
in fighting SIFA. A cipher takes as input an array of variables (often binary) and returns
a similar array as output. An algorithm describes how to compute the latter from the
former.

In a masked version of a cipher, each variable at the input is expanded to d+ 1 shares
such that the sum of the shares (assuming the variables are elements of an additive group)
equals the variable, which we call native. The output has the same expansion and the
algorithm specifies how to compute the expanded output from the expanded input, in a
deterministic way. In implementations, this allows computing the cipher on a state by
encoding each of its variables in d+ 1 shares where the sum equals the native variable and
summing the output shares to obtain the native output. This allows choosing d shares
for each variable for each computation randomly, providing protection against differential
power analysis. Namely, individual share variables are independent of native variables and
if the masking is well designed, this is even the case for up to d share variables.

2.2 Definition of The Circuit Abstraction Layer
We propose an abstraction layer between the algorithmic description of a (masked) cipher
or permutation and the hardware or software implementation and present our formalism
here. At the circuit abstraction level we break up the deterministic algorithmic description
into a number of interconnected circuits.

By a circuit, we mean a fully specified deterministic function taking as input an array
of input variables and returning as output an array of output variables. Trivially, the
algorithm of a (masked) cipher itself defines a circuit. More interestingly, we can break up
that circuit into a number of interconnected sub-circuits that take care of all the processing.
The composite circuit that a sub-circuit is part of is called its super-circuit. The variables
of the super-circuit and its sub-circuits are related in the following ways:

• Each input variable of a sub-circuit is either an input variable of its super-circuit or
the output variable of another sub-circuit.

• Variables in a super-circuit that are neither super-circuit input nor output variables
are called intermediate variables.

• We consider duplication a form of processing and hence any super-circuit input
or intermediate variable propagates to at most one sub-circuit input or to the
super-circuit output.

This can be applied recursively, where every sub-circuit can at the same time be a
super-circuit with its own sub-circuits.

Let us illustrate this with an example: non-masked AES-128. Its circuit takes as input
a 128-bit key and a 128-bit plaintext and returns as output a 128-bit ciphertext. Two
obvious sub-circuits are the key schedule and the datapath. The former has the 128-bit
key as input and a 1408-bit expanded key as output. The latter has the 128-bit plaintext

3



and the expanded key as input and the 128-bit ciphertext as output. The datapath circuit
can be split in 11 sub-circuits: one for each round and an initial round key addition circuit.
The input of each round sub-circuit is the output of another circuit and a round key
taken from the expanded key. The circuits for the first 9 rounds are identical, we say
they are 9 instances of the same circuit class. The round circuit class can be split into
4 sub-circuits: SubBytes, ShiftRows, MixColumns and AddRoundKey. One may merge
ShiftRows with SubBytes or MixColumns when targeting implementations where this step
does not represent processing. A SubBytes circuit splits naturally into 16 sub-circuits of
the same class, representing the S-box.

In this paper, we will use the following formalism to specify circuits. We specify the
input variables and their type, the output variables and their type and how to compute
the output variables from the input variables. Unless stated otherwise, variables are
binary. Circuits can be defined from scratch with simple operations such as addition and
multiplication of variables, or in terms of sub-circuits. We call the former a basic circuit
and the latter a composite circuit. Circuit 1.a provides an example of a basic circuit with
three binary input variables and two binary output variables. A circuit can be used as a
sub-circuit in the specification of a composite circuit. An example of a composite circuit
with four binary input variables and two binary output variables is given in Circuit 1.b.

(1.a) Basic circuit

Name: ExampleCircuit1
Input: (a, b, c)
a← b� c

b← c� a

Output: (a, b)

(1.b) Composite circuit

Name: ExampleCircuit2
Input: (a, b, c, d)
(a, b)← ExampleCircuit1(a, b, c)
(a, b)← ExampleCircuit1(d, a, b)
Output: (a, b)

The composite circuit is specified by two sub-circuits where the processing on the input
variables is based on their location in the input array. When naming intermediate variables,
one can make use of the fact that any variable shall be used exactly once. This implies
that once a variable has occurred as the input of a sub-circuit, its name becomes available
for another intermediate variable. In case we want to use a variable twice or more, we
can put a cloning circuit. This is a circuit cloning variable a to b: (a, b)← Clone(a), or
to a, b and c: (a, b, c) ← Clone(a). In our convention, a composite circuit must use all
output variables of its sub-circuits as outputs. If one wishes to omit a variable, this can
be specified explicitly with a sinkhole circuit: Sinkhole(a) is a simple circuit taking one
variable and returning no variables.

We refer to circuits that have as many input variables as output variables (and of the
same type) as transformative circuits. For these circuits we have a simplified convention.
We specify them operating on a state which is used for both input and output. When they
are used in the specification of a composite circuit, we omit the arrow and output variable.

At the circuit abstraction level, we see computation as the application of a particular
input at the circuit’s input and the observation of the result at its output. Furthermore,
such circuits can be injective, surjective, both or neither.

Definition 1. A circuit (class) is injective if for every input it returns a different output.
It is surjective if for all outputs there is at least one input. We call a circuit (class) that is
both injective and surjective a permutation circuit (class).

Clearly, a permutation circuit can be modeled as a transformative circuit.

4



2.3 Fault Model
We model faults at the level of a circuit during computation. In the absence of faults, the
output of a circuit of a given class is fully determined by its input. A circuit fault is simply
any deviation from this.

Definition 2. A circuit fault during a computation is a deviation of the circuit instance
from its circuit class. Namely, the fault modifies the circuit in such a way that it could
return for at least one input an output that does not correspond with the one prescribed
by the circuit class.

This definition covers a wide range of faults, including bit flips, or set-to-0 or set-to-1
faults of input, output, or intermediate variables, but also modifications of entries in lookup
tables. Circuit faults are abstract and the mapping to physical faults that occur in actual
implementations is often non-trivial. The hardware implementation of a cipher circuit
that has many sub-circuit instances of the same class may re-use the same combinatorial
hardware for all those instances. A permanent fault in such a hardware would correspond
to a circuit fault in all circuit instances that it is used to implement. Similarly, a faulted
entry in the AES S-box lookup table implies circuit faults in all S-box circuits of the
AES circuit. Although faults often occur in implementations of circuit classes, at circuit
abstraction level we see circuit faults in circuit instances. This is more general as faults
may be induced for single executions of a program sequence or combinatorial circuit, or
different faults may be induced for different instances.

A circuit fault does not necessarily imply a faulty circuit output. For example, a
single faulted entry in an AES lookup table only leads to a faulty circuit output if the
circuit input hits that entry. A stuck-at-0 fault affecting an input variable is not visible
at the output if the variable is 0 anyway. For this reason, we define the concept of fault
effectiveness.

Definition 3. A circuit fault is effective during a computation if it leads to a faulty circuit
output.

When protection against faults is a concern, one typically performs redundant compu-
tations. At circuit level, this can be done by feeding it with variables that satisfy some
conditions. In duplication, this can be done by two circuits of the same class that operate
on input variable arrays set to the same value. In the absence of faults, this will also be
the case for the outputs. Another possibility is a single circuit where the input variables
satisfy some linear relation and in the absence of a fault, the output variables will satisfy
the same. These circuits propagate a kind of redundancy condition that, if not satisfied,
implies a fault must have occurred. Detection of faults can be done with a circuit as
well. We call this a fault detection circuit. It (typically) simply propagates the input
variables unchanged to the output but has an additional binary output, called fault alert,
which is false when the redundancy condition is satisfied and true otherwise. This fault
detection circuit may opt to use only the output variables of the cipher circuit, or it may
use duplicates of intermediate variables as well.

2.4 Masking in Circuits
We speak of a masked circuit when it corresponds to a masked cipher. It operates on share
variables and preserves the property that learning d shares does not give information on
native variables. In a similar way as the probing model [38], we model side-channel attacks
by allowing an attacker to probe all associated variables and to observe all computations
of certain sub-circuits. The observation of a single sub-circuit does not give information
about native variables only if the sub-circuit is incomplete.

5



Definition 4. A sub-circuit in a masked circuit is incomplete if the input variables do
not include all shares of a single native variable.

For linear functions, such a partition into incomplete sub-circuits can be done quite
easily as shown in Circuit 2.a.

(2.a)

Name: SharedXor
State: (a0, a1, b0, b1)
XorFirst(a0, b0)
XorFirst(a1, b1)

(2.b)

Name: XorFirst
State: (a, b)
a← a� b

However, if we just consider one Boolean And, such a partition into incomplete sub-
circuits is more complex. Hence, many papers dealing with masking aim to find efficient
masked implementations for the Boolean And [4, 5, 25,33–35,38,46]. If we just focus on
the sharing of an And, c = a � b, using 2 shares, such a sharing requires the addition
of a resharing variable r. This is needed to ensure that the shares c0 and c1 are each
independent of the native value of c. The resharing variable r is a circuit input. It may be
derived from a dedicated random number generator or from another unrelated calculation,
e.g., as shown in Changing of the Guards [19]. A possible partition of masked And into
incomplete sub-circuits is then given in Circuit 3.a. This definition requires a lot of cloning.
We can alternatively use sinkholes as in Circuit 3.b.

