
Theoretical and Practical Approaches for
Hardness Amplification of PUFs
Fatemeh Ganji1, Shahin Tajik1, Pascal Stauss2,

Jean-Pierre Seifert2, Domenic Forte1, and Mark Tehranipoor1

1Florida Institute for Cybersecurity Research, University of Florida, USA
2Security in Telecommunications Group, Technische Universität Berlin, Germany

{fganji,stajik,dforte,tehranipoor}@ufl.edu
{pstauss, jpseifert}@sect.tu-berlin.de

Abstract.
The era of PUFs has been characterized by the efforts put into research and the
development of PUFs that are robust against attacks, in particular, machine learning
(ML) attacks. In the lack of systematic and provable methods for this purpose, we have
witnessed the ever-continuing competition between PUF designers/ manufacturers,
cryptanalysts, and of course, adversaries that maliciously break the security of PUFs.
This is despite a series of acknowledged principles developed in cryptography and
complexity theory, under the umbrella term “hardness amplification”. The goal of
studies on the hardness amplification is to build a strongly secure construction out of
considerably weaker primitives. This paper aims at narrowing the gap between these
studies and hardware security, specifically for applications in the domain of PUFs.
To this end, we first review an example of practical efforts made to construct more
secure PUFs, namely the concept of rolling PUFs. Based on what can be learned
from this and central insights provided by the ML and complexity theory, we propose
a new PUF-based scheme built around the idea of using a new function, namely,
the Tribes function, which combines the outputs of a set of PUFs to generate the
final response. Our theoretical findings are discussed in an exhaustive manner and
supported by the results of experiments, conducted extensively on real-world PUFs.
Keywords: Hardness Amplification · Complexity Theory · FPGA Security · Phys-
ically Unclonable Function · Partial Reconfiguration

1 Introduction
After the introduction of the first strong physically unclonable function (PUF) (i.e., a PUF
with an exponential number of challenge-response pairs), it became soon evident that it is
vulnerable to machine learning (ML) attacks [LLG+04]. In this case, an adversary can
intercept the transmission of a subset of PUF challenge-response pairs (CRPs) between a
prover and a verifier, and run an ML algorithm on the gathered CRPs to create a model of
the PUF. Several countermeasures, from structural to protocol level, have been proposed
to increase the security of PUFs against ML attacks. Among all potential solutions, a class
of countermeasures relies on the rolling of the PUF during authentication. Similar to the
concept of key rolling, where the key of a cryptographic algorithm is regularly updated
during encryption/decryption to limit the leakage of side-channel information, a PUF
instance can be rolled and swapped with new PUFs to limit the amount of exposed CRPs
from each specific PUF instance. As a result, the attacker cannot obtain enough CRPs for
each individual rolled PUF to create accurate models for them, see, e.g., [SBP16,YGHL17].

2 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Although applied on a trial-and-error basis and in a blind fashion, this approach can be
helpful to improve the robustness of PUFs against ML attacks.

This can be explained by a fact, which has not always been paid attention to, that is
all the above mentioned rolling strategies aim at adding noise to the PUF architecture.
A great deal of attention should be paid to differentiate this noise from the phenomenon
commonly referred to under the general term “noise”. The noise associated with the rolling
was first precisely noted as a hidden variable [Mae13]. It has been demonstrated that the
hidden variables, namely a manufacturing process variable and a noise variable, account for
the observable behaviors of a PUF cell, in particular, they reflect the underlying physical,
random processes in a PUF stage.These variables have been reintroduced and reformulated
in [GTS18] so that the noise model agrees with the respective model in ML theory. More
specifically, it has been shown that the noise corresponding to the noise variable in a PUF
stage is what has been called the “attribute” noise in the ML related literature. It has
been further proven that even in the presence of this type of noise, there exists an ML
algorithm, i.e., the low degree algorithm, to learn real-world PUFs [GTS18]. Consequently,
one can deduce that the security of rolling PUFs can be broken by mounting the low degree
algorithm. It is worth noting here that the low degree algorithm is one of the most efficient
and effective algorithms in the sense that it is applicable even under noisy conditions.
Moreover, since it is categorized as an improper learning algorithm, i.e., without limit on
the hypothesis class, infeasibility of applying the low degree algorithm provides a strong
security assurance.

Nevertheless, in order to employ the low degree algorithm, it is essential to have a
bounded level of the attribute noise. Additionally, to obtain a sufficiently accurate model
of a PUF with a high probability, a larger number of CRPs is required by ML algorithms,
and similarly, by the low degree algorithm. Therefore, if a framework can be established
to increase the level of attribute noise beyond an upper bound, an attacker applying the
low degree algorithm can be stopped. In this regard, identifying some stages of a PUF,
which are the best candidates for rolling to achieve this desired level of the attribute noise
is a tedious task in practice, if possible at all. This is due to the challenges that one has to
face to control the effect of the attribute noise, inevitably involving a process of trial and
error. To help with this entire process, as another option, it is possible to limit the number
of CRPs accessible to an adversary in each rolling round. We put emphasis on the fact
that this method has been deployed in the PUF related literature and is usually referred
to as “controlled PUF”. However, among a wide range of possibilities to limit the access
of the attacker to the CRPs, we adopt a simple but effective strategy: in each round of
rolling, the number of CRPs does not exceed the lower bound established for provable ML
algorithms in general. Nonetheless, such an approach is still dependent on the practical
aspects of the design, which are not entirely under our control. Therefore, we claim that
even when employing a systematic approach, as considered in the first part of our paper, a
paradigm shift from practical methods to theoretical and provable ones should be aimed.

Seen from another perspective, the issue with ML attacks against PUFs has been
addressed by adding components that account for non-linearity. As a prime example,
the notion of XOR Arbiter PUFs has been introduced to tackle the problem with model-
building attacks launched against Arbiter PUFs [SD07]. In this respect, the core idea
behind using the XOR combination function was to obfuscate the output of an Arbiter PUF.
Shortly afterward, it has been shown that using the XOR for combining multiple rows of
parallel PUFs is beneficial to fulfill the strict avalanche criterion (SAC) [MKP08,MKP09].
Satisfying the SAC property assures that when flipping a single bit of a challenge, the
response to the corresponding challenge changes drastically, i.e., each of the output bits
flips with a probability of one half. Originated in Cryptography, in order to draw any
conclusion on the robustness of a PUF against ML attacks, an analogy between the SAC
property and a similar notion should be drawn. This has been addressed in [GTS18],

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 3

where the notion of noise sensitivity has been reintroduced to assess the robustness of
PUFs to ML attacks. More interestingly, a close connection between the noise sensitivity,
the attribute noise, and the hidden variables, as hardware-related abstractions, has been
established. Nonetheless, it is as yet unclear how and to what extent the hardness of a
PUF, i.e., being mildly robust against ML attacks, can be amplified.

Our Contribution. The main contribution of this work is proposing a framework for
the hardness amplification of PUFs1. We demonstrate that both practical and theoretical
aspects of the problem are essential for achieving the desired, high level of hardness. In
fact, these aspects are complementary: to meet the requirements imposed in our theoretical
setting, it is inevitable to take into account the physical features offered by a real-world
PUF. In working towards this goal, by taking effective practical measures, we add the
attribute noise into our system to the extent that the PUF can be learned only with a low
level of accuracy2. In doing so, we propose to roll a PUF, where we exploit the partial
reconfigurability of modern FPGAs to swap only a few stages of a PUF, while the other
parts of the PUF remain intact. To this end, and to develop a systematic methodology, we
employ the concept of influential stages, which has been introduced in CHES’16 [GTFS16]
to identify the influential PUF stages. In this case, we show that the reconfiguration of
influential stages has the highest impact on obtaining fresh CRPs (i.e., their responses are
flipped due to the attribute noise) from a rolled PUF. Afterward, we take into consideration
the minimum number of CRPs, which an adversary requires to mount a provable ML
algorithm to model a PUF for given levels of accuracy and confidence. Therefore, the
designer can set the number of required rolling rounds upfront to prevent an attack.

Although being sufficiently secure for some less critical, lightweight systems, the above
approach still requires drastic practical measures to be taken to achieve the ultimate
level of security, where the attacker cannot do considerably better than flipping a coin
for the response of the PUF. Hence, we shift our focus to known approaches for hardness
amplification acknowledged in the ML theory. In this context, we demonstrate that
the Tribes functions outperform the XOR functions in our scenario, where we enjoy
the practical advantages offered by the rolling strategies, and therefore, the attribute
noise 3. Using the Tribes functions, famous for their randomness properties, is of twofold
importance. First, these functions exhibit properties related to the noise sensitivity that
make them a promising candidate to ensure a high level of hardness. Secondly, and even
more interestingly, while the output of an XOR function can be dramatically biased in the
presence of the attribute noise, the outputs of the Tribes functions remain balanced [O’D04].
Therefore, for schemes comprising a combination of PUFs in the presence of the attribute
noise, using the Tribes functions is a central requirement to attain a desirably high level of
security. We should here underline the fact that the presence of the attribute noise is not
limited to a rolling-based PUF scheme, but when implementing a PUF, each and every
stage of that can be affected by this type of noise [Mae13].

Last but not least, to support our theoretical findings, we conduct comprehensive
experiments – followed by an extensive discussion – on rolling Arbiter PUFs implemented
on the Xilinx Artix 7 FPGAs. It should be noted, that we have selected Arbiter PUFs
for our experiments only since there is a verified systematic way to implement it on an
FPGA [MKD10]. Hence, the proposed framework in this paper is not limited to one
specific PUF family, and thus, it could be applied to other strong PUF implementations
as well.

1We stress that our framework in this paper addresses the passive ML attacks primarily, and other
sophisticated side-channel and physical attacks are outside the scope of this paper.

2For a detailed discussion on how our scheme differs from that leveraging the classification noise, see
Section 7

3In Section 7, we explain why the Tribes function should be used in schemes involving a combination
function for PUFs.

4 Theoretical and Practical Approaches for Hardness Amplification of PUFs

2 Notation and Preliminaries
This paper covers several sub-fields in machine learning and complexity theory. Note
that we stick to the notions used in each and every of these sub-fields and in this matter,
caution and flexibility are needed.

2.1 Boolean Functions as Representations of PUFs
Generally speaking, PUFs can be defined by physical mappings from the given challenges
to the respective responses. PUFs exhibiting an exponentially large set of CRPs are called
strong PUFs. The physical mappings underlying the design of digital intrinsic PUFs are
characterized by inherent silicon imperfections of the hardware, on which the PUF is
implemented. Here we consider merely unclonability among several security properties of
PUFs. Let the mapping fPUF : C → Y, where fPUF(c) = y, describes a PUF. Ideally, for
a given PUF fPUF, unclonability reflects the fact that creating a clone, i.e., a (physical)
mapping gPUF 6= fPUF, is virtually infeasible, where the challenge-response behavior of
gPUF is similar to fPUF [AMS+11]. We stress that our work does not cover the topics of
formalization and formal definitions of the PUFs. For more details on these topics see,
e.g., [AMS+11,AMSY16].

Similar to the most relevant studies on PUFs in the literature [GTFS16,GTS18], we
represent PUFs as Boolean functions over the finite field F2. Let Vn = {c1, c2, . . . , cn}
denotes the set of Boolean attributes or variables, being either true or false denoted by “1”
and “0”, respectively. Furthermore, consider Cn = {0, 1}n be the set of all binary strings
with n bits, and an assignment be a mapping from Vn to {0, 1}. Hence, an assignment
can be thought of as an n-bits string, where the ith bit associated with the value of ci (i.e.,
“0” or “1”).

A Boolean formula is a mapping that assigns values from the set {0, 1} to an assignment.
Following this, each Boolean attribute is a formula, i.e., ci is a possible formula. Accordingly,
a Boolean function f : Cn → {0, 1} defines a Boolean formula, which can be represented
by various classes of function. Nonetheless, in this paper, when we occasionally need a
representation of Boolean functions, we stick to Linear Threshold functions (LTFs) and
k-junta functions. A k-junta is a Boolean function, whose output is determined merely by
an unknown set of k variables.

In order to define an LTF, the encoding scheme χ(0F2
) := +1, and χ(1F2

) := −1 should
be considered, based upon which the Boolean function f can be defined as f : {−1,+1}n →
{−1,+ 1}. Now, a Boolean function is called a linear threshold function (LTF), if there
are coefficients ω1, ω2, · · · ,ωn ∈ R and θ ∈ R such that f(c) = sgn ((

∑n
i=1 ωici)− θ). Here

we assume, without loss of generality, that
∑n
i=1 ωici 6= θ for every c ∈ Cn.

Tribes Functions Among Boolean functions well-studied in the machine learning the-
ory, Tribes functions introduced by Ben-Or et al. [BOL89] play an important role in
Cryptography. A Tribes function on k Boolean variables is defined as follows.

C(x1, · · · ,xk) := (x1 ∧ · · · ∧ xb) ∨ · · · ∨ (xk−b+1 ∧ · · · ∧ xk),

where ∧ and ∨ denote the logical AND and OR functions, respectively. Moreover, b is the
largest integer fulfilling the inequality (1− 2−b)k/b ≥ 1/2; hence, b = O(log k).

Average Sensitivity of Boolean Functions In order to define the Fourier expansion
of a Boolean function f : Fn2 → F2, again we use the encoding scheme χ(·), defined above.
Now the Fourier expansion of a Boolean function can be written as

f(c) =
∑
S⊆[n]

f̂(S)χS(c),

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 5

where [n] := {1, . . . , n}, χS(c) :=
∏
i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)]. Here, Ec∈U [·]

denotes the expectation over uniformly chosen random examples. The influence of variable
i on f : Fn2 → F2 is defined as

Infi(f) := Prc∈U [f(c) 6= f(c⊕i)],

where c⊕i is obtained by flipping the i-th bit of c. Note that Infi(f) =
∑
S3i(f̂(S))2,

cf. [O’D14]. Next, we define the average sensitivity of a Boolean function f as

I(f) :=
n∑
i=1

Infi(f).

