
UC-Commitment Schemes with Phase-Adaptive

Security from Trapdoor Functions

Pedro Branco∗ Manuel Goulão∗ Paulo Mateus∗

Abstract

We propose a generic framework for perfectly hiding UC-Commitment
schemes in the Global Random Oracle model of Canetti el at. (CCS
14). The main building block of our construction is a novel primitive
called Sampleable-Range Trapdoor Function, that is, a trapdoor func-
tion for which there is a non-negligible probability of finding preimages
when given a uniformly chosen element of its codomain and the corre-
sponding trapdoor. To show the versatility of the framework, we give
concrete instantiations based on factoring, code-based, and lattice-based
hardness assumptions. Our construction yields the first lattice-based UC-
Commitment scheme (not constructed via generic transformations, such
as via Oblivious Transfer), and achieves what we call phase-adaptive se-
curity, a novel security notion we introduce which is stronger than static
security.

Achieving adaptive security for UC-Commitment schemes is non-trivial
and, usually, comes at the price of efficiency. Phase-adaptive security
stands between adaptive and static security, and may be of independent
interest. In this model, adversaries can corrupt at the beginning or be-
tween the commitment and opening phases of the protocol, but not during
their execution. This new model is motivated by the fact that, in practice,
it is more likely that parties are corrupted between phases of the protocol
(where a relatively long period may elapse) than during their execution.

1 Introduction

A Commitment scheme is a simple, yet powerful, cryptographic primitive. It
involves two parties, the committer C and the receiver R, and consists of two
independent phases. In the commitment phase, C commits to a message and
sends the corresponding commitment to R. Later, in the opening phase, C
opens the commitment and reveals the message to R. Concerning security, two
properties must hold: C cannot reveal a different message than the one it had
committed to in the commitment phase (binding property), and R cannot get
information about the message before the opening phase (hiding property).

∗SQIG - IT, IST - University of Lisbon.
Email: {pmbranco,mgoulao,pmat}@math.tecnico.ulisboa.pt.

1

Commitment schemes mostly shine when used as building blocks to con-
struct other, more complex, cryptographic primitives (e.g., signature schemes,
zero-knowledge proofs, or secure multiparty computation) since they do not
serve many useful purposes by themselves. Therefore, the security of Com-
mitment schemes should be analyzed in the Universal Composability (UC)
framework[Can01], which guarantees security even when composed with other
protocols. Commitment schemes proven to be secure in this framework are
usually called UC-Commitment schemes.

In this work, we present a framework for UC-Commitment schemes in the
Global Random Oracle (gRO) model of Canetti, Jain and Scafuro [CJS14], a
security model where only one Global Random Oracle is available for all exe-
cutions of all protocols.1 The framework makes use of a new flavor of trapdoor
functions which we call Sampleable-Range Trapdoor Function. Also, it is secure
against malicious phase-adaptive adversaries, a new class of adversaries that can
corrupt between phases of the execution. The resulting generic construction is
exceptionally versatile, as it can be instantiated not only with several common
hardness assumptions (e.g., RSA, Trapdoor Discrete Log, Quadratic Residuos-
ity) but also with many relevant post-quantum hardness assumptions, such as
code-based and lattice-based assumptions. As far as we know, we obtain the
first lattice-based UC-Commitment scheme, which is not constructed via generic
transformations, such as via Oblivious Transfer (OT).

1.1 Previous work

The study of UC-Commitment schemes started with the work of Canetti and
Fischlin [CF01] where they prove the impossibility of constructing UC-Commit-
ment schemes in the plain model, and propose schemes in the Common Refer-
ence String (CRS) model. However, the schemes of [CF01] only allow users to
commit to single bits.

After that, several UC-Commitment schemes in the CRS model were pre-
sented [DN02, DG03, HMQ04, Lin11, FLM11, CJS14, Fuj16, BPRS17], but all
of these have their security based on number-theoretic assumptions.

Recently, a UC-Commitment in the gRO model was presented in [CJS14],
based on the discrete logarithm assumption, and another in [Bra19], based on
assumptions from coding theory.

In [CDG+18], several alternative security models to the gRO model (or re-
stricted Observable Random Oracle Model) were presented, such as the re-
stricted Programmable Random Oracle or the restricted Programmable and
Observable Random Oracle. In these security models, efficient UC-Commitment
schemes were proposed.2 However, we remark that these security models need

1This security model was also studied in [CDG+18], where it is called restricted Observable
Random Oracle.

2In [CDG+18], it is proven that the folklore Commitment scheme, which consists in com-
puting H(M, r) (where H is a random oracle, M is the message and r is a random string), is
a UC-Commitment scheme in the restricted Programmable and Observable Random Oracle
Model.

2

the simulator to have the capability of programming the random oracle, which
differs from the original proposal and motivation given by Canetti et al. [CJS14].
While the most truthful random oracle would be the one for which the simulator
is neither able to program nor to observe queries, so-called the strict Random
Oracle in [CJS14, CDG+18], unfortunately, such random oracle does not suf-
fice to design UC-Commitment schemes [CF01, CJS14]. Therefore, by giving
the simulator only the capability of observing adversarial queries, we aim to
provide a UC security proof assuming the weakest conditions possible on a non-
programmable global random oracle.

We remark that it is possible to achieve Commitment schemes from the OT
primitive [Kil88, GIKW14, CDD+16], and some UC OT protocols were proposed
in the past (e.g., [PVW08]). However, we are not aware of any (fully-secure)
OT scheme in the gRO model proposed in the literature.

2 Contributions of this work

We start by presenting a new type of adaptive security, which we call phase-
adaptive security. Then, we schematically present our framework and explain
how it can be instantiated with trapdoor functions based on several different
hard problems.

2.1 Phase-adaptive security

Most works in literature consider either static or adaptive adversaries. The
difference between these two types of adversaries is the moment when they are
allowed to interfere in the protocol. While the first type corrupts parties at the
beginning of the protocol, the latter may corrupt parties at any point, or even
after its execution. The notion of adaptive adversary is quite powerful and,
thus, it is more sparsely found in the literature.

In this work, we present a new notion of corruption in the UC-framework,
which we call phase-adaptive corruption due to its characterization. Phase-
adaptive adversaries are a particular case of adaptive adversaries that can cor-
rupt parties at the beginning, but also after the beginning of the protocol (in
opposition to static security). However, corruption is only allowed between
phases of the protocol, and not at any point of the protocol (as in the adaptive
case). With this new relaxed way of modeling adversaries, we aim to extend
this binary notion (static/adaptive) to a more broad spectrum.