(3.a) With cloning

Name: SharedAnd
Input: (a0, a1, b0, b1,r)
(r,r′)← Clone(r)
(a0, a

′
0)← Clone(a0)

(a1, a
′
1)← Clone(a1)

(b0, b
′
0)← Clone(b0)

(b1, b
′
1)← Clone(b1)

(c0)← AndXor(a0, b1,r)
(c0)← AndXor(a′0, b0, c0)
(c1)← AndXor(a1, b

′
0,r′)

(c1)← AndXor(a′1, b′1, c1)
Output: (c0, c1)

Name: AndXor
Input: (a, b, c)
d← a� b

c← d� c

Output: (c)

(3.b) With sinkholes

Name: SharedAnd
Input: (a0, a1, b0, b1,r)
(c0,r)← Clone(r)
AndXor1(a0, b1, c0)
AndXor1(a0, b0, c0)
(c1,r)← Clone(r)
AndXor1(a1, b0, c1)
AndXor1(a1, b1, c1)
Sinkhole(r, a0, a1, b0, b1)
Output: (c0, c1)

Name: AndXor1
State: (a, b, c)
d← a� b

c← d� c

2.5 SIFA on Masked Circuits
Implementing a masked cipher based on a circuit with incomplete sub-circuits and with
fault countermeasures such as duplication at cipher level with a fault detection circuit at
the end of the cipher circuit is not sufficient to prevent SIFA. In this section we explain
why. We assume a SIFA attacker that can make many computations but is limited to a
circuit fault in a single sub-circuit during each computation. The success of this attack
relies on whether the occurrence of faults at the input of the detection circuit depends on
native variables.

To see that this is still possible in the presence of only incomplete sub-circuits, we give
an example. Consider the single masked And-gate with 2 shares (cf. Circuit 3.b). We see
that every input share is an input to two AndXor circuits and is combined with share

6



0 of a native variable in one of them and share 1 in the other. For instance, faulting a0
to a0 � 1 at the input of AndXor1(a0, b1, c0) propagates to a0 in AndXor1(a0, b0, c0).
It will flip c0 in AndXor1(a0, b1, c0) iff b1 = 1 and c0 in AndXor1(a0, b0, c0) iff b0 = 1.
The result is that it will flip c0 an odd number of times iff b0 � b1 = b = 1. Hence it will
propagate to c0 and hence also the native variable c if b = 1 and not if b = 0. Resistance
against SIFA requires us to construct circuits that ensure that the propagation of circuit
faults in sub-circuits to the cipher circuit output is independent of native variables.

One condition that we use to achieve this is that each sub-circuit is incomplete. If a
circuit is not incomplete, faulting such a sub-circuit might have fault effects that depend
on native values. Second, we have to ensure that the circuit is built in such a way that
the propagation of the fault effect does not lead to ineffective faults depending on native
values. We have essentially two options to achieve this:

1. Build circuits of incomplete sub-circuits where an effective fault at the output of a
single sub-circuit can never become ineffective at the output of the cipher circuit
(Section 3).

2. Build a fault detection circuit that catches effective faults at the output of sub-circuits
before they can become ineffective (Section 5).

Although a cipher circuit can be built from sub-circuits in a recursive way with multiple
layers, in the remainder we will consider only a single level of sub-circuits. We will call
these sub-circuits basic circuits. We then consider a single fault per execution of a cipher as
a circuit fault in a single basic circuit instance. Furthermore, in a first-order side-channel
attack (e.g., first-order DPA), we allow an attacker to observe a single basic circuit instance.
This means that an attacker has knowledge about all variables associated to this basic
circuit and the computation done within it.

3 Ciphers from Incomplete Permutation Circuits
In this section, we investigate how we can implement ciphers so that they are protected
against single-fault SIFA. The heart of our strategy is to split a cipher into basic circuits
that are permutations and that are incomplete. To do this, we use constructions common
in the field of reversible computing [6, 41,52]. In particular, we use the Toffoli gate [52]
and related constructions as essential basic circuits.

3.1 The High-level Strategy
In this section, we aim to implement strategy 1 of Section 2.5. We do this by building a
cipher circuit out of incomplete permutation basic circuits.

In this way, any single circuit fault in a basic circuit that is effective for that basic
circuit is also effective for the cipher circuit. This follows from the following lemma and
corollary.

Lemma 1. Any composite circuit built from permutation sub-circuits is itself a permutation
circuit.

Proof. The circuit has at least one sub-circuit A with all its input variables also input
variables of its super-circuit. Now write the super-circuit as the serial composition of two
circuits:

• The first circuit applies A to the input variables and returns the corresponding
output variables. The remaining variables are just copied from input to output.

• The second circuit is the super-circuit with the circuit A replaced by the identity.

7



The first circuit is a permutation as A is a permutation. We can iteratively apply this
trick to the second circuit until it only contains a single sub-circuit. In this way we write
the super-circuit as a series of invertible circuits.

Corollary 1. In a composite circuit built from permutation sub-circuits, any fault at the
output of a sub-circuit will propagate to the output of the super-circuit.

Proof. We can use the decomposition in circuits in the proof of Lemma 1 to split the super-
circuit in two permutation circuits where the faulty output variables of a sub-circuit are
input variables to one of the two permutation circuits. Therefore the fault will propagate
to the output.

Thanks to Corollary 1, we can limit fault detection to the cipher’s output. In addition,
if we want to protect (tweakable) block ciphers, also the (tweak) key-schedule has to be a
permutation (which it typically is), that is split in incomplete permutation basic circuits.
In this case, we consider the last round-key and last tweak together with the ciphertext as
output of the cipher that has to be checked for faults.

Typically, a cipher consists of a sequence of rounds and the round function has a linear
and a non-linear layer. We consider only ciphers where both layers are permutations.

For the linear layer, a split in incomplete permutation basic circuits is straightforward.
In particular, a linear function y = f(x) can be split in d+ 1 incomplete basic circuits that
each operate on a single share of the native state variables. If f is a permutation, then so
are the basic circuits computing yi = f(xi). Furthermore, a single fault always causes a
change in the native value of y.

For the non-linear layer sub-circuit, a split in incomplete permutation sub-circuits is
less trivial. Typically, the non-linear layer consists of the parallel application of a non-linear
S-box to subsets of the state variables. Hence the challenge is to build a circuit for the
masked S-box in terms of incomplete permutation basic circuits.

We do this by constructing masked S-box circuits that are permutations using basic
circuits of the inherently bijective Toffoli gate (Section 3.2) and variants. We follow a
two-stage approach: first express the (unmasked) S-box in terms of Toffoli gates and then
build a circuit of the masked Toffoli gate using incomplete Toffoli-gate basic circuits.

As a consequence of our design strategy, we end up with a round function circuit where
each basic circuit is incomplete and a permutation on the shared state. This implies that
it preserves uniformity of the sharing and hence, no fresh randomness is required during
the rounds for realizing first-order DPA secure circuits.

3.2 Incomplete Permutation Basic Circuits
In the following, we present our permutation basic circuits that we will use to realize
circuits for S-boxes. In essence, we need three different basic circuits. The first one is the
Toffoli gate [52], a non-linear 3-bit permutation. We denote it by pT (a, b, c) and define
it in Circuit 4.a. For brevity in our S-box constructions, we also define a permutation
pχ(a, b, c) in Circuit 4.b that is a close variant of it. In addition, we need the basic circuit
XorFirst(a, b) from Circuit 2.b to realize some S-boxes.

(4.a) Toffoli gate

Name: pT
State: {a, b, c}
t← b� c

a← a� t

(4.b)

Name: pχ
State: {a, b, c}

t← b� c

a← a� t

8



In the first step, we build circuits out of these basic circuits. Those circuits are masked
versions of the basic circuits and will be used as building blocks for the S-boxes. First, let
us have a look at a circuit for the 2-share masked Toffoli gate shown in Circuit 5.a, that
we will refer to as pTS(a0, a1, b0, b1, c0, c1). As can be seen in Circuit 5.a, all pT sub-circuit
instances are incomplete.

(5.a) Masked Toffoli gate

Name: pTS
State: {a0, a1, b0, b1, c0, c1}
pT (a0, b0, c1)
pT (a0, b0, c0)
pT (a1, b1, c1)
pT (a1, b1, c0)

(5.b)

Name: pχS
State: {a0, a1, b0, b1, c0, c1}
pχ(a0, b0, c1)
pχ(a0, b0, c0)
pT (a1, b1, c1)
pT (a1, b1, c0)

Thanks to the fact that the basic circuits are permutations on the state, any circuit
fault in a single pT sub-circuit instance that is effective at its output will also be effective
at the output of the super-circuit. Moreover, any effective fault due to a single sub-circuit
fault can at most affect a single share per variable, and will hence result in a faulty native
variable at that point. Thanks to the correctness of sharing, this fault will propagate to
the super-circuit output.

These observations are also true for the masked version pχS of pχ (Circuit 5.b).
Next, we will show how to build circuits of two-share masked S-boxes using the basic

circuits introduced here. For the sake of completeness, we note that the same properties
can be achieved in a similar form for three-share threshold implementation as shown in
Appendix A.

3.3 3-bit S-boxes
Recently, 3-bit S-boxes have become more prominent with their usage in PRINTcipher [39],
LowMC [1], or Xoodoo [20]. As a representative of these S-boxes, we focus on the
protection of the 3-bit χ-layer [18,20]. The mapping χ operates on circular arrays of bits
and it complements all bits that have the pattern 01 in the bits at their right. χ is bijective
if and only if the length of the circular array is odd. The χ mapping in the round function
of ciphers typically operates on a large set of short odd-length sub-arrays of the state in
parallel. We will refer to n-bit χ as χn.

Daemen et al. [20] pointed out that it is possible to compute χ3 in-place in its registers
as a sequence of three Toffoli gates. This immediately yields a circuit for two-share masked
χ3 in terms of permutation sub-circuits:

Name: Masked_chi3
State: {a0, a1, b0, b1, c0, c1}
pχS(a0, a1, b0, b1, c0, c1)
pχS(b0, b1, c0, c1, a0, a1)
pχS(c0, c1, a0, a1, b0, b1)

Recall from Section 3.2 that pχS is just a composite circuit and that its basic circuits
are pT or pχ. Still, a fault effect stemming from a single basic circuit shows an effect in
the native values at the S-box output.

3.4 4-bit S-boxes
The construction and design of 4-bit S-boxes has been intensively studied in literature.

