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Abstract

A secret-sharing scheme is a method by which a dealer, holding a secret string, distributes shares to
parties such that only authorized subsets of parties can reconstruct the secret. The collection of autho-
rized subsets is called an access structure. Secret-sharing schemes are an important tool in cryptography
and they are used as a building box in many secure protocols. In the original constructions of secret-
sharing schemes by Ito et al. [Globecom 1987], the share size of each party is Õ(2n) (where n is
the number of parties in the access structure). New constructions of secret-sharing schemes followed;
however, the share size in these schemes remains basically the same. Although much efforts have been
devoted to this problem, no progress was made for more than 30 years. Recently, in a breakthrough paper,
Liu and Vaikuntanathan [STOC 2018] constructed a secret-sharing scheme for a general access structure
with share size Õ(20.994n). The construction is based on new protocols for conditional disclosure of
secrets (CDS). This was improved by Applebaum et al. [EUROCRYPT 2019] to Õ(20.892n).

In this work, we construct improved secret-sharing schemes for a general access structure with share
size Õ(20.762n). Our schemes are linear, that is, the shares are a linear function of the secret and some
random elements from a finite field. Previously, the best linear secret-sharing scheme had shares of size
Õ(20.942n). Most applications of secret-sharing require linearity. Our scheme is conceptually simpler
than previous schemes, using a new reduction to two-party CDS protocols (previous schemes used a
reduction to multi-party CDS protocols).

In a CDS protocol for a function f , there are k parties and a referee; each party holds a private input
and a common secret, and sends one message to the referee (without seeing the other messages). On one
hand, if the function f applied to the inputs returns 1, then it is required that the referee, which knows the
inputs, can reconstruct the secret from the messages. On the other hand, if the function f applied to the
inputs returns 0, then the referee should get no information on the secret from the messages. However,
if the referee gets two messages from a party, corresponding to two different inputs (as happens in our
reduction from secret-sharing to CDS), then the referee might be able to reconstruct the secret although
it should not.

To overcome this problem, we define and construct t-robust CDS protocols, where the referee cannot
get any information on the secret when it gets t messages for a set of zero-inputs of f . We show that
if a function f has a two-party CDS protocol with message size cf , then it has a two-party t-robust
CDS protocol with normalized message size Õ(tcf ). Furthermore, we show that every function f :

[N ]× [N ]→ {0, 1} has a multi-linear t-robust CDS protocol with normalized message size Õ(t+
√
N).

We use a variant of this protocol (with t slightly larger than
√
N ) to construct our improved linear secret-

sharing schemes. Finally, we construct robust k-party CDS protocols for k > 2.
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of the Negev, and by the Frankel center for computer science. The first author is supported by NSF grant no. 1565387, TWC:
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1 Introduction

A secret-sharing scheme is a method by which a dealer, holding a secret string, distributes strings (called
shares) to parties such that authorized subsets of parties can reconstruct the secret, while unauthorized
subsets get no information on the secret from their shares. Secret-sharing schemes are an important tool
in cryptography and they are used as a building box in many secure protocols (in addition to their obvious
usage for secure storage), e.g., they are used for secure multiparty computation protocols [18, 29], threshold
cryptography [36], access control [51], attribute-based encryption [43, 60], and oblivious transfer [56, 58].

The original and most important secret-sharing schemes, introduced by Blakley [23] and Shamir [55],
are threshold secret-sharing schemes, in which the authorized sets are all the sets whose size is larger than
some threshold. Ito et al. [45] defined secret-sharing for an arbitrary (monotone) collection of authorized sets
(such collection is called an access structure) and described two secret-sharing schemes realizing an arbitrary
access structure. For most access structures, the share size in the schemes realizing them is Õ(2n) (where n
is the number of parties in the access structure). New constructions of secret-sharing schemes followed, e.g.,
construction based on monotone formulas [20], construction based on monotone span programs [46], and
multi-linear secret-sharing schemes [22]. However, the share size in these schemes remains basically the
same as the schemes of [45] and no progress was made for more than 30 years. Recently, in a breakthrough
paper, Liu and Vaikuntanathan [47] constructed a secret-sharing scheme for a general access structure in
which the share size is Õ(20.994n). This was improved by Applebaum et al. [4] to Õ(20.892n); this scheme
uses combinatorial covers to improve the scheme of [47].

A secret-sharing scheme is linear if the shares are a linear function of the secret and some random
elements from a finite field. Alternatively, a secret-sharing scheme is linear if every share is a vector over
the field, and for every authorized set, the secret is reconstructed by taking a linear combination of the
coordinates of the vectors (i.e., the shares) of the parties in the set. Linearity enables, for example, to sum
shares of two secrets s1 and s2, and get shares of the secret s1 + s2 [19]. This observation, together with
a protocol that enables multiplication, was used in [18] to construct secure multiparty protocols computing
arithmetic circuits. Most applications of secret-sharing require linearity, so it is important to construct linear
secret-sharing schemes.

The construction of secret-sharing schemes of [47] is based on new conditional disclosure of secrets
(CDS) protocols of [49]. CDS protocols are a cryptographic primitive introduced by Gertner et al. [42].
In a CDS protocol for a function f , there are k parties and a referee; each party holds a private input, a
common secret, and a common random string, and sends one message to the referee (without seeing the
other messages). The correctness requirement of the protocol is that if the function f applied to the inputs
returns 1, then the referee, which knows the inputs, can reconstruct the secret from the messages. The
security requirement of the protocol is that if the function f applied to the inputs returns 0, then the referee
should get no information on the secret from the messages.

1.1 Our Contribution

Secret-Sharing Schemes for Arbitrary Access Structures. In this work, we construct improved linear
secret-sharing schemes for arbitrary access structures:

Theorem. Every access structure with n parties can be realized by a linear secret-sharing scheme with
share size Õ(20.7616n).

Previously, the best linear secret-sharing scheme for arbitrary access structures was the scheme that is
given in [4] (improving on [47]) with shares of size Õ(20.942n). Furthermore, our secret-sharing scheme is
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more efficient than the best known non-linear scheme for arbitrary access structures [47, 4]. Our scheme is
conceptually simpler than previous schemes, using a new reduction to two-party CDS protocols (previous
schemes used a reduction to multi-party CDS protocols). The share size in every linear secret-sharing
scheme for arbitrary access structure is at least Ω̃(2n/2) (see, e.g., [4]). The share size of our linear scheme
is getting closer to this size.

Robust CDS Protocols. In most previous CDS protocols, e.g., the protocols of [42, 41, 12, 11, 17], if the
referee gets two messages from a party, corresponding to two different inputs (as happens in our reduction
from secret-sharing to CDS), then the referee might be able to reconstruct the secret although it should not.

Example 1.1. Consider the following CDS protocol for the equality function EQ, where EQ(x, y) = 1 if
and only if x = y for x, y ∈ {1, 2, 3}, which is a special case of a variant of the general linear CDS protocol
of [41] (see also Figure 1). In the protocol, the secret is a bit s and the common random string contains three
bits r1, r2, r3. The message of the first party when holding x = 1 is r2, r3, its message when holding x = 2
is r1, r3, and its message when holding x = 3 is r1, r2. The message of the second party when holding
y = 1 is s⊕ r2 ⊕ r3, its message when holding y = 2 is s⊕ r1 ⊕ r3, and its message when holding y = 3
is s ⊕ r1 ⊕ r2. The referee, when getting messages for inputs x, y such that x = y, can reconstruct the
secret, since it gets two random bits from the first party and the secret masked by these bits from the second
party. When the referee gets messages for inputs x, y such that x 6= y, it does not get any information on
the secret, e.g., when it gets the message on x = 1 and y = 2, it misses the bit r1 and cannot unmask s from
the message s ⊕ r1 ⊕ r3. However, when getting two messages from the first party and one message from
the second, the referee can always reconstruct the secret. For example when getting the messages of the first
party on x = 1 and x = 2 and the message of the second party on y = 3, the referee can reconstruct the
secret s, although EQ(1, 3) = EQ(2, 3) = 0.

To overcome this problem, we define and construct t-robust CDS protocols. In these protocols, the
referee cannot get any information on the secret when it gets t messages for a zero-inputs set of f , that
is, when it gets messages for a set of inputs Si from party Pi (for every i ∈ [k], where k is the number of
parties) such that f(x1, . . . , xk) = 0 for every (x1, . . . , xk) ∈ S1×· · ·×Sk. We present a few constructions
of robust CDS protocols: 1

• We show that if a function f has a two-party CDS protocol for one-bit secrets with message size
cf , then it has a two-party t-robust CDS protocol for one-bit secrets with message size Õ(t2cf ).
Furthermore, under the same assumptions, it has a two-party t-robust CDS protocol for secrets of size
Θ̃(t) with message size Õ(t2cf ). That is, the normalized message size of this two-party t-robust CDS
protocol (i.e., the message size per bit of the secret) is only Õ(tcf ).

• We show that every function f : [N ] × [N ] → {0, 1} has a linear two-party t-robust CDS protocol
for one-bit secrets with message size Õ

(
(t+
√
N)t

)
and has a multi-linear two-party t-robust CDS

protocol for secrets of size Θ̃(t) with normalized message size Õ(t +
√
N). We use a variant of this

protocol (with t slightly larger than
√
N ) to construct our improved linear secret-sharing schemes.

• Finally, we construct robust k-party CDS protocols for a constant number of parties k > 2. We
show that if a function f has a k-party CDS protocol for one-bit secrets with message size cf , then
it has a k-party t-robust CDS protocol for one-bit secrets with message size Õ(tkcf ). Furthermore,
every function f : [N ] × [N ] × [N ] → {0, 1} has a linear three-party t-robust CDS protocol for

1The order that we describe the results here is not the order we present them in the paper.
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one-bit secrets with message size Õ(t2N) and has a multi-linear three-party t-robust CDS protocol
for secrets of size Θ̃(t) with normalized message size Õ(tN). We also present linear and multi-linear
robust k-party CDS protocols for any constant k > 3.

Graph Secret-Sharing Schemes. Graph access structures are simple access structures that were studied
in many papers [27, 57, 26, 25, 14, 35, 10, 12]. In a secret-sharing scheme for a graph, the parties are
the vertices of the graph, and a subset of vertices can reconstruct the secret if and only if it contains an
edge; alternatively, a subset of vertices is unauthorized if and only if it is an independent set. One can
define a weaker requirement, of t-robust graph secret-sharing schemes, where we only require that a set
is unauthorized if and only if it is an independent set of size at most t. By a simple reduction, t-robust
graph secret-sharing schemes are equivalent to t-robust CDS protocols: For a bipartite graph G = (U, V,E)
we define the function f : U × V → {0, 1}, where f(u, v) = 1 if and only if (u, v) ∈ E. Thus, our
results imply a linear t-robust graph secret-sharing scheme with normalized share size Õ(t +

√
N), where

N = |U |+ |V |. The best known graph secret-sharing scheme (i.e., N -robust graph secret-sharing scheme)
has share size O(N/ logN) [38, 28] and our results do not improve it.

1.2 Our Technique

Constructing Robust CDS Protocols. We start by explaining how to construct a CDS protocol for a
function f : A × B → {0, 1} that is secure when the first party, Alice, can send two messages (each one
for a different input), and the second party, Bob, can send only one message. The idea is to start from a
non-robust CDS protocol for f , partition the set of inputs A of Alice to two sets A1 and A2, and execute the
non-robust CDS protocol for f twice, one for the restriction of f to A1 ×B and one for the restriction of f
to A2 ×B. Now, if Alice sends two messages on two inputs x1 ∈ A1 and x2 ∈ A2 then these messages are
in different copies of the CDS protocols, and in each copy the referee gets one message from each party, so
it does not get any information on the one-bit secret s (assuming that f(x1, y) = f(x2, y) = 0). However,
if x1, x2 ∈ A1, then there are no security guarantees.

Therefore, we consider ` partitions of A, denoted by (A1
1, A

1
2), . . . , (A`1, A

`
2), such that for every

x1, x2 ∈ A there exists at least one partition (Ai1, A
i
2) such that x1 ∈ Ai1 and x2 ∈ Ai2 (or vice versa).

We choose ` random bits s1, . . . , s` such that s = s1 ⊕ · · · ⊕ s`, and for every i ∈ [`] we executed two CDS
protocols with the secret si, one for the restriction of f to Ai1×B and one for the restriction of f to Ai2×B.
There are ` = log |A| partitions satisfying the above requirement. We similarly use log |B| partitions of B
and get a two-party 2-robust CDS protocol whose message size is O(log |A| log |B|) times the message size
of the original CDS protocol.