The phases should be defined a priori in the ideal functionality, and hence,
they should also be defined in the protocol. In fact, when defining an ideal
functionality, it is standard to explicitly label phases for sequential segments of
the protocol.3 These might be seen as different functionalities, which depend on
the internal state of each other. For example, consider the case of a Commitment
scheme. As explained above, a Commitment scheme is composed of two phases,

3Examples of such cases are the Commitment and the Commit-and-Prove functionalities
defined in [CLOS02], or Joint Gate Evaluation defined in [GMY04].

3

a commitment phase, and an opening phase, and, clearly, the first one must
precede the latter.

The intuition behind this new adversarial model is that, in practice, it is
much more likely that a party gets corrupted between phases of the protocol
(where a relatively long period of time may elapse), rather than during the
execution of a phase (where the period of time between rounds, that is, the
time between a message being exchanged from one party to the other, is rela-
tively short). To see this, consider again the case of Commitment schemes: A
committer C commits to a message M and, after some time (say several hours,
days or even years), C wants to open M . It is more plausible that some party
involved in the protocol gets corrupted between the commitment and opening
phases rather than during the execution of any of them. Another relevant ex-
ample is the one of Perfect Forward Secrecy, in the context of Key Exchange,
where we want to prevent an adversary that corrupts the parties from obtaining
previously established shared session keys. In fact, the notion of phase-adaptive
security was already implicitly considered in [CK02], when discussing Perfect
Forward Secrecy.

Remarkably, this type of adversaries was never explicitly considered in pre-
vious works. However, we believe that considering phase-adaptive adversaries
is quite natural and intuitive.

Observe that, for protocols whose phases consist of solely one round, as
the case of Non-Interactive Commitment schemes, the notions of adaptive and
phase-adaptive security coincide.

2.2 Framework for UC-Commitment

We first define a new class of trapdoor functions, which we call Sampleable-
Range Trapdoor Functions (SRTF). In a nutshell, an SRTF is a trapdoor func-
tion F : X → Y such that we are able to find preimages for a non-negligible
fraction of elements in Y. To this end, consider an SRTF F to be such that the
density of the set F (X) in Y is, at least, 1/p(κ) where p(κ) is some polynomial
and κ is the security parameter. This implies that, given an SRTF F , for a uni-
formly random element y ∈ Y, there is a non-negligible probability of existing
x ∈ X such that F (x) = y.

As our main result, we propose a framework for UC-Commitment schemes
using SRTF. The framework is schematically presented in Figure 1 (commitment
phase) and Figure 2 (opening phase).

A UC-Commitment scheme must be both extractable, meaning that the
simulator must be able to extract the message in the commitment phase, and
equivocal, i.e., the simulator must be able to open any message in the opening
phase [CF01]. In our scheme, the simulator can extract the message M since
a corrupted committer needs to query the gRO on an input containing M (and
the simulator has access to adversarial queries). To equivocate, the simulator
first extracts the trapdoor, which is queried to the gRO, and then, using the
fact that F is an SRTF, it can find a valid opening for any message.

4

Committer C Receiver R

(F, td)← TdGen(1κ)
y ← gRO(td, t0)

r1, r2←$X
x1 ← gRO(M, t1)
x2 ← gRO(M, r1, t2)
c1 = F (r1) + x1

c2 = F (r2) + x2

F, y

c1, c2

Figure 1: Commitment phase. The algorithm TdGen generates an SRTF F :
X → Y along with the trapdoor td, M is the message C is committing to, gRO
is the global random oracle. t0, t1, t2 are random strings and κ denotes the
security parameter.

Committer C Receiver R

x3 ← gRO(M, r1, r2, x1, t3)

gRO(td, t0)
?
= y

c1
?
= F (r1) + gRO(M, t1)

c2
?
= F (r2) + gRO(M, r1, t2)

x3
?
= gRO(M, r1, r2, x1, t3)

x3

td, t0

M, r1, r2, t1, t2, t3

Figure 2: Opening phase. t3 is a random string. By x
?
= y, we denote the

experiment of testing if x is equal to y. If the test fails, the party running the
experiment aborts the protocol.

Our framework can be viewed as a generalization of the UC-Commitment
scheme of [CJS14]. However, using an SRTF in a generic way (instead of a
trapdoor Pedersen Commitment scheme, as in [CJS14]) allows us to obtain
UC-Commitment schemes from numerous hardness assumptions and to heavily
improve on efficiency.

Concrete instantiations. We impose extremely weak conditions on the trap-
door function used in the generic construction. Hence, in order to show the
versatility of our framework, we present multiple instantiations of our generic
constructions using trapdoor functions based on different hardness assumptions.

We show how to instantiate the framework using standard factoring-based
trapdoor functions such as the RSA cryptosystem [RSA78], discrete log trap-
door functions [PS09], and Rabin’s cryptosystem. Moreover, we take advan-

5

tage of SRTF, whose security is based on assumptions believed to be robust
even against quantum adversaries. Particularly, we show constructions of UC-
Commitment schemes from code-based and lattice-based assumptions (using the
trapdoor functions of [CFS01] and [GPV08], respectively). As far as we know,
our construction yields the first ever UC-Commitment whose security is based
on lattice assumptions (thus, resisting quantum adversaries) in the gRO model.4

2.3 Open problems

Our generic construction for UC-Commitment cannot be proven secure against
adaptive adversaries: Observe that, after the first round of the opening phase,
it is impossible for a simulator to come up with a valid internal state for the
committer. We leave as future work to design a generic construction using
trapdoor functions that is adaptively secure.

As mentioned before, for protocols whose phases consist of solely one round,
the notions of adaptive and phase-adaptive coincide. However, we conjecture
that this does not hold in general. For example, our scheme cannot be proven
secure against adaptive adversaries, despite the fact that we do not know an
adaptive adversary that is able to break it. We leave as future work to prove
the separation between these two types of adversaries.

3 Preliminaries

Throughout this work, κ denotes the security parameter. We abbreviate prob-
abilistic polynomial-time algorithm as PPT. If A is an algorithm, y ← A(x)
denotes running A on input x yielding y as output. If S is a finite set, x←$S
denotes sampling x from S according to the uniform distribution and |S| de-
notes its cardinality. A function is negligible in κ, written negl(κ), if it vanishes
faster than 1/poly(κ) where poly(κ) is any polynomial in κ.

We denote by

Pr

A
∣∣∣∣∣∣∣
B1

...
Bn


the probability of event A given that events B1, . . . , Bn happened sequentially.

Let X and Y be two probability distributions. By X ≈ Y we denote that
X and Y are computationally indistinguishable.