9



Table 1: The 6 classes of quadratic 4-bit S-boxes [12] expressed in terms of pT and pχ.
0123456789ABDCFE 0123456789CDEFAB 0123457689CDEFBA

Name: Q4
4

State: {a, b, c, d}
pT (d, a, b)

Name: Q4
12

State: {a, b, c, d}
pT (b, a, c)
pT (c, a, b)

Name: Q4
293

State: {a, b, c, d}
pT (d, b, c)
pT (b, a, c)
pT (c, a, b)

0123456789BAEFDC 012345678ACEB9FD 0123458967CDEFAB

Name: Q4
294

State: {a, b, c, d}
pT (c, a, b)
pT (d, a, b)
pT (d, a, c)

Name: Q4
299

State: {a, b, c, d}
pT (b, a, c)
pT (c, a, b)
pT (b, a, c)
pT (c, a, d)
pT (d, a, c)

Name: Q4
300

State: {a, b, c, d}
XorFirst(b, a)
XorFirst(c, a)
pT (a, b, c)
pT (b, a, c)
pχ(c, b, a)

Using affine equivalence, De Cannière [23] partitions all 4-bit bijective S-boxes in 302
equivalence classes, where 1 class contains all affine functions, 6 classes contain quadratic
functions, and 295 classes represent the cubic functions [12].

As shown by Bilgin et al. [12], 144 cubic classes can be constructed by iterating the
S-boxes of the quadratic classes separated by affine layers up to 3 times. This covers many
prominent S-boxes, e.g., the S-boxes used in Noekeon [21] and Present [13], but also several
of the 16 S-boxes observed to be “optimal” by Leander and Poschmann [42]. We focus on
the 6 classes of quadratic functions. The variables a, b, c, and d indicate the input and
output bits of the S-box, where a is the most significant bit. The operations needed to
compute the 6 quadratic classes are summarized in Table 1.

Using Table 1, Circuit 5.a, and Circuit 5.b, it is straightforward to build circuits
for two-share masked versions for 144 out of the 295 cubic classes of S-boxes [12] from
incomplete permutation basic circuits. For S-boxes which are not in these classes, we refer
to results regarding the implementation of 4-bit permutations using reversible components.
For instance, Golubitsky and Maslov [31] give optimal implementations (with respect to a
certain set of reversible gates) for all 4-bit permutations using at most 15 reversible gates.
However, note that the set of reversible gates used may differ from the basic circuits pT
and pχ used in this section and hence, we consider the exploration of this as future work.

3.5 5-bit S-boxes
Shende et. al [50] show that every permutation (S-box) with an odd number of inputs can
be implemented using reversible gates by using at most one additional variable. However,
as we will see next, the need for this additional variable forces us to deviate from the
strategy that each basic circuit is a permutation. In particular, we will make use of
Sinkhole(r) and (r1, r0)← Clone(r0) introduced in Section 2.2.

In this work, we only focus on the 5-bit S-box χ5, which has several prominent uses.
For instance, it is used in the Keccak-p permutations inside Ketje [9], Keyak [10],
Kravatte [7], and Keccak [8] (SHA-3). Moreover, χ5 is also the core of Ascon’s
S-box [29]. We base our circuit for two-share masked χ5 on an implementation of χ5 [29]
with input bits a, b, c, d, and e and an intermediate variable r, as shown in Circuit 6.a.

10



(6.a) χ5

Name: χ5

State: {a, b, c, d, e}
(r)← AndNot(a, e)
pχ(a, b, c)
pχ(c, d, e)
pχ(e, a, b)
pχ(b, c, d)
XorFirst(d, r)
Sinkhole(r)

Name: AndNot
Input: (b, c)
a← b� c

Output: (a)

To provide an implementation of χ5 that withstands single-fault SIFA, we again rely
on pχS(a0, a1, b0, b1, c0, c1) as a building block. We introduce additional input variables r0
and r1, which have to be initialized with random values such that r0 � r1 = 0. This allows
us to argue the security of the following scheme in Circuit 7.a.

(7.a) Masked χ5 with constraints

Name: Masked_chi5_v1
Input: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0, r1}
pχS(r0, r1, e0, e1, a0, a1)
pχS(a0, a1, b0, b1, c0, c1)
pχS(c0, c1, d0, d1, e0, e1)
pχS(e0, e1, a0, a1, b0, b1)
pχS(b0, b1, c0, c1, d0, d1)
XorFirst(d0, r0)
XorFirst(d1, r1)
Sinkhole(r0, r1)
Output: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1}

(7.b) Masked χ5 with cloning

Name: Masked_chi5_v2
State: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0}
(r1, r0)← Clone(r0)
pχS(r0, r1, e0, e1, a0, a1)
pχS(a0, a1, b0, b1, c0, c1)
pχS(c0, c1, d0, d1, e0, e1)
pχS(e0, e1, a0, a1, b0, b1)
pχS(b0, b1, c0, c1, d0, d1)
XorFirst(d0, r0)
XorFirst(d1, r1)
Sinkhole(r1)

We end up with a construction (Circuit 7.a) which is the repeated application of
permutation pχS on 12 bits of the state a0 to r1. Due to this iterative construction, a
fault that has an effect on any native output variable of one pχS would have an effect on
the native output variables of the whole circuit if r0 and r1 would be part of the output.
However, r0 and r1 end in Sinkhole(r0, r1). Hence, we have to show that this never leads
to an effect of a fault disappearing.

As can be seen in Circuit 7.a, d0 and d1 are only written in the basic circuits
XorFirst(d0, r0) and XorFirst(d1, r1). Furthermore, the calculation of r0 and r1 is
independent of d0 or d1. As a consequence, a fault in a single basic circuit that happens
before the execution of XorFirst(d0, r0) and XorFirst(d1, r1) can never have an effect on
the shares of d and r at the same time. Hence, the basic circuits XorFirst(d0, r0) and
XorFirst(d1, r1) never cancel the effect of a fault on a single basic circuit, and effects of
faults on the native value of r carry over to d.

In a similar spirit as Sugawara for AES [51], it is possible to use one share r0 of the
output of one S-box layer as input to the next layer of S-boxes. Hence, it is possible
to implement ciphers which use the sharing shown in Circuit 7.b without the need for
additional randomness, except the one needed for the initial sharing and for the first
S-box layer. We have verified exhaustively that Circuit 7.b is a permutation on the
bits a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, and r0 and that the masking is indeed correct using

11



maskVerif (cf. Section 6.1).

4 AES S-box from Incomplete Permutation Basic Circuits

So far, the main focus has been on S-boxes that have a rather simple and compact
description over F2. However, there exist S-boxes with complex descriptions over F2, but
more concise descriptions over larger binary fields, i.e., F2n . Hence, we will apply our
method to the representation of the S-box over F2n . The most prominent example that
falls into this category is the S-box of AES [22]. Building on Canright’s description [15],
we can derive a description that is better suited for our proposed countermeasure.

Linear Map

GF(24) Mult.

GF(22) Mult.

GF(22) Inv.

GF(22) Mult.

GF(22) Mult.

GF(24) Mult.

GF(24) Mult.

Linear Map

x a = 0 b = 0 c = 0 d = 0

e f g h y

4 4

4 4

4 4

4 4

2 2

2

2

2

2

2

2

2 2

2 2

2 2

2 2

4

4
4

4

4 4

1 1

1

1

1 1

1 1

1 1

Square Scaling
2

2

Square Scaling
1

1

Figure 1: Description of AES S-box (y = S(x)) relying on invertible computations.

Figure 1 shows Canright’s description of the AES S-box just using reversible computa-
tions, basically transforming the idea of Sugawara [51, Figure 8] from 3-shared to 2-shared
masking. This can be done by replacing all F2n multiplications in Canright’s description
by Toffoli gates operating in F2n using an additional input that is set to 0. To distinguish
it from the binary Toffoli gate defined in Section 3.2, we denote a Toffoli gate over F2n by
pnT (a, b, c) with a, b, c ∈ F2n . In the following, we denote multiplication and addition over

12



F2n by · and +, respectively:

Name: pnT
State: {a, b, c}
a← a+ b · c

We can also define a masked version of the Toffoli gate over F2n in a similar way as
in Circuit 5.a. Here, a0, b0, c0, a1, b1, c1 ∈ F2n denote the shares of a, b, c and the shared
version of pnT is denoted by pnTS(a0, a1, b0, b1, c0, c1):

Name: pnTS
State: {a0, a1, b0, b1, c0, c1}
pnT (a0, b0, c1)
pnT (a0, b0, c0)
pnT (a1, b1, c1)
pnT (a1, b1, c0)

The arguments for the security and fault propagation of pTS are analogous to Section 3.2.
Again, each pnT is incomplete and hence, the effect stemming from faulting a single instance
can never depend on a native value. Furthermore, each fault effect caused by a fault on
a single instance of pnT is then visible in the native value. Since only the shares of a are
updated dependent on the shares of b and the shares of c, a change in a native value at
any point caused by a fault on a single instance of pnT can never become ineffective and
hence, is visible at the output of pnTS .

We will now use pnTS to build a circuit for the 2-share masked AES S-box. If we take a
look at the building block given in Figure 1, the multiplications in F2n (later encapsulated
in pnT ) are the only non-linear components of the S-box. The square scaling over F2n

(snsc(a, b, c)) is a linear reversible operation, the linear maps (Γ(a) and Ξ(a)) are linear
permutations, the addition of the constant (AddConstant(a)) is an affine operation, and the
inversion (Inv(a)) over F22 corresponds to a simple bit-swap. We will construct the S-box
with the help of these basic circuits: Γ, AddConstant, Inv, pnT , snsc, and Ξ. A description
of the basic circuits Γ, AddConstant(a), Inv(a), snsc, and Ξ is given in Appendix B.