To construct a two-party t-robust CDS protocol we use partitions of A to O(t2) sets such that for every
set T with t inputs, there exists at least one partition such that each input in T is in a different part. Such
partitions are obtained using a family of perfect hash functions H =

{
hi : A→ [t2]

}
[40]. We use a similar

partition for the set B. The size of such family is ` = O(t logN) (where N = |A| = |B|) and the
message size in the resulting t-robust CDS protocol is O(t3 logN) times the message size of the original
CDS protocol.

To improve the message size we use two levels of hashing, similar to the tracing traitors protocol of [31].
We first use a family of hash functions with range of size 2t. This ensures that for every set of inputs T of
size at most t, there is at least one hash function such that there is no log t-collusion on f . Thereafter, we
can use the log t-robust scheme described above.

To construct better linear robust-CDS protocols for arbitrary functions (i.e., “worst” functions), we start
with a variant of the linear two-party CDS protocol of [41]. As discussed in Example 1.1, this CDS protocol

3



is not robust when Alice can send two messages. However, we show that it is robust when Alice sends one
message and Bob sends many messages. Using this fact, we only need to partition the inputs of Alice; this
results in a more efficient protocol. Again, to achieve an efficient t-robust CDS protocol, we use two levels
of hashing to partition the inputs of Alice.

From Robust CDS Protocols to Secret-Sharing Schemes. We show how to construct a secret-sharing
scheme for an access structure Γ from robust two-party CDS protocols. The basic idea is to partition the n
parties {P1, . . . , Pn} to two sets B =

{
P1, . . . , Pn/2

}
and B =

{
Pn/2+1, . . . , Pn

}
, and define a function

f : 2B × 2B → {0, 1}, where f(S1, S2) = 1 if and only if S1 ∪ S2 ∈ Γ. Notice that the number of inputs
of each party in the CDS protocol is 2n/2. To share a one-bit secret s for the access structure Γ, we execute
a CDS protocol for f , and for every S ∈ 2B ∪ 2B , we share the message of the CDS protocol on input S
among the parties in S such that only all the parties in S can together reconstruct this message.

For the correctness of the scheme, observe that a set S1∪S2 ∈ Γ can reconstruct the messages on inputs
S1 and S2, and, hence, it can reconstruct s. For the security of the scheme, consider a set S1 ∪ S2 /∈ Γ. The
parties in this set can reconstruct the messages of all sets contained in S1 and all sets contained in S2. If
the CDS protocol is (2n/2, 2n/2)-robust, we would get a secret-sharing scheme realizing Γ. Alas, the best
known (2n/2, 2n/2)-robust CDS protocol has messages of size 2n/2−o(n), and the resulting scheme will have
share size 2n−o(n), since each party gets a share of 2n/2−1 messages of the CDS protocol.

Therefore, we need to be more careful in our reduction. First, using a method of [47], we can only
consider minimal authorized sets of size between (1

2 − δ)n and (1
2 + δ)n for some small δ ∈ (0, 1

2), and
assume that all sets of size larger than (1

2 + δ)n are authorized (in our construction we take δ ≈ 0.09).
Second, similar to [4], we show that we can only consider authorized sets S such that |S ∩B| = |S ∩ B̄| =
|S|/2. Using these ideas, we can show that every unauthorized set can reconstruct messages of roughly
t = Õ(20.2616n) inputs. Thus, we can use our t-robust CDS protocol with messages size Õ(20.2616n). The
share size in the resulting scheme is Õ(2n/2 · 20.2616n) = Õ(20.7616n), where the factor of 2n/2 is due to the
sharing of the messages of the CDS protocol.

1.3 Related Work

Lower Bounds for Secret-Sharing Schemes. The best known lower bound on the share size of schemes
realizing general access structures is Ω(n2/ log n) [33, 34]. There is a huge gap between the lower and
upper bounds. For linear secret-sharing schemes the lower bound is much better; by [54, 52, 53], there
is a lower bound of Ω(2cn) on the share size of linear schemes, for a small constant c < 1. By counting
arguments, one can obtain a lower bound of Ω̃(2n/2) on the share size of linear schemes for one-bit secrets
(see, e.g., [4]).

The last lower bound for linear schemes is achieved as a special case for uniform access structures,
which are access structure in which for some k, subsets of size less than k are unauthorized, subsets of
size greater than k are authorized, and some subsets of size k can also be authorized. We say that such an
access structure is k-uniform. In [4], it was shown that the lower bound on the share size of linear schemes
realizing k-uniform access structures is Ω̃(2h(k/n)n/2). Moreover, this bound for k-uniform access structures
is optimal (up to a small polynomial factor).

Conditional Disclosure of Secrets (CDS) Protocols. Conditional disclosure of secrets (CDS) protocols
were first define by Gertner et al. [42]. The motivation for this definition was to construct private information
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retrieval protocols. CDS protocols were used in many cryptographic applications, such as attribute based
encryption [41, 7, 61], priced oblivious transfer [1], and secret-sharing schemes [47, 17, 4].

The original construction of multi-party CDS protocols for general functions f : [N ]k → {0, 1}, pre-
sented in [42], has message size O(Nk) (where k is the number of parties and N is the input domain size of
each party). This construction is linear, that is, each message is a vector in which each coordinate is a linear
combination of the secret and random elements from some finite field.

Recently, better constructions of two-party CDS protocols for general functions (i.e., k = 2) were
presented. Beimel et al. [15] have shown a non-linear CDS protocol for two parties with message size
O(N1/2). Gay et al. [41] constructed a linear CDS protocol for two parties with the same message size. By
a lower bound of [11], this message size is optimal. Then, Liu et al. [48] showed a non-linear CDS protocol
for two parties with message size 2O(

√
logN log logN). Their CDS protocol is constructed by a reduction to a

CDS protocol for the index function, and it uses ideas of the private information retrieval protocol of Dvir
and Gopi [37]. Applebaum and Arkis [2] (improving on Applebaum et al. [3]) have shown that for long
secrets, i.e., secrets of size Θ(2N

2
), there is a CDS protocol for two parties with such long secrets in which

the message size is 3 times the size of the secret.
There was also major improvement in the message size of multi-party CDS protocols for general func-

tions. Liu et al. [49] constructed a CDS protocol (for one-bit secrets) with message size 2Õ(
√
k logN). Beimel

and Peter [17] and Liu et al. [49] constructed a linear CDS protocol (for one-bit secrets) with message size
O(N (k−1)/2); by [17], this bound is optimal (up to a factor of k). When we permit very long secrets, i.e.,
secrets of size Θ(2N

k
), Applebaum and Arkis [2] showed that there is a CDS protocols with such long

secrets in which the message size is 4 times the secret size.
Gay et al. [41] proved a lower bound of Ω(log logN) on the message size of CDS protocols for two

parties and a lower bound of Ω(
√

logN) on the message size of linear CDS protocols for two parties.
Applebaum et al. [3], Applebaum et al. [5], and Applebaum and Vasudevan [6] proved a lower bound of
Ω(logN) on the message size of CDS protocols for two parties.

CDS protocols are connected to secret-sharing schemes for uniform access structures; there are several
transformations from CDS protocols to uniform access structures. A transformation from CDS protocols for
two parties to secret-sharing schemes for two-uniform access is implied by the results of Beimel et al. [15];
the share size of the scheme isO(log n) times the message size of the CDS protocol. Beimel et al. [16] shows
a transformation from n-party CDS protocols with binary inputs to secret-sharing schemes for k-uniform
access structures with n parties in which the share size of the scheme is O(n) times the message size of the
CDS protocol. Applebaum and Arkis [2] and Beimel and Peter [17] showed a transformation from k-party
CDS protocols to secret-sharing schemes for k-uniform access structures, where the share size of the scheme
is O(ek) times the message size of the CDS protocol. This was improved recently by Applebaum et al. [4];
for one-bit secrets, they show a transformation in which the share size of the scheme is O(kn) times the

message size of the CDS protocol, and for long secrets, i.e., secrets of size Θ̃(2(n+1)k
2

k), the share size of
the scheme isO(k2) times the secret size (by using the efficient CDS protocol for long secrets of Applebaum
and Arkis [2]). Moreover, the optimal linear secret-sharing scheme realizing k-uniform access structures of
Applebaum et al. [4] for one-bit secrets, in which the share size is Õ(2h(k/n)n/2), uses ideas of the optimal
linear k-party CDS protocol of Beimel and Peter [17].

Private Simultaneous Messages (PSM) Protocols and Non-Interactive Secure Multi-Party Computa-
tion (NIMPC) Protocols. Private simultaneous messages (PSM) protocols, presented by Feige et al. [39]
(see also [44]), is a primitive similar to CDS protocols. In a PSM protocol for a function f : [N ]k → {0, 1}
there are k parties, where each party holds a private input and a common random string, and sends one
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message to the referee. In this case the referee does not know the inputs and should learn the value of f
applied to the private inputs without learning any additional information on the inputs.

As in CDS protocols, the original definition of PSM protocols does not provide robustness for more than
one message from each party. Beimel et al. [13] defined non-interactive secure multi-party computation
(NIMPC) protocols, where some parties can collude with the referee and the referee can see the messages
of all inputs of the colluding parties. Benhamouda et al. [21] presented efficient NIMPC protocols for a
bounded number of parties colluding with the referee.

For Boolean functions, this notion of NIMPC protocols is equivalent to robust PSM protocols. However,
for non-Boolean functions, in NIMPC protocols, if a party sends messages for two inputs, then the referee
can learn the value of the function for all its inputs. Constructing efficient robust PSM protocols is an
interesting open problem.

2 Preliminaries

2.1 Notations

We denote the logarithmic function with base 2 and base e by log and ln, respectively. Additionally, we use
the notation [n] to denote the set {1, . . . , n}. For 0 ≤ α ≤ 1, we denote the binary entropy of α by

h(α) = −α logα− (1− α) log(1− α).

We define
([n]
k

)
as the family of all subsets of [n] of size k and

([n]
≤k
)

as the family of all subsets of [n] of

size at most k. That is,
([n]
k

)
= {A ⊆ [n] : |A| = k} and

([n]
≤k
)

= {A ⊆ [n] : |A| ≤ k}. Next, we present an
approximation of the binomial coefficients.

Claim 2.1. Let n be an integer and let k ∈ [n]. Then,
(
n
k

)
= Θ(k−1/22h(k/n)n).

2.2 Secret-Sharing Schemes

We present the definition of secret-sharing schemes, similar to [9, 32].

Definition 2.2 (Access Structures). Let P = {P1, . . . , Pn} be a set of parties. A collection Γ ⊆ 2P is
monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure is a monotone collection Γ ⊆ 2P of
non-empty subsets of P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.

Definition 2.3 (Secret-Sharing Schemes – Syntax). A secret-sharing scheme with domain of secrets S is a
pair Σ = 〈Π, µ〉, where µ is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from S ×R to a set of n-tuples S1 × · · · × Sn, where Si is called the domain of shares
of party Pi. A dealer distributes a secret s ∈ S according to Σ by first sampling a random string r ∈ R
according to µ, computing a vector of shares Π(s, r) = (s1, . . . , sn), and privately communicating each
share si to party Pi. For a set A ⊆ P , we denote ΠA(s, r) as the restriction of Π(s, r) to its A-entries (i.e.,
the shares of the parties in A).

Given a secret-sharing scheme Σ, define the secret size as log |S| and the share size of the scheme Σ as
the size of the largest share, i.e., max1≤i≤n {log |Si|}.

Definition 2.4 (Secret-Sharing Schemes – Correctness and Security). Let S be a finite set of secrets, where
|S| ≥ 2. A secret-sharing scheme Σ = 〈Π, µ〉 with domain of secrets S realizes an access structure Γ if the
following two requirements hold:
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CORRECTNESS. The secret s can be reconstructed by any authorized set of parties. That is, for any set
B =

{
Pi1 , . . . , Pi|B|

}
∈ Γ there exists a reconstruction function ReconB : Si1 × · · · ×Si|B| → S such that

for every secret s ∈ S and every random string r ∈ R,

ReconB (ΠB(s, r)) = s.

SECURITY. Any unauthorized set cannot learn anything about the secret from its shares. Formally, there
exists a randomized function SIM, called the simulator, such that for any set T =

{
Pi1 , . . . , Pi|T |

}
/∈ Γ,

every secret s ∈ S, and every vector of shares (si1 , . . . , si|T |) ∈ Si1 × · · · × Si|T | ,

Pr[ SIM(T ) = (si1 , . . . , si|T |) ] = Pr[ ΠT (s, r) = (si1 , . . . , si|T |) ],

where the first probability is over the randomness of the simulator SIM and the second probability is over
the choice of r from R at random according to µ.

A scheme is linear if the mapping that the dealer uses to generate the shares that are given to the parties
is linear, as we formalize at the following definition.