Noise Sensitivity of Boolean Functions The term noise should not be mistaken as
the notion of noise discussed in the PUF-related literature. The noise sensitivity of the
Boolean function f : {−1,+1}n → {−1,+ 1} can be defined as follows. Let c be a string
chosen randomly and uniformly. By flipping each bit of this string independently with
probability ε (0 ≤ ε ≤ 1) we obtain the string c′. The noise sensitivity of f at ε is

NSε(f) := Pr[f(c) 6= f(c′)].

The noise sensitivity is closely related to the notion of noise stability, defined as follows.

Stabρ(f) := 1− 2NSε,

where ρ = 1− 2ε. One should notice the difference between the parameters based upon
which the noise sensitivity and the noise stability are defined, namely, ε (ε ∈ [0,1]) and
−1 ≤ ρ ≤ 1.

2.2 Probably Approximately Correct Learning Model
A PAC learning algorithm [KV94b], similar to other ML algorithms, generates an ap-
proximately correct hypothesis, when it is given access to a set of examples. The main
difference between a PAC learning algorithm and a conventional learning algorithm is that
for the PAC learner, it is possible to ensure obtaining a desired hypothesis with a high
probability. Defining this formally, consider the set F = ∪n≥1Fn denoting a target concept
class, i.e., a set of Boolean functions over the instance space Cn = {0, 1}n. Similarly,
we can define a set of hypotheses H = ∪n≥1Hn, which can be returned by the learning
algorithm. Regarding the definition of the hypothesis class, two cases can be differentiated.
In the first case, the algorithm is forced to deliver a given, pre-defined hypothesis class
that is H ⊆ F , while in the second case, the algorithm is allowed to deliver the hypothesis
h ∈ Hn so that H 6⊂ F , and consequently, h 6∈ F , cf. [DLSS13]. The first case is known as
proper learning, whereas the latter is referred to as improper learning.

Here, we stick to an extension of the PAC model, beneficial for our security analysis,
where the examples are informally drawn from the instance space Cn. The hypothesis
h ∈ Hn that is a Boolean function over Cn is an ε-approximator for f ∈ Fn, if

Pr
c∈UCn

[f(c) = h(c)] ≥ 1− ε,

where the index U shows that the example are drawn with regard to the uniform distribution.
In order to determine how many labeled examples (c, f(c)) are required by the PAC learner
to provide the hypothesis, defined above, we should first define a measure related to the
complexity of the target concept class. For an infnite concept class, i.e., with infnite
cardinality, the Vapnik-Chervonenkis dimension VCdim(F) offers this measure [VC71].
Now we can define a uniform PAC learning algorithm as follows.

6 Theoretical and Practical Approaches for Hardness Amplification of PUFs

The attribute noise in the
context of PUFs

Hardness of rolling PUFs

• Application of the low
degree algorithm

• General lower bound on
the number of CRPs in
each round of rolling

• Challenges inherent in
such practical approaches

Hardness Amplification

• Generalization of Yao’s
XOR Lemma

• Key features of the Tribes
functions, useful for PUFs

• Hardness amplification for
PUFs

• Model of hidden variables
• Connection between the

reconfiguration and the
noise sensitivity

• Translation of
reconfiguration into the
attribute noise

Figure 1: The steps taken to propose a systematic hardness amplification methodology.
Our approach benefits from a unique combination of practical and theoretical know-how.

Definition 1. The algorithm A learning the target concept class F is given a polynomial
number of labeled examples drawn uniformly from Cn. The algorithm then returns an
ε-approximator for f , the hypothesis h, with probability at least 1− δ. For any n ≥ 1, any
0 < ε, δ < 1, and any f ∈ Fn, the running time of A is poly(n, 1/ε,VCdim(F), 1/δ), where
poly(·) denotes a polynomial function.

In general, for a PAC learning algorithm it is possible to establish a lower bound on the
number of examples needed to obtain the ε-approximator for f ∈ F with the probability
at least 1− δ [BEHW89]:

N = Ω
(

1
ε

log 1
δ

+ V Cdim(F)
)
.

3 From Fourier Analysis Based Attacks to Practical Hard-
ness Amplification

The goal of the next two sections (Section 3 and Section 4) is to explain how the theoretical,
well-known methodologies can be successfully applied in our case, and even further benefit
from physical properties of a PUF. Figure 1 gives an overview of steps taken to achieve
this goal. We begin with an observation made in [GTS18] that for the concept classes
of known families of PUFs, even affected by the noise, there exists an ML attack relying
on the principles of Fourier analysis, so-called the low degree algorithm. To launch this
attack under the noisy conditions, the impact of the meta-stability in the PUF stages
is considered as a case of the attribute noise. Nevertheless, this holds if the noise level
does not exceed a certain upper bound [BJT03,O’D03]; otherwise, for desired accuracy
and confidence level, the number of examples – the CRPs in our case – required to run
the algorithm increases exponentially. What can be concluded from the above discussion
is that in an attempt to stop an adversary running the low degree algorithm against a
PUF, an increase in the level of the attribute can be a promising direction, as discussed in
Section 3.2. Finally, we explain why this cannot be sufficiently effective in practice and
propose a theoretically and practically superior method (see Section 4).

3.1 Translation of Reconfiguration into the Attribute Noise
In this section, we put our primary focus on how adding attribute noise can be thought of
as a promising candidate to impair the effectiveness of provable algorithms applied to PUFs.
From the point of view of PUFs, regardless of the origin of the noise, its impact can be on
the stages of a PUF (e.g., a switching element in an Arbiter PUF) and/or the measuring

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 7

element of the PUF (e.g., the Arbiter in an Arbiter PUF), if it exists [GTS18]. From the
perspective of machine learning, the noise can be categorized as classification or attribute
noise. The classification noise can be observed, when the output of a function is changed
by a random process. On the other hand, the attribute noise deals with random changes
in the inputs of the function. Moreover, compared to the classification noise, the attribute
noise is harder to handle by provable machine learning algorithms, in particular, in the
PAC learning framework [GS95]. Here we do not discuss the details of this categorization
and refer the reader to [BJT03] on this matter; yet the relationship between attribute
noise and the noise affecting a stage of a PUF is of great importance to our approach.

As demonstrated in [GTS18], the noise with an impact on a stage of a PUF accounts
for the attribute noise. More specifically, the approach presented to show this is inspired by
the model of hidden variables introduced in [Mae13]. This model considers the underlying
physical processes in a (silicon) PUF stage, e.g., ith stage, namely the process variations Xi

(1 ≤ i ≤ n) and the noise varying during each evaluation Ni ∼ N (µN , σ
2
N). It is known that

Xi follows a Gaussian distribution with the mean value µ reported by manufacturers as the
nominal value, and the standard deviation σi, which is the result of the process variations,
see for instance [MKP09]. For instance, these realizations correspond to the difference
between the delays of crossed and straight signal paths in an Arbiter PUF. Clearly, the
total impact of hidden variables on a stage can be written as Zi = Xi+Ni (1 ≤ i ≤ n) with
Zi being a Gaussian random variable. Now consider two different evaluations of the PUF
(with ci = 1 and ci = 0, respectively) that result in zi,1 = xi,1 + ni,1 and zi,0 = xi,0 + ni,0,
depending on the challenge bit applied to the PUF. As can be understood, the realizations
of the random variable corresponding to the noise are indicated by different indices to
show that the noise realizations vary for two different evaluations of the PUF. Moreover,
the realizations zi,0 and zi,1 contribute to the final response of the PUF [Mae13]. Under a
meta-stable condition, the realizations zi,0 and xi,1 (and similarly, zi,1 and xi,0) can be
very close to each other. In this case, it is not possible to distinguish if the challenge bit
applied to the PUF is “0” or “1”. Hence, the above condition is a case for the attribute
noise.

This gives an answer to the question of how the attribute noise can be realized in
practice [GTS18]. As a further step towards answering this, here we show that the
reconfiguration of a PUF stage can be translated into the attribute noise. Although in
this paper we focus on Arbiter PUFs, the following discussion is not limited to this family
of PUFs. When reconfiguring a stage of the PUF, irrespective of the reconfiguration
method, the realizations xi,1 and xi,0 are changed to x′i,1 and x′i,0. Although the latter two
realizations can be very close to those in the first setting, due to the manufacturing process
variations, they are not identical. Note that x′i,1 and x′i,0 follow the same distribution as
xi,1 and xi,0. Following the definitions presented in [Mae13,GTS18], the realizations of the
random variable Zi can be re-written to obtain zi,0 = x′i,0+n′i,0, where n

′
i,0 = xi,0−x

′
i,0+ni,0.

Similarly, we can define yi,1, and consequently, zi,1. In order to relate the random variable
Zi to the concept of attribute noise, we should determine the conditions under which
zi,0 = xi,1, cf. [GTS18]. It is straightforward to see that the conditions x′i,0 = xi,1 − n

′
i,0,

and x′i,1 = xi,0 − n
′
i,0 meet the requirements for defining the attribute noise. In other

words, in the above circumstance, it is possible to decide neither which configuration is
used nor which challenge bit (“0” or “1”) is applied to the PUF.

Following the procedure defined in [GTS18], the above uncertainty in the state of
each PUF stage can be presented by a random variable with a Bernoulli distribution
A ∼ D = Bern (ε), where ε denotes the probability of being in an uncertain condition, as
defined above (see Figure 2). Although the model developed above considers a single stage
of a PUF, due to the definition of the attribute noise, it is easy to extend that to multiple
stages of the respective PUF. To be more precise, the attribute noise affects each PUF
stage independently, but by following an identical distribution D. Therefore, a random

8 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Examples in practice:
• Meta-stability inside a PUF stage
• Reconfiguration of a PUF stage

Examples in practice:
• Measuring element of PUFs (e.g.,

the arbiter)

Attribute Noise Source

1-ε

ε

PA(ai)

ai

Classification Noise Source

1-η

η

PB(b)

b

A set of challenges

fPUF
PUF

a b
c y

Figure 2: The impact of the attribute noise and classification noise on the responses of a
PUF. The impact of the attribute noise is modeled by a random string a with independent
random bits drawn according to a Bernoulli distribution. The random bit b accounts for
the classification noise and follows another Bernoulli distribution. This model is crucial to
translate the impact of noise into the attribute and classification noises, known in ML.

string composed of independent random bits (ai) drawn according to the distribution D
reflects the impact of the attribute noise on all PUF stages. Now define the random string
a that denoted this string. Moreover, let the random bit b drawn from the distribution
R = Bern (1− η) represent the classification noise, cf. [GTS18]. It is straightforward to
observe that the final response of the PUF can be formalized as y = fPUF(c⊕ a)⊕ b. Note
that we do not discuss the classification noise here while in our scheme, the issue with that
is resolved by applying the majority voting technique. It is crucial to see the connection
between this formalization and the definition of the noise sensitivity (see Section 2.1).

The next step is to translate the impact of the reconfiguration of a stage, related to
the notion of the average sensitivity, to the attribute noise. To this end, Lemma 1 is
of the essence in the sense that it states the connection between the random variables
representing the attribute noise, the classification noise, and a challenge applied to a PUF,
denoted by A, B, and C, respectively.

Lemma 1. Let U , D and R denote the uniform, and two Bernoulli distributions4 over
the space {0, 1}. Additionally, the function f : Fn2 → F2 is an arbitrary Boolean function.
The challenge C ∈U Fn2 is chosen uniformly. Besides, the attribute noise A ∈D Fn2 and
the classification noise B ∈R F2 are represented by independent random strings and a
random variable, respectively. It is straightforward to show that the random variables
(C,f(C ⊕A)⊕B) and (C ⊕A,f(C)⊕B) follow identical distribution.

This simple, but useful, lemma implies that the impact of the noise on the stages of a
PUF can be taken into account by the identically distributed variable (C ⊕A,f(C)), i.e.,
the well-known model of the attribute noise, cf. [BJT03]. In a nutshell, here we make a
connection between the learnability of the attribute noise, the average sensitivity, and the
effect of reconfiguring a PUF stage.

4For PUFs, it is known that D and R are Bernoulli distributions [Mae13,GTS18], although the lemma
holds in general case, where these distribution can be arbitrary.

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 9

3.2 How Hard Is It to Learn Rolling PUFs?
After elaborating on how the reconfiguration can be seen as a case for the attribute noise,
we should answer the following questions. First, how hard is it to learn the rolling PUF,
i.e., a PUF that is repeatedly reconfigured? Answering this question is straightforward
since we have already established a relationship between the notion of reconfiguration
and the attribute noise in PUFs. Moreover, which algorithm should be considered in
this matter? Among different ML algorithms, we focus on the low degree algorithm.
The crucial aspects of this ML algorithm, so-called low degree algorithm or LMN-style
algorithm [LMN93], are two-fold. First and foremost, the low degree algorithm can be
categorized as an improper PAC learner (see Section 2.2). Under this learning scenario,
the freedom given to the algorithm to deliver a hypothesis h 6∈ F can lead to a more
powerful learning algorithm, compared to proper learning algorithms [DLSS13]. Clearly,
one can deduce that if the improper learning is intractable for a target concept class,
most likely no proper learning algorithm for that class can be devised either. The second
interesting aspect of the low degree algorithm is related to how this algorithm deals with
noisy examples. It has been demonstrated that this algorithm is applicable even under
scenarios, where not only classification, but also attribute noises are present [BJT03].

The rationale behind the low degree algorithm is that various classes of Boolean
functions can be approximated by taking into account solely a small number of their
Fourier coefficients (so-called “low” coefficients), corresponding to small subsets of [n] (see
Sec. 2.1).
Theorem 1. (Low degree algorithm) [Man94,LMN93,O’D03] Assume that an algorithm
can determine a set S ⊆ 2[n] containing subsets of [n] so that

∑
S∈S f̂(S)2 ≥ 1− ε. The

algorithm is given a pre-defined confidence level δ and access to a polynomial number of
input-output pairs of the Boolean function f that are chosen uniformly at random. With
probability 1− δ the algorithm delivers a Boolean function h that is an ε-approximator of
the Boolean function f such that∑

S⊆[n]

(
f̂(S)− ĥ(S)

)2
≤ ε.