Having discussed all necessary building blocks, we are ready to give our shared implemen-
tation of the AES S-box. In the description (Circuit 8.a) of the AES S-box, we use variables
in different fields: x0, x1, d0, d1, e0, e1, y0, y1 ∈ F28 , a0, a1, c0, c1, f0, f1, h0, h1 ∈ F24 , and
b0, b1, g0, g1 ∈ F22 . Furthermore, we require that a0 + a1 = 0, b0 + b1 = 0, c0 + c1 = 0,
d0 + d1 = 0 to correctly compute the AES S-box y0 + y1 = S(x0 + x1). With superscripts
H and L, we denote the higher half of coefficients and the lower half of the coefficients,
respectively. For example, x0 ∈ F28 and thus xH0 , xL0 ∈ F24 .

As can be seen in Circuit 8.a, each of the basic circuits is incomplete and hence, the
effect stemming from faulting a single instance is independent of native values. Next, we
have to show that the effect of a fault on a single instance is always present in the native
values of our circuit. If a single fault targets Γ, an effect will be visible in the native value
of e. An effect caused by a fault on a pnT or snsc processing shares of x and a will show
an effect on the native values of x (e) and a (f), since the value of the shares of a only
depend on the shares of x and pnT and snsc are a permutation on the shares. The same
argument is valid for pnT or snsc, processing shares of a and b, since Inv(b) is just a bit-swap.
Next, we have a series of pnT processing shares of a, b, and c. Since the shares of c only
depend on the shares of a and b, again a change in a native value is always visible in the
output. The same is true for the last set of pnT processing shares of x, c, and d, followed
by a share-wise permutation Ξ.

However, in the context of using this S-box within the AES, we cannot further use,
e.g., e0, e1 as input for d0, d1 for another S-box, since e0 + e1 is not 0 in general. For this

13



(8.a) Masked AES S-box with constraints
a0 + a1 = b0 + b1 = c0 + c1 = d0 + d1 = 0

Name: Masked_AES_v1
Input: {x0, x1, a0, a1, b0, b1, c0, c1, d0, d1}
Γ(x0)
Γ(x1)

p4
TS(a0, a1, x

H
0 , x

H
1 , x

L
0 , x

L
1 )

s4
sc(a0, x

H
0 , x

L
0 )

s4
sc(a1, x

H
1 , x

L
1 )

p2
TS(b0, b1, a

H
0 , a

H
1 , a

L
0 , a

L
1 )

s2
sc(b0, a

H
0 , a

L
0 )

s2
sc(b1, a

H
1 , a

L
1 )

Inv(b0)
Inv(b1)

p2
TS(cH0 , cH1 , aL0 , aL1 , b0, b1)

p2
TS(cL0 , cL1 , aH0 , aH1 , b0, b1)

p4
TS(dH0 , dH1 , xL0 , xL1 , c0, c1)

p4
TS(dL0 , dL1 , xH0 , xH1 , c0, c1)

Ξ(x0)
Ξ(x1)
AddConstant(x0)
e0 ← x0, e1 ← x1, f0 ← a0, f1 ← a1

g0 ← b0, g1 ← b1, h0 ← c0, h1 ← c1

y0 ← d0, y1 ← d1

Output: {e0, e1, f0, f1, g0, g1, h0, h1, y0, y1}

(8.b) Masked AES S-box with cloning

Name: Masked_AES_v2
Input: {x0, x1, a0, b0, c0, d0}
(a1, a0)← Clone(a0)
(b1, b0)← Clone(b0)
(c1, c0)← Clone(c0)
(d1, d0)← Clone(d0)
Γ(x0)
Γ(x1)

p4
TS(a0, a1, x

H
0 , x

H
1 , x

L
0 , x

L
1 )

s4
sc(a0, x

H
0 , x

L
0 )

s4
sc(a1, x

H
1 , x

L
1 )

p2
TS(b0, b1, a

H
0 , a

H
1 , a

L
0 , a

L
1 )

s2
sc(b0, a

H
0 , a

L
0 )

s2
sc(b1, a

H
1 , a

L
1 )

Inv(b0)
Inv(b1)

p2
TS(cH0 , cH1 , aL0 , aL1 , b0, b1)

p2
TS(cL0 , cL1 , aH0 , aH1 , b0, b1)

p4
TS(dH0 , dH1 , xL0 , xL1 , c0, c1)

p4
TS(dL0 , dL1 , xH0 , xH1 , c0, c1)

Ξ(x0)
Ξ(x1)
AddConstant(x0)
e0 ← x0, e1 ← x1, f0 ← a0, f1 ← a1

g0 ← b0, g1 ← b1, h0 ← c0, h1 ← c1

y0 ← d0, y1 ← d1

Sinkhole(e1, f1, g1, h1)
Output: {y0, y1, f0, g0, h0, e0}

reason, we remove shares from the input and the output of our S-box in a similar spirit to
Sugawara [51] in Circuit 8.b, which we have also formally verified using maskVerif (cf.
Section 6.1).

The S-box in Circuit 8.b is still a permutation on its inputs as we show in Appendix C.
Since we do not have any restrictions on the inputs of the S-box, we are free to reuse
e0, f0, g0, h0 as inputs for another S-box calculation, and hence, do not have to always
generate fresh sharings of 0. In particular, this allows for first-order side-channel secured
implementations of AES without the need for additional randomness in the masked S-boxes.

However, since we discard e1, f1, g1, h1 at the output of the S-box, we hinder faults
from propagating and thus, have to employ fault countermeasures on S-box level for these
values (respectively for their native values e, f , g, and h). While this results only in a
rather small overhead for implementations that use duplication to protect against fault
attacks, this might become quite expensive for implementations that use time redundancy
since one might have to store all the values that need to be checked in the time redundant
computation. However, this cost can be significantly reduced by computing and storing a
checksum or fingerprint of these values instead. For instance, one might only store one

14



set of e0, e1, f0, f1, g0, g1, h0, h1 all initialized to 0 and always update those shares by a
linear checksum with the output e0, e1, f0, f1, g0, g1, h0, h1 of the S-box before truncation.
Note that by using a linear checksum this can be done for e0, f0, g0, h0 and e1, f1, g1, h1
independently and thus secured against first-order side-channel attacks. By computing
this checksum for the original and redundant computations, a fault will be detected by
checking the output of the redundant AES computations and the checksum value.

5 Protecting Arbitrary Circuits
The cost of building circuits just relying on permutation sub-circuits like the Toffoli gate
compared to other ways of constructing masked implementations varies depending on
the S-box used. When optimizing with respect to other metrics, such as latency, other
approaches may be more suitable than the one introduced in Section 3, which is essentially
serial. In this section, we explore how a general masked circuit can be protected against
SIFA by defining a suitable error detection circuit.

We first recall the computation and fault model in Section 5.1 in order to introduce the
general criterion for single-fault SIFA-resistance in Section 5.1. In Section 5.2, we show
how to satisfy this criterion by extending a general masked implementation with local
error detection checks. Then, in Section 5.3, we identify necessary steps and conditions
such that global checks are sufficient. Finally, we discuss how to extend this approach
to higher-order attacks, where the adversary applies multiple faults in each execution, in
Section 5.4.

5.1 A General Criterion for Resistance against Single-Fault SIFA
We consider the directed acyclic graph (DAG) induced by a masked cipher circuit composed
of basic circuits (in the sense of Section 2.4). This computation graph consists of nodes
that represent the basic circuits f ∈ F and that are connected by edges that represent the
intermediate variables v ∈ V . We identify a node f with n input edges in(f) = (x1, . . . , xn)
and m output edges out(f) = (y1, . . . , ym) with the corresponding vectorial Boolean
function f : Fn2 → Fm2 , (x1, . . . , xn) 7→ (y1, . . . , ym) of the basic circuit. We distinguish
linear nodes, whose function is affine linear over F2, and nonlinear nodes.

As defined in Section 2, we consider a powerful single-fault attacker who may re-
place any node (y1, . . . , ym) = f(x1, . . . , xn) by an arbitrary faulted node (y∗1 , . . . , y∗m) =
f∗(x1, . . . , xn). We denote the difference between the values of an edge v in the correct
execution and v∗ in the faulted execution by δv = v ⊕ v∗, similar to differential cryptanal-
ysis, and write the resulting deviation in the output variables of a node as a function δf of
the input value:

(y∗1 , . . . , y∗m) = f∗(x1, . . . , xn) = f(x1, . . . , xn)⊕ δf(x1, . . . , xn) .

The fault δv may propagate to other nodes, and we call a node f ∈ F active in a faulted
execution if either δv = 1 for any input edge v ∈ in(f) or f is the faulted gate modified by
the attacker.

We denote the fault alert by ∆ and the set of variables it checks by V∆, i.e., ∆ :=∨
v∈V∆

δv =
∨
v∈V∆

(v ⊕ v∗). The SIFA attacker collects plaintext-ciphertext samples with
∆ = 0, as they receive no output if ∆ = 1, and uses this condition to derive information
about the value of edges near the faulted node f∗.

Example. As an example throughout this section, Figure 3 lists the operations of a
masked implementation of the 3-bit S-box χ3 together with its computation graph similar
to [36]. In the graph, Clone(·) nodes are represented by small bullets. In the circuit on
the left-hand side, for compactness, we omit calls (v, v′) = Clone(v) (i.e., variables named

15



v′ are always clones) and list up to two nodes per line. When combined with the error
detector ∆ that checks the output variables of the circuit, this implementation is susceptible
to single-fault SIFA with several possible fault locations. One of these is illustrated in
Figure 3: If a bitflip is induced as indicated (�) in the input a0 of the Clone(a0) node,
then the condition ∆ = 0 implies b0 ⊕ b1 = b = 0. We want to protect this implementation
against single-fault SIFA by modifying the detector (or the structure of the DAG).

x

y

y ← Not(x)

x1 x2

y

y ← Xor(x1, x2)

x1 x2

y

y ← And(x1, x2)

x x′

x

(x, x′)← Clone(x)

Ë

x

∆← ∆∨(x⊕x∗)

Figure 2: Nodes for basic circuits in the computation graph examples.