Definition 2.5 (Multi-Linear and Linear Secret-Sharing Schemes). Let Σ = 〈Π, µ〉 be a secret-sharing
scheme with domain of secrets S, where µ is a probability distribution on a set R and Π is a mapping from
S×R to S1×· · ·×Sn. The scheme Σ is a multi-linear secret-sharing scheme over a finite field F if S = F`
for some integer ` ≥ 1, the sets R,S1, . . . , Sn are vector spaces over F, Π is an F-linear mapping, and
µ is the uniform probability distribution over R. The scheme Σ is a linear secret-sharing scheme if it is
multi-linear and S = F (i.e., ` = 1).

Now, we define threshold secret-sharing schemes, and give known result for such schemes.

Definition 2.6 (Threshold Secret-Sharing Schemes). Let Σ be a secret-sharing scheme on a set of n par-
ties P . We say that Σ is a k-out-of-n secret-sharing scheme if it realizes the access structure Γk,n =
{A ⊆ P : |A| ≥ k}.
Claim 2.7 ([55]). For every k ∈ [n] there is a linear k-out-of-n secret-sharing scheme realizing Γk,n for
secrets of size m in which the share size is max {m, log n}.

We define ramp secret-sharing schemes as in [24], and present the efficient ramp secret-sharing scheme
implicit in [30].

Definition 2.8 (Ramp Secret-Sharing Schemes). Let Σ be a secret-sharing scheme on a set of n parties and
let 0 ≤ k1 < k2 ≤ n. The scheme Σ is a (k1, k2, n)-ramp secret-sharing scheme if each subset of parties
of size at least k2 can reconstruct the secret and each subset of parties of size at most k1 cannot learn any
information about the secret. There are no restrictions on other subsets of parties.

Claim 2.9. For every constants 0 ≤ b < a ≤ 1 there is p0 such that for every prime-power q > p0, there
is a linear (bn, an, n)-ramp secret-sharing scheme over the field Fq in which each share is a field element
(where p0 is independent of n).

Finally, we present the following claim, dealing with decomposition of secret-sharing schemes.

Claim 2.10 ([20]). Let Γ1, . . . ,Γt be access structures over the same set of n parties, and let Γ = Γ1 ∪
· · · ∪ Γt and Γ′ = Γ1 ∩ · · · ∩ Γt. If there exist secret-sharing schemes realizing Γ1, . . . ,Γt with share size
at most c, then there exist secret-sharing schemes realizing Γ and Γ′ with share size at most ct. Moreover,
if the former schemes are linear over a finite field F, then there exist linear secret-sharing schemes over F
realizing Γ and Γ′ with share size at most ct.
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2.3 Conditional Disclosure of Secrets Protocols

Next, we define k-party conditional disclosure of secrets (CDS) protocols, first presented in [42]. We con-
sider a model where a set of k parties P = {P1, . . . , Pk} hold a secret s and a common random string r. In
addition, every party Pi holds an input xi for some k-input function f . In a CDS protocol for f , for every
i ∈ [k], party Pi sends a message to a referee, based on r, s and xi, such that the referee can reconstruct the
secret s if f(x1, . . . , xk) = 1, and it cannot learn any information about the secret s if f(x1, . . . , xk) = 0.

Definition 2.11 (Conditional Disclosure of Secrets Protocols – Syntax and Correctness). Let f : X1×· · ·×
Xk → {0, 1} be a k-input function. A k-party CDS protocol P for f with domain of secrets S consists of:

• A finite domain of common random strings R, and k finite message domains M1, . . . ,Mk.

• Deterministic message computation functions ENC1, . . . , ENCk, where ENCi : Xi×S×R→Mi for
every i ∈ [k].

• A deterministic reconstruction function DEC : X1 × · · · ×Xk ×M1 × · · · ×Mk → S.

We say that a CDS protocol P is correct (with respect to f ) if for every inputs (x1, . . . , xk) ∈ X1×· · ·×Xk

for which f(x1, . . . , xk) = 1, every secret s ∈ S, and every common random string r ∈ R,

DEC(x1, . . . , xk, ENC1(x1, s, r), . . . , ENCk(xk, s, r)) = s.

The message size of a CDS protocol P is defined as the size of the largest message sent by the
parties, i.e., max1≤i≤k {log |Mi|}. The normalized message size of a CDS protocol P is defined as
max1≤i≤k {log |Mi|/ log |S|}.

In 2-party CDS protocols we refer to the parties as Alice and Bob (instead of P1, P2).
We define the security of CDS protocols with a simulator, i.e., given x1, . . . , xk such that

f(x1, . . . , xk) = 0, we can simulate the messages sent by the parties by a simulator, which has access
to x1, . . . , xk and does not know the secret, in such a way that one cannot distinguish between the messages
sent by the parties and the messages generated by the simulator. That is, a CDS protocol is private if ev-
erything that can be learned from the messages on a zero-input (x1, . . . , xk) of f can be learned from the
inputs (x1, . . . , xk) without knowing the secret.

Definition 2.12 (Conditional Disclosure of Secrets Protocols – Security). We say that a CDS protocol P
is secure (with respect to f ) if there exists a randomized function SIM, called the simulator, such that for
every inputs (x1, . . . , xk) ∈ X1 × · · · ×Xk for which f(x1, . . . , xk) = 0, every secret s ∈ S, and every k
messages (m1, . . . ,mk) ∈M1 × · · · ×Mk,

Pr[ SIM(x1, . . . , xk) = (m1, . . . ,mk) ] = Pr[ (ENC1(x1, s, r), . . . , ENCk(xk, s, r)) = (m1, . . . ,mk) ],

where the first probability is over the randomness of the simulator SIM and the second probability is over
the choice of r from R with uniform distribution (the same r is chosen for all encryptions).

In the definition of CDS protocols in [42], if a party sends messages for two inputs, then the security
is not guaranteed and the referee can possibly learn the secret s. We generalize the notion of CDS pro-
tocols to robust CDS protocols, where the security holds even in the above scenario. That is, for subsets
(T1, . . . , Tk) ∈ 2X1 × · · · × 2Xk , in a (T1, . . . , Tk)-robust CDS protocols we require that if the referee gets
messages for the of inputs of Ti from party Pi, such that f(x1, . . . , xk) = 0 for every x1 ∈ T1, . . . , xk ∈ Tk,
then it cannot learn any information about the secret. Next, we formally present our new definition of ro-
bustness of CDS protocols. In our definition, we consider a collection T of subsets of inputs (T1, . . . , Tk)
(e.g., T contains all subsets (T1, . . . , Tk) such that |T1|+ · · ·+ |Tk| ≤ t).
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Definition 2.13 (Zero-inputs Sets). Let f : X1 × · · · × Xk → {0, 1} be a k-input function. We say that
(x1, . . . , xk) ∈ X1 × · · · × Xk is a zero-input of f if f(x1, . . . , xk) = 0. We say that (T1, . . . , Tk) ∈
2X1 × · · · × 2Xk is a zero-inputs set of f if every (x1, . . . , xk) ∈ T1 × · · · × Tk is a zero-input of f .

Definition 2.14 (Conditional Disclosure of Secrets Protocols – Robustness). Let T ⊆ 2X1 × · · · × 2Xk . We
say that a CDS protocol P is T -robust (with respect to f ) if there exists a randomized function SIM, called
the simulator, such that for every zero-input set (T1, . . . , Tk) ∈ T , every secret s ∈ S, and every subsets of
messages A1 ⊆M1, . . . , Ak ⊆Mk such that |Ai| = |Ti| for every i ∈ [k],

Pr[ SIM(T1, . . . , Tk) = (A1, . . . , Ak) ] = Pr[ (ENC1(T1, s, r), . . . , ENCk(Tk, s, r)) = (A1, . . . , Ak) ],

where ENCi(Ti, s, r) is the set of messages for the inputs in Ti, the first probability is over the randomness
of the simulator SIM, and the second probability is over the choice of r from R with uniform distribution
(the same r is chosen for all encryptions). A CDS protocol P is (t1, . . . , tk)-robust if it is T -robust for T =
{(T1, . . . , Tk) : ∀i ∈ [k] Ti ⊆ Xi, |Ti| ≤ ti} and it is t-robust if it is (t1, . . . , tk)-robust for every t1, . . . , tk
such that t1 + · · · + tk ≤ t. For every j ∈ [k] and every T1 ⊆ 2X1 , . . . , Tj ⊆ 2Xj , a CDS protocol P
is (T1, . . . , Tj , |Xj+1|, . . . , |Xk|)-robust if it is T -robust for T = T1 × · · · × Tj × 2Xj+1 × · · · × 2Xk =
{(T1, . . . , Tk) : ∀i ∈ [j] Ti ∈ Ti,∀i ∈ {j + 1, . . . , k} Ti ⊆ Xi}.

For example, the original (non-robust) definition of security of CDS protocols is (1, . . . , 1)-robust using
our terminology.

Informally, we say that a CDS protocol is linear if the reconstruction function of the referee is a linear
function. We next present the formal definition of multi-linear and linear CDS protocols.

Definition 2.15 (Multi-Linear and Linear Conditional Disclosure of Secrets Protocols). We say that a CDS
protocol P is multi-linear over a finite field F if:

• S = F` for some integer ` ≥ 1.

• There exists constants `0, `1, . . . , `k such that R = F`0 and Mi = F`i for every i ∈ [k].

• For every inputs (x1, . . . , xk) ∈ X1× · · ·×Xk for which f(x1, . . . , xk) = 1, every secret s ∈ S, and
every common random string r ∈ R, there exist field elements (αi,ji)i∈[k],ji∈[`i] ∈ F such that

DEC(x1, . . . , xk, ENC1(x1, s, r), . . . , ENCk(xk, s, r)) =
∑

i∈[k],ji∈[`i]

αi,jimi,ji ,

where ENCi(xi, s, r) = (mi,1, . . . ,mi,`i) ∈ F`i for every i ∈ [k].

The protocol P is a linear CDS protocol if it is multi-linear and S = F (i.e., ` = 1).

Equivalently, we could have required that for every i ∈ [k] and every xi ∈ Xi, the message
ENCi(xi, s, r) is a vector in which each coordinate is a linear combination over F of the field elements
in the secret s = (s1, . . . , s`) and the field elements in r = (r1, . . . , r`0) (see [46, 8] for the equivalence).

In our CDS protocols presented in the following sections, we use the property that if we execute few
copies of CDS protocols for a function f with the same secret s and with independent common random
string in each copy, then the referee cannot learn any information about the secret s from the messages on
zero-inputs of f , i.e., inputs for which f returns zero.
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Claim 2.16. Let f : X1 × · · · × Xk → {0, 1} be a k-input function, and assume that there are ` k-party
(t1, . . . , tk)-robust CDS protocols for f , denoted by P1, . . . ,P`. Then, the CDS protocol P = (P1, . . . ,P`),
in which each party sends its messages in all the ` protocols P1, . . . ,P` (with independent common random
string in each protocol), is a k-party (t1, . . . , tk)-robust CDS protocol for f .

To construct a CDS protocol for long secrets, we use a generalized decomposition technique [59] (gen-
eralizing [57]). For completeness, we supply the construction.

Proposition 2.17. Let f : X1×· · ·×Xk → {0, 1} be a k-input function, and assume that there are ` k-party
CDS protocols P1, . . . ,P` with the same set of secrets in which the message size of each of the protocols is
O(c), such that (1) for every (x1, . . . , xk) ∈ X1 × · · · ×Xk for which f(x1, . . . , xk) = 1, the referee can
reconstruct the secret from the messages on the inputs x1, . . . , xk in each of the protocols, and (2) for every
(T1, . . . , Tk) ∈ 2X1 × · · · × 2Xk that is a zero-inputs set of f such that |T1| ≤ t1, . . . , |Tk| ≤ tk, for at least
`/4 of the protocols the referee cannot learn any information on the secret from the messages on the inputs
of T1, . . . , Tk. Then, there is a k-party (t1, . . . , tk)-robust CDS protocol P for f with secret size Θ(`) in
which the normalized message size is O(c).

Proof. Let q be a prime-power guaranteed for b = 3/4, a = 1 in Claim 2.9 (the existence of ramp schemes)
and let s = (s′1, . . . , s

′
`/4) ∈ F`/4q be the secret. We use the (3`/4, `, `)-ramp secret-sharing scheme

of Claim 2.9 to generate shares s1, . . . , s` ∈ Fq of s. For every i ∈ [`], we independently generate messages
of the CDS protocol Pi with the secret si. In the protocol P , the message of party Pj on input xj contains
the message of party Pj in the protocol Pi for every i ∈ [`]. Thus, for every (T1, . . . , Tk) ∈ 2X1 ×· · ·×2Xk

that is a zero-inputs set of f such that |T1| ≤ t1, . . . , |Tk| ≤ tk, the referee cannot get any information
on at least `/4 values among s1, . . . , s` from the messages on the inputs of T1, . . . , Tk, and, hence, it can-
not learn any information on the secret s. Moreover, for every (x1, . . . , xk) ∈ X1 × · · · × Xk for which
f(x1, . . . , xk) = 1, the referee can learn all the values s1, . . . , s` from the messages on the inputs x1, . . . , xk,
and, hence, it learns the secret s.