3.1 Trapdoor functions

Definition 1 (Trapdoor Function). A Collection of Trapdoor Functions is a
tuple of algorithms (TdGen,Eval, Invert) such that:

4As mentioned before, we are aware of several generic compilers for UC-Commitment
schemes [Kil88, GIKW14, CDD+16]. All of them use OT as a building block and we are not
aware of any OT scheme secure in the gRO model.

6

• TdGen(1κ) outputs a pair (F, td);

• For x ∈ X , Eval(F, x) returns y = F (x) ∈ Y where F : X → Y is a
trapdoor function. To ease the presentation, we will usually write F (x)
to denote the experiment of running Eval(F, x);

• For every (F, td) ← TdGen(1κ) and every x ∈ X , Invert(td, F, F (x)) out-
puts x′ ∈ X such that F (x) = F (x′), except with negligible probability.

For every PPT adversary A, we say that the Collection of Trapdoor Func-
tions (TdGen,Eval, Invert) is secure if

Pr

F (x) = F (x′)

∣∣∣∣∣∣
(F, td)← TdGen(1κ)
y ← F (x)
x′ ← A(F, y)

 ≤ negl(κ)

for every x ∈ X .

Let (F, td)← TdGen(1κ) and y ∈ Y. If there is no x ∈ X such that F (x) = y,
then running Invert(td, F, y) gives an error message ⊥ as output.

An Almost-Surjective Trapdoor Function (ASTF) is a trapdoor function
F : X → Y such that, given any y ∈ Y, there is, at least, one x ∈ X with image
y, except with negligible probability.

Definition 2 (Almost-Surjective Trapdoor Function). A Collection of Trap-
door Functions (TdGen,Eval, Invert) is a Collection of Almost-Surjective Trap-
door Functions (ASTF), if for every (F, td) ← TdGen(1κ), where F : X → Y,
we have the following:

For every y ∈ Y,

Pr [⊥← Invert(td, F, y)] ≤ negl(κ) .

We relax the notion of ASTF by requiring only that a non-negligible fraction
of elements in Y have preimages. In other words, we want that the density of
F (X) in Y to be non-negligible, that is, |F (X)|/|Y| ≥ 1/p(κ), where p(κ) is some
polynomial in poly(κ) and κ is the security parameter. We call such a family
of trapdoor functions Sampleable-Range Trapdoor Functions, and we formalize
this notion below. Informally, an SRTF ensures that, when choosing an element
uniformly at random from its codomain Y, the probability of existing an element
in its domain with such image is non-negligible.

Definition 3 (Sampleable-Range Trapdoor Function). Let p be some poly-
nomial and y←$Y be an element chosen uniformly from Y. A Collection of
Trapdoor Functions (TdGen,Eval, Invert) is a Collection of Sampleable-Range
Trapdoor Functions, if for every (F, td) ← TdGen(1κ), where F : X → Y, we
have

Pr [⊥← Invert(td, F, y)] ≤ 1− 1

p(κ)
.

7

From the definition above, we have that the probability of algorithm Invert
outputting something other than ⊥ is at least 1/p(κ). This means that, if we
sample elements of Y uniformly at random and try to invert them, the expected
number of trials until we obtain an element x ∈ X (and not an error message
⊥) is p(κ).

It is clear that an ASTF is an SRTF, while the converse may not be true
(examples are given in Section 6).

3.2 Universal Composability

The Universal Composable (UC) framework [Can01] has been widely adopted
to analyze the security of cryptographic primitives. This framework allows
proving the security of a protocol, even under arbitrary composition with other
protocols. Here, we will give a brief description, for more details see [Can01].

Let F be an ideal functionality, and π be a protocol implementing the same
primitive. Let Z be an environment, an entity that determines the inputs to the
parties involved in the protocol, and has the outputs of these parties revealed
to it. In a nutshell, we say that π implements F if no environment Z can
distinguish between the real-world execution of π and the ideal-world execution
of F (see Figure 3).

Z

A P1 · · · Pn

π
Real world

Z

S P1 · · · Pn

F

Ideal world

Figure 3: UC framework: In the real-world, an adversary A can corrupt parties
and control them. In the ideal-world, we also have an adversary S, usually called
the simulator. We say that a protocol π UC-realizes an ideal functionality F if,
for any PPT adversaryA running in the real-world, there is a PPT simulator S in
the ideal world such that no PPT environment Z can distinguish the executions.

Global Random Oracle. In this paper, we work in the Global Random Ora-
cle (gRO) model [CJS14]. The idea of this model is that a unique global random
oracle is available for every party involved in the protocol. Thus, the simulator

8

is incapable of programming the oracle, having only access to the queries made
by adversaries in the real-world execution. This model has also been studied
in [CDG+18], where it is called Restricted Observable Random Oracle. A for-
mal description of the gRO ideal functionality GgRO is described in Figure 4, as
in [CJS14].

GgRO functionality

• Parameters: List F̄ of ideal functionalities, output size p(κ)
where p is a polynomial, and two initially empty lists Q and
Q|sid.

• Upon receiving a query q from P = (pid, sid) or from S do:

– If (q, h) ∈ Q, then return h to P. Else, choose
h←$ {0, 1}`(κ), store (q, h) ∈ Q and return h to P.

– Parse q as (s, q′). If sid 6= s, store (s, q′, h) ∈ Q|sid.

• Upon receiving a message with sid from an instance of an ideal
functionality in F̄ , return Q|sid.

Figure 4: GgRO ideal functionality.

Let IDEALF,S,Z denote the output of the environment Z after the ideal-

world execution of F with adversary S, and EXEC
GgRO
π,A,Z the output of Z after

the real-world execution of π with adversary A, where every party has access to
the ideal functionality gRO (the environment has access through A). Security
in the gRO-hybrid model is defined as follows.

Definition 4 ([CJS14]). Let π be a protocol with n parties, and an adversary
A. We say that π UC-realizes F in the GgRO-hybrid model if for every PPT
adversary A there is a PPT simulator S such that for all PPT environments Z,

IDEAL
GgRO
F,S,Z ≈ EXEC

GgRO
π,A,Z

where F is an ideal functionality.

Moreover, we also give the formal description of the Commitment ideal func-
tionality Ftcom in Figure 5, as in [CJS14]. Here, S denotes the simulator in the
ideal-world execution.

3.3 Adversarial model

In this work, we consider phase-adaptive malicious adversaries. Malicious adver-
saries are a class of adversaries that may arbitrarily deviate from the protocol.
Phase-adaptive adversaries are adversaries that may corrupt between phases of
the protocol. We elaborate more on this below.

9

Ftcom functionality

• Commitment phase: Upon receiving (commit, sid,C,R,M)
from C, Ftcom stores (sid,C,R,M) and sends (receipt, sid,C,R)
to R and S. It ignores any future commit messages with the
same sid.