Input: (a0, a1, b0, b1, c0, c1)

t0 ← b′0 � c′1 ; t2 ← a′1 � b′1
t1 ← b′0 � c′0 ; t3 ← a′1 � b′0
t0 ← t0 � a′0 ; t2 ← t2 � c′1
r0 ← t0 � t1 ; t1 ← t2 � t3

t0 ← c′0 � a′1 ; t2 ← b′1 � c′1
t1 ← c′0 � a′0 ; t3 ← b′1 � c′0
t0 ← t0 � b′0 ; t2 ← t2 � a′1
s0 ← t0 � t1 ; r1 ← t2 � t3
�a0
t0 ← a′0 � b′1 ; t2 ← c′1 � a1
t1 ← a′0 � b0 ; t3 ← c1 � a0
t0 ← t0 � c0 ; t2 ← t2 � b1
t0 ← t0 � t1 ; s1 ← t2 � t3

Output: (r0, r1, s0, s1, t0, t1)
(a) Circuit, (v, v′) = Clone(v) omitted

a0 a1 b0 b1 c0 c1t0t1 t2 t3

r0 r1 s0 s1 t0 t1

A0 N0t0 c1t0 A1a1t0 b1t0A2 N0t1 c0t0 A3a1t1 b0t1X0 a0t0 X1c1t1X2X0t0A2t0 X3X1t0 A3t0

A4 N1t0a1t2 A5b1t1 c1t2A6 N1t1a0t1 A7b1t2 c0t2X4 b0t2 X5a1t3 X6X4t0A6t0 X7 X5t0 A7t0

A8 N2t0 b1t3 A9c1t3a1t4Aa N2t1 b0t3 Abc1t4a0t3X8 c0t3 X9b1t4 XaX8t0Aat0 Xb X9t0 Abt0

�

(b) Computation graph

Figure 3: Bitflip in masked χ3 using 2 shares (resharing at the output omitted).

Criterion for Resistance against Single-Fault SIFA. Consider a masked implementation
with a detection-based countermeasure defined by an error detector ∆ that only returns the
result of the computation if ∆ = 0. We call the implementation single-fault SIFA-resistant
if each possible single fault is either detected by ∆ or activates at most one nonlinear node.

To see why this criterion is sufficient, consider a fault f∗. The attacker collects plaintext-
ciphertext samples with ∆ = 0, as they receive no output if ∆ = 1. The samples satisfy
one of the following two conditions:

• δy = 0, i.e., no bitflip happened because δf(x1, . . . , xn) = 0. The attacker learns at
most these values x1, . . . , xn. Since the implementation is masked, this information
is independent of the native input and output values and thus does not allow the
attacker to derive any information on the processed data or keys.

• δy 6= 0, but the resulting bitflip(s) did not propagate to ∆. The criterion implies that
there is at most one active nonlinear node, i.e., either f or another nonlinear node

16



f ′ with some changed input v∗ = v ⊕ δv. The attacker may exploit this differential
information to learn the inputs of this active nonlinear node, which are however
independent of the native inputs, and will not learn anything from the other, trivial
differentials (of nonlinear nodes with zero input difference or of linear nodes).

5.2 Protection against SIFA using Fine-Grained Detection
We now explore how a masked implementation can be extended with a suitable detector ∆
in order to achieve a single-fault SIFA-resistant implementation.

Basic Idea. A straightforward, albeit not very efficient approach to satisfy the single-fault
SIFA-resistance criterion follows directly from its definition: We can add local checks for
inputs of nonlinear nodes. Assume for instance that we duplicate the implementation
and feed the same inputs to both instances. For each nonlinear node f and each of its
input edges v ∈ in(f), we add a check to update the detector ∆ ← ∆ ∨ (v ⊕ v∗). We
alternatively represent this as a single checking node Ë in the DAG of a single instance
of the implementation. Then, a fault may activate a single nonlinear node f without
detection by ∆ (if the attacker faults either the nonlinear node itself or the preceding
check), but it cannot activate two nodes, since there are no paths without a check either
from any node to two nonlinear nodes or from one nonlinear node to another. Thus, any
single-bit fault in one of the two redundant computations or in the additional circuitry for
the detector ∆ are either detected or do not leak information to the attacker.

Reducing Checks. It is, however, not necessary to check the inputs to all nonlinear nodes
separately. For example, in many circuits, most inputs to nonlinear nodes in the DAG
are directly cloned from the shares of the inputs, i.e., the node input checks would check
the same variable many times. Instead, we want to check only once. In the DAG, this
corresponds to a binary subtree rooted in an input variable whose inner nodes are Clone(·)
nodes and whose leaves are other nodes. We refer to edges ending in leaves as twigs and to
the other, inner edges as stems. The basic approach checks each twig ending in a nonlinear
node and thus precludes a fault that activates this twig in addition to another parent or
sibling edge in the DAG. Instead, it is sufficient to check only those twigs whose sibling
edge is also a twig (rather than a stem), and to check only one of the two twigs. In other
words, we check a variable that serves as input to multiple nodes only once, right before its
last use. We call this last check the sink of (this part of) the tree, and it will be activated
if more than one twig in (this part of) the tree is active. Additionally, we also consider the
circuit output variables as sinks, since they will either be checked in the next nonlinear
layer, or propagate faults deterministically to the cipher output. As a result, every edge
v in the DAG is a safe edge that has a sink s such that there is exactly one directed
path v → s and it contains at most one nonlinear node. This implies the single-fault
SIFA-resistance criterion of Section 5.1.

In the χ3 example, by checking only such variables and only after they are used for the
last time, we can reduce the number of checks to 6 (instead of 24 in the naive approach),
i.e., once for each input variable. The result is illustrated in Figure 4.

5.3 Ensuring Fault Propagation
In this section, we discuss under which conditions the fine-grained, local detection of
Section 5.2 can be replaced by global checks, similar to Section 3. We will again use the
concept of sink nodes as in Section 5.2, in the sense of nodes whose activation will be
detected by ∆. However, instead of implementing actual local checks in the sink nodes,
these sinks are virtual nodes whose effect on ∆ follows from properties of the cipher or
masking approach.

17



Input: (a0, a1, b0, b1, c0, c1)
t0 ← b′0 � c′1 ; t2 ← a′1 � b′1
t1 ← b′0 � c′0 ; t3 ← a′1 � b′0
t0 ← t0 � a′0 ; t2 ← t2 � c′1
r0 ← t0 � t1 ; t1 ← t2 � t3

t0 ← c′0 � a′1 ; t2 ← b′1 � c′1
t1 ← c′0 � a′0 ; t3 ← b′1 � c′0
t0 ← t0 � b′0 ; t2 ← t2 � a′1
s0 ← t0 � t1 ; r1 ← t2 � t3

t0 ← a′0 � b′1 ; t2 ← c′1 � a′1
t1 ← a′0 � b′0 ; t3 ← c′1 � a′0
t0 ← t0 � c′0 ; t2 ← t2 � b′1
t0 ← t0 � t1 ; s1 ← t2 � t3
rs ← r′r � r′t ; Checks
r0 ← r0 � r′r ; s0 ← s0 � r′s
t0 ← t0 � r′t ; r1 ← r1 � rr
s1 ← s1 � rs ; t1 ← t1 � rt

Output: (r0, r1, s0, s1, t0, t1)
(a) Circuit, (v, v′) = Clone(v) omitted

a0 a1 b0 b1 c0 c1t0t1 t2 t3 rr rs rt

r0 r1 s0 s1 t0 t1

Ë Ë Ë Ë Ë Ë

(b) Computation graph

Figure 4: Single-fault SIFA-resistant χ3 using 2 shares, with local checks. Checks is short
for the error detecting sub-circuits ∆← ∆ ∨ (v ⊕ v∗) for v ∈ {a0, a1, b0, b1, c0, c1}.

Input: (a0, a1, b0, b1, c0, c1)
rs ← r′r � r′t
t0 ← b′0 � c′1 ; t2 ← a′1 � b′1
t1 ← b′0 � c′0 ; t3 ← a′1 � b′0
r0 ← t0 � r′r ; t1 ← t2 � r′t
r0 ← r0 � t1 ; t1 ← t1 � t3
t0 ← c′0 � a′1 ; t2 ← b′1 � c′1
t1 ← c′0 � a′0 ; t3 ← b′1 � c′0
s0 ← t0 � r′s ; r1 ← t2 � rr
s0 ← s0 � t1 ; r1 ← r1 � t3
t0 ← a′0 � b′1 ; t2 ← c′1 � a′1
t1 ← a′0 � b′0 ; t3 ← c′1 � a′0
t0 ← t0 � rt ; s1 ← t2 � rs
t0 ← t0 � t1 ; s1 ← s1 � t3
r0 ← r0 � a0 ; t1 ← t1 � c1
s0 ← s0 � b0 ; r1 ← r1 � a1
t0 ← t0 � c0 ; s1 ← s1 � b1

Output: (r0, r1, s0, s1, t0, t1)
(a) Circuit, (v, v′) = Clone(v) omitted

a0 a1 b0 b1 c0 c1t0t1 t2 t3 rr rs rt

r0 r1 s0 s1 t0 t1

RsRrt2 Rtt2
A0 b0t4 c1t0 A1a1t0 b1t0A2 b0t0 c0t0 A3a1t1 b0t1R0 Rrt0R1 Rtt0X2

A0t0

A2t0 X3
A1t0

A3t0A4 c0t5a1t2 A5b1t1 c1t2A6 c0t1a0t1 A7b1t2 c0t2R4 Rst0R5
Rrt1X6

A4t0

A6t0 X7

A5t0

A7t0A8 a0t5 b1t3 A9c1t3a1t4Aa a0t2 b0t3 Abc1t4a0t3
R8 Rtt1R9

Rst1Xa
A8t0

Aat0
Xb

A9t0

Abt0X0a0t0 X1c1t1X4b0t2X5a1t3 X8c0t3X9b1t4

(b) Computation graph

Figure 5: Single-fault SIFA-resistant χ3 using 2 shares, with global checks.