The running time of the algorithm is poly (|S|, n, 1/ε, log2(1/δ)).

For the proof of this theorem, we refer the reader to [Man94,LMN93], in which the
mechanism for determining the set S, and the lower bound on the number of input-output
pairs required by the algorithm has been discussed extensively. In addition to Theorem 1,
what has been proven by Bshouty et al. is of great importance to our approach. They
have shown that concepts that are uniformly PAC learnable by adopting the low degree
algorithm can be further learned under noisy conditions [BJT03]. This can be formulated
precisely in the following theorem.

Theorem 2. [O’D03] Let α : [0,1/2]→ [0,1] be a strictly increasing continuous function.
For any given Boolean function f in the target concept class F with NSε(f) ≤ α(ε). We
have ∑

|S|≥m

f̂(S)2 ≤ ε,

where m = 1/α−1(ε/2.32) and α−1(·) denotes the inverse of the function α(·). There
exists a uniform-distribution learning algorithm for F that requires poly (nm, log2(1/δ))
number of examples to deliver a Boolean function h that is an ε-approximator of f with
the probability at least 1− δ.

Note that while we do not consider the classification noise here, the above mentioned
bound reflects the impact of the attribute noise solely. The proof of Theorem 2 is

10 Theoretical and Practical Approaches for Hardness Amplification of PUFs

A set of CRPs

Finding influential stages

…

PUF

……
i j

…
PUF

Figure 3: From a conventional PUF to its rolled version. First, the designer should collect
a sub-set of CRPs to determine the influential stages of the PUF [GTFS17]. To obtain the
rolling PUF, various strategies can be employed (see Section 6).

straightforward (see Corollary 2.3.3 and Theorem 5.2.1 in [O’D03] as well as Section 5
in [BJT03]), although the messages conveyed by that need special attention. As can be
understood from Theorem 2, the existence of the attribute noise leads to an exponential
increase in the number of examples required by the algorithm. In contrast to this, the
impact of the classification noise on this number of examples is polynomial in the level
of the classification noise. Hence, it is tempting to wonder whether by introducing the
attribute noise to a PUF, the problem of learning can become intractable.

To this end, we suggest that some stages of the PUF can be rolled in several rounds to
obtain a more ML attack-resistant primitive. The concept of rolling PUFs is inspired by the
key rolling known in Cryptography, although the commonality between them is limited to
the change in some security-related element of the system once using that. After translating
the impact of reconfiguration into the attribute noise, now it is evident that a blind partial
reconfiguration cannot automatically assure obtaining fresh CRPs that are affected by
the attribute noise. More precisely, adding the attribute noise can have a significant
impact on the outputs of the function, but only if influential challenge bits are affected
by the attribute noise; otherwise, the output of the function is not flipped [Qui86,AL88].
Therefore, before rolling a PUF, it is crucial to determine the influential stages, for instance,
by applying an approach proposed in [GTFS16,GTFS17], see Figure 3.

Furthermore, in our scenario, the reason behind changing the architecture (i.e., here,
the configuration) and CRPs of the PUF in several rounds is two-fold: first, if the rolled
stage is used in a legacy PUF (i.e., with no rolling round), it can be still possible to
learn the PUF. To provide a better understanding of this, assume that a PUF designer
implements a PUF and runs some tests to assess the security of the PUF against ML
attacks. Afterward, to achieve better resistance against these attacks, the configuration of
some stages are changed by the designer. This change can be translated to an attribute
noise (see Section 3.1), however, if the noise sensitivity of the Boolean function representing
the PUF (α(ε)) is bounded by some small value, it is still possible to learn the rolled PUF.

Secondly, we put emphasis on the fact that in our design not only the architecture,
but also the set of CRPs used by the scheme is changed in each round of rolling. This is
in line with other cryptographic schemes aiming at preventing replay attacks as well as
the concept of controlled PUFs proposed in the literature (see, e.g., [GCVDD02]). Our
design goal is to stop an attacker attempting to collect CRPs, even being noisy, to come
up with a sufficiently accurate model of the challenge-response behavior of the PUF, i.e.,
an ε-approximator of fPUF with a pre-defined, desired level of confidence (δ). Therefore, in
each round of rolling, the attacker should not have access to a set of CRPs needed to build
such a model. According to the theory of machine learning, to address this issue, a lower
bound on the number of examples required by the learning algorithm can be established
(see Section 2.2).

To put it differently: the importance of defining this lower bound is attached to the
fact that we should compute the number of CRPs allowed in each round. To establish

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 11

this bound, we should consider the representation of the target concept class that is, for
instance, an LTF for an Arbiter PUF. It is worth noting that our focus on improper PAC
learning does not rule out the possibility of defining a representation of the target concept
class. As for LTFs with n Boolean variables the Vapnik-Chervonenkis dimension is n+ 1,
it is easy to calculate the lower bound as N = Ω (1/ε log(1/δ) + n+ 1) . Now by setting
ε = 0.51, we ensure that the attacker cannot do considerably better than flipping a coin to
determine the response of the PUF to a given challenge. As an example, for a noiseless
64-bit Arbiter PUF, the minimum number of CRPs required to achieve our learning goal is
approximately 75, when δ = 0.01. This bound holds in general in the sense that regardless
of the algorithm applied to learn a target concept, the above bound can be established.
However, a bound being more tight to the upper bound can be established for a learning
algorithm used in our approach. For the low degree algorithm, the lower bound equals

Ω

1
2

√
nd

ε
ln
(

2nd

δ

) ,

where d = 1/ε2, cf. [Man94,O’D03]. At first glance, it may seem that no reliance is placed
on the representation of the target concept class, when the lower bound on the number
of CRPs for the low-degree algorithm is established. Nevertheless, we stress that this
bound holds for any Boolean function exhibiting NSf ≤

√
ε, which is true for LTFs with

NSLTF = O(
√
ε) [KOS02]. More interestingly, both upper bounds discussed above are

achieved for the noiseless setting. In other words, in the presence of noise, the accuracy of
the model delivered by the algorithm is less than ε for the same number of CRPs and the
confidence level. Therefore, if we stick to the lowest upper bound mentioned above, i.e.,
N , and introduce noise to our scheme, in none of the rounds the adversary can obtain a
model that is much more accurate than flipping a coin.

4 Theoretical and Practical Hardness Amplification
Although from a theoretical point of view the design discussed in Section 3.2 seems
solid, in practice the desired hardness may not be achieved easily. This is due to the
level of the attribute noise, which can guarantee that the Fourier coefficients cannot be
approximated for a given number of examples, with sufficiently high accuracy. As proven
in [BJT03,O’D03], if m (see Theorem 2) does not exceed the upper bound O(logn), it
is still possible to approximate the coefficients, given a polynomial number of examples.
Hence, it is crucial to shift our focus to other approaches depending less on the practical
aspects of fabrication, which are not entirely under our control.

In machine learning theory as well as complexity theory, hardness amplification is
concerned with addressing the following question. Is it possible to create a significantly
hard problem from a moderately hard one? Equivalently, and naturally, this can be
formulated in the sense of security. In other words, given a weakly secure construction
of a cryptographic primitive, we are interested in building a strongly secure construction
out of it. This problem has traditionally been discussed for one-way functions [Yao82],
where, intuitively, a combination of independent repetitions of a weakly one-way function
can be converted to a much harder, strong one-way function. This result has been
widely acknowledged and adapted in other cases, for instance, for decision problems the
hardness amplification is formulated as Yao’s XOR lemma [DJMW12,GNW11]. More
precisely, this lemma asserts that if a Boolean function f is weakly unpredictable within
some complexity bound, for sufficiently large k, depending on the complexity bound,
the function F (x1, ..., xk) :=

⊕k
i=1 f(xi) is virtually unpredictable within the respective

complexity bound. This means that the mechanism of generating the responses of F is
not essentially better than flipping a coin, cf. [GGR98]. This lemma was first proven by

12 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Levin [Lev87] and the proof has been carried out in a uniform model of complexity5. We
can now provide a more precise definition of Yao’s XOR lemma.

Theorem 3. (Yao’s XOR lemma) [Tre03] Consider f : {0,1}n → {0,1} that is a
Boolean function that is hard to compute on (1− δ) fraction of its input6. Then, computing
f(x1) ⊕ ... ⊕ f(xt) on more than 1/2 + ε fraction of its inputs (i.e., x1, ..., xk) is hard,
where ε is roughly (1− δ)k.

One can observe a close relationship between the concept of XOR Arbiter PUF and
Yao’s lemma, although it has not even implicitly discussed in the PUF-related literature,
to the best of our knowledge. The application of the XOR function in the context of
PUFs has its roots in the problem imposed by machine learning attacks against PUFs.
As suggested in [SD07], in order to prevent such attacks, XORing multiple outputs of
a PUF can to some extent obfuscate the outputs of that PUF. One of the well-received
primitives constructed according to this notion is XOR Arbiter PUFs. Nevertheless, it has
been shown that this can be only marginally effective since empirical and provable attacks
are launched to compromise their security [RSS+10,GTS15]. More importantly, it has
been proven that in order to prevent machine learning attacks compatible with provable
frameworks, the number of Arbiter PUFs XORed together should exceed an upper bound,
namely, ln(n). Despite these efforts, a precise formulation of Yao’s XOR lemma in the
PUF-related literature is missing. To address this, here we should take some steps towards
providing the setting that is required to transform the PUF-related scenario to one being
compatible with Yao’s lemma. In this regard, the following aspects of this lemma should
be carefully addressed.

Hardness on Average: We should underline the importance of the difference between
the average-case and the worst-case hardness assumptions. Although worst-case hardness
has attracted a great deal of attention in the complexity theory and has been seen as a
commonly-used hardness metric, the average-case hardness plays a crucial role in not only
complexity theory, but also cryptography. Intuitively, the worst-case hardness assumption
states that a problem is hard on some fraction of the inputs, whereas the average-case
hardness refers to a case that the problem is hard on most of its inputs. It is known
that for a given problem, one can conclude the worst-case hardness from the average-case
hardness, and therefore, the average-case hardness is a stronger assumption. More formally,
given a problem, in contrast to assuming that there is no algorithm solving an ε fraction of
the inputs, we require that no algorithm can solve 1/2 + ε, or more, of the inputs [Yao82].

In the context of PUFs, the most relevant approaches to notice are developed in the PAC
learning framework [GTS18]. The close connection between this learning framework and
complexity theory has been established by the seminal work of Kearns and Valiant [KV94a].
More specifically, they have demonstrated that the hardness of improper PAC learning
(i.e., no restriction on the hypothesis class) can be proven based upon hardness on
average assumptions cf. [DLSS13]. Interestingly, it has been further proven that for
some representation class, the hardness of learning holds even in the sense of weak
learning [KV94a]. According to the above discussion, it is very natural to take into account
the average-case hardness here.

The Complexity Class: Virtually all existing lower bounds known for improper learning
are derived based on the assumption made about the hardness of some cryptographic
schemes, e.g., RSA cryptosystem [KV94a]. In contrast to such challenging approaches, it

5There is a uniform Turing Machine that runs the same algorithm regardless of the size of the input.
6This parameter should not be confused by the confidence level defined in the context of PAC learning

framework. Here we stick to the standard notion used in complexity theory-related literature.

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 13

has been demonstrated that in the average-case sense, the hardness of improper learning
problems can be proven in a more straightforward manner [DLSS13]. At the core of
this is the assumptions about Constraint Satisfaction Problems (CSPs) that are made
to show the (in)tractability of some PAC learning problems. In particular, Daniely et
al. have proven that improper learning of polynomial-size Disjunctive Normal Forms
(DNFs) is hard on average in the PAC learning framework [DLSS13]. According to
the result presented in [DLSS13], a DNF with the size exceeding n log(n) is hard on
average. This has been obtained by making a hardness assumption about the hardness
of refuting a CSP, namely, random 3-SAT problem [DLSS13]7. As a k-junta function
can be formulated as a DNF of size 2k, the above result holds, of course, for learning
k-juntas, where k > log(n) + log(log(n)). Nonetheless, for a small, constant k, the problem
of learning k-juntas is solvable in polynomial-time. Accordingly, the problem of learning
PUFs represented by small k-juntas, e.g., Arbiter PUFs, is within NP. As can be understood
from the discussions in Section 3.2 and Section 4 we interchangeably use LTF and k-junta
functions to represent Arbiter PUFs. This is due to the fact that for sufficiently small ε,
as desired in PUF scenarios, any LTF can be close to a k-junta [Bou02,DJS+15].

Hardness Amplification within NP: Being motivated by the fact that Yao’s XOR
Lemma can be useful for the hardness amplification for EXP (i.e., problems with exponential
run time), O’Donnell has generalized this lemma so that it can be applied within the
complexity class NP [O’D04]. In fact, Yao’s lemma is not applicable in this complexity
class since F (x1, ..., xk) :=

⊕k
i=1 f(xi) may not be in NP, even if f(·) is in NP. To address

this issue, the following theorem has been proven by O’Donnell.

Theorem 4. (Hardness Amplification within NP) [O’D04] (Less formal,
cf. [HVV06]) Let the function f : {0,1}n → {0,1} denotes a Boolean function in NP that is
1/poly(n)-hard to be computed. There exist a function F (x1, ..., xk) := C(f(x1), · · · ,f(xk))
in NP that is 1/2 + n−1/3+ε hard, where C is a combination function8.

Here we do not discuss the proof of this theorem, but the properties of the function C is
of great importance to us. As proven in [O’D04], the function C should be polynomial-time
computable and monotone, i.e., given two inputs x ≥ y in the partial order on {0,1}n, we
have C(x) ≥ C(y). This property ensures that the combined function F remains in NP.
Moreover, the combination function C should exhibit low noise stability, or equivalently,
low expected bias. To introduce such combination function, O’Donnell has proposed
functions, for which each Boolean variable has a small influence, as suggested by Ben-Or
and Linial [BOL89]. More specifically, the “Tribes” function has been used to prove
Theorem 4. The inherent feature of the Tribes functions making them suitable for the
hardness amplification is not only their monotonicity, but also being close-to-balanced,
and in particular, remaining close-to-balanced even in the presence of the attribute noise.