• Opening phase: Upon receiving (open, sid,C,R) from C,
Ftcom checks if it has stored (sid,C,R,M). If so, it sends
(open, sid,C,R,M) to R and to S. Else, it does nothing.

• When S queries Ftcom for the list Q|sid of GgRO, it returns Q|sid.

Figure 5: Ftcom ideal functionality.

Phase-adaptive security. As explained in Section 2.1, an ideal functionality
F may be divided in several phases (e.g., Bit Commitment). A phase-adaptive
adversary is an adversary that can corrupt at the beginning or between the
phases of the protocol. Hence, at the beginning of the protocol and after the
execution of each phase (in the real and ideal worlds), there is a corruption
phase, where A (resp., S) can corrupt honest parties involved in the protocol in
the real-world (resp., ideal world). This corruption phase is instantaneous and
marks the point where corruption might happen. Corruption in any other point
in the protocol is off-limits to an adversary.

We model adversaries precisely as in the adaptive case [CDD+04]. More
precisely, an adversary A after corrupting a party in the real-world execution
gets its internal state and controls it from then on. Similarly, the simulator S,
after corrupting a party in the ideal-world, also gets its internal state. Corrupted
parties remain so until the end of the protocol.

4 UC-Commitment from Trapdoor Functions

We present our generic construction for UC-Commitment based on SRTF. Also,
we prove that the construction is perfectly hiding and computationally binding.

4.1 Construction

Let (Y,+) be a group. Let (TdGen,Eval, Invert) be a Collection of Sampleable-
Range Trapdoor Funcions with F : X → Y. We interpret the outputs of gRO
as elements in Y.

We assume the existence of an algorithm Ver for the Collection of Trapdoor
Functions (TdGen,Eval, Invert) such that Ver(F, td) = 1, if (F, td)← TdGen(1κ),
and Ver(F, td) = 0, otherwise. Note that this is the case for most of the existing
trapdoor functions, as the ones presented in Section 6.

Since we want to avoid an all-powerful adversary from knowing preimages of

10

gRO, we concatenate uniformly chosen random strings ti to the queries qi. The
size of these strings is chosen such that there exists exponentially many possible
strings x = qi|ti with the given size satisfying gRO(x) = y, for every y.In this
way, the probability of a computationally-unbounded adversary guessing the
preimage of an element y is negligible in κ.5

Suppose we have two parties, C and R, and C wants to commit to a message
M ∈ {0, 1}λ.

Commitment phase.

1. R computes (F, td) ← TdGen(1κ) and y ← gRO(td, t0). It sends (F, y) to
C.

2. C chooses r1, r2←$X and computes

x1 ← gRO(M, t1) and x2 ← gRO(M, r1, t2).

Then, it computes

c1 = F (r1) + x1 and c2 = F (r2) + x2

and sends (c1, c2) to R.

Opening phase.

1. C computes x3 ← gRO(M, r1, r2, x1, t3) and sends x3 to R.

2. R replies with (td, t0).

3. C checks if gRO(td, t0) = y and aborts if the test fails. Otherwise, it sends

(M, r1, r2, t1, t2, t3)

and halts.

4. R accepts the opening if
c1 = F (r1) + gRO(M, t1)

c2 = F (r2) + gRO(M, r1, t2)

x3 = gRO(M, r1, r2, x1, t3).

Otherwise, it rejects. Finally, it halts.

5For example, if x′, y ∈ {0, 1}κ, we use random strings ti of size {0, 1}κ such that x =
x′|ti ∈ {0, 1}2κ is the concatenation of x′ and ti. Thus, we have an expected 2κ possibilities
for the preimage of any y ∈ {0, 1}κ.

11

Efficiency. Let `X be the size of the elements of X , and `Y be the size of the
elements of Y (and consequently of the output of gRO). Let ν be the size of the
random strings ti.

The efficiency of the scheme heavily depends on the underlying SRTF. So,
we describe the size of the SRTF, generically, as a function of the security
parameter, i.e. (F, td) having size ftd(κ).

• Commitment phase: two rounds, where ftd(κ) + 3`Y bits are exchanged.

• Opening phase: three rounds, where ftd(κ) + 4ν + λ + 2`X + `Y bits are
exchanged.

Communication complexity Computation complexity

O (ftd(κ) + ν + λ+ `X + `Y)
8 calls to gRO
1 run of TdGen
4 evaluations of F

Table 1: Complexity analysis of our framework.

4.2 Security

Theorem 5. Let (TdGen,Eval, Invert) be a collection of SRTF. Then, the scheme
is perfectly hiding and computationally binding in the gRO model.

Proof. We need to show that the hiding property holds for any adversary, even
if it has unbounded computational power, and that the binding property holds
for any PPT adversary.

(Perfectly) Hiding property. The commitment corresponds to the values
c1 = F (r1) + gRO(M, t1) and c2 = F (r2) + gRO(M, r1, t2). Observe that the
message is always hidden by gRO. More precisely, the message is hidden by
the queries (M, t1) and (M, r1, t2). From the assumption on t1 and t2, there is
a negligible probability that an adversary, even with unlimited computational
power, finds (M, t1) when given y ← gRO(M, t1), since there are an exponential
number of queries of the form (M ′, t′1) such that y ← gRO(M ′, t′1). The same
applies for (M, r1, t2). Hence, the message is perfectly hidden from R.

Binding property. For the sake of contradiction, suppose that there is a PPT
adversary A that can come up with a commitment such that A can open two dif-
ferent messages. That is, A finds c1, c2 and two openings, (x3, (M, r1, r2, t1, t2, t3))
and (x′3, (M

′, r′1, r
′
2, t
′
1, t
′
2, t
′
3)), such that:

1. M 6= M ′,

2. x3 = gRO(M, r1, r2, x1, t3) and x′3 = gRO(M ′, r′1, r
′
2, x
′
1, t
′
3),

12

3. c1 = F (r1) + gRO(M, t1) = F (r′1) + gRO(M ′, t′1),

4. c2 = F (r2) + gRO(M, r1, t2) = F (r′2) + gRO(M ′, r′1, t
′
2).

Observe that, if r1 = r′1 or r2 = r′2, then A is able to find collisions for
gRO. If r1 = r′1, then gRO(M, t1) = gRO(M ′, t′1) and, analogously, if r2 = r′2
then gRO(M, r1, t2) = gRO(M ′, r′1, t

′
2). Thus, r1 6= r′1 and r2 6= r′2, except with

negligible probability.
Now, without loss of generality, let us fix r1 ∈ X and any two messages M

and M ′. In order to find another valid opening that fulfills the conditions, A
must be able to find r′1 such that F (r′1) = z = F (r1)+gRO(M, t1)−gRO(M ′, t′1).
First, note that the distribution of z is uniform in Y since the outputs gRO are
uniform in Y. This means that, if A is able to find such r′1, then it is able to
invert F for a uniformly random z. However, since F is a trapdoor function, it
is infeasible for A to invert F , except with negligible probability.