Therefore, the resulting protocol P is a k-party (t1, . . . , tk)-robust CDS protocol for f with secret of
size Θ(`) in which the normalized message size is `·O(c)

Θ(`) = O(c).

2.4 Probabilistic Claims

Following [40], we present the definition of a family of perfect hash functions.

Definition 2.18 (Families of Perfect Hash Functions). A set of functionsHn,t,m = {hi : [n]→ [m] : i ∈ [`]}
is a family of perfect hash functions if for every set T ⊆ [n] such that |T | = t there exists at least one function
h ∈ Hn,t,m for which |h(T )| = | {h(a) : a ∈ T} | = t, that is, h restricted to T is one-to-one.

It is known that using the probabilistic method, it can be proved that there exists a family of perfect hash
functions Hn,t,t = {hi : [n]→ [t] : i ∈ [`]}, where ` = Θ(tet log n). Since we are interested in families of
hash functions with additional properties, we give probabilistic proofs that such families of hash functions
exist. We use the following Chernoff bound [50].

Pr[X ≤ (1− δ)E(X) ] ≤ e−E(X)δ2/2 for any 0 < δ < 1. (1)

Lemma 2.19. Let n be an integer, t ∈ [
√
n], and T ⊆

([n]
≤t
)
. Then, there exists a family of hash functions

Hn,t,t2 =
{
hi : [n]→ [t2] : i ∈ [`]

}
, where ` = 16 ln |T |, such that for every i ∈ [`] and every b ∈ [t2] it

holds that | {a ∈ [n] : hi(a) = b} | ≤ dn/t2e, and for every subset T ∈ T there are at least `/4 functions
h ∈ Hn,t,t2 for which |h(T )| = |T |.
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Proof. We show that there exists a family of hash functions Hn,t,t2 as above with ` = 16 ln |T | functions
using the probabilistic method. As a first step in the proof, we choose with uniform distribution a function
h : [n] → [t2] such that for every b ∈ [t2] it holds that | {a ∈ [n] : h(a) = b} | ≤ dn/t2e, and fix a subset
T ∈ T (recall that |T | ≤ t). The probability that |h(T )| < |T | is

Pr[ |h(T )| < |T | ] = Pr[ ∃j1 6= j2 ∈ T : h(j1) = h(j2) ] ≤
∑

j1 6=j2∈T
Pr[ h(j1) = h(j2) ] <

(
t

2

)
· 1

t2
<

1

2
.

Next, we show that if we choose at random ` = 16 ln |T | functions as above, we can get the desired
family Hn,t,t2 = {h1, . . . , h`}. We bound the probability that for a given subset T ∈ T of size at most
t, there exist at most `/4 functions h ∈ Hn,t,t2 that we choose at random, such that |h(T )| = |T |. For
every i ∈ [`], let Xi be a boolean random variable such that Xi = 1 if |hi(T )| = |T | and Xi = 0
otherwise. Additionally, let X =

∑`
i=1Xi, i.e., X is the number of hash functions hi, for i ∈ [`], such

that |hi(T )| = |T |. As we have shown above, Pr[ Xi = 0 ] = Pr[ |hi(T )| < |T | ] < 1
2 , so by linearity of

expectation E(X) =
∑`

i=1E(Xi) =
∑`

i=1 Pr[Xi = 1 ] > `
2 . By (1), we get that

Pr[X ≤ `/4 ] ≤ Pr[X ≤ E(X)/2 ] ≤ e−
E(X)(1/2)2

2 < e−
`
16 =

1

eln |T | =
1

|T |
.

By the union bound, since there are |T | subsets in T , the probability that there exists a subset T ∈ T
with at most `/4 functions hi, for i ∈ [`], such that |hi(T )| = |T |, is less than 1. This implies that there
exists a family Hn,t,t2 with ` = 16 ln |T | hash functions as required.

Next, we show a family of hash functions with logarithmic number of collisions. The existence of such
family is known (e.g., [31]).

Lemma 2.20. Let n be an integer, t ∈ {15, . . . , n/2}, and T ⊆
([n]
≤t
)
. Then, there exists a family of hash

functions Hn,t,2t = {hi : [n]→ [2t] : i ∈ [`]}, where ` = 16 ln |T |, such that for every i ∈ [`] and every
b ∈ [2t] it holds that | {a ∈ [n] : hi(a) = b} | ≤ dn/2te, and for every subset T ∈ T there are at least `/4
functions h ∈ Hn,t,2t such that for every b ∈ [2t] it holds that | {a ∈ T : h(a) = b} | < log t.

Proof. Without loss of generality, we assume that t divides n (this can be achieved by increasing n by at
most t−1). We show that there exists a family of hash functionHn,t,2t as above with ` = 16 ln |T | functions
using the probabilistic method. As a first step in the proof, we choose at random a function h : [n] → [2t]
such that for every b ∈ [2t] it holds that | {a ∈ [n] : h(a) = b} | ≤ dn/2te, and fix a subset T ∈ T (recall
that |T | ≤ t). The probability that for some b ∈ [2t] it holds that | {a ∈ T : h(a) = b} | ≥ log t is

Pr[ ∃b ∈ [2t] : | {a ∈ T : h(a) = b} | ≥ log t ]

= Pr[ ∃j1 6= · · · 6= jlog t ∈ T : h(j1) = · · · = h(jlog t) ]

≤
∑

j1 6=···6=jlog t∈T
Pr[ h(j1) = · · · = h(jlog t) ] <

(
t

log t

)
·
(

1

2t

)log t−1

≤
(

et

log t

)log t

· 1

(2t)log t−1
=

(
e

2 log t

)log t

· 2t < 1

2

(where the last inequality holds since t ≥ 15).
Next, we claim that if we choose at random ` = 16 ln |T | functions as above, we can get the desired

family Hn,t,2t = {h1, . . . , h`}. This implied by using the same arguments as in Lemma 2.19 (i.e., the
Chernoff bound), so there exists a family Hn,t,2t with ` = 16 ln |T | hash functions as required.
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Finally, we present a family of subsets such that every set of medium size is equally partitioned by one
of the subsets in the family (a similar lemma appears in [4]).

Lemma 2.21. Let P be a set of n parties for some even n and δ ∈ (0, 1
2). Then, there are ` = Θ(n3/2)

subsets B1, . . . , B` ⊆ P , each of them of size n/2, such that for every subset A ⊆ P for which (1
2 − δ)n ≤

|A| ≤ (1
2 + δ)n it holds that |A ∩Bi| = b|A|/2c for at least one i ∈ [`].

Proof. We choose at random a subset B ⊆ P of size n/2, and for a given subset of parties A ⊆ P of size
k = |A|, where (1

2 − δ)n ≤ k ≤ (1
2 + δ)n, we compute the probability that the size of A∩B is bk/2c. The

number of subsets B of size n/2 is
(
n
n/2

)
. The number of subsets B of size n/2 such that |A ∩B| = bk/2c

is the number of options to choose bk/2c parties from the k parties of A times the number of options to
choose n/2− bk/2c parties from the n− k parties of A, which is

(
k
bk/2c

)
·
(

n−k
n/2−bk/2c

)
. Thus,

Pr[ |A ∩B| = b|A|/2c ] =

(
k
bk/2c

)
·
(

n−k
n/2−bk/2c

)(
n
n/2

) = Θ

(
k−1/22k · n−1/22n−k

n−1/22n

)
= Θ

(
1

k1/2

)
.

Hence, it holds that

Pr[ |A ∩B| 6= b|A|/2c ] = 1−Θ

(
1

k1/2

)
≤ 1−Θ

(
1

n1/2

)
.

We repeat the above process ` = Θ(n3/2) times, and get ` random subset of parties B1, . . . , B` of size
n/2. By the union bound, we get that

Pr[ ∃A ⊆ [n],

(
1

2
− δ
)
n ≤ |A| ≤

(
1

2
+ δ

)
n, ∀i ∈ [`] : |A ∩Bi| 6= b|A|/2c ]

≤ 2n (Pr [ |A ∩B| 6= b|A|/2c ])` ≤ 2n
(

1−Θ

(
1

n1/2

))`
≤ 2n · 1

en
< 1.

Thus, the probability of choosing the desired subsets B1, . . . , B` is greater than 0, and in particular such
subsets exist.

3 Linear Robust 2-Party CDS Protocols

In this section, we construct linear 2-party (t,N)-robust CDS protocols for arbitrary functions. For the
“worst” functions, the message size in these protocols is smaller than the robust 2-party CDS protocols that
can be constructed using the generic transformation of Theorem 5.2.

The construction has 3 stages. In the first stage, in Claim 3.1 and Claim 3.2, we show that a variant
of a linear 2-party CDS protocol of [41] is (1, N)-robust. However, this protocol is not robust when Alice
sends more than one message. To achieve robustness for the messages of Alice, we use hash functions. In
the second stage of the construction, in Lemma 3.3, we use hash functions whose range is of size O(t2).
This results with a (t,N)-robust CDS protocol; however, its message size is bigger than t2. In the last stage,
in Theorem 3.4, we use hash functions with range size O(t); thus, only log t messages will collide, and then
we use the protocol of Lemma 3.3 with t′ = log t.
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3.1 Linear (1, N)-Robust CDS Protocols

The next robust CDS protocol is a variant of a protocol of [41], and it appears in [17]. The robustness
property was not defined or proved in previous papers.

Claim 3.1. Let f : [M ] × [N ] → {0, 1} be a function. Then, for every finite field F, protocol P(1,N)
2 ,

described in Figure 1, is a linear 2-party (1, N)-robust CDS protocol for f with one-element secrets in
which the message size of Alice is O(M log |F|) and the message size of Bob is O(log |F|).

Proof. The protocol, denoted by P(1,N)
2 , is described in Figure 1. In P(1,N)

2 , Alice and Bob hold the in-
puts x ∈ [M ] and y ∈ [N ], respectively, and the common randomness is M + 1 uniformly distributed
random elements r0, r1, . . . , rM . We denote the secret by s ∈ F. Alice sends to the referee the elements
r0, r1, . . . , rx−1, rx+1, . . . , rM , and Bob sends the element s + r0 +

∑
i∈[M ],f(i,y)=0 ri. The message of

Alice contains M field elements and the message of Bob contains one field element.

Protocol P(1,N)
2

The secret: An element s ∈ F.
Inputs: Alice and Bob hold the inputs x ∈ [M ] and y ∈ [N ], respectively.
Common randomness: The two parties hold M uniformly distributed and independent random elements
r0, r1, . . . , rM ∈ F.
The protocol:

1. Alice sends to the referee the elements mA = (r0, r1, . . . , rx−1, rx+1, . . . , rM ).

2. Bob sends to the referee the element mB = s+ r0 +
∑

i∈[M ],f(i,y)=0 ri.

3. If f(x, y) = 1, the referee computes mB + r0 +
∑

i∈[M ],f(i,y)=0 ri.

Figure 1: A linear 2-party CDS protocol P(1,N)
2 for a function f : [M ]× [N ]→ {0, 1}.

For the correctness of the protocol, let x ∈ [M ], y ∈ [N ] such that f(x, y) = 1. Thus, the random ele-
ment rx is not part of the sum in the messagemB , and the referee gets all the random elements r0, r1, . . . , rM
except for rx, so it can unmask the secret s from the message mB .

For the robustness of the protocol, assume that Alice sends the message of input x ∈ [M ], and Bob
sends multiple messages for a subset of inputs S2 ⊆ [N ] for which f(x, y) = 0 for every y ∈ S2. Thus,
the referee gets r0, r1, . . . , rM except for rx from Alice and s + r0 +

∑
i∈[M ],f(i,y)=0 ri for every y ∈ S2

from Bob; the element rx is part of each sum since f(x, y) = 0 for every y ∈ S2. Intuitively, rx acts as
one-time-pad protecting s. Formally, the messages are independent of s since s+rx is uniformly distributed,
so a simulator for the protocol chooses uniformly distributed r0, r1, . . . , rM for s = 0, and computes the
messages as in the protocol P(1,N)

2 .
Additionally, the referee cannot learn any information on the secret s from the messages of Bob on all

the inputs y ∈ [N ], since these messages are masked by the element r0.