4.1 Hardness Amplification for PUFs
Now we can eventually shift our focus to hardness amplification for PUFs. We argue
that the hardness amplification following the Theorem 4 is much stronger than what
can be achieved by XORing the PUFs. First and foremost, as discussed in the previous
section, the notion of hardness on average offers a much stronger assumption, compared
to worst-case ones. Moreover, and more crucially, it could be doubted if the legacy
Yao’s XOR lemma (or in other words, using the XOR combination function) is sufficient
since it is not required that the combined function remains in NP. Although we are not
interested in amplifying the hardness within the NP necessarily, the new combination

7Note that in this setting the examples are drawn uniformly.
8We adopt the theorem that holds also for unbalanced functions.

14 Theoretical and Practical Approaches for Hardness Amplification of PUFs

functions, i.e., Tribes functions, provides an inherently distinctive characteristic that makes
them attractive in PUF scenarios, namely being more noise stable. On the one hand,
Tribes functions are sufficiently noise sensitive to ensure a close-to-random behavior of
the combined function, whereas on the other hand in the presence of the attribute noise,
they are more robust. In other words, as precisely formulated in [O’D04], the latter
characteristic of the Tribes functions is related to being nearly balanced and preserving
this quality even when being subject to the attribute noise.

Last but not least, we should provide the combination function (the XOR or the
Tribes function) with k outputs of the function f , namely f(x1), ..., f(xk), as required
by Theorem 3 and Theorem 4. In our PUF construction, similar to the known, widely
used XOR Arbiter PUF, the inputs x1, ..., xk are the same. To resolve the difference
between our setting and the requirement imposed by the hardness amplification theorems,
we apply Lemma 1. In conjunction with this lemma, one can observe that our scheme
takes advantage of the attribute noise introduced to different instances of the PUF. The
immediate conclusion that can be made from this is twofold: first, for each challenge
chosen uniformly and fed into an Arbiter chain, e.g., ith, the distribution Ai, is different
due to the manufacturing process variations (see Section 3.1). Therefore, the inputs C⊕Ai
(1 ≤ i ≤ k) are different. Secondly, the impact of the attribute noise on the input of each
chain C ⊕Ai (1 ≤ i ≤ k) is statically the same as its impact on the output of the chains
f(C ⊕Ai). Hence, in the presence of the attribute noise, having k instances of the PUF
given the same challenge, the responses of the PUFs mimic the characteristics required for
x1, ..., xk. We are now in a position to take the next step by stating the following theorem.

Theorem 5. Consider a PUF fPUF : {0,1}n → {0,1} that is given N pairs of CRPs chosen
uniformly and an adversary using these N pairs to come up with an εN -approximator for
fPUF with probability at least 1− δN . There exist a Tribe function C applied to k instances
of fPUF, i.e., C(fPUF(x1), · · · ,fPUF(xk)) to obtain a 1/2 + n−1/3+ε-hard function.

Proof: First set the desired confidence level δ, and N being the minimum number of
CRPs that a polynomial-time algorithm required to deliver an εN -approximator of the
function fPUF with the desired probability 1− δ. Clearly, according to the PAC model,
εN is a function of δ, N , and n. More precisely, the achievable accuracy level is indeed
1/poly(n) (see Section 2.2). Note that with this number of CRPs no polynomial-time
algorithm can achieve better than an εN -approximation of fPUF. The proof is completed
by taking Theorem 4 and setting k = O(n2/3).

�
We stress that the above theorem and its proof can be thought of as a simplified

version of the theorem proved in [FLS11]. Here we set out the high-level principles of
the approach presented by Feldman et al. They essentially have proven that O’Donnell’s
hardness amplification method [O’D04] can be adopted within the uniform-distribution
PAC model to amplify the hardness of “mildly hard” learning problems. Furthermore, as
can be understood from Theorem 5 and its proof, although in Section 3.2 the low degree
algorithm is considered as an example of provable algorithms, in this section we do not
impose any limitation on the provable algorithm applied by an attacker. More particularly,
Theorem 5 is formulated based on the properties of neither the low degree algorithm nor
any specific provable algorithm.

5 PUF Implementation
As discussed before, the concept of rolling a PUF can assist us to make more secure PUFs.
One approach to roll a PUF circuit on an application-specific integrated circuit (ASIC)
or FPGA is to have multiple PUF instances in parallel, where they are selected by a
multiplexer [SMCN18]. Another approach is to physically swap a PUF circuit partially

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 15

A1

1

0

1

0

1

0

1

0

0
1

0
1

0
1

0
1

1

0

1

0

A2

1

0

A3

Out

Challenge bit

3-LUT

(a)

Single PDL

A1

A2

A3

A4

A5

A6

O6

A1

A2

A3

A4

A5

A6

O6

Out

In

C

(b)

Figure 4: (a) Illustration of the propagation delay in a 3-input LUT based on the state
of the challenge bit. (b) Composition of the PDL from two 6-input LUTs which operate
as inverters. C denotes the challenge bit. In and Out are the input and output for the
propagating signal, respectively.

or entirely, which is only feasible by employing the dynamic reconfigurability feature of
mainstream FPGAs [SBP16]. To have the same flexibility on ASICs, eFPGAs [Ach18,Fle18]
can be helpful, since they can be integrated into ASICs along other IP cores. Dynamic
reconfigurability makes the reconfiguration of certain resources of FPGA during runtime
possible, which can be beneficial for saving area and power in several applications. Critical
security circuits, such as cryptographic algorithms and PUFs, can take advantage of
dynamic reconfiguration capability as well. For instance, it has been reported that adding
a random number of registers through reconfiguration, cryptographic algorithms, such as
AES, can become side-channel and fault attack resistant [MGV08,SMMG15]. Later, similar
ideas have been applied to PUFs to make them either ML resistant [SBP16,YGHL17] or
increase their response entropy [GS15,BS17].

The first introduced rolling PUF [SBP16] has utilized the remote reconfiguration
capability of a Field Programmable Gate Array (FPGA) to reconfigure the entire PUF
circuit around the FPGA. However, inside an FPGA, where the resources are shared
among several applications, we might not be able to move the PUF around the FPGA
freely. Moreover, implementing a strong PUF, such as Arbiter PUF or Bistable Ring PUF,
on an FPGA requires precise and symmetric routing constraints, which is not achievable by
random reconfigurations. Even a complete symmetric design does not necessarily guarantee
that the PUF works properly, i.e., without a far too high level of bias and acceptable inter/
intra distances. Hence, it is more desirable to partially reconfigure the PUF and swap
only a few stages of it. More importantly, partial reconfiguration provides support for our
theoretical setting, namely, only the influential stages can be reconfigured in each round of
rolling.

In this section, we describe the setup used to realize the approach discussed in Sect. 3.
we have realized our rolling PUF using the partial reconfiguration feature of a common
FPGA.

5.1 FPGA Implementation of Arbiter PUF
To realize a configurable PUF, we deployed a Digilent Arty development board, which
contains a Xilinx Artix-7 (XC7A35T) FPGA manufactured with 28 nm technology. Among
different PUF candidates, we selected Arbiter PUFs for our experiments since there is a
verified systematic way to implement it on an FPGA [MKD10]. Classical Arbiter PUF
implementations utilize two digital multiplexers per stage of the PUF. As each multiplexer

16 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Stage 0

c[0]

enable

Stage 1

c[1]

Stage 62

c[62] tdown[0]

tup[0] Stage 63

c[63] tdown[1]

tup[1]
Arbiter

D Q response

Figure 5: Schematic structure of a PUF using PDLs as stages.

is realized by a Lookup Table (LUT), two inputs out of four available inputs of LUT are
used. Based on don’t-care inputs, the output of multiplexer can be loaded from different
SRAM cells inside the LUT and take different routes to the output. This fact leads to
different propagation delays, and therefore, delay imbalances for the two PUF routes.
Hence, due to routing constraints in a LUT of an FPGA, we implemented the stages by
two independent chains using so-called programmable delay line (PDL) as in [MKD10],
see Figure 5.

In contrast to implementations of a path switching structures with multiplexers, where
routing constraints make it very difficult to adjust the nominal delays between the upper
and lower paths, the use of PDLs allows an almost symmetrical structure. The PDL
takes advantage of the internal behavior of a LUT and consists of two LUTs in the
implementation, where each LUT behaves as an inverter. An example of such configuration
in a 3-input LUT is illustrated in figure 4a. The signal applied to A1 takes different
distances, depending on the assignment of the inputs of A2 and A3. If A2 = 1 and A3 = 1,
the upper highlighted path is selected, see figure 4a; Otherwise, if A2 = 0 and A3 = 0,
the lower and longer path is chosen. Similarly, if we take 6-input LUTs of our DUT into
account, input A1 can be used as inverter input, and the remaining inputs A2−A6 serve as
our interconnected challenge bit. A hint that the physical paths of the LUT inputs within
the Xilinx’s 7-Series can cause different signal propagation times due to their structure
can already be found in the Xilinx documentations [Xil], in which the inputs A6 −A5 are
described as the fastest. In this case, the least delay with a challenge bit zero and the
largest with one can be generated. We have programmed each LUT with the following
Boolean expression:

OLUT = ¬I1 ∨ (I2 ∧ I3 ∧ I4 ∧ I5 ∧ ¬I6)

where, I1 − I6 are the connected signals to A1 − A6 and OLUT is the output signal of
the LUT. The resulting truth table generates the desired behavior for the entries where
I2 − I6 take the same values. By implementing a second inverter connected in series, the
caused signal inversion is reversed, see figure 4b. In principle, instead of an inverter, the
implementation of the identity function would also be conceivable, which would require
only one LUT for a PDL. However, there is a risk that the LUT is completely optimized
and trimmed by the netlist compilation due to the lack of logical added value.

Our design consists of a 64-bit Arbiter PUF, see figure 5. A complete stage of the PUF
can be realized as a module from two such individual PDL module instances, each with
the same challenge bit, for the upper and lower paths of the PUF. For constructing a PUF
with a 64-bit challenge, 64 of these modules are chained in series. Additionally, there are
a certain number of tuning stages [MKD10], consisting of two PDL instances similar to
the PUF stages. However, they are realized with two independent selector bits, which
compensate for the bias between the two routes to get a symmetrical design. In principle,
the tuning stages can be inserted at any place. At the end of the chain, a D-flip-flop serves
as an arbiter, where data input is connected to the upper path and at the clock input to
the lower path. The response of the PUF is zero if the total delay through all stages of

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 17

LUT input Equation LUT config.
A1 OLUT = ¬I1 ∨ (I2 ∧ I3 ∧ I4 ∧ I5 ∧ ¬I6) 0x55555555D5555555
A2 OLUT = ¬I2 ∨ (I1 ∧ I3 ∧ I4 ∧ I5 ∧ ¬I6) 0x33333333B3333334
A3 OLUT = ¬I3 ∨ (I1 ∧ I2 ∧ I4 ∧ I5 ∧ ¬I6) 0x0F0F0F0F8F0F0F0F
A4 OLUT = ¬I4 ∨ (I1 ∧ I2 ∧ I3 ∧ I5 ∧ ¬I6) 0x00FF00FF80FF00FF
A5 OLUT = ¬I5 ∨ (I1 ∧ I2 ∧ I3 ∧ I4 ∧ ¬I6) 0x0000FFFF8000FFFF

Table 1: Combinations of different physical LUT inputs.

Slice

LUT

A

LUT

D

LUT

B

LUT

C

stage<x-1>

st
ag

e<
x>

inv1

(a)

Slice

LUT

A

LUT

D

LUT

B

LUT

C

stage<x-1>
st

ag
e<

x>

inv1

(b)

Slice

LUT

A

LUT

D

LUT

B

LUT

C

stage<x-1>

st
ag

e<
x>

inv1

(c)

Figure 6: Examples of rolling the PUF stages with different LUT combinations in a slice:
(a) using LUTs A and B for an unrolled stage, (b) swapping one the LUT B with the LUT
D, (c) Swapping both LUTs A and B to LUTs C and D.

the upper signal path is greater than that of the lower; otherwise, the response is one.

5.2 Partial Reconfiguration of PUF
At the first stage, we implement a reference Arbiter PUF. We take into account two
different approaches for the reconfiguration: 1. changing the configuration of the LUTs,
and 2. choosing different ports for the input signal. These modification options are based
in part on the ideas presented in [GS15], where the reconfiguration of a ring oscillator PUF
has been discussed. Considering the first approach, there are four LUTs A, B, C and D
inside each slice of our FPGA, where in the initial unrolled stage, the LUTs A and B are
deployed as PDLs. Since there are six combinations per stage (see figure 6) after taking
into account the combination already used for the unrolled PUF, five combinations remain
to construct a rolling with the selection of the two necessary LUTs.

In the second approach, the propagation path can be changed within a stage for each
PDL by selecting a different physical LUT input, see figure 7. The logical function of the
LUT must be adapted in order to obtain an inverter behavior again, see Table 1. However,
it does not make sense to use input A6, as this would not result in two substantially
different propagation paths.