The same argument can be adapted to the condition in Item 4.
Hence, we conclude that it is infeasible for a PPT A to open two different

messages for any commitment (c1, c2), except with negligible probability.

5 Simulation

In this section, we demonstrate how to construct the simulator to prove that
the scheme is Universally Composable. We first describe the simulator for static
adversaries and then for phase-adaptive adversaries.

Theorem 6. The protocol securely UC-realizes Ftcom against phase-adaptive
malicious adversaries in the GgRO-hybrid model, given that (TdGen,Eval, Invert)
is a Collection of SRTF.

As usual, the simulator S simulates the communication between the real-
world adversary A and the environment Z by writing all messages received
from Z in A’s input tape, and by forwarding all messages from A to Z.

The trivial case where both parties are corrupted by A, S simply runs A and
lets it generate all the transcript between C and R, forwarding all the messages
to Z.

5.1 Simulation when only C is corrupted

When C is corrupted, the simulator S extracts the message that C is committing
to, and sends this message to the ideal functionality Ftcom. Extraction is pos-
sible by the fact that C needs to query gRO on M and on (M, r1). Otherwise,
it is not able to open a valid message in the opening phase.

Commitment phase. In the commitment phase, S proceeds as follows:

• It runs TdGen and gets (F, td). It queries gRO on (td, t0) and sets the
output to y. It sends (F, y) as the honest R would do.

13

• Upon receiving (c1, c2) from C, it asks for Q|sid to Ftcom. It checks
if there are queries (M, t1) and (M, r1, t2) such that c1 = F (r1) + x1

where x1 ← gRO(M, t1). If so and if these queries are unique, it sets
M∗ = M . Else, it chooses M∗←$ {0, 1}λ. Finally, it sends the message
(commit, sid,C,R,M∗) to Ftcom.

Opening phase. In the opening phase, S proceeds as follows:

• Upon receiving x3 from C, S reveals (td, t0) to C, as the honest R would.

• Upon receiving (M, r1, r2, t1, t2, t3), S checks if
c1 = F (r1) + gRO(M, t1)

c2 = F (r2) + gRO(M, r1, t2)

x3 = gRO(M, r1, r2, x1, t3)

and aborts if any of these tests fail, as the honest R would. Moreover, it
checks whether M = M∗. If the test fails, S aborts the execution. Else, it
sends the message (open, sid,C,R) to Ftcom and halts.

Indistinguishability of executions. Both the real-world and ideal-world
executions are indistinguishable from the point-of-view of Z, unless Q|sid has
no queries (M, t1) and (M, r1, t2) such that c1 = F (r1) + x1, where x1 ←
gRO(M, t1). However, in this case, the probability of C opening a valid message
is negligible. More precisely, given c1, it is infeasible for C to find an opening
(M, r1, r2, t1, t2, t3) such that c1 = F (r1) + x1 without either breaking the secu-
rity of the underlying SRTF (as in the proof of Theorem 5) or finding collisions
for gRO.

Also, remark that the queries (M, t1) and (M, r1, t2) fulfilling these condi-
tions are unique, except with negligible probability. Otherwise, the binding
property would not hold.

5.2 Simulation when only R is corrupted

When R is corrupted, the simulator S needs to commit to any message M in
the commitment phase (e.g., M = 0λ). After receiving the message M∗ from
Ftcom (most likely, different from M), S needs to equivocate the real-world R
and open M∗.

Commitment phase. In the commitment phase, S proceeds as follows:

• Upon receiving a message (receipt, sid,C,R) from Ftcom, it starts running
A.

• Upon receiving a message (F, y) from R, S commits to the message M = 0λ

by following the protocol.

14

Opening phase. In the opening phase, S proceeds as follows:

• Upon receiving a message (open, sid,C,R,M∗) from Ftcom, S asks Ftcom

for Q|sid. It checks if there is a query q in Q|sid whose output is y. Now,
there are two cases to consider:

1. If this query exists, it parses q = (td, t0) and sets td∗ = td. It
computes r∗1 ← Invert(td, F, c1 − x∗1), where x∗1 ← gRO(M∗, t∗1). If
r∗1 =⊥, S chooses a new random string t∗1 and tries again. It repeats
this process until r∗1 6=⊥. Note that, since F is SRTF, then S can
find r1 6=⊥ in a polynomial number of tries.

Then, it computes r∗2 ← Invert(td, F, c2−x∗2), where x∗2 ← gRO(M∗, r∗1 , t
∗
2).

Again, it repeats the process until r∗2 6=⊥, by choosing a new random
string t∗2 at each new try. It queries gRO on (M∗, r∗1 , r

∗
2 , x
∗
1, t
∗
3), where

t∗3 is a random string, and sets the output to x3.

2. If there is no such query, it sets td∗ =⊥, where ⊥ is an error message.
Also, it chooses uniformly at random x3.

It sends x3 to R.

• Upon receiving (td, t0) from R, S checks if y = gRO(td, t0). If not, aborts
the execution. Else, there are again two cases to consider:

1. If td∗ = td, it reveals (M∗, r∗1 , r
∗
2 , t
∗
1, t
∗
2, t
∗
3) to R.

2. Else, it chooses random values for M∗, r∗1 , r∗2 , t∗1, t∗2, and t∗3, and
reveals them to R.

It halts the execution.

Indistinguishability of executions. Both the real-world and ideal-world
executions are indistinguishable from the point-of-view of Z unless td∗ 6= td.
However, if td∗ 6= td, then R is able to find a collision for gRO,which happens
only with a negligible probability. So the two executions are indistinguishable,
except with negligible probability.

5.3 Simulation when neither party is corrupted

When both parties are honest, S generates all the messages between the real-
world C and R. Since S generates the messages, it has access to the trapdoor td
of F and, thus, it can open any message that it wants (as in the case where only S
is corrupted). More precisely, it can open the same message that the ideal-world
C opens. It is straightforward to see that this case is indistinguishable from the
ideal-world execution, since the transcript created by S is indistinguishable from
a honestly generated one.

15

5.4 Phase-adaptive corruption of C

In this case, we assume C gets phase-adaptively corrupted, that is, it may be
corrupted before the commitment phase or exactly during the period between
the commitment and opening phase. Note that in the case of Commitment
schemes, it does not make sense to consider post-execution corruption, as there
is no secret information subsequent to the protocol.