In the protocol of Claim 3.1, the message of Alice is long, while the message of Bob is short. The
next protocol, originally appearing in [12], balances the sizes of messages of Alice and Bob. Its idea is to
partition the set of inputs of Alice to disjoint sets and execute the protocol of Claim 3.1 independently for
every set of inputs.
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Claim 3.2 ([12]). Let f : [M ]×[N ]→ {0, 1} be a function. Then, for every finite field F and every d ∈ [M ],
there is a linear 2-party (1, N)-robust CDS protocol P(1,N),balanced

2 for f with one-element secrets in which
the message size of Alice is O((M/d) log |F|) and the message size of Bob is O(d log |F|).

Proof. The description of the protocol P(1,N),balanced
2 is as follows: Let s be the secret, and partition the set

[M ] to d disjoint sets A1, . . . , Ad of size at most dM/de, that is, every input x ∈ [M ] is in exactly one set
Ai. For every i ∈ [d], we execute the linear CDS protocol P(1,N)

2 independently for the restriction of f to
the inputs of Ai × [N ] with the secret s. Alice, when holding the input x ∈ [M ], only sends the message in
the protocol for the restriction of f to the inputs of Ai× [N ] for which x ∈ Ai. Bob, when holding the input
y ∈ [N ], sends the messages in all the above independent protocols.

For the correctness of the protocol, if f(x, y) = 1 then the referee can reconstruct the secret from the
messages of the CDS protocol for the restriction of f to the inputs of Ai × [N ] for which x ∈ Ai. For the
robustness of the protocol, let x ∈ [M ] and S2 ⊆ [N ] such that f(x, y) = 0 for every y ∈ S2. The referee
cannot learn any information on the secret from the messages on x and the inputs of S2 from each of the
above independent protocols, which follows by the robustness of each of these protocols. By Claim 2.16,
the resulting protocol P(1,N),balanced

2 is (1, N)-robust.
The message of Alice contains at most dM/de field elements (since it sends a message in one execution

of P(1,N)
2 in which the input domain size of Alice is at most dM/de) and the message of Bob contains d field

elements. All together, the message size of the resulting CDS protocol P(1,N),balanced
2 is as in the claim.

3.2 From (1, N)-Robust CDS Protocols to (t, N)-Robust CDS Protocols

We use the above linear CDS protocol P(1,N)
2 and a family of hash functions to construct the linear robust

CDS protocol P(t,N)
2 (described in Figure 2). This protocol has specific parameters that are used in our

protocol PL2RCDS – the linear robust 2-party CDS protocol for arbitrary functions (other tradeoffs between
the message size of Alice and Bob can be achieved by taking different parameters).

Lemma 3.3. Let f : [M ]×[N ]→ {0, 1} be a function and t ≤
√
M be an integer. Then, for every finite field

F, there is a linear 2-party (t,N)-robust CDS protocol for f with one-element secrets in which the message
size of Alice is O(

√
Nt logM log |F|) and the message size of Bob is O((t3 + Mt/

√
N) logM log |F|).

Furthermore, there is p0 such that for every prime-power q > p0, there is a multi-linear 2-party (t,N)-
robust CDS protocol for f over Fq with secrets of size Θ(qt logM) in which the normalized message size of
Alice is O(

√
N) and the normalized message size of Bob is O(t2 +M/

√
N).

Proof. Let HM,t,t2 =
{
hi : [M ]→ [t2] : i ∈ [`]

}
, where ` = Θ(t logM), be the family of perfect hash

functions promised by Lemma 2.19 for T =
([M ]
≤t
)

(that is, |T | = Θ(M t)).

The desired CDS protocolP(t,N)
2 is described in Figure 2. For a fixed hi ∈ HM,t,t2 , the message of Alice

containsO(|Ahi(x)|/d) = O

(
M/t2

max{1,M/(
√
Nt2)}

)
= O(min

{
M/t2,

√
N
}

) ≤ O(
√
N) field elements, and

the message of Bob contains t2d = t2 · max
{

1,M/(
√
Nt2)

}
= O(t2 + M/

√
N) field elements. Since

there are ` = Θ(t logM) hash functions, the sizes of the messages is as in the lemma.
For the correctness of the protocol, let x ∈ [M ] and y ∈ [N ] for which f(x, y) = 1. Then, for every

i ∈ [`], the input x is in Ahi(x), so the referee can reconstruct si using the messages on the inputs x, y in the

CDS protocol P(1,N)
2 for the restriction of f to the inputs of Ahi(x) × [N ] with the secret si. Overall, the

referee can learn all the elements s1, . . . , s`, so it can reconstruct the secret s by summing these elements.
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Protocol P(t,N)
2

The secret: An element s ∈ F.
The protocol:

1. Choose ` random elements s1, . . . , s` ∈ F such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Aj = {x ∈ [M ] : hi(x) = j}, for every j ∈ [t2].

• For every j ∈ [t2], independently execute the CDS protocol P(1,N),balanced
2 of Claim 3.2 for

the restriction of f to Aj × [N ] with the secret si and d = max
{

1,M/(
√
Nt2)

}
. That is,

Alice with input x sends a message only for the restriction of f toAhi(x)× [N ], and Bob with
input y sends a message for the restriction of f to Aj × [N ], for every j ∈ [t2].

Figure 2: A linear 2-party (t,N)-robust CDS protocol P(t,N)
2 for a function f : [M ]× [N ]→ {0, 1}.

For the robustness of the protocol, let (S1, S2) be a zero-inputs set of f such that |S1| ≤ t.
By Lemma 2.19, there is at least one i ∈ [`] for which |hi(S1)| = |S1|. We prove that the referee can-
not learn any information on si, and, thus, cannot learn the secret s.

Since hi is one-to-one on S1, each input of S1 is in a different subset Aj in the partition induced by
hi, and the referee gets at most one message of Alice in each execution of the CDS protocol P(1,N)

2 for
the restriction of f to Aj × [N ]. Since the CDS protocol P(1,N)

2 is (1, N)-robust and f(x, y) = 0 for
every (x, y) ∈ S1 × S2, the referee cannot learn any information about si from any execution of the CDS
protocol P(1,N)

2 for the restriction of f to the inputs of Aj × [N ] with the secret si, for every j ∈ [t2].
Since each execution of P(1,N)

2 for each function hi is done with independent common random strings, then
by Claim 2.16, the referee cannot learn any information on si, and, hence, it cannot learn any information
on the secret s.

To construct the desired protocol for long secrets, let s = (s′1, . . . , s
′
`/4) ∈ F`/4q be the secret. We use

the protocol of Proposition 2.17 with the above ` CDS protocols, one for every hash function hi ∈ HM,t,t2 .

That is, we change step 1 in the protocol P(t,N)
2 (described in Figure 2) such that s1, . . . , s` ∈ Fq are the

shares of a (3`/4, `, `)-ramp secret-sharing scheme of the secret s = (s′1, . . . , s
′
`/4) ∈ F`/4q , where p0 is the

constant from Claim 2.9 and q > p0.
As above, for every inputs x ∈ [M ], y ∈ [N ] such that f(x, y) = 1, the referee can learn all the

secrets in those ` protocols from the messages on the inputs x, y, so it can reconstruct the secret s using the
reconstruction function of the ramp scheme. Moreover, for every (S1, S2) that is a zero-inputs set of f such
that |S1| ≤ t, by Lemma 2.19, there are at least `/4 values of i ∈ [`] for which |hi(S1)| = |S1|. Thus,
the referee cannot learn any information on at least `/4 of the shares s1, . . . , s` in the above ` protocols
from the messages on the inputs of S1, S2. By the security of the ramp scheme, the referee cannot learn any
information on the secret s.

We improve our linear robust 2-party CDS protocol using the family of hash functions of Lemma 2.20.

Theorem 3.4. Let f : [N ] × [N ] → {0, 1} be a function. Then, for every finite field F, every integer t ≤
N/(2 log2N), and every T ⊆

([N ]
≤t
)
, there is a linear 2-party (T , N)-robust CDS protocol for f with one-
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element secrets in which the message size is O((t log2 t +
√
N) log t logN log |T | log |F|). Furthermore,

there is p0 such that for every prime-power q > p0, there is a multi-linear 2-party (T , N)-robust CDS
protocol for f over Fq with secrets of size Θ(q log t logN log |T |) in which the normalized message size is
O(t log2 t+

√
N).

Proof. Let HN,t,2t = {hi : [N ]→ [2t] : i ∈ [`]}, where ` = Θ(log |T |), be the family of hash functions
promised by Lemma 2.20 for T (that is, for every T ∈ T , at least `/4 hash functions prevent a collision of
log t elements of T ).

Protocol PL2RCDS

The secret: An element s ∈ F.
The protocol:

1. Choose ` random elements s1, . . . , s` ∈ F such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Aj = {x ∈ [N ] : hi(x) = j}, for every j ∈ [2t].

• For every j ∈ [2t], independently execute the linear 2-party (log t,N)-robust CDS protocol
P(log t,N)
2 of Lemma 3.3 for the restriction of f to Aj × [N ] with the secret si. That is, Alice

with input x sends a message only for the restriction of f to Ahi(x)× [N ], and Bob with input
y sends a message for the restriction of f to Aj × [N ], for every j ∈ [2t].

Figure 3: A linear 2-party (T , N)-robust CDS protocol PL2RCDS for a function f : [N ]× [N ]→ {0, 1}.

The desired CDS protocol PL2RCDS is described in Figure 3. The protocol PL2RCDS contains 2t` =

O(t log |T |) executions of the protocol P(t′,N)
2 with t′ = log t and M = N/(2t) (since t ≤ N/(2 log2N),

we have that log t ≤
√
N/(2t) as required). Since Alice sends only one message of P(t,N)

2 for every
hi ∈ HN,t,2t, her message containsO(

√
N log t logN log |T |) field elements. Since Bob sends 2tmessages

of P(t,N)
2 for every hi ∈ HN,t,2t, his message contains

O

(
(log3 t+

N log t/(2t)√
N

) logN · 2t log |T |
)

= O((t log2 t+
√
N) log t logN log |T |)

field elements.
For the correctness of the protocol, let x, y ∈ [N ] for which f(x, y) = 1. Then, for every i ∈ [`], the

input x is in Ahi(x), so the referee can reconstruct si using the messages for the inputs x, y in the CDS
protocol for the restriction of f to Ahi(x)× [N ]. Overall, the referee can learn all the elements s1, . . . , s`, so
it can reconstruct the secret s by summing these elements.

For the robustness of the protocol, let (S1, S2) be a zero-inputs set of f such that S1 ∈
T . By Lemma 2.20, there is at least one i ∈ [`] such that for every j ∈ [2t] it holds that
| {a ∈ S1 : hi(a) = j} | < log t. Thus, each Aj contains less than log t inputs of S1, and since the pro-
tocol P(t,N)

2 executed in the protocol PL2RCDS is (log t,N)-robust, the referee cannot learn any information
on si from each such protocol. By Claim 2.16, the referee cannot learn any information on si, and, hence, it
cannot learn any information on the secret s.

To construct the desired protocol for long secrets, let s = (s′1, . . . , s
′
`/4) ∈ (F`′)`/4 be the secret,

where `′ = Θ(log t logN). Similarly to the multi-linear protocol of Lemma 3.3, we use the protocol
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of Proposition 2.17 with the above ` CDS protocols, one for every hash function hi ∈ HN,t,2t. That is, we
change step 1 in the protocol PL2RCDS such that s1, . . . , s` ∈ F`′ are the shares of a (3`/4, `, `)-ramp secret-
sharing scheme of the secret s = (s′1, . . . , s

′
`/4) ∈ (F`′)`/4, but now in step 2 we execute the multi-linear

2-party (log t,N)-robust CDS protocol of Lemma 3.3, instead of the linear protocol.
Overall, we results in a 2-party (T , N)-robust CDS protocol for f with secrets of size Θ(`′` log |F|) =

Θ(log t logN log |T | log |F|) in which the normalized message size is O(t log2 t+
√
N).

On the Optimality of Protocol PL2RCDS. Assume that T is a subset such that PL2RCDS is a secure CDS
protocol for f according to Definition 2.12. That is, for every x, y such that f(x, y) = 0, the referee should
not learn any information of s from the messages on x and y (i.e., we assume that {x} ∈ T for every x).
By[11], the message size in any linear 2-party CDS protocol for a general function is Ω(

√
N). Thus, in any

linear 2-party (T , N)-robust CDS protocol, the message size is Ω(
√
N). In Section 4, we use PL2RCDS with

|T | = O(N). For this case, when t <
√
N , protocol PL2RCDS is optimal up to poly-logarithmic factors,

that is, we achieve robustness with a very small cost. In Section 4, t is slightly larger than
√
N , and the cost

for robustness is higher (however, it is less than N0.02).

4 Secret-Sharing Schemes for General Access Structures

In this section we show a transformation from robust 2-party CDS protocols to secret-sharing schemes for
general access structures.