5.3 Measurements
For each experiment, we collect CRPs from the reference PUF and the rolled one obtained
by applying one of the mentioned approaches in section 5.2. The tuning stages are adjusted
in a way that a ratio of nearly 50% of zeros and ones is obtained. Due to very little delay
differences between two chains, the arbiter can sample a meta-stable signal. Therefore, for
each given challenge, we conducted 19 response measurements and applied majority voting

18 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Single PDL

A1

A2

A3

A4

A5

A6

O6

A1

A2

A3

A4

A5

A6

O6

Out

In

C

(a)

Single PDL

A1

A2

A3

A4

A5

A6

O6

A1

A2

A3

A4

A5

A6

O6

Out

In

C

(b)

Single PDL

A1

A2

A3

A4

A5

A6

O6

A1

A2

A3

A4

A5

A6

O6

Out

In

C

(c)

Single PDL

A1

A2

A3

A4

A5

A6

O6

A1

A2

A3

A4

A5

A6

O6

Out

In

C

(d)

Figure 7: Rolling stages of the PUF by using different physical LUT inputs as propagation
path. In a 6-input LUT, four new reconfigurations can be obtained, namely changing the
input from A1 to (a) A2, (b) A3, (c) A4, and (d) A5. C denotes the challenge bit and In
the input port for the propagating signal.

on the gathered responses. After majority voting of each given challenge the number of ’1’s
and ’0’s are counted, and if the number of majorities is less than 14, the CRP is marked
as noisy and sorted out. From each PUF, we collect 640000 CRPs from that 89284 CRPs
are removed due to the noisy behavior. Note that for each experiment we randomly and
uniformly choose solely 113729 CRPs, depending on the value of ε and δ. The reason
behind collecting more CRPs is to run the experiment repeatedly to obtain statistically
relevant results. The CRPs are collected in an offline fashion, and then, analyzed by
applying in-house developed algorithm written in MATLAB [Inc].

6 Results
In this section, we present our results, outlined as follows (see Figure 8). First and
foremost, we provide the results related to applying a k-junta testing algorithm and discuss
them in details. Secondly, we show how rolling a PUF can affect the average sensitivity
of the Boolean function representing that PUF. We discuss to what extent Friedgut’s
theorem [Fri98] can help us to come up with an appropriate representation of the PUF. In
conjunction with these results, we provide insight into whether the influential stages of the
PUF, associated with the influential bits, can be eliminated by rolling the PUF. Finally,
we discuss how the Fourier analysis-based attack introduced in [GTS18] can be launched
against the PUFs with enhanced hardness.

6.1 k-junta Testing
As the first step in a systematic evaluation of the impact of rolling a PUF, we examine if the
PUF and its respective rolled PUFs can be represented by k-junta functions (see section 2).
For that matter, several vital observations should be made. First, the fact that an LTF
can model an Arbiter PUF is of the essence of our methodology [GLC+04,MKP08]. Based
upon this, it is straightforward to conclude that the noise sensitivity of fPUF is a bounded,
small value depending only on ε, namely we have NSε(f) ≤ 8.54

√
ε [KOS02], cf. [GTS18].

Although this is an interesting result, it does not reflect how close our function fPUF is to
a k-junta. To show this, we rely on Bourgain’s theorem [Bou02], and a tight quantitative
statement proved in a work of Kindler and O’Donnell [KO12]. These theorems state that
if NSε(f) = O

(
δ
√
ε
)
, f is δ-close to a p(1/ε, 1/δ)-junta, for some polynomial p(·), and

constant and sufficiently small value of ε and δ. More interesting from the point of view
of our work, if f is an LTF and NSε(f) = O

(
δ2−ε/1−ε√ε

)
, then the LTF f is δ-close to

an O
((

1/ε2) · log(1/ε) · log(1/δ)
)
-junta [DJS+15]. This provides a basis for developing

property testing algorithms, as presented in, e.g., [MORS10].

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 19

k-junta testing

Finding the determining
stagesG

oa
l

E
xp

er
im

en
t

The average sensitivity

Evaluating the applicability of
Friedgut’s theorem

S
ec

tio
n

The noise sensitivity

Evaluating the applicability of
low degree algorithm

Hardness Amplification

- Impact of the attribute noise

- Using combination functions

6.1 k-junta testing

6.1.1 Inside-stage rolling

6.1.2 Input-port selection

6.2 Computation of the
average sensitivity

6.3 Computation of the
noise sensitivity

6.4 Hardness amplification

6.4.1 Learning rolled PUFs

6.4.2 Learning composite PUFs

Figure 8: Organization of Section 6. The first row presents the types of the experiments
conducted, whose results are shown in this section. The goals of these experiments
are shown in the second row, whereas the third row is related to, in which section the
corresponding results can be found.

The rationale behind a property testing algorithm is that giving black-box query
access to an unknown function f , and the algorithm determines whether f has a specific,
pre-defined property or it is “far” from any function having that property [GGR98]. In
view of our approach, we are mainly interested in the fact that property testing algorithms
offer insight into approximation problems. Hence, instead of approximating the noise
sensitivity of our targeted function fPUF , we apply a k-junta testing algorithm to examine
if it is close to a k-junta function. In this regard, in Matlab [Inc] we implement the k-junta
testing algorithm proposed in [MORS10]. Note that although the scope of [MORS10]
mainly focuses on halfspace testing, it covers a useful procedure to test if an unknown
function is close to a k-junta function.

In a first step, we run the algorithm against our unrolled Arbiter PUF, i.e., a PUF
with an inside-LUT configuration AB. In our experiments, we fix δ = 0.99. The value of ε
should be chosen carefully to fulfill requirements enforced by the spectral properties of a
Boolean function, e.g., Parseval’s identity cf. [MORS10]. With regard to this requirement,
we compute an interval, within which ε can lie. The mean of the values lying within this
interval is chosen as the default value of ε that is, ε = 0.0024. Note that property testing
algorithms are by nature statistical, and therefore, in our experiments, we may slightly
vary the value of ε to guarantee the correctness of the output of the algorithm. Moreover,
we repeat each experiment 5 times and take the maximum number of influential stages,
i.e., the stages associated with the Boolean variable determining the output of the function
fPUF .

6.1.1 Inside-LUT Configuration as a Rolling Strategy

As can be seen in the first row of Table 2, as expected, the function fPUF depends solely
on 4 influential stages, namely, the stages (5),(9),(17), and (22) (hereafter, the numbers
inside the parentheses indicate the rolled stages). In other rows of Table 2, we present the
number of the influential stages, when different LUT configurations are chosen individually
for each influential stage.

The results presented in Table 2 are prime examples of what can be understood from
conducting a systematic, and mathematically precise study of which LUT configuration
should be chosen to prevent strong k-junta learning-based attacks, as proposed in [GTFS16,

20 Theoretical and Practical Approaches for Hardness Amplification of PUFs

LUT Config. Reconfig. stage # Influential
stages

Influential stages

Unrolled (AB) – 4 5,9,17,22

AC
5 4 5,9,17,22
9 7 7, 9, 5, 17, 47, 32, 22
17 3 5,9,22
22 1 9

AD
5 2 9,22
9 11 20,17,3,10,36,22,5,47,9,7,32
17 3 9,22,5
22 5 32,5,9,17,22

BC
5 1 9
9 11 17,20,10,22,3,36,47,7,9,5,32
17 - -
22 - -

BD
5 - -
9 9 22,47,20,7,9,17,32,3,5
17 - -
22 3 9,17,5

CD

5 - -
9 - -

17 19 20,6,7,18,17,5,35,32,47,52,54,
9,50,36,3,22,31,53,4

22 1 9

Table 2: Influential stages within n = 64 stages for various LUT configurations. In this
experiment, δ = 0.99, ε = 0.0024, and each influential stage is reconfigured individually.

GTFS17]. In this context, our methodology gives a firm basis for designing more robust
PUFs. From all those interesting results, the following conclusions can be drawn. There
are some ineffective inside-LUT rolling strategies, e.g., changing the configuration from
AB to the AD configuration in the stage (22) and the AC in the stage (5) do not impair
the effect of these influential bits.

Moreover, by changing the inside-LUT configuration, the attacker has to collect more
CRPs to find the influential bits. This is due to the fact that for ε set by us in most of the
scenarios (i.e., different configurations of different influential stages), the influential stage
could not be found by the algorithm. Hence, the attacker has to expand the window of the
Fourier spectrum to identify the whole set of influential bits, and consequently, learn the
challenge-response behavior of the PUF. To this end, more CRPs should be collected by the
attacker, although even this cannot always be helpful. As an example, consider the stage
(9) that is configured by choosing AD option, we expand the Fourier spectrum by running
the experiment on 122764 CRPs, about an 8% increase in the number of CRPs. In this
case, the algorithm determines the stages (22) and (17) as influential and fails to find other
stages that it could figure out before (see the second row of Table 2). Therefore, in this
case, applying more CRPs can be even drastically confusing for the attacker. What can be
seen in those scenarios can be explained by the fact that the influence of the stages is very
well reduced so that increasing the precision of the algorithm results in finding no or only
some of the influential stages. In addition to the above discussion, one can observe that
the BC configuration can be effective under some particular circumstances, e.g., rolling
the stages (5), (17), and (22). Among those, rolling the (17) stage can be very useful.
Finally, comparing the results for all possible inside-LUT configurations shows that the
configuration CD can be one of the best options to remove the effect of influential stages.
Hence, in our next experiment, we take into account the stages with CD configuration.

In the next step, we consider the impact of reconfiguring more than one stage at the
same time. Table 3 presents the results for combinations, for which the influential stages
can be still found after the rolling process. This means that for the combination (17,22),
(5,9), (5,22), and all the sets of three and four stages, which are not shown in the table, no
influential stage can be found after running the algorithm. With respect to the results
presented in Table 3, when rolling the PUF by changing the configuration of a set of

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 21

Reconfig.
stages

ε # Influential
stages

Influential stages

9, 22 0.0024 7 32,5,17,47,3,20,7
0.0023 2 5,17

9, 17 0.0024 16 47,18,32,20,7,5,22,35,6,
54,31,3,53,10,50,4

0.0023 5 22,20,32,3,47
5, 17 0.0024 2 9,22

0.0023 2 9,22

Table 3: Influential stages within n = 64 stages for various LUT configurations. In
this experiment, δ = 0.99, the inside-LUT configuration is CD, and a set of stages is
reconfigured.

Stage ε Input port # Influential
stages

Influential stages

5 0.0024
PDL-I1 – –
PDL-I2 1 9
PDL-I3 3 17,22,9
PDL-I4 2 22,9

9 0.0022
PDL-I1 2 22,5
PDL-I2 14 47,63,40,36,10, 3,17,

56,46,19,18,32,7,4
PDL-I3 – –
PDL-I4 3 5,22,17

17 0.0022
PDL-I1 1 9
PDL-I2 2 5,22
PDL-I3 1 9
PDL-I4 2 9,22

22 0.0022
PDL-I1 3 22,5,9
PDL-I2 3 17,9,5
PDL-I3 1 9
PDL-I4 – –

Table 4: Influential stages within n = 64 stages for different input ports. In this experiment,
δ = 0.99, the LUT reconfiguration is CD.

stages, the traces of the remaining influential stages can be seen in some experiments.
Among those set, two cases can be distinguished; first, for a given level of ε, e.g., ε=0.0024,
the adversary can be confused by the number of influential stages determined by the
algorithm, see, e.g., the combination (9,22). However, if the number of CRPs available to
the adversary is increased, the ε can be reduced, e.g., to 0.0023, and the correct number of
influential stages can be disclosed. Secondly, even after increasing the number of available
CRPs, the exact number of the influential stages cannot be determined. For instance,
see the combination (9,17), for which the attacker cannot find the exact set of influential
stages even after increasing the number of CRPs, and consequently, decreasing ε.

6.1.2 Input-port Selection as a Rolling Strategy

Up until this point, we discuss the results achieved by changing the LUT configuration of
the influential stages. Last but not least, we demonstrate how choosing different ports for
the input signal can be helpful to build more robust PUFs. In some experiments, the value
of ε has been changed for experiments on each stage. We reduce this value from 0.0024 to
a lower value as far as the algorithm can find an influential stage.

The key message to be conveyed here is that in principle, changing the input port
can be another possibility for rolling the PUF. In a nutshell, for the same value of ε, the
previous approach has been more effective, although the influential stages can be removed
by taking this approach as well. For that matter, setting the input port of the stage (9)
to PDL-I2 is one of the critical observation, where the attacker can be completely fooled;
however, it is not always the case for other stages. More importantly, as can be seen in
the Table 4, in order to determine the influential stages, the value of ε should be lowered,
in comparison to previous experiments, in which the LUT configuration has been changed.

22 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Reconfig. stage(s) Config. strategy Avg. sensitivity
– Unrolled (AB) 5.95
5 CD 5.85
9 CD 5.88
17 CD 5.60
22 CD 5.91
5, 9 CD 5.81
9, 17 CD 5.40

5,9,17, 22 CD 5.60
9 PDL-I2 4.83
22 PDL-I1 5.39
22 PDL-I2 5.61
22 PDL-I3 5.70
22 PDL-I4 5.92

Table 5: The average sensitivity of Arbiter PUFs with n = 64 stages and different rolling
strategies.

In other words, when rolling the PUF by modifying the input port, (only) in some cases,
more CRPs are required to figure out which stage is influential.

To sum up this section, we stress that in order to make a PUF more robust to machine
learning attacks depending on finding the influential stages, one has to go step-by-step
and identify the best strategy to roll the PUF.

6.2 Computation of the Average Sensitivity
In addition to the k-junta testing approach, [GTFS16] has suggested that according to
Friedgut’s theorem [Fri98], it is possible to come up with the total number of influential
bits of the function fPUF , with ε accuracy level. To this end, one should compute the
average sensitivity of the targeted function, i.e., fPUF in our case. In our experiments, the
process of computing this has been borrowed from [RRS+12]. We follow this by calculating
the average sensitivity of the reference, unrolled PUF and its corresponding rolled PUFs.
Although we compute the average sensitivity of all the PUFs with different configurations,
as presented in the previous section (see Section 6.1), here we demonstrate the results
achieved for the most interesting instances of the rolled PUF, see Table 5.