There are two cases to consider: C is corrupted before the commitment
phase, or C is corrupted between the commitment and the opening phases. In
each case, S plays the role of C until the corruption happens. At that point, it
has to deliver an internal state for C to A. This state must be coherent with
both the transcript and C’s input.

C is corrupted before the commitment phase. There are two possibilities:

1. If R is corrupted then S behaves as in the case where both parties are
statically corrupted.

2. If R is not corrupted then S behaves as in the case where C (but not R) is
statically corrupted.

Indistinguishability of executions. Since the probability of opening a valid
message without making any query to the gRO functionality, even for phase-
adaptive adversary corrupting C, is negligible, the same argument of static cor-
ruption applies here.

C is corrupted before the opening phase. In this case, A corrupts C after
the commitment phase but before the opening phase. S runs the protocol hon-
estly committing to M = 0λ and sending c1, c2 to R. S corrupts the committer
C∗ in the ideal-world and gets its internal state. In particular, it gets M∗, the
message that C∗ is committing to. There are three cases to consider:

1. If R is corrupted since the beginning of the protocol, then S asks for
Q|sid and extracts the trapdoor td. Now it can equivocate (as in the
case where R is statically corrupted) and find r∗1 , r∗2 , t∗1 and t∗2 such that
c1 = F (r∗1) + gRO(M∗, t∗1) and c2 = F (r∗2) + gRO(M∗, r∗1 , t

∗
2). In other

words, (M∗, r∗1 , r
∗
2 , t
∗
1, t
∗
2) is a coherent internal state for C between phases.

From now on, S behaves as in the case where both parties are statically
corrupted.

2. If R is corrupted, but not since the beginning of the protocol (that is,
R is also corrupted between both phases), then S simulates the protocol
up to this point and, thus, it has the trapdoor for F which allows for
equivocation. Therefore, it can proceed as before to reveal a valid internal
state of C to A. From now on, S behaves as in the case where both parties
are statically corrupted.

3. If R is not corrupted, then S also has the trapdoor. From now on, S
behaves as in the case where C is statically corrupted.

16

Indistinguishability of executions. Since R needs to commit to a trapdoor,
except with negligible probability, then S is always able to open a valid message.
So, the same argument used for static corruption can also be applied here.

5.5 Phase-adaptive corruption of R

In this case, we prove security when R gets phase-adaptively corrupted. We
describe how S is able to create a transcript up to the point of corruption,
such that it can deliver an internal state of R to A that is coherent with that
transcript.

R is corrupted before the commitment phase. Again, there are two cases
to consider:

1. If C is corrupted then S behaves as in the case where both parties are
statically corrupted.

2. If C is not corrupted then S behaves as in the case where R (but not C) is
statically corrupted.

R is corrupted before the opening phase. In this case, A corrupts R after
the commitment phase but before the opening phase. Then, S corrupts the ideal
R∗ and gets its internal state. Since S has generated the pair (F, td) being used,
it can reveal this information to A, which is a coherent internal state with the
one of R. Note that this is independent of whether the committer is corrupted
or not.

Indistinguishability of executions. Again, the argument is similar to the
case where parties are statically corrupted. That is, the inability to find a
collision or a preimage in gRO up to a negligible probability guarantees the
indistinguishability of the executions in the real and ideal-worlds.

6 Instantiations

In order to demonstrate the versatility of our framework, we present several in-
stantiations from well-known collections of Trapdoor Functions that may be
found in the literature. From our generic construction, we construct UC-
Commitment schemes based on the RSA assumption, Trapdoor Discrete Log
groups, lattice-based and code-based assumptions. As far as we know, this is
the first time a UC-Commitment based on lattice-based assumptions is pro-
posed.

Nevertheless, possible instantiations of the framework are not limited to the
ones presented here. For instance, a recent line of research has found trapdoor
functions based on the hardness of the Decisional Diffie-Hellman and Compu-
tational Diffie-Hellman (e.g., [PW08, GH18, GGH18]), which are adequate for
our framework.

17

6.1 Realizations from factorization-based assumptions

There are numerous trapdoor functions whose security is based on the hardness
of factorization (or similar problems). Here, we present examples using the RSA
cryptosystem, Trapdoor Discrete Log groups, and Rabin’s Quadratic Residue
cryptosystem.

6.1.1 RSA

We show how to instantiate our framework using the well-known RSA cryp-
tosystem. Let Φ denote Euler’s totient function. We first present the RSA
problem.

Definition 7 (RSA). Let p, q ∈ N be two different primes and n = pq. Let
e, d ∈ ZΦ(n) such that ed ≡ 1 mod Φ(n). The RSAn problem is ε-hard, if for
every PPT algorithm D we have

Pr[m← D(n, e,me mod n)] ≤ ε.

Lemma 8 ([RSA78]). Let p, q ∈ N be two different prime numbers such that
RSAn is hard, for n = pq. There exists an algorithm TdGen that receives as
input (p, q) and outputs a pair (e, td = d) where e ∈ ZΦ(n) and td = d is a
trapdoor for e such that ed ≡ 1 mod Φ(n). The Eval algorithm takes x ∈ Zn
and computes xe mod n. The Invert algorithm takes as input y ∈ Zn and
computes yd mod n.

It is trivial to see that this is a Collection of ASTF: to find the preimage of
z ∈ Zn, one has to compute zd. It is evident that F (zd) = z.

6.1.2 Trapdoor Discrete Log

There are groups for which it is easy to compute discrete logarithms with some
additional help, that is, a trapdoor. The study of these groups goes back to the
work of Gordon [Gor93]. However, as far as we know, the notion of Trapdoor
Discrete Log groups was just formalized in [PS09]. In this work, we use the
Trapdoor Function of [PS09] to instantiate our framework.

Lemma 9 ([PS09]). Let p, q ∈ N be two different prime numbers such that
p ≡ 3 mod 4, q ≡ 1 mod 4, gcd(p − 1, q − 1) = 2 and n = pq, such that the
RSAn is hard. Let g be such that g mod p is primitive in Zp and g mod q
is primitive in Zq, and let G be a subgroup of Zn. There exists an algorithm
TdGen that receives as input (p, q) and outputs a pair (g, td) where td = (p, q) is
the trapdoor. The Eval algorithm takes x as input and computes gx ∈ G. The
Invert algorithm takes as input y ∈ Zn and td and computes x such that gx = y.

Since g is a generator of G, every y ∈ G can be written as y = gx, meaning
that every element can be inverted using the trapdoor. We conclude that this
collection is, in fact, a Collection of ASTF.