As in [47], we decompose an access structure Γ to three parts: A bottom part Γbot, which handles small
sets, a middle part Γmid, which handles medium-size sets, and a top part Γtop, which handles large sets. This
decomposition presented in the following proposition. In the sequence, we say that a secret-sharing scheme
has an exponent c, where 0 ≤ c ≤ 1, if the share size of the scheme is 2cn+o(n) times the size of the secret.2

Proposition 4.1 ([47]). Let Γ be an access structure over a set of n parties and δ ∈ (0, 1
2). Define the

following access structures Γtop,Γbot, and Γmid.

A /∈ Γtop ⇐⇒ ∃A′ /∈ Γ, A ⊆ A′ and |A′| >
(

1

2
+ δ

)
n,

A ∈ Γbot ⇐⇒ ∃A′ ∈ Γ, A′ ⊆ A and |A′| <
(

1

2
− δ
)
n,

A ∈ Γmid ⇐⇒ A ∈ Γ and
(

1

2
− δ
)
n ≤ |A| ≤

(
1

2
+ δ

)
n, or |A| >

(
1

2
+ δ

)
n.

Then, Γ = Γtop ∩ (Γmid ∪ Γbot). Therefore, if Γtop,Γbot, and Γmid can be realized (respectively, linearly
realized) by a secret-sharing scheme with an exponent of c then also Γ can be realized (respectively, linearly
realized) by a secret-sharing scheme with an exponent of c.

As mentioned in Proposition 4.1, Γ = Γtop ∩ (Γmid ∪ Γbot). Thus, by standard closure properties of
secret-sharing schemes (presented in Claim 2.10), realizing Γ can be reduced to realizing Γtop, Γbot, and
Γmid. In [47], the access structures Γbot was realized by sharing the secret independently for each minimal
authorized set, resulting in a scheme realizing Γbot with share size

(
n

( 1
2
−δ)n

)
≤ O(2h( 1

2
−δ)n) (a similar

2This notation is asymptotic; we consider a scheme that gets as its input an arbitrary access structure (with an arbitrary number
of parties n) and realizes it.
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construction was used for Γtop). This was improved in [4], using covers and a recursive construction,
resulting in the following lemma.

Lemma 4.2 ([4]). Let Γ be an access structure and δ ∈ (0, 1
2). Assume that for every access structure Γ′,

the access structure Γ′mid can be realized (respectively, linearly realized) by a secret-sharing scheme with an
exponent of M(δ) (respectively, M`(δ)). Furthermore, let X ′(δ) = h(1

2 − δ)− (1
2 − δ) log(1+2δ

1−2δ ) and c be
a constant such that c > X ′(δ). Then, Γ can be realized (respectively, linearly realized) by a secret-sharing
scheme with an exponent of max {c,M(δ)} (respectively, max {c,M`(δ)}).

4.1 From (N,N)-Robust CDS Protocols to Secret-Sharing Schemes

As a warm-up, we first show how to construct secret-sharing schemes from 2-party (N,N)-robust CDS
protocols (i.e., protocols that are secure against any zero-inputs set). For simplicity, we consider one-bit
secrets. Assume that for every N and for every function f : [N ]× [N ]→ {0, 1} there is a 2-party (N,N)-
robust CDS protocol for f with message size c(N).

Given an access structure Γ over a set of n parties, let B =
{
P1, . . . , Pn/2

}
and define the function

f : 2B × 2B → {0, 1}, where f(S1, S2) = 1 if and only if S1 ∪ S2 ∈ Γ. To share the secret s, do as
follows: (1) Execute a 2-party (2n/2, 2n/2)-robust CDS protocol for the function f with the secret s. (2) For
every subset S1 ⊆ B, share the message of Alice when holding the input S1 among the parties of S1 using
an |S1|-out-of-|S1| threshold secret-sharing scheme, and (3) for every subset S2 ⊆ B, share the message of
Bob when holding the input S2 among the parties of S2 using an |S2|-out-of-|S2| threshold secret-sharing
scheme.

To argue the correctness of the scheme, let A ∈ Γ, and define S1 = A∩B and S2 = A \B. The parties
in A = S1 ∪ S2 can use the threshold schemes to reconstruct the messages of Alice and Bob when holding
the inputs S1 and S2, respectively. Thus, since f(S1, S2) = 1, the parties in A can reconstruct the secret s
using the reconstruction function of the CDS protocol.

To argue the security of the scheme, let A /∈ Γ, and again define S1 = A ∩ B and S2 = A \ B. The
parties in A = S1 ∪ S2 can use the threshold schemes to reconstruct only the messages of Alice and Bob
when holding the inputs S′1 and S′2, respectively, for every S′1 ⊆ S1 and every S′2 ⊆ S2. By the monotonicity
property of access structures, S′1 ∪ S′2 /∈ Γ for every S′1 ⊆ S1, S

′
2 ⊆ S2, so by the definition of f we get that

f(S′1, S
′
2) = 0 for every S′1 ⊆ S1, S

′
2 ⊆ S2. Thus, the parties in A learn only the messages of a zero-inputs

set of f , and since we use a 2-party (2n/2, 2n/2)-robust CDS protocol for f , the parties in A cannot learn
any information about the secret s.

Every party is contained in 2n/2−1 subsets of B (or B), so it gets 2n/2−1 shares (of messages in the
CDS protocol) of the threshold schemes, one for each such subset. Thus, the share size of each party in
this scheme is 2n/2−1 · c(2n/2). Unfortunately, in the best known (N,N)-robust CDS protocol for functions
f : [N ]× [N ]→ {0, 1} the message size is c(N) = O(N/ logN). Thus, the share size in the above scheme
is 2n−o(n). In our reduction from secret-sharing schemes to 2-party (t,N)-robust CDS protocols we will
ensure that t < N and save in the share size.

4.2 Secret-Sharing Schemes Realizing the Access Structure Γmid

Our main construction in this paper is an improved linear secret-sharing scheme realizing the middle ac-
cess structure Γmid. That is, we show an improved expression for M`(δ) (and also for M(δ)). Towards
this construction, we defined balanced access structures in Definition 4.3, represent Γmid as a union of a
polynomial number of balanced access structures (this follows from Lemma 2.21), and show how to realize
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each such access structure using a robust CDS protocol. By the closure properties of secret-sharing scheme
(Claim 2.10), we can realize Γmid using the scheme for the balanced access structures, and, hence, we can
realize Γ with a smaller share size.

Definition 4.3 (The Access Structure ΓB,mid). Let Γ be an access structure with n parties, δ ∈ (0, 1
2), and

B be a subset of parties. The access structure ΓB,mid is the access structure that contains all subsets of
parties of size greater than (1

2 + δ)n, and all subsets of parties that contain authorized subsets A′ ∈ Γ of
size between (1

2 − δ)n and (1
2 + δ)n that contain exactly b|A′|/2c of their parties from B. That is,

ΓB,mid =

{
A : ∃A′ ∈ Γ, A′ ⊆ A,

(
1

2
− δ
)
n ≤ |A′| ≤

(
1

2
+ δ

)
n, and |A′ ∩B| = b|A′|/2c

}
∪

{
A : |A| >

(
1

2
+ δ

)
n

}
.

Following the above definition, we present our main secret-sharing scheme, which realizes the access
structure ΓB,mid.

Lemma 4.4. Let Γ be a an access structure over a set of n parties, δ ∈ (0, 1
2), and B be a subset of parties

such that |B| = n/2. Assume that for every integer N , every t ∈ [N ], every T ⊆
([N ]
≤t
)
, and every function

f : [N ] × [N ] → {0, 1}, there is a 2-party (T , N)-robust CDS protocol for f with secrets of size m in
which the message size is c(t, |T |, N,m), for some integer m ≥ 1. Then, there is a secret-sharing scheme

realizing ΓB,mid for secrets of size m in which the share size is O(2n/2c(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n, 2n/2, 2n/2,m))

for δ < 1
6 and O(2n/2c(2( 1

4
+ δ

2
)n, 2n/2, 2n/2,m)) otherwise. Moreover, if the CDS protocol is linear then

the resulting scheme is also linear.

Proof. Assume without loss of generality that n is even (this can be done by adding dummy parties). De-
fine B1 =

{
S1 ⊆ B : (1

4 −
δ
2)n ≤ |S1| ≤ (1

4 + δ
2)n
}

and B2 =
{
S2 ⊆ B : (1

4 −
δ
2)n ≤ |S2| ≤ (1

4 + δ
2)n
}

.

Note that N ∆
= |B1| = |B2| < 2n/2. Moreover, define the function f : B1 × B2 → {0, 1}, where

f(S1, S2) = 1 if and only if S1 ∪ S2 ∈ Γ, (1
2 − δ)n ≤ |S1 ∪ S2| ≤ (1

2 + δ)n, and |S1| = |S2| or
|S1| = |S2| − 1. The scheme ΣB,mid realizing ΓB,mid is described in Figure 4.

For the correctness of the scheme, take a minimal authorized set A ∈ ΓB,mid, that is, A = S1 ∪ S2 for
some S1 ⊆ B,S2 ⊆ B such that S1 ∪ S2 ∈ Γ, (1

2 − δ)n ≤ |S1 ∪ S2| ≤ (1
2 + δ)n, and |S1| = |S2| or

|S1| = |S2|−1. The parties inA = S1∪S2 can reconstruct the messages of Alice and Bob when holding the
inputs S1 and S2, respectively, in the first CDS protocol (i.e., the protocol of step 3), and can reconstruct s1

from these messages using the reconstruction function of this protocol (since f(S1, S2) = 1). By symmetric
arguments, the parties in A can reconstruct s2 (using the protocol of step 4), and, thus, the parties in A can
reconstruct the secret s by summing s1 and s2. Authorized sets of size greater than (1

2 + δ)n can reconstruct
the secret s using the ((1

2 + δ)n+ 1)-out-of-n secret-sharing scheme (i.e., the scheme of step 1).
For the security of the scheme, take an unauthorized set A /∈ ΓB,mid, that is, A = S1 ∪ S2 such that

S1 ⊆ B,S2 ⊆ B and |S1∪S2| ≤ (1
2 +δ)n (subsets of size greater than (1

2 +δ)n are authorized), and assume
without loss of generality that |S1| ≤ (1

4 + δ
2)n (otherwise, |S2| ≤ (1

4 + δ
2)n and we consider the second

CDS protocol, i.e, the protocol of step 4). In the first CDS protocol (i.e, the protocol of step 3), the parties
in S1 know a message of Alice on an input S′1 ∈ B1 if and only if S′1 ⊆ S1. That is, they can reconstruct

the messages of the inputs (which are sets) in B1 for the set TS1

∆
=
{
S′1 ∈ B1 : S′1 ⊆ S1, |S′1| ≥ (1

4 −
δ
2)n
}

.
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Scheme ΣB,mid

The secret: A string s ∈ {0, 1}m.
The scheme:

1. Share the secret s among the n parties using a (( 1
2 + δ)n+ 1)-out-of-n secret-sharing scheme.

2. Choose a random string s1 ∈ {0, 1}m and define s2 = s− s1 (where the sum is in Zm
2 ).

3. Execute a 2-party (T1, 2n/2)-robust CDS protocol (T1 will be determined later) for the function f
with the secret s1, and share the message of Alice (respectively, Bob) when holding the input S1

(respectively, S2) among the parties of S1 (respectively, S2) using an |S1|-out-of-|S1| (respectively,
|S2|-out-of-|S2|) secret-sharing scheme, for every S1 ∈ B1 (respectively, S2 ∈ B2).

4. Execute a 2-party (2n/2, T2)-robust CDS protocol (T2 will be determined later) for the function f
with the secret s2, and share the message of Alice (respectively, Bob) when holding the input S1

(respectively, S2) among the parties of S1 (respectively, S2) using an |S1|-out-of-|S1| (respectively,
|S2|-out-of-|S2|) secret-sharing scheme, for every S1 ∈ B1 (respectively, S2 ∈ B2).

Figure 4: A secret-sharing scheme ΣB,mid realizing the access structure ΓB,mid.

The number of subsets in TS1 is at most

t
∆
=

( 1
4

+ δ
2

)n∑
i=( 1

4
− δ

2
)n

(
(1

4 + δ
2)n

i

)
.

When δ < 1
6 , we have that

t = O(n ·
(

(1
4 + δ

2)n

(1
4 −

δ
2)n

)
) = O(n2h( 1−2δ

1+2δ
)( 1

4
+ δ

2
)n);

otherwise, the biggest summand is for i = 1
2(1

4 + δ
2)n, and t = O(2( 1

4
+ δ

2
)n).

We define T1 ⊆
(B1
≤t
)

as T1
∆
=
{
TS1 : S1 ⊆ B, |S1| ≤ (1

4 + δ
2)n
}

. Thus,

|T1| =
( 1
4

+ δ
2

)n∑
i=0

(
n/2

i

)
< 2n/2.