18



First consider a uniform direct sharing of an invertible S-box. Since the sharing is
uniform, the masked circuit is also invertible. As a consequence, for fixed resharing inputs,
if any of the intermediate masked S-box output bits are activated by a fault, this will
activate at least one bit in the masked cipher output. Thus, if the detection variables V∆
include all masked cipher output variables, then the S-box output variables can serve as
sinks – what remains to be done is to ensure that each edge is a safe edge with respect to
these sinks, and ideally, to get rid of the requirement to perform redundant computations
for the same values of the shares. We first address the latter question. For simplicity, we
assume that all nodes except cloning nodes have a single output bit.

Instead of the individual shares of the S-box output bits, we can use the native S-box
output as sinks and add corresponding virtual nodes that compute these as sums of the
masked S-box outputs to the circuit. Any fault in this native S-box output would activate
at least one bit in the native cipher output, so the detection variables V∆ can be reduced
to the unmasked values and evaluated for arbitrary resharing inputs.

Now, we still need to ensure that any edge v in the S-box circuit is a safe edge with
respect to one of these sinks s, i.e., that there is exactly one directed path v → s and
it contains at most one nonlinear node. This may be violated due to cloning nodes (or,
generally, nodes with multiple outputs) and due to composition of nonlinear nodes within
an S-box. If the circuit contains such a composition of nonlinear nodes, it needs to be
decomposed into smaller, bijective circuits with nonlinear depth 1 first, similar to Section 3.
For cloning, we consider the cloning subtree as in Section 5.2. We need to ensure that
whenever two twigs in this tree activate, a sink s activates. In particular, this implies that
for every cloning node b, there must be a sink s such that there is a unique path b→ s,
and this path contains only linear nodes. This may require restructuring the tree such
that at least one of the last two uses of a variable (the tree root) is in a linear node, taking
care that the modifications do not invalidate the security of the masked implementation.

The approach is easy to apply to the χ3 example. We perform the following modifications
to the circuit from Figure 3 so that each edge is now a safe edge:

1. Delay r0 ← r0 ⊕ a0 and t1 ← t1 ⊕ c1 until the very end,
2. Delay r1 ← r1 ⊕ a1, s0 ← s0 ⊕ b0, s0 ← s1 ⊕ b1, and t0 ← t0 ⊕ c0 (optional),
3. Move the resharing to preserve security of the masking.

The resulting circuit in Figure 5 shows similarities with the Toffoli-based implementation
of χ3 in Section 3, but there are still significant differences; most notably, the necessity for
resharing variables rr,rt and the lower depth of the circuit in Figure 5.

5.4 Towards Protection against Multiple Faults
So far, we focused only on single-fault SIFA attackers and corresponding countermeasures.
Both the attack approach and the countermeasure with local checks can be generalized to
a multi-fault attacker who faults up to d nodes or edges.

Consider a circuit protected by dth-order masking with d + 1 or more shares, i.e.,
an attacker who learns up to d shares of any variable or observes up to d basic circuits
still does not gain any information on any native value. Let the circuit be implemented
with at least d + 1 redundant computations and an error detector ∆ of at least d bits.
For simplicity, assume that each of the attacker’s d faults is a bitflip fault on one of the
intermediate variables. We call the implementation d-fault SIFA-resistant if each possible
d-bit fault is either detected by ∆ or activates at most d nonlinear nodes in total.

This criterion can, for instance, be satisfied by checking all inputs to nonlinear nodes
with the following construction. We use d + 1 redundant computations and an n∆-bit
error detector ∆ = (∆1, . . . ,∆n∆), where n∆ = d for odd d and n∆ = d + 1 for even d.
For each relevant input edge, we clone d times to update d different error detector bits ∆i

with the differences to all d other computations. In other words, we compute all
(
d+1

2
)

differences in this bit between any two redundant computations and ensure that for each

19



computation, each of the d comparisons activates a different detector ∆i. Distributing the(
d+1

2
)
differences to the various ∆i corresponds to an edge coloring problem with n∆ colors

in the complete graph with d+ 1 vertices, which is easy to solve. Then, activating k nodes
in one computation without detection by ∆ requires at least min(k, d + 1) faults: each
node can either be activated without triggering ∆ by placing a fault between the check
(with its cloning) and the nonlinear node; or it can be activated while triggering d error
detector bits ∆i, each of which requires either a fault in the corresponding computation
or faulting ∆i directly to eliminate. Thus, in summary, at least d + 1 faults would be
required in order to activate d+ 1 or more nonlinear nodes and thus learn d+ 1 shares of
any variable to deduce information on its native value.

Clearly, without further optimizations, this approach can only be practical for very small
protection order d. Since the size of each masked implementation grows quadratically in d,
and the checking cost per nonlinear node in this implementation also grows quadratically
in d, the construction is only of theoretic interest for larger d.

6 Implementation
6.1 Formally Verifying the Masking of Toffoli-based Circuits
To gain additional trust in the soundness of our masking, we opted to verify the circuits
using a tool-assisted approach. More specifically, we make use of maskVerif, a tool for
formally verifying masking schemes by Barthe et al. [3]. maskVerif takes as input a
(masked) circuit description that mainly consists of simple logical operations such as
And, Xor, or Not. The interface of the circuit can consist of (shared) variables, as
well as additional randomness. Given such a masked circuit, maskVerif can verify if the
implemented masking is indeed correct in a specified leakage model and with a specified
protection order. For more details about maskVerif we refer to the original publication [3]
and the tool’s website [32].

We exemplary verified the correctness of the masking of our Toffoli gate based circuits
for S-boxes from AES and Keccak using maskVerif. Therefore we converted the circuits
from Circuit 7.b (5-bit χ) and Circuit 8.b (AES S-box) into a maskVerif compatible
format and successfully verified their first-order security in the probing model and in the
presence of (propagation delay) glitches. Note that, for implementations in hardware and
software, additional design considerations are necessary in practice, which we discuss in
part in Section 6.2 and Section 6.3.

6.2 From an Abstract Model to Software Implementations
In Section 2, we have introduced an abstraction model and explicitly defined what faults
are in this model. When considering the implementation of our circuits in software, it
would seem that even in the most trivial implementations, it is ensured that basic circuits
are nicely separated and hence, fault attacks and also side-channel attacks cannot be a
threat. However, the reality is more subtly nuanced. Hence, we want to discuss what
has to be considered when implementing our circuits in real software implementations
and which faults on software implementations are covered by considering faults on basic
circuits.

As mentioned in Section 2, we consider circuit faults in a single basic circuit instance.
This directly corresponds to faults in software that directly manipulate values of variables
stored in registers of a CPU [49], change a variable in memory before it is loaded, or
even target the load of a variable from memory [17]. Furthermore, it also covers cases
where a fault, like a clock glitch, changes the outcome of a computation. However, what is
notably only partially covered is the case of an instruction skip, meaning that an operation

20



is not performed and the register values are kept untouched. This can lead to cases
where the boundaries between basic circuits are violated. This is especially a threat if
an implementation of a basic circuit uses registers in addition to the registers storing the
shares in order to store results of intermediate computations. However, potential negative
effects of a clock glitch can be mitigated by always initializing an additional register to
0 before use, or by performing instructions on the shares in place (e.g., a0 = a0 � b0)
whenever possible.

What is not covered by our considerations are faults that change the execution flow
of a program to a greater extent than skipping the single instructions, like manipulating
the program counter. Furthermore, we do not consider the use of loops and conditional
statements apart from their usage in detecting faults. What is also not considered are
faults that change the operands used in operations. All these faults have in common that
they may totally change the program that is executed to a point where the key is just put
out in plain. Such faults have to be prevented by other means.

Furthermore, we consider a single permanent fault, e.g, permanently faulting a look-up
table, as multiple faults in our model. However, we advice to not use implementations
using look-up tables.

Moreover, a notable case that is not considered in our abstraction are Load and Store
instructions from memory to registers. In the simplest case, there are enough registers
to store all necessary variables so that during a cryptographic computation, no Loads
and Stores are needed. However, if this is not the case and a variable has to be reloaded,
this might cause problems. For instance, let us consider the circuit shown in Circuit 5.b.
Here, b0 is just read and never written. So if we do not consider fault protection, it can be
assumed that the register b0 can just be overwritten, since the value can be reloaded from
memory anyway. If we consider our fault protection mechanisms, this means that a faulted
value in register b0 might vanish, which in turn would allow SIFA again. To prevent this
in general, we have to assume that values are changed and write them back to memory if
their use is later required.

Furthermore, registers have to be properly initialized before usage. The problem with
uninitialized registers is that shares can be combined, which leads to exploitable leakage,
or, in the case of a clock glitch, to an unmasked use of a variable. Typically, the problem
with uninitialized registers can be easily solved by always writing 0 to them before the
result of a computation is stored.

Finally, we want to note that modern ciphers can usually be implemented in a bit-sliced
manner, meaning that for a system using x-bit registers, a single computation, and thus,
a single fault like a clock glitch leads to a single fault in up to x S-boxes. For ciphers
that consist of layers applying many small permutive S-boxes in parallel to the state, we
can define basic circuits to work on bit-vectors instead of single bits. This implies that
injecting a single fault in several of these parallel S-boxes in a single layer causes no issues
with respect to our strategy of Section 3, since these faults will correspond to a single
circuit fault of an incomplete circuit.