18

Comparison. The scheme of [CJS14], which is based on the Discrete Log (DL)
problem, requires ten exponentiations and six calls to the gRO. In contrast, our
scheme, when instantiated using Trapdoor Discrete Log groups, requires four
exponentiations and six calls to the gRO. Our scheme also involves generating
a trapdoor function, that is, it requires the generation of two primes p, q and
the generation of g.

We remark that, although both schemes are based on modular exponen-
tiations, the underlying hardness assumptions are different. The security of
our scheme is based on the RSAn problem, while the security of the scheme
in [CJS14] is based on the hardness of the DL problem.

6.1.3 Rabin’s Quadratic Residue

Definition 10 (Quadratic Residuosity). Let p, q ∈ N be two different primes
such that p, q ≡ 3 mod 4 and n = pq. Let y ≡ x2 mod n. The QRn problem
is ε-hard if for every PPT algorithm D we have

Pr[x← D(n, y)] ≤ ε.

Lemma 11. Let p, q ∈ N be two different prime numbers such that p, q ≡
3 mod 4. There exists an algorithm TdGen that receives as input (p, q) and
outputs a pair (F, td = (p, q)). The Eval algorithm takes x ∈ Zn and computes
x2 mod n. The Invert algorithm takes as input y ∈ Zn and (p, q) and outputs
x ∈ Zn such that x2 ≡ y mod n.

The number of quadratic residues in Zn is (n − 1)/2. So, this defines a
Collection of SRTF.

6.2 Realization from lattice-based assumptions

Lattices are prevalent structures in post-quantum cryptography. Since lattice-
based trapdoor functions were first constructed in [GPV08, MP12], we can use
them to obtain UC-Commitment schemes. We recall that our generic construc-
tion yields the first lattice-based UC-Commitment scheme (not constructed via
generic transformations, like OT).

We present the Small Integer Solution (SIS) problem, which is the foundation
of the trapdoor function used to instantiate our framework. Let ‖x‖ denote the
usual `2 norm of a vector in Znq .

Definition 12 (Small Integer Solution). Let q ∈ Z, A ∈ Zn×mq and β ∈ R. The
SISq,m,β problem is ε-hard if for every PPT algorithm D we have

Pr[e← D(q,A, β)] ≤ ε

such that e ∈ Zmq , ‖e‖ ≤ β and Ae = 0 mod q.

The Inhomogeneous Small Integer Solution (ISIS) problem is defined simi-
larly, but D is additionally given u ∈ Znq and the goal is to find e ∈ Zmq such
that ‖e‖ ≤ β and Ae = u mod q.

19

Lemma 13 ([GPV08]). Let m,n, q ∈ N such that m > 5n log q and s ≥
Lω
(√

logm
)

where L = m2.5, such that ISISq,m,β is hard. There exists an
algorithm TdGen that receives as input (m,n, q) and outputs a pair (A, td)
where A ∈ Zn×mq is a matrix and td is a trapdoor (that is, a good basis) for A
with the following properties:

• There is an algorithm Eval which takes A and e, and outputs Ae. And,
an algorithm Invert that takes as input td, A and a word z ∈ {0, 1}n. It
outputs e ∈ Zmq such that Ae = z mod q and ‖e‖ ≤ s

√
m

• A is indistinguishable from a uniformly chosen matrix in Zn×mq , given that
ISISq,m,β is hard

Since in the collection of trapdoor functions described in Lemma 13 the
algorithm Invert never fails. It is, in fact, a Collection of ASTF.

6.3 Realization from code-based assumptions

Lastly, we show that we can obtain UC-Commitment schemes from code-based
assumptions. We present the Syndrome Decoding and Goppa Distinguisher
assumptions. Let Bn

ω = {e ∈ Zn2 : w(e) ≤ ω}.

Definition 14 (Syndrome Decoding). Let n, k, ω ∈ N, H←$ {0, 1}(n−k)×n and
e←$Bn

ω. The SDω,n,k problem is ε-hard if for every PPT algorithm D we have

Pr
[
e← D(H,HeT)

]
≤ ε.

Definition 15 (Goppa Distinguisher). Let n, k ∈ N such that k < n. Let
Gop(n, k) be an algorithm that outputs a matrix defining a binary Goppa code
of size k × n. The GDn,k is ε-hard, if for every PPT algorithms D, we have

|Pr [1← D(A) : A← Gop(n, k)]− Pr
[
1← D(A) : A←$ {0, 1}k×n

]
| ≤ ε.

Lemma 16 ([CFS01]). Let n, k, ω ∈ N with k < n, such that SDω,n,k and
GDn,k are hard. There exists an algorithm TdGen that receives as input n, k
and ω and outputs a pair (H, td), where H ∈ {0, 1}(n−k)×n is a matrix and td is
a trapdoor (decoding algorithm) for H. Eval takes as input e ∈ Bn

ω and outputs
HeT . Invert takes as input td and HeT ∈ Zn−k2 and outputs e. This Collection
of Trapdoor Functions has the following properties:

• There is an algorithm Eval which given H and e outputs HeT . And, an
algorithm Invert that takes as input td and s ∈ {0, 1}n−k. It outputs either
e, if sT = HeT and w(e) ≤ ω, or a message error ⊥, otherwise;

• There is a non-negligible number of words z in {0, 1}n−k for which Invert(z, td)
does not output a message error ⊥;

• H is indistinguishable from a uniformly chosen matrix in {0, 1}(n−k)×n

given that the GDn,k problem is hard.

20

We remark that, while the trapdoor of [CFS01] is based on the Goppa
Distinguisher (GD) assumption, there is another trapdoor [DAST18] based on
the recently introduced problem of distinguishing generalized admissible codes
(U,U + V) from uniformly chosen codes, which is also assumed to be hard (al-
though not so well studied as the GD problem). In fact, the trapdoor of [DAST18]
also fulfills the conditions to be used in our framework.

Because the collection of trapdoor functions described in Lemma 16 some-
times fails to decode, i.e. the algorithm Invert returns ⊥, [CFS01] is a Collection
of SRTF.

Comparison. Another UC-Commitment scheme based on coding assump-
tions was proposed in [Bra19]. However, our scheme achieves a significant
improvement in efficiency, both in terms of computation and communication
complexity. Indeed, we avoid the use of Zero-Knowledge Proof (ZKP) systems,
contrarily to the UC-Commitment of [Bra19], which uses the ZKP system of
[JKPT12]. Since the ZKP system of [JKPT12] has a soundness error of 2/3,
the number of iterations needed to get a negligible soundness error is too large.
These facts give raise to a scheme that has impractical computational and com-
munication complexity, despite its theoretical value.