We use this T1 in the 2-party (T1, 2
n/2)-robust CDS protocol of step 3 of scheme ΣB,mid (for the 2-party

(2n/2, T2)-robust CDS protocol of step 4 we define T2 symmetrically).
For every S′1 ⊆ S1 and S′2 ⊆ S2, we have that (S′1, S

′
2) is a zero-input of f , and the parties inA = S1∪S2

(which learn the messages on the inputs of TS1 of Alice and possibly many messages of Bob) learn only
messages of the zero-inputs set TS1×{S′2 ∈ B2 : S′2 ⊆ S2} in the first CDS protocol. Thus, by the robustness
of the CDS protocol, the parties in A cannot learn any information on s1, and, hence, they cannot learn any
information on the secret s.

Overall, in the resulting scheme each party Pi gets a share of size max {m, log n} from the thresh-
old scheme of step 1 and less than N = |B1| = |B2| < 2n/2 shares from the threshold schemes of
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step 3 (respectively, step 4), one for each message of the CDS protocol for f on an input S such that
Pi ∈ S. Thus, the share size of each party in the scheme ΣB,mid is O(2n/2 · c(t, |T1|, N,m)), which

is O(2n/2c(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n, 2n/2, 2n/2,m)) for δ < 1
6 , and O(2n/2c(2( 1

4
+ δ

2
)n, 2n/2, 2n/2,m)) otherwise.

Additionally, this transformation preserves linearity.

We use the above scheme and the family of “balancing” subsets of Lemma 2.21 to construct a scheme
that realizes the access structure Γmid.

Theorem 4.5. Let Γ be a an access structure over a set of n parties and δ ∈ (0, 1
2). Assume that

for every integer N , every t ∈ [N ], every T ⊆
([N ]
≤t
)
, and every function f : [N ] × [N ] → {0, 1},

there is a 2-party (T , N)-robust CDS protocol for f with secrets of size m in which the message size is
c(t, |T |, N,m), for some integer m ≥ 1. Then, there is a secret-sharing scheme realizing Γmid for se-

crets of size m in which the share size is O(n3/22n/2c(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n, 2n/2, 2n/2,m)) for δ < 1
6 and

O(n3/22n/2c(2( 1
4

+ δ
2

)n, 2n/2, 2n/2,m)) otherwise. Moreover, if the CDS protocol is linear then the resulting
scheme is also linear.

Proof. As in Lemma 4.4, assume without loss of generality that n is even. By Lemma 2.21, there ex-
ist ` = Θ(n3/2) subsets B1, . . . , B` ⊆ P , where |Bi| = n/2 for every i ∈ [`], such that for every
subset A such that (1

2 − δ)n ≤ |A| ≤ (1
2 + δ)n, it holds that |A ∩ Bi| = b|A|/2c for at least one

i ∈ [`]. Thus, we get that Γmid = ∪`i=1ΓBi,mid. By Lemma 4.4, for every i ∈ [`] there is a secret-
sharing scheme ΣBi,mid realizing the access structure ΓBi,mid for secrets of size m in which the share size

is O(2n/2c(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n, 2n/2, 2n/2,m)) for δ < 1
6 , and O(2n/2c(2( 1

4
+ δ

2
)n, 2n/2, 2n/2,m)) otherwise.

As in Claim 2.10, for every i ∈ [`] we independently share the secret s using ΣBi,mid realizing the access
structure ΓBi,mid. The combined scheme is a secret-sharing scheme realizing the access structure Γmid for

secrets of size m in which the share size is O(n3/22n/2c(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n, 2n/2, 2n/2,m)) for δ < 1
6 , and

O(n3/22n/2c(2( 1
4

+ δ
2

)n, 2n/2, 2n/2,m)) otherwise.

Using the linear robust CDS protocol of Theorem 3.4 we get the following scheme.

Corollary 4.6. Let Γ be a an access structure over a set of n parties and δ ∈ (0, 1
2). Then, for every finite

field F, there is a linear secret-sharing scheme realizing Γmid for one-element secrets in which the share size
is O(poly(n)2n/2(2h( 1−2δ

1+2δ
)( 1

4
+ δ

2
)n + 2n/4) log |F|) for δ < 1

6 and O(poly(n)2n/2(2( 1
4

+ δ
2

)n + 2n/4) log |F|)
otherwise, i.e., for δ ∈ (0, 1

6) the exponent of the scheme is M`(δ) = 1
2 + max

{
h(1−2δ

1+2δ )(1
4 + δ

2), 1
4

}
.

Proof. By Theorem 3.4, for every finite field F, everyN , every t ∈ [N ], every T ⊆
([N ]
≤t
)
, and every function

f : [N ]× [N ]→ {0, 1}, there is a linear 2-party (T , N)-robust CDS protocol for f with one-element secrets
in which the message size is c(t, |T |, N, log |F|) = O((t log2 t +

√
N) log t logN log |T | log |F|). Thus,

by Theorem 4.5 we get that there is a linear secret-sharing scheme realizing Γmid for one-element secrets in
which the share size is

O(n3/22n/2c(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n, 2n/2, 2n/2) log |F|)

= O(n3/22n/2(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n + 2n/4) log3(n2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n) log 2n/2 log 2n/2 log |F|)

= O(poly(n)2n/2(2h( 1−2δ
1+2δ

)( 1
4

+ δ
2

)n + 2n/4) log |F|)

for δ < 1
6 . The proof for δ ≥ 1

6 is similar.
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4.3 Secret-sharing Schemes Realizing any Access Structure

By Lemma 4.2 and Corollary 4.6 we obtain the following corollary.

Corollary 4.7. Let Γ be a an access structure over a set of n parties and δ ∈ (0, 1
6). Then, Γ can be linearly

realized by a secret-sharing scheme with an exponent of

max

{
h

(
1

2
− δ
)
−
(

1

2
− δ
)

log

(
1 + 2δ

1− 2δ

)
,
1

2
+ max

{
h

(
1− 2δ

1 + 2δ

)(
1

4
+
δ

2

)
,
1

4

}}
. (2)

Define δ? ∈ (0, 1
6) as the value that satisfies

c? = h

(
1

2
− δ?

)
−
(

1

2
− δ?

)
log

(
1 + 2δ?

1− 2δ?

)
=

1

2
+ max

{
h

(
1− 2δ?

1 + 2δ?

)(
1

4
+
δ?

2

)
,
1

4

}
,

That is, the minimal value of the exponent of the secret-sharing scheme of Corollary 4.7 realizing any access
structure equals to c?. The value δ? ≈ 0.0898524 satisfies the above expression, and achieves an exponent of
c? = 0.761574. The curves of the two functions in (2) and their intersection at δ? are described in Figure 5.

Theorem 4.8. Let Γ be a an access structure over a set of n parties. Then, for every finite field F,
there is a linear secret-sharing scheme realizing Γ for one-element secrets in which the share size is
20.7616n+o(n) log |F|.

Figure 5: A description of the functions M`(δ) and X ′(δ). The x-axis represents δ and the y-axis represents
the exponent. The dashed black curve represents the exponent X ′(δ) of the scheme of [4] realizing the
access structures Γtop and Γbot, and the solid blue curve represents the exponent M`(δ) of our scheme
of Corollary 4.6 realizing the access structures Γmid. The exponent of our scheme of Theorem 4.8 realizing
the access structures Γ appears as the y-coordinate of the intersection of the black and the blue curves.
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4.4 From (T , N,N)-Robust CDS Protocols to Secret-Sharing Schemes

We generalize our ideas and show how to transform a 3-party (T , N,N)-robust CDS protocol to a secret-
sharing scheme realizing the access structure Γmid. Thus, we get another scheme realizing any access
structure Γ. Alas, the share size of this scheme is larger than the share size of the scheme in Section 4.3.
We can use the same paradigm to construct a secret-sharing scheme realizing any access structure Γ from a
k-party (T , N, . . . , N)-robust CDS protocol.

Assume that for every integer N , every t ∈ [N ], every T ⊆
([N ]
≤t
)
, and every function f : [N ] ×

[N ] × [N ] → {0, 1}, there is a 3-party (T , N,N)-robust CDS protocol for f with secrets of size m in
which the message size is c(t, |T |, N,m), for some integer m ≥ 1. Similarly to Definition 4.3, we first
define the access structure Γ(B1,B2,B3),mid, where (B1, B2, B3) is a partition of P = {P1, . . . , Pn} such
that |B1| = |B2| = |B3| = n/3 (assume without loss of generality that n is divided by 3). The ac-
cess structure Γ(B1,B2,B3),mid contains all subsets of parties of size greater than (1

2 + δ)n, and all subsets
of parties that contain authorized subsets A′ ∈ Γ of size between (1

2 − δ)n and (1
2 + δ)n that contain

exactly |A′|/3 of their parties from Bi, for every i ∈ [3]. Then, similarly to Lemma 4.4, define Bi ={
Si ⊆ Bi : (1

6 −
δ
3)n ≤ |Si| ≤ (1

6 + δ
3)n
}

for every i ∈ [3], and the function f : B1 × B2 × B3 → {0, 1},
where f(S1, S2, S3) = 1 if and only if S1 ∪ S2 ∪ S3 ∈ Γ, (1

2 − δ)n ≤ |S1 ∪ S2 ∪ S3| ≤ (1
2 + δ)n, and

|S1| = |S2| = |S3|.
We construct a secret-sharing scheme realizing Γ(B1,B2,B3),mid as follows: (1) Share the secret s ∈

{0, 1}m among the n parties using a ((1
2 + δ)n + 1)-out-of-n secret-sharing scheme. (2) Choose random

strings s1, s2, s3 ∈ {0, 1}m such that s = s1 + s2 + s3. (3) Execute a 3-party (T1, 2
n/3, 2n/3)-robust

CDS protocol (T1 will be determined later) for the function f with the secret s1, and share the message
of P1 (respectively, P2 or P3) when holding the input S1 (respectively, S2 or S3) among the parties of S1

(respectively, S2 or S3) using an |S1|-out-of-|S1| (respectively, |S2|-out-of-|S2| or |S3|-out-of-|S3|) secret-
sharing scheme, for every S1 ∈ B1 (respectively, S2 ∈ B2 or S3 ∈ B3). We do the same for a 3-party
(2n/3, T2, 2

n/3)-robust and a 3-party (2n/3, 2n/3, T3)-robust CDS protocols for f .
The correctness of the scheme follows from the same arguments as in Lemma 4.4. For the security of the

scheme, take an unauthorized set A /∈ Γ(B1,B2,B3),mid, and let i ∈ [3] such that |Si| = |A∩Bi| ≤ (1
6 + δ

3)n.
As in Lemma 4.4, we define the set TSi =

{
S′i ∈ Bi : S′i ⊆ Si, |S′i| ≥ (1

6 −
δ
3)n
}

, and get that |TSi | is at

most t =
∑( 1

6
+ δ

3
)n

j=( 1
6
− δ

3
)n

(( 1
6

+ δ
3

)n
j

)
≤ O(n ·

(( 1
6

+ δ
3

)n

( 1
6
− δ

3
)n

)
) = O(n2h( 1−2δ

1+2δ
)( 1

6
+ δ

3
)n) for δ < 1

6 . We define Ti ⊆
(Bi
≤t
)

as Ti =
{
TSi : Si ⊆ Bi, |Si| ≤ (1

6 + δ
3)n
}

. Thus, |Ti| =
∑( 1

6
+ δ

3
)n

j=0

(
n/3
j

)
< 2n/3.