6.3 From an Abstract Model to Hardware Implementations
In general, our abstraction as circuit lends itself quite naturally to dedicated hardware
implementations, but requires additional considerations. In particular, one needs to take
into account the effects of glitches. Glitches are the result of the behavior of the physical
layout and are thus unavoidable. Since signals do not propagate evenly through a hardware-
circuit (due to differences in the capacitance of wires, different wire lengths, manufacturing
imperfections, et cetera.) the output of gates could change (glitch) several times before
reaching a stable logic state. In the context of a fault injection, also faults can “glitch”. As
a result, in each clock cycle there is sequence of transitional states in the physical circuit

21



a 0

a 1

b 0

b 1

c 0

c 1

a 0

a 1

b 0

b 1

c 0

c 1

FF

FF

FF

FF

FF

FF

Figure 6: Masked and single-fault SIFA-protected Toffoli gate in hardware.

that depend on combinations of variables that differ from the ones that the circuit should
(finally) compute.

These effects make that the behavior of a hardware-circuit cannot be controlled by just
using combinatorial logic gates. Using registers however limits these transitional effects in
the sense that it puts barriers between combinatorial blocks. Registers stabilize a signal
before entering the next logic gates through a separation in different clock cycles. The
cost for the gained control over the signals is thus not only the increased gate count, but
also the evaluation of the hardware-circuit requires more clock cycles and thus, the latency
increases.

Hence, when instantiating our abstract circuits in hardware, registers are required at
several places to separate the basic circuits and ensure resistance to glitching effects. This
stands in no contrast to other masking methods. For instance, TI implementations [43,44]
use registers after each uniformly shared function and the DOM scheme [35] uses a register
stage in each shared nonlinear gate to hinder security-critical glitches from propagating
into the next shared function which could violate the security requirements.

Figure 6 shows a masked Toffoli gate in hardware which already includes the required
registers (FF) for a glitch resistant first-order side-channel protection. Furthermore, this
variant also resists single-fault SIFA attacks. The upper two registers are required to
hinder the propagation of glitches that could violate the side-channel resistance of the
implementation. The lower four registers are the relevant ones for protection against SIFA.
Again, no share can be used twice in two different basic circuits within the same clock
cycle. This would be the case when switching the order of the multiplication of b1 and
c1 with b1 and c0, for instance, because a single fault of the input c0 would affect both
multiplications with the two shares of b.

7 Conclusion
In this paper, we proposed two different approaches to counteract SIFA on an algorithmic
level. First, we showed that by relying on the Toffoli gate for the non-linear operations
in the implementation of masked ciphers, we can construct circuits where a single fault
in the computation of the cipher will always propagate to its output. It can then be
detected via redundant computations that are typically implemented to cope with other
fault attacks like DFA. This approach can be implemented efficiently, and its applicability
was shown for 3-bit, 4-bit, and 5-bit S-boxes. Additionally, we show how this approach
could be extended to the AES S-box using the Toffoli gate for bigger fields and fine-grained
detection on S-box level that can be implemented efficiently for implementations using
duplication and is also quite efficient for implementations using time-redundancy when
using a linear checksum. We verified the correctness of the masking of our Toffoli-based

22



circuits for S-boxes from AES and Keccak using maskVerif. Finally, we show how this
approach based on fine-grained detection can be generalized to protect arbitrary masked
circuits, and how it can be extended to cope with multi-fault SIFA, albeit at a higher
implementation cost.

Acknowledgments. Part of this work has been supported by the Austrian Science Fund
(FWF): J 4277-N38 and by the Austrian Research Promotion Agency (FFG) via the
project ESPRESSO, which is funded by the province of Styria and the Business Promotion
Agencies of Styria and Carinthia. Joan Daemen is supported by the European Research
Council under the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980
ESCADA.

References
[1] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ci-

phers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryp-
tology – EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer (2015).
https://doi.org/10.1007/978-3-662-46800-5_17

[2] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006).
https://doi.org/10.1109/JPROC.2005.862424

[3] Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology – EUROCRYPT 2015. pp. 457–485. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015)

[4] Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.X., Strub, P.Y.:
Parallel implementations of masking schemes and the bounded moment leakage model.
In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT 2017.
LNCS, vol. 10210, pp. 535–566 (2017). https://doi.org/10.1007/978-3-319-56620-7_19

[5] Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology – CRYPTO 2017. LNCS, vol. 10403, pp. 397–426. Springer (2017).
https://doi.org/10.1007/978-3-319-63697-9_14

[6] Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973). https://doi.org/10.1147/rd.176.0525

[7] Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Transactions on Symmetric
Cryptology 2017(4), 1–38 (2017). https://doi.org/10.13154/tosc.v2017.i4.1-38

[8] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submission
(Version 3.0). http://keccak.noekeon.org/Keccak-submission-3.pdf (2011)

[9] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Ketje v2.
Submission to the CAESAR competition (2016), https://keccak.team/files/
Ketjev2-doc2.0.pdf

[10] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak v2.
Submission to the CAESAR competition (2016), https://keccak.team/files/
Keyakv2-doc2.2.pdf

23

http://keccak.noekeon.org/Keccak-submission-3.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf


[11] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) Advances in Cryptology – CRYPTO ’97. LNCS, vol. 1294, pp.
513–525. Springer (1997). https://doi.org/10.1007/BFb0052259

[12] Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N.N., Vitkup, V.: Threshold
implementations of small S-boxes. Cryptography and Communications 7(1), 3–33
(2015). https://doi.org/10.1007/s12095-014-0104-7

[13] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block ci-
pher. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Em-
bedded Systems – CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer (2007).
https://doi.org/10.1007/978-3-540-74735-2_31

[14] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) Advances
in Cryptology – EUROCRYPT ’97. LNCS, vol. 1233, pp. 37–51. Springer (1997).
https://doi.org/10.1007/3-540-69053-0_4

[15] Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2005. LNCS, vol. 3659, pp.
441–455. Springer (2005). https://doi.org/10.1007/11545262_32

[16] Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Systems –
CHES 2007. LNCS, vol. 4727, pp. 181–194. Springer (2007)

[17] Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger, J.L.:
Laser-induced single-bit faults in flash memory: Instructions corruption on a 32-
bit microcontroller. IACR Cryptology ePrint Archive, Report 2018/1042 (2018),
https://eprint.iacr.org/2018/1042

[18] Daemen, J.: Cipher and hash function design, strategies based on linear and differential
cryptanalysis. Ph.D. thesis, KU Leuven (1995), http://jda.noekeon.org/

[19] Daemen, J.: Changing of the guards: A simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2017. LNCS, vol. 10529, pp. 137–153.
Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_7

[20] Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo
and Xoofff. IACR Transactions on Symmetric Cryptology 2018(4), 1–38 (2018).
https://doi.org/10.13154/tosc.v2018.i4.1-38

[21] Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000), http://gro.noekeon.org/

[22] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography, Springer
(2002). https://doi.org/10.1007/978-3-662-04722-4, https://doi.org/10.1007/
978-3-662-04722-4

[23] De Cannière, C.: Analysis and design of symmetric encryption algorithms. Ph.D.
thesis, KU Leuven (2007)

[24] De Cnudde, T., Nikova, S.: More efficient private circuits II through threshold
implementations. In: Fault Diagnosis and Tolerance in Cryptography – FDTC 2016.
pp. 114–124. IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.15

24

https://eprint.iacr.org/2018/1042
http://jda.noekeon.org/
http://gro.noekeon.org/
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4


[25] De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Mask-
ing AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2016. LNCS, vol. 9813, pp.
194–212. Springer (2016). https://doi.org/10.1007/978-3-662-53140-2_10

[26] De Meyer, L., Arribas, V., Nikova, S., Nikov, V., Rijmen, V.: M&M: Masks and macs
against physical attacks. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2019(1), 25–50 (2019). https://doi.org/10.13154/tches.v2019.i1.25-50

[27] Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology – ASIACRYPT 2018. LNCS,
vol. 11273, pp. 315–342. Springer (2018). https://doi.org/10.1007/978-3-030-03329-
3_11

[28] Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA:
Exploiting ineffective fault inductions on symmetric cryptography. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2018(3), 547–572 (2018).
https://doi.org/10.13154/tches.v2018.i3.547-572

[29] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to the
CAESAR Competition (2016), https://ascon.iaik.tugraz.at/files/asconv12.
pdf

[30] Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J.M. (eds.) Fault Diagnosis and Tolerance
in Cryptography – FDTC 2013. pp. 108–118. IEEE Computer Society (2013)

[31] Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits
and their synthesis. IEEE Transactions on Computers 61(9), 1341–1353 (2012).
https://doi.org/10.1109/TC.2011.144

[32] Grégoire, B., Barthe, G., Belaïd, S.: maskverif - automatic tool for the verification of
side-channel countermeasures. https://cryptoexperts.com/maskverif/, accessed:
2019-10-10

[33] Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2018(2), 1–21
(2018). https://doi.org/10.13154/tches.v2018.i2.1-21

[34] Groß, H., Mangard, S.: Reconciling d+1 masking in hardware and software. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2017. LNCS, vol. 10529, pp. 115–136. Springer (2017). https://doi.org/10.1007/978-3-
319-66787-4_6

[35] Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology ePrint
Archive, Report 2016/486 (2016), https://eprint.iacr.org/2016/486

[36] Groß, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected imple-
mentations of KECCAK. In: DSD. pp. 205–212. IEEE Computer Society (2017)

[37] Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.A.: Private circuits II: Keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) Advances in Cryp-
tology – EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer (2006).
https://doi.org/10.1007/11761679_19

25

https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://cryptoexperts.com/maskverif/
https://eprint.iacr.org/2016/486


[38] Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. LNCS,
vol. 2729, pp. 463–481. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_27