The underlying message of these results is that the average sensitivity of fPUF is a
constant value (O(1)) that varies slightly and insignificantly for each rolling strategy. Even
for the case that the stage (9) is rolled by choosing the input-port PDL-I2, the difference
cannot be considered statistically significant enough to justify a change in this trend.
However, by applying Friedgut’s theorem, the value of k cannot be approximated in our
case [Fri98,GTFS16]. In more details, when the average sensitivity exceeds the bound lnn,
the number of influential variables cannot be calculated according to Friedgut’s theorem.
Now, the natural question is whether our PUF can be represented by a k-junta, with a
small k. This has been addressed and well formulated by O’Donnell as follows [O’D03].
With regard to the results presented by Friedgut [Fri98], having low average sensitivity
could be a sufficient condition for being close to a junta. Nonetheless, this has been shown
not to be necessary as there exist functions being close to juntas with a very large average
sensitivity. This issue has been addressed by Bourgain’s results that show in fact, all
functions with sufficiently low noise sensitivity must be close to a junta [Bou02,O’D03]
Therefore, to support the results that we have presented in Section 6.1, we compute the
noise sensitivity of the functions representing our PUFs.

6.3 Computation of the Noise Sensitivity
The importance of the notion of noise sensitivity as a metric for the assessment of the
learnability of a PUF has been stressed in [GTS18]. However, in their investigation, the

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 23

Figure 9: The noise sensitivity of unrolled and rolled PUF following different rolling
strategies.

authors of [GTS18] have not computed the average sensitivity of the PUFs, e.g., Arbiter
PUFs. Here we approximate the noise sensitivity according to its definition provided in
Section 2.1. To this end, well-structured CRPs are required following a certain pattern.
First, we uniformly, randomly choose a challenge c, and then, generate an ε-noisy version
of it, i.e., c′. Accordingly, we generate 50000 uniformly, randomly chosen strings and
50000 noisy versions of these so that we get a total number of 100000 challenges for a
particular ε. This procedure is repeated for different ε ∈ [0, 0.5]. Figure 9 shows the
noise sensitivity for some rolling options, which are interesting according to the discussion
in Section 6.1. Moreover, Figure 9 depicts the upper bound of the noise sensitivity for
LTFs [KOS02]. As can be seen, the noise sensitivity of the unrolled and rolled PUFs is far
below the upper bound. More interestingly, the trend of the curves presented for each PUF
is the same, namely a square root function. These results confirm the results achieved by
applying the k-junta tests: PUFs exhibiting a small noise sensitivity can be represented by
a k-junta. This conclusion leads us directly to the next step, in which we investigate how
the robustness of a PUF can be systematically increased.

6.4 Hardness Amplification
6.4.1 Learning Rolled PUFs

In this section, we present the results related to our strategies for achieving more robust
PUFs. First of all, we examine if the rolled PUFs are still vulnerable to machine learning
attacks, in particular, applying the low degree algorithm9. In our first experiment, we
set the noise level (ε) equal to 0.05. The number of CRPs used to come up with an
approximator of the Boolean function representing a PUF is 1000, as shown in the first
part of the Table 6, whereas in the test set we have 100000 CRPs. What can be understood
from the results of this experiment is that the PUFs, which are chosen based on their
interesting results of the k-junta tests, can be still modeled. We emphasize that the
difference between the accuracy of the models delivered for each PUF is not statistically
significant. More importantly, even with a much smaller number of CRPs, i.e., 125 as
shown in the second part of Table 6, eventually the same results can be achieved.

In line with the explanation given in Section 3.2, it is possible to determine the minimum
number of CRPs required to deliver a desirably accurate approximator of the Boolean

9We have already explained the reason behind this choice in Section 3.1

24 Theoretical and Practical Approaches for Hardness Amplification of PUFs

A PUF Stage

A Rolled PUF Stage

…

…

…

…

Low degree
Algorithm

PUF1

PUF2

.

.

.
PUF3

PUFk

C1

C4

.

.

.
…

PUF

C1

C4

.

.

.
Low degree
Algorithm

(b)(a)

Figure 10: The schematic illustrating how our scheme is used in different rounds of rolling.
The PUFs used in our experiments are Arbiter PUFs. Moreover, the combination function
shown in this scheme is either the XOR or the Tribes functions. The response of the PUF
is given to the low degree algorithm to evaluate the hardness of the PUF.

function representing a PUF. We take into consideration the generic lower bound that
holds not only for the low degree algorithm, but also for every PAC learning algorithm.
Our observation confirms that when reducing the number of CRPs to 100, the accuracy of
the model delivered by the algorithm drops significantly to approximately 80%. Note that
although further reduction may result in obtaining an even less accurate model, from a
practical point of view, it is not desirable. This is founded on the basis that a reduction in
the number of CRPs exchanged in each round results in a more frequent reconfiguration
of the hardware platform. Hence, we are forced to shift our focus to designing rolling
strategies changed in each round. Moreover, we employ two different rolling strategies:
first, in each round of rolling only one stage of the PUF is reconfigured. More specifically,
in four rolling rounds, the PUF configuration is changed from unrolled to a PUF with
different rolled stages, denoted as Unrolled→5→9→ 17→22. For example, in the second
round of rolling the configuration of the stage (5) is rolled back to “unrolled” and the
stage (9) is reconfigured. In the second strategy, in each round we have a various number
of rolled PUF stages, e.g., Unrolled→(5,9)→(9,17) →(17,22)→ (5,9,17,22). This strategy
is much appropriate from the angle of view of practical implementation.

Furthermore, we adopt two strategies for feeding the CRPs into the PUFs in different
rolling rounds. The first CRP management strategy is called “static” reflecting the fact
that the same CRPs are used in each and every round of rolling. It is to be noted that due
to the existence of the attribute noise, this is applicable since the attacker cannot guess if
the response to the same challenge could be flipped in each round. As for the “refined”
CRP management strategy, the used CRPs are filtered (see Figure 10(a)). In both of
the static and the refined methods, the number of CRPs used in a round is 100, and the
adversary can take advantage of all the CRPs observed by her. This means that after the
ith round, the number of CRPs in the training set is 100 · i. Additionally and similarly, the
number of CRPs in the test set is 5000 · i. Table 7 shows the results of the experiments, in
which the effectiveness of the CRP management strategies as well as the rolling strategies
is examined. As can be seen in this table, the accuracy of the model is reduced drastically
to approximately 65%. Albeit the differences in different rolling and CRP management
strategies, no statistically-relevant difference between them can be observed.

6.4.2 Learning Composite PUFs

The goal of conducting this set of experiments is to evaluate to what extent the hardness
of a PUF can be amplified through two specific strategies; first, combining some chains
of the Arbiter PUFs, and secondly, by rolling these PUFs. We begin with a composite
PUF featuring either the XOR or the Tribes combiners. In our experiment, we set k=4,
6, and 12, i.e., the XOR Arbiter PUFs under test have 4, 6 or 12 chains, respectively.
To compare the results for these combiners and the Tribes functions, we set the input

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 25

Stage # CRPs in
training set

Accuracy

Unrolled (AB)

1000

94.75
(5) 97.13
(9) 93.88
(17) 92.87
(22) 94.26
(5,9) 96.79
(9,17) 97.18
(17,22) 94.66

(5,9,17,22) 97.81
Unrolled (AB)

125

94.26
(5) 96.79
(9) 92.96
(17) 94.75
(22) 93.66
(5,9) 93.18
(9,17) 93.00
(17,22) 92.13

(5,9,17,22) 95.21

Table 6: Results for learning Arbiter PUFs rolled according to different strategies. In all
of the experiments, the noise level is set to 0.05, the number of CRPs in the test set is
100000, and the inter-LUT configuration is CD.

CRP Set Rolling
Strategy

Accuracy [%]
1 round of
rolling

2 round of
rolling

3 round of
rolling

4 round of
rolling

Static 1 64.10 63.15 62.82 62.55
2 64.67 64.49 63.32 63.24

Refined 1 65.26 64.16 65.02 64.05
2 65.35 64.30 65 64.09

Table 7: Results for learning Arbiter PUFs rolled according to different strategies. In all of
the experiments, the noise level is 0.05. The rolling strategy 1 refers to Unrolled→5→9→
17→22, whereas strategy 2 is related to Unrolled→(5,9)→(9,17) →(17,22)→ (5,9,17,22).

length of the Tribes functions, k, to 4, 6, and 12 accordingly. Moreover, as suggested
in [O’D04], b, the size of the terms in the Tribes functions is set to 2 that is close to log2 k.
To roll the PUFs in each round, for each chain of the composite PUFs we first determine
the influential stages, see Figure 10(b). Before elaborating on the results, we underline
that the results presented for XOR Arbiter PUFs with a large number of chains do not
contradict the upper bound established for provable algorithms, cf. [GTS15]. This can be
explained given the fact that the XOR Arbiter PUFs discussed in this paper are composed
of PUFs that are not entirely independent. Put differently, in the presence of the attribute
noise, the responses of the PUFs are correlated. Therefore, the results presented here are
not comparable to what has been reported in the literature so far, e.g., [GTS15].

In each round of rolling, at least one of the influential stages, determined in Section
6.1, is reconfigured. The number of CRPs in training and test sets are the same as those
in the experiment on rolled PUFs (see Section 6.4.1). Specifically, we allow the adversary
to observe 100 CRPs during each round of our scheme, and to collect these CRPs as
well as to run the low degree algorithm on the set collected by her after each round (see
Figure 10(b)). In a similar fashion, the number of CRPs in the test set is 5000 · i. As
mentioned before, the responses corresponding to these challenges are measured 19 times,
and by applying the majority voting technique, we resolve the noisy CRPs.

Table 8 presents the results of conducting the experiments described above. The core
message conveyed here is that for both of the XOR-combined and the Tribes-combined
PUFs the hardness is improved compared to the results for the standalone PUFs, even
after rolling them (see Section 6.4.1 for the corresponding results). The theoretically
precise extent of this improvement can be estimated. Roughly speaking, the hardness of
the combined functions is at most equal the expected bias of the combination function.

26 Theoretical and Practical Approaches for Hardness Amplification of PUFs

Besides, when it is impossible to compute the expected bias, e.g., for the Tribes function,
it can be well-estimated by the noise stability or, equivalently, the noise sensitivity of
that function. For Tribes functions, the noise stability10 is extremely small, especially,
when δ is close to 1/2, it is as small as 1/2 + 1/k. For the XOR function, the expected
bias can be calculated as 1/2 + 1/2(1 − δ)k, where δ here denotes the hardness of the
function fPUF. According to the results provided in Section 6.4.1, on average, we can set δ
to approximately 0.25. Hence, for k=4 the expected bias, and accordingly, the hardness
of the XOR function is 0.6282, whereas it is 0.5890 for k=6. For the same setting, the
noise stability of our Tribes function can be approximately 0.75 and 0.6667, respectively.
Consequently, the expected bias and the hardness of them can be at least equal these
values.

Nevertheless, as can be seen in Table 8, for the XOR function, the combined function
may not be as hard as what can be approximated theoretically. This can be seen as
a result of a key difference between our practical setting and the theoretical one. In
our setting the functions fPUF1

, · · · , fPUFk
are independent, but according to the rolling

procedure and its relationship to the attribute noise, the challenges applied to the PUFs
are “corrupted”. Intuitively, if the adversary comes up with the response of a PUF to a
challenge, e.g., fPUF1

(ci), with the probability 1−NSε(fPUF) the response of other PUFs
to ci can be equal to fPUF1

(ci). But, the adversary does not know whether the response
of the PUF fPUF1

(ci) itself is corrupted. If the adversary gains this knowledge, the above
situation is called the hard-core scenario [O’D04, Imp95]. The hardness amplification
bounds provided for the XOR and the Tribes functions are established in the hard-core
setting. However, we go beyond this and assume the worst case scenario, where the attacker
does not know if the response of the PUF fPUF1

(ci) is corrupted. Consequently, there
is no one-to-one comparison between the bounds suggested in [O’D04] and our results.
Therefore, when XORing the functions fPUF1

, · · · , fPUFk
, our composite function cannot

be tight or close-to tight for the hardness bound suggested by Yao’s lemma. In contrast
to this, the hardness achieved for the Tribes functions in our experiments is much closer
to what can be approximated in theory. This is regarding an intrinsic property of the
Tribes function: remaining close to balanced, even under the effects of the attribute noise
affecting the inputs (for more details, see [O’D04]). Hence, the Tribe functions can handle
this matter, when conducting experiments on real-world PUFs. For the composite PUFs
affected by the attribute noise, for instance, combined by using XOR (12) or Tribes (12,3),
we calculate the expected bias. As for the Tribes (12,3), the expected bias is 0.5178, and
it is 0.7689 for XOR (12). In conclusion, although one cannot directly compare the results
shown in Table 8 with the asymptotic hardness bounds of the Tribes and XOR functions,
the hardness of the Tribes-combined functions can be closer to those bounds in practice.

Another interesting aspect of the results is related to how the hardness of the composite
functions is improved after rolling the PUFs in each round. For not only the Tribes-
combined, but also the XOR-combined PUFs, after each round of rolling the hardness is
slightly improved. However, in the latter case, even after 4 rounds, the hardness is still
not satisfactory, compared to the Tribes-combined PUFs.

7 Discussion
7.1 Theoretical Considerations
Comparison to PUF Protocols: First and foremost, we emphasize that the scheme
proposed in this paper should not be confused with PUF protocols as suggested in,
e.g., [RMK+14,YHD+16]. Nevertheless, our scheme shares some notable commonalities
with such approaches. First of all, the primary goal of our approach and the protocols

10We put emphasis again on the fact that here our focus is mainly on the attribute noise.