Acknowledgment

The authors thank Ran Canetti for discussion concerning phase-adaptive adver-
saries in the UC-framework and João Ribeiro for comments on an early draft of
this work. The first author thanks the support from DP-PMI and FCT (Por-
tugal) through the grant PD/BD/135181/2017. The second author thanks the
support from DP-PMI and FCT (Portugal) through the grant PD/BD/135182/
2017. This work is funded by the projects QuantumMining POCI-01-0145-
FEDER-031826, and QDOT POCI-01-0247-FEDER-039728.

References

[BPRS17] Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Fast
and universally-composable oblivious transfer and commitment
scheme with adaptive security. Cryptology ePrint Archive, Report
2017/1165, 2017. https://eprint.iacr.org/2017/1165.

[Bra19] Pedro Branco. A post-quantum UC-commitment scheme in the
global random oracle model from code-based assumptions. Cryp-
tology ePrint Archive, Report 2019/098, 2019. https://eprint.

iacr.org/2019/098.

[Can01] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings of the 42Nd IEEE Sympo-

21

https://eprint.iacr.org/2017/1165
https://eprint.iacr.org/2019/098
https://eprint.iacr.org/2019/098

sium on Foundations of Computer Science, FOCS ’01, pages 136–,
Washington, DC, USA, 2001. IEEE Computer Society.

[CDD+04] Ran Canetti, Ivan Damgard, Stefan Dziembowski, Yuval Ishai, and
Tal Malkin. Adaptive versus non-adaptive security of multi-party
protocols. Journal of Cryptology, 17(3):153–207, Jun 2004.

[CDD+16] Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling,
and Jesper Buus Nielsen. Rate-1, linear time and additively ho-
momorphic uc commitments. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 179–
207, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja
Lehmann, and Gregory Neven. The wonderful world of global ran-
dom oracles. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, Advances in Cryptology – EUROCRYPT 2018, pages 280–312,
Cham, 2018. Springer International Publishing.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commit-
ments. In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, pages 19–40, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg.

[CFS01] Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to
achieve a McEliece-based digital signature scheme. In Colin Boyd,
editor, Advances in Cryptology — ASIACRYPT 2001, pages 157–
174, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC
security with a global random oracle. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, pages 597–608, New York, NY, USA, 2014. ACM.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of
key exchange and secure channels. In Lars R. Knudsen, editor, Ad-
vances in Cryptology — EUROCRYPT 2002, pages 337–351, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally composable two-party and multi-party secure computa-
tion. In Proceedings of the Thiry-fourth Annual ACM Symposium
on Theory of Computing, STOC ’02, pages 494–503, New York, NY,
USA, 2002. ACM.

[DAST18] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich.
Wave: A new code-based signature scheme. Cryptology ePrint
Archive, Report 2018/996, 2018. https://eprint.iacr.org/2018/
996.

22

https://eprint.iacr.org/2018/996
https://eprint.iacr.org/2018/996

[DG03] Ivan Damgard and Jens Groth. Non-interactive and reusable non-
malleable commitment schemes. In Proceedings of the Thirty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’03, pages
426–437, New York, NY, USA, 2003. ACM.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect
binding universally composable commitment schemes with constant
expansion factor. In Moti Yung, editor, Advances in Cryptology —
CRYPTO 2002, pages 581–596, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[FLM11] Marc Fischlin, Benôıt Libert, and Mark Manulis. Non-interactive
and re-usable universally composable string commitments with
adaptive security. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, pages 468–485, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[Fuj16] Eiichiro Fujisaki. Improving practical UC-secure commitments based
on the DDH assumption. In Vassilis Zikas and Roberto De Prisco,
editors, Security and Cryptography for Networks, pages 257–272,
Cham, 2016. Springer International Publishing.

[GGH18] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New tech-
niques for efficient trapdoor functions and applications. Cryptol-
ogy ePrint Archive, Report 2018/872, 2018. https://eprint.iacr.
org/2018/872.

[GH18] Sanjam Garg and Mohammad Hajiabadi. Trapdoor functions
from the computational Diffie-Hellman assumption. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptol-
ogy – CRYPTO 2018, pages 362–391, Cham, 2018. Springer Inter-
national Publishing.

[GIKW14] Juan A. Garay, Yuval Ishai, Ranjit Kumaresan, and Hoeteck Wee.
On the complexity of UC commitments. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT
2014, pages 677–694, Berlin, Heidelberg, 2014. Springer Berlin Hei-
delberg.

[GMY04] Juan A. Garay, Philip MacKenzie, and Ke Yang. Efficient and
universally composable committed oblivious transfer and applica-
tions. In Moni Naor, editor, Theory of Cryptography, pages 297–316,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[Gor93] Daniel M. Gordon. Designing and detecting trapdoors for discrete
log cryptosystems. In Ernest F. Brickell, editor, Advances in Cryptol-
ogy — CRYPTO’ 92, pages 66–75, Berlin, Heidelberg, 1993. Springer
Berlin Heidelberg.

23

https://eprint.iacr.org/2018/872
https://eprint.iacr.org/2018/872

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Proceedings
of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, pages 197–206, New York, NY, USA, 2008. ACM.

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable
commitments using random oracles. In Moni Naor, editor, Theory
of Cryptography, pages 58–76, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes.
Commitments and efficient zero-knowledge proofs from learning par-
ity with noise. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology – ASIACRYPT 2012, pages 663–680, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 20–31, New York, NY, USA, 1988.
ACM.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commit-
ments based on the DDH assumption. In Kenneth G. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, pages 446–
466, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Sim-
pler, tighter, faster, smaller. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
pages 700–718, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[PS09] Kenneth G. Paterson and Sriramkrishnan Srinivasan. On the re-
lations between non-interactive key distribution, identity-based en-
cryption and trapdoor discrete log groups. Designs, Codes and Cryp-
tography, 52(2):219–241, Aug 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In David Wag-
ner, editor, Advances in Cryptology – CRYPTO 2008, pages 554–
571, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing, STOC ’08, pages 187–196, New York, NY,
USA, 2008. ACM.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, February 1978.

24

	Introduction
	Previous work

	Contributions of this work
	Phase-adaptive security
	Framework for UC-Commitment
	Open problems

	Preliminaries
	Trapdoor functions
	Universal Composability
	Adversarial model

	UC-Commitment from Trapdoor Functions
	Construction
	Security

	Simulation
	Simulation when only C is corrupted
	Simulation when only R is corrupted
	Simulation when neither party is corrupted
	Phase-adaptive corruption of C
	Phase-adaptive corruption of R

	Instantiations
	Realizations from factorization-based assumptions
	RSA
	Trapdoor Discrete Log
	Rabin's Quadratic Residue

	Realization from lattice-based assumptions
	Realization from code-based assumptions