[39] Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
block cipher for IC-printing. In: Mangard, S., Standaert, F.X. (eds.) Cryptographic
Hardware and Embedded Systems – CHES. LNCS, vol. 6225, pp. 16–32. Springer
(2010). https://doi.org/10.1007/978-3-642-15031-9_2

[40] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology – CRYPTO ’99. LNCS, vol. 1666, pp. 388–397. Springer
(1999). https://doi.org/10.1007/3-540-48405-1_25

[41] Landauer, R.: Irreversibility and heat generation in the computing pro-
cess. IBM Journal of Research and Development 5(3), 183–191 (1961).
https://doi.org/10.1147/rd.53.0183

[42] Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) Arithmetic of Finite Fields – WAIFI 2007. LNCS, vol. 4547, pp.
159–176. Springer (2007). https://doi.org/10.1007/978-3-540-73074-3_13

[43] Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and
Communications Security – ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer
(2006). https://doi.org/10.1007/11935308_38

[44] Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. Journal of Cryptology 24(2), 292–321 (2011).
https://doi.org/10.1007/s00145-010-9085-7

[45] Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): Measures and counter-
measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart Card Program-
ming and Security – E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer (2001).
https://doi.org/10.1007/3-540-45418-7_17

[46] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating mask-
ing schemes. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO
2015. LNCS, vol. 9215, pp. 764–783. Springer (2015). https://doi.org/10.1007/978-3-
662-47989-6_37

[47] Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart, N.P.:
CAPA: The spirit of beaver against physical attacks. In: Shacham, H., Boldyreva,
A. (eds.) Advances in Cryptology – CRYPTO 2018. LNCS, vol. 10991, pp. 121–151.
Springer (2018). https://doi.org/10.1007/978-3-319-96884-1_5

[48] Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. In: Robshaw, M., Katz,
J. (eds.) Advances in Cryptology – CRYPTO 2016. LNCS, vol. 9815, pp. 302–332.
Springer (2016). https://doi.org/10.1007/978-3-662-53008-5_11

[49] Selmke, B., Zinnecker, K., Koppermann, P., Miller, K., Heyszl, J., Sigl, G.: Locked out
by latch-up? an empirical study on laser fault injection into Arm Cortex-M processors.
In: Fault Diagnosis and Tolerance in Cryptography – FDTC 2018. pp. 7–14. IEEE
Computer Society (2018). https://doi.org/10.1109/FDTC.2018.00010

[50] Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Transactions on CAD of Integrated Circuits and Systems 22(6), 710–722
(2003). https://doi.org/10.1109/TCAD.2003.811448

26



[51] Sugawara, T.: 3-share threshold implementation of AES S-box without fresh ran-
domness. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 123–145 (2019). https://doi.org/10.13154/tches.v2019.i1.123-145

[52] Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
Automata, Languages and Programming, 1980. LNCS, vol. 85, pp. 632–644. Springer
(1980). https://doi.org/10.1007/3-540-10003-2_104

[53] Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization – A countermeasure for AES against differential fault attacks. In:
Batina, L., Robshaw, M. (eds.) Cryptographic Hardware and Embedded Systems –
CHES 2014. LNCS, vol. 8731, pp. 93–111. Springer (2014)

A Threshold Implementations of pT and pχ
Figure 7 shows the algorithmic representation of a securely masked (using three shares) and
single-fault SIFA-protected Toffoli gate pTT fulfilling the three requirements for threshold
implementations (TI). Namely the gate fulfills: 1) correctness, since the gate correctly
implements the equations a = a� b� c which can be checked be adding all output shares of
a (the equations b = b and c = c are trivial), 2) uniformity, which follows from the fact that
for each output share a single share of a appears in additive form, and 3) non-completeness,
because for each calculation of one output share, one share index never appears (e.g., the
calculation of the output share a0 does not use any shares with the index 1 like b1 or c1).
The threshold implementation of pχT follows analogously by replacing either one of the
nine pT with a pχ. A secure hardware variant of the Toffoli gate is shown in Figure 8. The
registers ensure that a single fault cannot influence all shares of variables that are fed into
nonlinear And gates without detecting it at the output.

Name: pTT
State: {a0, a1, a2, b0, b1, b2, c0, c1, c2}
pT (a0, b0, c0)
pT (a0, b0, c2)
pT (a0, b2, c0)

pT (a1, b1, c1)
pT (a1, b1, c0)
pT (a1, b0, c1)

pT (a2, b2, c2)
pT (a2, b2, c1)
pT (a2, b1, c2)

Figure 7: Algorithmic representation of masked Toffoli gate (pTT ) using 3 shares.

27



a 0

a 1

b 0

b 1

c 0

c 1

a 0

a 1

b 0

b 1

c 0

c 1

a 2

b 2

c 2

a 2

b 2

c 2

FF

FF

FF

FF

FF

FF

FF

FF

FF

Figure 8: 3-share TI and single-fault SIFA-protected Toffoli gate in hardware.

28



B Subcircuits for AES S-box
In this section, we give a description of the required basic circuits that we use in the AES
S-box. This description is fully based on the work of Canright [15]. Again, we denote the
higher half of a variable with the superscript H and the lower half with L, e.g, for a four
bit field element x ∈ F24 , the higher two bits (coefficients) are denoted with xH and the
lower with xL. Alternatively, we denote each single bit with x3, x2, x1, and x0. Note that
we just give the algorithmic description of the building blocks and do not consider their
implementation.

We start with the description of the linear permutations Γ(x) and Ξ(x). Both are
binary matrix multiplications. For Γ(x), we have according to Canright [15]:

Name: Γ
State: {x}

x7
x6
x5
x4
x3
x2
x1
x0


←



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


·



x7
x6
x5
x4
x3
x2
x1
x0


and for Ξ(x):

Name: Ξ
State: {x}

x7
x6
x5
x4
x3
x2
x1
x0


←



0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0


·



x7
x6
x5
x4
x3
x2
x1
x0


For the square scaling s4

sc(a, b, c), we denote with ‖ a concatenation and get:

Name: s4
sc

State: {a, b, c}
t0 ← b� c

a← a� ((t0
0 � t2

0)‖(t3
0 � t1

0)‖(t0
0 � t1

0)‖t0
0)

For the square scaling s2
sc(a, b, c), we get:

Name: s2
sc

State: {a, b, c}
t0 ← b� c

a← a� (t1
0‖(t0

0 � t1
0))

The inversion a−1 and squaring a2 in GF(22) can be done as bit-swap, where ‖ denotes

29



concatenation:

Name: Inv
State: {a}
a← a0‖a1

The constant addition with the hexadecimal value 0x63 can be done as:

Name: AddConstant
State: {a}
a← a� 0x63

The multiplication c← a · b in GF(22) can be done as:

c1 ← ((a1 � a0) � (b1 � b0)) � (a1 � b1)
c0 ← ((a1 � a0) � (b1 � b0)) � (a0 � b0)

The multiplication c← a · b in GF(24) is a bit more complex. In the following algorithm, ·
denotes above multiplication in GF(22) and ‖ a concatenation:

t0 ← (aH � aL) · (bH � bL)
t1 ← t0

0‖(t0
0 � t1

0)
cH ← t1 � (aH · bH)
cL ← t1 � (aL · bL)

C Inverse of Masked AES S-box.
The S-box in Circuit 8.b is still a permutation on its inputs. This can be seen by showing
that the implementation is invertible. Given a choice for e0, f0, g0, h0, y0, y1, we can do
the computation of Figure 9.

30



x0 = Γ−1(e0)
x1 = x0 + S−1(y0 + y1)
e1 = Γ(x1)
t0 = 0
s4
sc(t0, e

H
0 , e

L
0 )

a0 = f0 + t0 + eH0 · (eL0 + eL1 )
a1 = a0

t1 = 0
s4
sc(t1, e

H
1 , e

L
1 )

f1 = a1 + t1 + eH1 · (eL0 + eL1 )
t0 = 0
s2
sc(t0, f

H
0 , f

L
0 )

b0 = g−1
0 + t0 + fH0 · (fL0 + fL1 )

b1 = b0

t1 = 0
s2
sc(t1, f

H
1 , f

L
1 )

g1 = (b1 + t1 + fH1 · (fL0 + fL1 ))−1

cH0 = hH0 + fL0 · (g0 + g1)
cH1 = cH0

hH1 = cH1 + fL1 · (g0 + g1)
cL0 = hL0 + fH0 · (g0 + g1)
cL1 = cL0

hL1 = cL1 + fH1 · (g0 + g1)
dH0 = Ξ−1(yH0 + 0x6) + eL0 · (c0 + c1)
dH1 = Ξ−1(yH1 ) + eL1 · (c0 + c1)
dL0 = Ξ−1(yL0 + 0x3) + eH0 · (c0 + c1)
dL1 = Ξ−1(yL1 ) + eH1 · (c0 + c1)

Figure 9: Inverse computation to show that Circuit 8.b is a permutation.

31


	Introduction
	The Circuit Abstraction Layer and Fault Model
	On Masking
	Definition of The Circuit Abstraction Layer
	Fault Model
	Masking in Circuits
	SIFA on Masked Circuits

	Ciphers from Incomplete Permutation Circuits
	The High-level Strategy
	Incomplete Permutation Basic Circuits
	3-bit S-boxes
	4-bit S-boxes
	5-bit S-boxes

	AES S-box from Incomplete Permutation Basic Circuits
	Protecting Arbitrary Circuits
	A General Criterion for Resistance against Single-Fault SIFA
	Protection against SIFA using Fine-Grained Detection
	Ensuring Fault Propagation
	Towards Protection against Multiple Faults

	Implementation
	Formally Verifying the Masking of Toffoli-based Circuits
	From an Abstract Model to Software Implementations
	From an Abstract Model to Hardware Implementations

	Conclusion
	Threshold Implementations of p_T and p_chi
	Subcircuits for AES S-box
	Inverse of Masked AES S-box.