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 27

Combination
Function

Accuracy [%]
1 round of
rolling

2 round of
rolling

3 round of
rolling

4 round of
rolling

XOR (4) 88.42 88.37 86.41 85.41
Tribes (4,2) 65.04 63.84 63.53 63.47
XOR (6) 83.68 82.86 80.02 78.7

Tribes (6,2) 66.45 64.81 64.66 64.48
XOR (12) 77.2 76.90 76.95 76.89

Tribes (12,3) 63.3 57.1 54.72 53.34

Table 8: The accuracy of the model delivered by the low degree algorithm. In this table,
the results are grouped into three main segments, showing how the results for the XOR
and the Tribes functions should be compared to one another.

mentioned above is to stop an attacker launching an ML attack; however, as shown for
the Slender PUF protocol [DPGV15], this goal cannot always be attained. More precisely,
as formulated in a suitable fashion in [Del17], being resistant to ML attacks should not
be connected to lower bounds established for some specific ML algorithms. If the lower
and/or upper bounds are not established in a general sense, an algorithm that has been
overlooked up till now could break the security of a PUF, which has been based upon
that lower/upper bounds. Hence, we should come up with bounds that hold in general,
i.e., for any provable algorithm, see, e.g., [GTFS17,GTFS16]. In contrast to protocols
discussed above, our scheme is anchored on a solid foundation: the hardness amplification
for Boolean functions.

The second common aspect of our scheme and the PUF-based protocols is applying
the notion of “controlled PUFs”. As an example, the Slender PUF protocol [RMK+14]
deploys an input network to not only restrict the access of the adversary to the CRPs,
but also meet the SAC requirement. In our scheme, on the contrary, it is solely necessary
to filter the CRPs used in the previous rounds of rolling. Moreover, as discussed before,
the presence of the attribute noise in conjunction with the Tribes function ensures the
maximum possible randomness, i.e., similar to the SAC property.

Lower Bound on the CRPs for Learning Tribes Functions: In general, lower
bounds are established to provide an answer to the question of how much resources (i.e.,
time, examples, etc.) are required to learn a target concept. We have already discussed
two possible approaches to establish such lower bounds in Section 3.2. Here to establish
a lower bound for Tribes-combined Arbiter PUFs, we consider both of those approaches,
namely the general lower bound and the lower bound for the low degree algorithm. Let us
begin with the general lower bound, where it suffices to calculate the Vapnik-Chervonenkis
dimension of the composite function C(fPUF(x1), · · · ,fPUF(xk)), where C(·) is the Tribes
function. As for the representation of the target concept, fPUF, we stick to the LTF
functions. It is known that for finite concept classes, VCdim(C ⊗ F) = O(kd+ kd log(kd)),
where ⊗ denotes the composition operator and d = VCdim(F) [Sha09]. Now when the
inputs to this Tribes function are LTFs with VCdim(F) = n+ 1, we obtain

VCdim(C(fPUF(x1), · · · ,fPUF(xk))) = O(k(n+ 1)(1 + log(kn+ k))).

The key message that this equation conveys is that the Vapnik-Chervonenkis dimension
of our composite function is increased, when increasing k and n. Now substituting the
above dimension in the general lower bound (see Section 2.2) yields the minimum number
of CRPs required to learn our composite function. Adopting the same approach for the
XOR combination function results in the same bound.

As explained before, the above lower bound holds in general, i.e., it is not specific to
any provable algorithm, unlike bounds established for a pre-defined algorithm. Yet, for
the sake of completion, here we provide the lower bound for the low degree algorithm that
is tighter towards the respective upper bound. In an attempt to compute this bound, we

28 Theoretical and Practical Approaches for Hardness Amplification of PUFs

begin with the following fact. The noise sensitivity of any composite function of LTFs
defined over k LTFs is NSε ≤ O(k

√
ε). It is straightforward to show that the lower bound

provided in Section 3.2 should be slightly modified so that d = k2/ε. In other words,
contrary to the general lower bound discussed above, one can observe that an increase in
k results in an exponential growth in the minimum number of CRPs required to learn our
composite function (see the lower bound presented in Section 3.2).

It is crucial to recall that the above lower bounds serve to provide a better insight into
the number of CRPs in each round, which is necessary and sufficient to obtain a 1− δ-hard
PUF. And the ultimate hardness of our scheme depends not only on the hardness of the
PUF chains, but also on the expected bias of the final, composite function, cf. Section 2
in [O’D04]. As the expected bias of the Tribes functions in the presence of the attribute
noise is close to one half, in contrast to the XOR function, the hardness of the composite
function can be guaranteed.

Note on the Applicability of Boosting Techniques: The natural question that
should be answered here is whether boosting or, more generally, ensemble methods can
be applied to learn our proposed scheme. This question is valid while one can observe
that the setting of the ML algorithm applied against our scheme can be considered as
the setting for a weak PAC learner (see Section 3.2). The main factor differentiating a
weak learner from its analog, i.e., strong PAC learner, is the level of the accuracy that is
achievable for the same number of examples and the level of confidence. More specifically,
a weak learner can achieve only slightly better than flipping a coin [SF12]. Although such
learner could seem inappropriate, ensemble methods are introduced to make use of a weak
learner and transform it into a strong learner.

The key idea behind an ensemble method is to include models obtained after every round
of learning in an ensemble and combine them to classify a new, unseen example [Die00].
A prime example of ensemble methods is boosting techniques attempting to minimize a
particular error function step-by-step. Although for some boosting algorithm the presence
of noise results in overfitting, there exist boosting techniques designed specifically to
handle the issue with the noisy examples. In this regard, various attempts made to
enhance boosting techniques, however, the majority of them take into account the case of
classification noise. In fact, the case of examples featuring the attribute noise is difficult to
address and does not receive much attention. Among a few positive results achieved in this
matter, one of the most celebrated boosters is introduced in [Ser03], namely, SmoothBoost.
SmoothBoost addresses the issue with the attribute noise thanks to the fact that it does
not generate skewed distributions by not putting a great deal of weight on noisy examples,
in contrast to other boosters, e.g., AdaBoost. Although not explicitly mentioned, the
bound on the noise that SmoothBoost can tolerate depends heavily on the distribution
of the examples and the number of Boolean variables involved in the function. More
precisely, if the examples are drawn uniformly, the attribute noise rate must be far less than
ε2/ log(n/ε) [KLS09]. To recap, in order to ensure that such booster fails, the underlying
parameters related to the attribute noise and how the examples are drawn in each round
should be considered carefully. As an example, for a 64-bit Arbiter PUF with ε=0.51, if
the noise level exceeds 2.5%, it is impossible to apply SmoothBooster against our scheme.
According to the results of experiments that we have conducted to estimate the attribute
noise rate, irrespective of the rolling strategy, it exceeds the above bound for our rolling
PUFs.

Comparison with Schemes Exploiting the Impact of the Noise: We stress that
our architecture enhanced by adding the attribute noise should be clearly differentiated
from schemes leveraging the impact of the classification noise either for attacking a
PUF [Bec15, DV14] or for improving its security [YVDM14]. The latter approach is
interesting; however, it has been shown to be less effective as promised [TB15]. Attacks

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 29

that take advantages of the information disclosed by the classification noise, similar to
side channel information, mainly rely on the meta-stability condition at the measuring
element of PUFs (i.e., the frequency comparators, and the arbiter). In our scheme, we
resolve this by applying a known and widely-accepted technique, namely the majority
voting. Consequently, the attacker has to deal with the attribute noise primarily, which
could impair the effectiveness of the attacks suggested in [Bec15,DV14]. More precisely,
the equations that have to be solved to build a model of a PUF (cf. Equation 4b in [Bec15]
and the system of linear equations in Section VI.A and Section VI.B in [DV14]) cannot be
formulated as required, due to the presence of the attribute noise.

7.2 Practical Considerations
Existence of the Attribute Noise in Real-world Implementations: One could
argue that by increasing the number of PUF chains XORed together, it can be possible to
achieve the same hardness level as obtained for the Tribes functions. We should underline
the requirement that the composite PUF should remain close to balanced, i.e., with a
low level of bias, when combining some PUF chains with this property. The importance
lies in the fact that upon implementing some instances of the same PUF on the same
platform, ideally, the inter-distance between any pair of these instances should be close
to 50%. However, this is not the case in practice due to the effect of the routing, and/or
having not sufficient deviation in the manufacturing process variations from one instance
to another. This can be precisely formulated by the impact of the attribute noise, which
is not limited to our scheme featuring rolling. It is also interesting to observe that for a
composite PUF involving the XOR combination function, the level of the attribute noise
may not reach the level that can be achieved by rolling the PUF stages. In this case, the
bounds established for the provable algorithm (see, e.g., [GTS15]) can be further applied.
However, if the level of the attribute noise is sufficiently high to influence the bias of the
PUF chains, the desired hardness cannot be achieved, even for a large number of chains
XORed together. Accordingly, as proved in theory and verified in practice, meeting the
close-to-balanced condition can be challenging. Hence, the Tribes functions can be an
appropriate combination functions to be used in not only our rolling-based scheme, but
also in other schemes comprising a combination function for PUFs.

Aging can be considered and modeled as an example of the attribute noise as well.
Each individual aged PUF circuit in a composite PUF, such as XOR PUF, might bias the
overall responses of the composite PUF. In contrast to the XOR combination function, the
Tribes functions can still deliver less biased responses over time. Moreover, under extreme
aging conditions, new enrollments of CRPs in conjunction with using Tribes functions can
recycle the PUF in an unbiased manner.

Integrity of PUF Configurations and Challenges: Although our framework in this
paper addresses mainly the passive ML attacks, and not side-channel and physical attacks,
we briefly review the potential threats from a more sophisticated adversary, who can mount
side-channel/physical attacks. As described in section 5, one approach to realize rolling
PUFs is through utilizing the available dynamic reconfiguration feature of FPGAs. In
this case, the PUF configuration of each rolled PUF is sent to the FPGA with partial
bitstreams. The challenges of the PUF can also be included in the partial bitstream along
with the configuration of each rolled PUF, however, they can be fed into the PUF after
each reconfiguration via I/O pins.

If the adversary can tamper with the partial bitstreams, she can modify the PUF
configuration. As a result, she can connect the output of the PUF directly to one of the I/O
pins of the chip and directly read out the raw response of each individual PUF prior to the
combining function. Similarly, she can tamper with the challenges, and apply arbitrarily
challenges to the PUF. In both cases, the confidentiality and integrity of the PUF have to be

30 Theoretical and Practical Approaches for Hardness Amplification of PUFs

guaranteed. To assure confidentiality and integrity of the partial bitstreams, one can deploy
the bitstream encryption and authentication methods, provided as features on the latest
modern FPGAs. Since the security and vulnerabilities of FPGA IP protection schemes
have been well studied during the last decade, the latest integrated countermeasures offered
by FPGA vendors avert several classes of side-channel and physical attacks. However,
using encryption and authentication to secure the PUF might be considered as on overhead.
While activation of bitstream encryption and authentication is optional on SRAM-based
FPGAs (e.g., Xilinx and Intel FPGAs), these features are always activated on Flash-based
FPGAs (e.g., Microsemi FPGAs). In any case, we stress that the PUF circuit is only one
of the several IP cores, which is implemented on the FPGA, and the confidentiality and
integrity of other IP cores has to be ensured as well. Therefore, it is realistic to assume
that the bitstream encryption and authentication is already in use by the user.

Enrollment Phase: Since the influential stages can be different from a device to another,
the framework presented in Section 6 has to be applied to each new PUF during the
enrollment phase. Therefore, in addition to CRPs, the configuration of each rolled PUF
as well as a chip ID (e.g., a device DNA) have to be stored in a database for the future
authentications. Note that the device ID is not required to be kept secret, as it does not
divulge any extra information regarding the behavior of the PUF.

8 Conclusion and Remarks
This paper aims at narrowing the gap between approaches for hardness amplification
introduced in the ML theory and the PUF-related literature. Following extensive discussion
on methods previously suggested to impair the effectiveness of ML attacks against PUFs,
we conclude that two major classes of techniques can be distinguished. On the one hand,
based on practical observation, it has been suggested to roll a PUF so that CRPs collected
by an attacker are generated from several instances of the PUF, and therefore, the ML
attack could fail. On the other hand, the XOR function has been introduced to obfuscate
the responses of PUFs combined together. Our proposed scheme takes advantage of both of
these techniques, namely, an increase in the attribute noise and combining some instances
of a PUF implemented on the same platform. For this purpose, we make a marked
paradigm shift, from the XOR function to the Tribes function, known for their random
behavior. According to the proofs, being known to the ML community, the hardness of
our proposed scheme implies that the attacker running provable algorithms cannot do
better than filliping a coin to find the response of the PUF to an unseen challenge. This
theoretical finding is further supported by conducting extensive experiments on real-world
PUFs, whose results are presented in this paper.

References
[Ach18] Achronix Semiconductor Corporation. Achronix Product Brief.

https://www.achronix.com/wp-content/uploads/2017/05/Speedcore_
eFPGA_Product_BriefPB028.pdf, 2018.

[AL88] Dana Angluin and Philip Laird. Learning from Noisy Examples. Machine
Learning, 2(4):343–370, 1988.

[AMS+11] Frederik Armknecht, Roel Maes, A Sadeghi, O-X Standaert, and Christian
Wachsmann. A Formalization of the Security Features of Physical Functions.
In Security and Privacy (SP), 2011 IEEE Symp. on, pages 397–412, 2011.

https://www.achronix.com/wp-content/uploads/2017/05/Speedcore_eFPGA_Product_BriefPB028.pdf
https://www.achronix.com/wp-content/uploads/2017/05/Speedcore_eFPGA_Product_BriefPB028.pdf

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 31

[AMSY16] Frederik Armknecht, Daisuke Moriyama, Ahmad-Reza Sadeghi, and Moti
Yung. Towards a Unified Security Model for Physically Unclonable Functions.
In Topics in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the
RSA Conf., volume 9610, page 271. Springer, 2016.

[Bec15] Georg T Becker. The Gap Between Promise and Reality: On the Insecurity
of XOR Arbiter PUFs. In Cryptographic Hardware and Embedded Systems–
CHES 2015, pages 535–555. Springer, 2015.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K
Warmuth. Learnability and the Vapnik-Chervonenkis Dimension. Journal of
the ACM, 36(4):929–965, 1989.

[BJT03] Nader H Bshouty, Jeffrey C Jackson, and Christino Tamon. Uniform-
Distribution Attribute Noise Learnability. Information and Computation,
187(2):277–290, 2003.

[BOL89] Michael Ben-Or and Nathan Linial. Collective Coin Flipping. Advances in
Computing Research, 5:91–115, 1989.

[Bou02] Jean Bourgain. On the Distribution of the Fourier Spectrum of Boolean
Functions. Israel Journal of Mathematics, 131(1):269–276, 2002.

[BS17] Armin Babaei and Gregor Schiele. Spatial Reconfigurable Physical Unclonable
Functions for the Internet of Things. In Intl. Conf. on Security, Privacy
and Anonymity in Computation, Communication and Storage, pages 312–321.
Springer, 2017.

[Del17] Jeroen Delvaux. Security Analysis of PUF-based Key Generation and En-
tity Authentication. PhD thesis, Ph. D. dissertation, Shanghai Jiao Tong
University, China, 2017.

[Die00] Thomas G Dietterich. Ensemble Methods in Machine Learning. In Intl.
workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[DJMW12] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Counterexam-
ples to Hardness Amplification Beyond Negligible. In Theory of Cryptography
Conf., pages 476–493. Springer, 2012.

[DJS+15] Ilias Diakonikolas, Ragesh Jaiswal, Rocco A Servedio, Li-Yang Tan, and
Andrew Wan. Noise Stable Halfspaces Are Close to Very Small Juntas.
Chicago Journal OF Theoretical Computer Science, 4:1–13, 2015.

[DLSS13] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From Average Case Com-
plexity to Improper Learning Complexity. arXiv preprint arXiv:1311.2272,
2013.

[DPGV15] Jeroen Delvaux, Roel Peeters, Dawu Gu, and Ingrid Verbauwhede. A Survey
on Lightweight Entity Authentication with Strong PUFs. ACM Computing
Surveys (CSUR), 48(2):26, 2015.

[DV14] Jeroen Delvaux and Ingrid Verbauwhede. Fault Injection Modeling Attacks
on 65 nm Arbiter and RO Sum PUFs via Environmental Changes. Circuits
and Systems I: Regular Papers, IEEE Trans. on, 61(6):1701–1713, 2014.

[Fle18] Flex Logix Technologies, Inc. Modular eFPGA. https:
//static1.squarespace.com/static/548d5bd7e4b087dc74cd6e6d/t/
5bc26adb0852293bdde73d77/1539468017196/2018+10+Modular+eFPGA+
101018+v1p0.pdf, 2018.

https://static1.squarespace.com/static/548d5bd7e4b087dc74cd6e6d/t/5bc26adb0852293bdde73d77/1539468017196/2018+10+Modular+eFPGA+101018+v1p0.pdf
https://static1.squarespace.com/static/548d5bd7e4b087dc74cd6e6d/t/5bc26adb0852293bdde73d77/1539468017196/2018+10+Modular+eFPGA+101018+v1p0.pdf
https://static1.squarespace.com/static/548d5bd7e4b087dc74cd6e6d/t/5bc26adb0852293bdde73d77/1539468017196/2018+10+Modular+eFPGA+101018+v1p0.pdf
https://static1.squarespace.com/static/548d5bd7e4b087dc74cd6e6d/t/5bc26adb0852293bdde73d77/1539468017196/2018+10+Modular+eFPGA+101018+v1p0.pdf

32 Theoretical and Practical Approaches for Hardness Amplification of PUFs

[FLS11] Vitaly Feldman, Homin K Lee, and Rocco A Servedio. Lower Bounds and
Hardness Amplification for Learning Shallow Monotone Formulas. In Proc.
of the 24th Annual Conf. on Learning Theory, pages 273–292, 2011.

[Fri98] Ehud Friedgut. Boolean Functions with Low Average Sensitivity Depend on
Few Coordinates. Combinatorica, 18(1):27–35, 1998.

[GCVDD02] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas.
Controlled Physical Random Functions. In Comp. Security Applications
Conf., 2002. Proc.. 18th Annual, pages 149–160, 2002.

[GGR98] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property Testing and Its
Connection to Learning and Approximation. Journal of the ACM (JACM),
45(4):653–750, 1998.

[GLC+04] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten Van Dijk, and Srinivas
Devadas. Identification and Authentication of Integrated Circuits. Concur-
rency and Computation: Practice and Experience, 16(11):1077–1098, 2004.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-Lemma.
Studies in Complexity and Cryptography, 6650:273–301, 2011.

[GS95] Sally A. Goldman and Robert H. Sloan. Can PAC Learning Algorithms
Tolerate Random Attribute Noise? Algorithmica, 14(1):70–84, 1995.

[GS15] Stefan Gehrer and Georg Sigl. Using the Reconfigurability of Modern FP-
GAs for Highly Efficient PUF-based Key Generation. In Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2015 10th Intl. Symp.
on, pages 1–6. IEEE, 2015.

[GTFS16] Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert. Strong
Machine Learning Attack against PUFs with No Mathematical Model. In Intl.
Conf. on Cryptographic Hardware and Embedded Systems, pages 391–411,
2016.

[GTFS17] Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert. Having
No Mathematical Model May Not Secure PUFs. Journal of Cryptographic
Engineering, 2017.

[GTS15] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. Why Attackers Win:
On the Learnability of XOR Arbiter PUFs. In Trust and Trustworthy
Computing, pages 22–39. Springer, 2015.

[GTS18] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. A Fourier Analysis
Based Attack against Physically Unclonable Functions. In Intl. Conf. on
Financial Cryptography and Data Security. Springer, 2018.

[HVV06] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using Nondeterminism
to Amplify Hardness. SIAM Journal on Computing, 35(4):903–931, 2006.

[Imp95] Russell Impagliazzo. Hard-core Distributions for Somewhat Hard Problems.
In Foundations of Computer Science, 1995. Proc., 36th Annual Symp. on,
pages 538–545. IEEE, 1995.

[Inc] The MathWorks Inc. MATLAB–The Language of Technical Computing.
http://www.mathworks.com/products/matlab//.

http://www.mathworks.com/products/matlab//

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 33

[KLS09] Adam R Klivans, Philip M Long, and Rocco A Servedio. Learning Halfspaces
with Malicious Noise. Journal of Machine Learning Research, 10(Dec):2715–
2740, 2009.

[KO12] Guy Kindler and Ryan O’Donnell. Gaussian Noise Sensitivity and Fourier
Tails. In Computational Complexity (CCC), 2012 IEEE 27th Annual Conf.
on, pages 137–147. IEEE, 2012.

[KOS02] Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning Intersec-
tions and Thresholds of Halfspaces. In Foundations of Computer Science,
2002. Proc. The 43rd Annual IEEE Symp. on, pages 177–186, 2002.

[KV94a] Michael Kearns and Leslie Valiant. Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata. Journal of the ACM (JACM),
41(1):67–95, 1994.

[KV94b] Michael J Kearns and Umesh Virkumar Vazirani. An Introduction to Com-
putational Learning Theory. MIT press, 1994.

[Lev87] Leonid A Levin. One Way Functions and Pseudorandom Generators. Com-
binatorica, 7(4):357–363, 1987.

[LLG+04] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten Van Dijk,
and Srini Devadas. A Technique to Build a Secret Key in Integrated Circuits
for Identification and Authentication Applications. In VLSI Circuits, 2004.
Digest of Technical Papers. 2004 Symp. on, pages 176–179, 2004.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant Depth Circuits,
Fourier Transform, and Learnability. Journal of the ACM (JACM), 40(3):607–
620, 1993.

[Mae13] Roel Maes. An Accurate Probabilistic Reliability Model for Silicon PUFs. In
Cryptographic Hardware and Embedded Systems-CHES 2013, pages 73–89.
Springer, 2013.

[Man94] Yishay Mansour. Learning Boolean Functions via the Fourier Transform. In
Theoretical Advances in Neural Computation and Learning, pages 391–424.
Springer, 1994.

[MGV08] Nele Mentens, Benedikt Gierlichs, and Ingrid Verbauwhede. Power and Fault
Analysis Resistance in Hardware through Dynamic Reconfiguration. In Intl.
Workshop on Cryptographic Hardware and Embedded Systems, pages 346–362.
Springer, 2008.

[MKD10] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. FPGA PUF
Using Programmable Delay lines. In Information Forensics and Security
(WIFS), 2010 IEEE Intl. Workshop on, pages 1–6, 2010.

[MKP08] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Lightweight
Secure PUFs. In Proc. of the 2008 IEEE/ACM Intl. Conf. on Comp.-Aided
Design, pages 670–673, 2008.

[MKP09] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Techniques
for Design and Implementation of Secure Reconfigurable PUFs. ACM Trans.
on Reconfigurable Technology and Systems (TRETS), 2, 2009.

[MORS10] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A Servedio.
Testing Halfspaces. SIAM Journal on Computing, 39(5):2004–2047, 2010.

34 Theoretical and Practical Approaches for Hardness Amplification of PUFs

[O’D03] Ryan William O’Donnell. Computational Applications of Noise Sensitivity.
PhD thesis, Massachusetts Institute of Technology, 2003.

[O’D04] Ryan O’Donnell. Hardness Amplification within NP. Journal of Computer
and System Sciences, 69(1):68–94, 2004.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

[Qui86] J Ross Quinlan. The Effect of Noise on Concept Learning. Machine learning:
An artificial intelligence approach, 2:149–166, 1986.

[RMK+14] Masoud Rostami, Mehrdad Majzoobi, Farinaz Koushanfar, D Wallach, and
Srinivas Devadas. Robust and Reverse-Engineering Resilient PUF Authen-
tication and Key-Exchange by Substring Matching. Emerging Topics in
Computing, IEEE Trans. on, 2(1):37–49, 2014.

[RRS+12] Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri
Weinstein. Approximating the Influence of Monotone Boolean Functions in
O(
√
n) Query Complexity. ACM Trans. on Computation Theory (TOCT),

4(4):11, 2012.

[RSS+10] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas,
and Jürgen Schmidhuber. Modeling Attacks on Physical Unclonable Functions.
In Proc. of the 17th ACM Conf. on Comp. and Communications Security,
pages 237–249, 2010.

[SBP16] Alexander Spenke, Ralph Breithaupt, and Rainer Plaga. An Arbiter PUF
Secured by Remote Random Reconfigurations of an FPGA. In Intl. Conf.
on Trust and Trustworthy Computing, pages 140–158. Springer, 2016.

[SD07] G Edward Suh and Srinivas Devadas. Physical Unclonable Functions for
Device Authentication and Secret Key Generation. In Proc. of the 44th
annual Design Automation Conf., pages 9–14, 2007.

[Ser03] Rocco A Servedio. Smooth Boosting and Learning with Malicious Noise.
Journal of Machine Learning Research, 4(Sep):633–648, 2003.

[SF12] Robert E Schapire and Yoav Freund. Boosting: Foundations and Algorithms.
MIT press, 2012.

[Sha09] Amnon Shashua. Introduction to Machine Learning: Class Notes 67577.
arXiv preprint arXiv:0904.3664, 2009.

[SMCN18] Durga Prasad Sahoo, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty,
and Phuong Ha Nguyen. A Multiplexer-Based Arbiter PUF Composition with
Enhanced Reliability and Security. IEEE Trans. on Computers, 67(3):403–
417, 2018.

[SMMG15] Pascal Sasdrich, Amir Moradi, Oliver Mischke, and Tim Guneysu. Achieving
Side-channel Protection with Dynamic Logic Reconfiguration on Modern
FPGAs. In 2015 IEEE Intl. Symp. on Hardware Oriented Security and Trust
(HOST), pages 130–136. IEEE, 2015.

[TB15] Johannes Tobisch and Georg T Becker. On the Scaling of Machine Learning
Attacks on PUFs with Application to Noise Bifurcation. In Intl. Workshop
on Radio Frequency Identification: Security and Privacy Issues, pages 17–31.
Springer, 2015.

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, M. Tehranipoor 35

[Tre03] Luca Trevisan. List-decoding Using the XOR Lemma. In Foundations of
Computer Science, 2003. Proc. 44th Annual IEEE Symp. on, pages 126–135.
IEEE, 2003.

[VC71] VN Vapnik and A Ya Chervonenkis. On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities. Theory of Probability and its
Applications, 16(2):264, 1971.

[Xil] Inc. Xilinx. Vivado Design Suite User Guide.

[Yao82] Andrew C Yao. Theory and Application of Trapdoor Functions. In Foun-
dations of Computer Science, 23rd Annual Symp. on, pages 80–91. IEEE,
1982.

[YGHL17] Jing Ye, Yue Gong, Yu Hu, and Xiaowei Li. Polymorphic PUF: Exploiting
Reconfigurability of CPU+ FPGA SoC to Resist Modeling Attack. In 2017
Asian Hardware Oriented Security and Trust Symp. (AsianHOST), pages
43–48. IEEE, 2017.

[YHD+16] M. D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Verbauwhede.
A Lockdown Technique to Prevent Machine Learning on PUFs for Lightweight
Authentication. IEEE Trans. on Multi-Scale Computing Systems, PP(99),
2016.

[YVDM14] Meng-Day Mandel Yu, Ingrid Verbauwhede, Srinivas Devadas, and David
MRaihi. A Noise Bifurcation Architecture for Linear Additive Physical
Functions. Hardware-Oriented Security and Trust (HOST), 2014 IEEE Intl.
Symp. on, pages 124–129, 2014.

	Introduction
	Notation and Preliminaries
	Boolean Functions as Representations of PUFs
	Probably Approximately Correct Learning Model

	From Fourier Analysis Based Attacks to Practical Hardness Amplification
	Translation of Reconfiguration into the Attribute Noise
	How Hard Is It to Learn Rolling PUFs?

	Theoretical and Practical Hardness Amplification
	Hardness Amplification for PUFs

	PUF Implementation
	FPGA Implementation of Arbiter PUF
	Partial Reconfiguration of PUF
	Measurements

	Results
	k-junta Testing
	Computation of the Average Sensitivity
	Computation of the Noise Sensitivity
	Hardness Amplification

	Discussion
	Theoretical Considerations
	Practical Considerations

	Conclusion and Remarks