Overall, in the resulting scheme each party gets less than N = |Bi| < 2n/3 shares from the
threshold schemes, so the share size of each party in the scheme is O(2n/3 · c(t, |Ti|, N,m)), which is
O(2n/3c(n2h( 1−2δ

1+2δ
)( 1

6
+ δ

3
)n, 2n/3, 2n/3,m)) for δ < 1

6 .
By using a family of “balancing” partitions of the n parties (similarly to Lemma 2.21) we get

a scheme realizing Γmid with share size O(poly(n)2n/3c(n2h( 1−2δ
1+2δ

)( 1
6

+ δ
3

)n, 2n/3, 2n/3,m)) for δ < 1
6

(similarly to Theorem 4.5). By Remark 6.6, we have a linear 3-party (T , N,N)-robust CDS proto-
col with one-element secrets in which the message size is Õ(tN log |T | log |F|). Hence, we get a lin-
ear scheme realizing Γmid for one-element secrets with share size O(poly(n)22n/32h( 1−2δ

1+2δ
)( 1

6
+ δ

3
)n log |F|)

for δ < 1
6 , i.e., the exponent of the scheme is M`(δ) = 2

3 + h(1−2δ
1+2δ )(1

6 + δ
3) for δ < 1

6 .
Thus, by Lemma 4.2, we obtain a linear scheme realizing any access structure Γ with an exponent of
max

{
h
(

1
2 − δ

)
−
(

1
2 − δ

)
log
(

1+2δ
1−2δ

)
, 2

3 + h(1−2δ
1+2δ )(1

6 + δ
3)
}

for δ < 1
6 . The minimal value of the ex-

ponent of this scheme is obtained by taking δ ≈ 0.0677412, which achieves an exponent of 0.816695.
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5 Constructions of Robust k-Party CDS Protocols

In this section we show how to transform any k-party CDS protocol to a robust k-party CDS protocol. This
is done using the families of hash functions of Lemma 2.19 and Lemma 2.20 (similar to the constructions
of Section 3). This transformation can be applied to any CDS protocol. For k = 2, this results in a 2-party
t-robust CDS protocol whose normalized message size is Õ(t) times the message size of the original 2-party
CDS protocol. For example, take a function that has a small branching program; then, it has an efficient
CDS protocol [42]. Thus, using our transformation, we get that this function also has an efficient robust CDS
protocol, when t is small. We describe the transformation in two stages. First, in Lemma 5.1, we describe a
transformation which increase the normalized message size of the original protocol by a multiplicative factor
of O(t2k−2). Then, in Theorem 5.2, we show how to use this robust CDS protocol to construct a t-robust
CDS protocol with multiplicative overhead of Õ(k(2k2t)k−1). This transformation is efficient when k is a
small constant, e.g., when k = 3 the multiplicative overhead is Õ(t2).

Lemma 5.1. Let f : [N ]k → {0, 1} be a k-input function, for some integer k > 1, and t ≤
√
kN be an

integer. Assume that for some integer m ≥ 1, there is a k-party CDS protocol P for f with secrets of size
m in which the message size is cf (m). Then, there is a k-party t-robust CDS protocol for f with secrets of
size m in which the message size is O(t2k−1cf (m) log(kN)). If P is a linear protocol over F2m , then the
resulting protocol is also linear. Furthermore, there is a k-party t-robust CDS protocol for f with secrets of
size Θ(mt log(kN)) in which the normalized message size is O(t2k−2cf (m)/m).

Proof. Let HkN,t,t2 =
{
hi : [k]× [N ]→ [t2] : i ∈ [`]

}
, where ` = Θ(t log(kN)), be the family of hash

functions promised by Lemma 2.19 for T =
([k]×[N ]
≤t

)
(that is, |T | = Θ((kN)t)). We use the hash functions

in HkN,t,t2 to partition the inputs of the parties. For efficiency, we use one family of hash functions to
partition all input domains.

The t-robust CDS protocol for f is as follows: Let s ∈ {0, 1}m be the secret, and choose ` ran-
dom strings s1, . . . , s` ∈ {0, 1}m such that s = s1 + · · · + s`, where the sum is in Zm2 . For every
hi ∈ HkN,t,t2 , we execute a CDS protocol for f as follows. For every a ∈ [k] and every j ∈ [t2], let
Aa,j = {x ∈ [N ] : hi(a, x) = j}. For every j1, . . . , jk ∈ [t2], execute a CDS protocol (with an independent
common random string) for the restriction of f to A1,j1 × · · · × Ak,jk with the secret si. That is, for every
a ∈ [k], party Pa on input xa sends messages for the restriction of f toA1,j1×· · ·×Aa,hi(a,xa)×· · ·×Ak,jk ,
for every j1, . . . , ja−1, ja+1, . . . jk ∈ [t2].

We first show the correctness of the CDS protocol for every hi ∈ HkN,t,t2 . For inputs (x1, . . . , xk) ∈
[N ]k such that f(x1, . . . , xk) = 1, the referee can reconstruct si using the messages on the inputs x1, . . . , xk
in the CDS protocol for the restriction of f to the inputs of A1,hi(1,x1) × · · · ×Ak,hi(k,xk) with the secret si.
Overall, the referee can learn all the strings s1, . . . , s`, so it can reconstruct the secret s by summing these
strings.

For the robustness of the protocol, let (S1, . . . , Sk) be a zero-inputs set of f such that |S1|+· · ·+|Sk| ≤ t.
By Lemma 2.19, there is at least one i ∈ [`] for which |hi({1}× S1 ∪ · · · ∪ {k}× Sk)| = |S1|+ · · ·+ |Sk|.
For every a ∈ [k], since hi is one-to-one on Sa, then each input of Sa is in a different subset Aa,j in the
partition induced by hi, so the referee gets at most one message of each of the parties P1, . . . , Pk in each
execution of the (non-robust) CDS protocol. Thus, by the security of the CDS protocol for f , the referee
cannot learn any information about si from any of the independent CDS protocols for the restriction of f to
the inputs of A1,j1 ×· · ·×Ak,jk . By Claim 2.16, the referee cannot learn any information on si, and, hence,
it cannot learn any information on the secret s.

The message size of each party in the resulting protocol isO(t2k−2`cf (m)) = O(t2k−1cf (m) log(kN)),
since each party sends (t2)k−1 = t2k−2 messages of the CDS protocol for every hi ∈ HkN,t,t2 .
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To construct the desired protocol for long secrets, let s = (s′1, . . . , s
′
`/4) ∈ F`/42m be the secret. We

use the protocol of Proposition 2.17 with the above ` CDS protocols, one for every hash function hi ∈
HkN,t,t2 . That is, now s1, . . . , s` ∈ F2m are shares of a (3`/4, `, `)-ramp secret-sharing scheme of the secret

s = (s′1, . . . , s
′
`/4) ∈ F`/42m . As above, for every inputs (x1, . . . , xk) ∈ [N ]k such that f(x1, . . . , xk) = 1,

the referee can learn each secret si in those ` protocols from the messages on the inputs x1, . . . , xk, so
it can reconstruct the secret s using the reconstruction function of the ramp scheme. Moreover, for every
(S1, . . . , Sk) that is a zero-inputs set of f such that |S1| + · · · + |Sk| ≤ t, there are at least `/4 values of
i ∈ [`] for which |hi({1} × S1 ∪ · · · ∪ {k} × Sk)| = |S1| + · · · + |Sk|. Thus, the referee cannot learn any
information on at least `/4 secrets in the above ` protocols from the messages on the inputs of S1, . . . , Sk,
so by the security of the ramp scheme, the referee cannot learn any information on the secret s.

Theorem 5.2. Let f : [N ]k → {0, 1} be a k-input function, for some integer k > 1, and t ≤
min

{
kN/2, 2

√
N/k
}

be an integer. Assume that for some integer m ≥ 1, there is a k-party CDS protocol
P for f with secrets of size m in which the message size is cf (m). Then, there is a k-party t-robust CDS
protocol for f with secrets of size m in which the message size is O(k2k−12ktkcf (m) log2k−1 t log2(kN)).
If P is a linear protocol over F2m , then the resulting protocol is also linear. Furthermore, there is a k-party
t-robust CDS protocol for f with secrets of size Θ(mt log t log2(kN)) in which the normalized message size
is O(k2k−12ktk−1cf (m)/m · log2k−2 t).

Proof. Let HkN,t,2t = {hi : [k]× [N ]→ [2t] : i ∈ [`]}, where ` = Θ(t log(kN)), be the family of perfect
hash functions promised by Lemma 2.20 for T =

([k]×[N ]
≤t

)
(that is, |T | = Θ((kN)t)).

Protocol PkRCDS

The secret: A string s ∈ {0, 1}m.
The protocol:

1. Choose ` random strings s1, . . . , s` ∈ {0, 1}m such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Aa,j = {x ∈ [N ] : hi(a, x) = j}, for every a ∈ [k] and every j ∈ [2t].

• For every j1, . . . , jk ∈ [2t], independently execute the k-party k log t-robust CDS protocol
of Lemma 5.1 for the restriction of f to A1,j1 × · · · × Ak,jk with the secret si. That is, for
every a ∈ [k], party Pa with input xa sends a message for the restriction of f to A1,j1 ×· · ·×
Aa−1,ja−1

×Aa,hi(a,xa)×Aa+1,ja+1
×· · ·×Ak,jk for every j1, . . . , ja−1, ja+1, . . . , jk ∈ [2t].

Figure 6: A k-party t-robust CDS protocol PkRCDS for a function f : [N ]k → {0, 1}.

The desired CDS protocol PkRCDS for f is described in Figure 6. The protocol PkRCDS contains (2t)k`

executions of the k-party k log t-robust CDS protocol of Lemma 5.1 (since t ≤ min
{
kN/2, 2

√
N/k
}

,

we have that k log t ≤
√
kN as required). For every a ∈ [k], since party Pa sends (2t)k−1 messages of

the protocol of Lemma 5.1 for every hi ∈ HkN,t,2t, its message size is O((k log t)2k−1cf (m) log(kN) ·
(2t)k−1`) = O(k2k−12ktkcf (m) log2k−1 t log2(kN)).

For the correctness of the protocol, let (x1, . . . , xk) ∈ [N ]k such that f(x1, . . . , xk) = 1. For every
i ∈ [`], the referee can reconstruct si using the messages on the inputs x1, . . . , xk in the CDS protocol for
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the restriction of f to A1,hi(1,x1) × · · · ×Ak,hi(k,xk). Overall, the referee can learn all the strings s1, . . . , s`,
so it can reconstruct the secret s by summing these strings, where the sum is in Zm2 .

For the robustness of the protocol, let (S1, . . . , Sk) be a zero-inputs set of f such that |S1|+· · ·+|Sk| ≤ t.
By Lemma 2.20, there is at least one i ∈ [`] such that for every a ∈ [k] and every j ∈ [2t], it holds that
| {xa ∈ Sa : hi(a, xa) = j} | < log t. Thus, each Aa,j contains less than log t input of Sa, and, hence, since
each of the protocols of Lemma 5.1 executed in protocol PkRCDS is k log t-robust, the referee cannot learn
any information on si from each such protocol. By Claim 2.16, since each of the protocols of Lemma 5.1 is
executed with independent common random string, the referee cannot learn any information on si from the
(2t)k protocols (with the function hi), and, hence, it cannot learn any information on the secret s.

The construction of the desired protocol for long secrets is similar to the construction in Lemma 5.1.

6 Linear Robust k-Party CDS Protocols

In this section, we construct linear robust k-party CDS protocols for arbitrary functions. For an integer k >
2, we present linear k-party (tbk/2c,Ndk/2e)-robust CDS protocols for k-input functions f : [N ]k → {0, 1},
that is, a CDS protocol that is secure when each of the first bk/2c parties sends at most t messages and each
of the last dk/2e parties sends any number of messages (as long as these messages are for a zero-inputs set).
As in the previous section, we think of k as a small constant, e.g., k = 3.

6.1 Linear (1bk/2c,Ndk/2e)-Robust CDS Protocols

We start by showing that a variant of the k-party CDS protocol of [17] is (1bk/2c,Ndk/2e)-robust.

Claim 6.1. Let f : [M ]× [N ]k−1 → {0, 1} be a k-input function, for some integer k > 2. Then, for every

finite field F, protocol P(1bk/2c,Ndk/2e)

k , described in Figure 7, is a linear k-party (1bk/2c,Ndk/2e)-robust
CDS protocol for f with one-element secrets in which the message size of party P1 isO(MN bk/2c−1 log |F|)
and the message size of parties P2, . . . , Pk is O(N dk/2e−1 log |F|).

Proof. In protocol P(1bk/2c,Ndk/2e)

k , described in Figure 7, the first bk/2c parties simulate Alice in the
2-party CDS protocol P(1,N)

2 and the last dk/2e parties simulate Bob. The correctness of the protocol

P(1bk/2c,Ndk/2e)

k is detailed in [17].
For the robustness of the protocol, recall that k′ = bk/2c (that is, if k is even then k′ = k/2 and if

k is odd then k′ = (k − 1)/2). Assume without loss of generality that there exist a1 ∈ [M ] such that
f(a1, i2, . . . , ik) = 0 for every i2, . . . , ik ∈ [N ] (this can be done by adding a dummy element to the
input domain of the first party), and assume that parties P1, . . . , Pk′ send messages of inputs x1 ∈ [M ]
and x2 . . . , xk′ ∈ [N ], respectively, and parties Pk′+1, . . . , Pk send multiple messages for subsets of inputs
Sk′+1, . . . , Sk ⊆ [N ], respectively, such that f(x1, . . . , xk′ , xk′+1, . . . , xk) = 0 for every (xk′+1, . . . , xk) ∈
Sk′+1×· · ·×Sk. Thus, the referee learns the elements ri1,...,ik′ for every i1 ∈ [M ] and every i2, . . . , ik′ ∈ [N ]
except for rx1,...,xk′ , the elements

sxk′+1,ik′+2,...,ik = s+ qik′+2,...,ik +
∑

i1∈[M ],i2,...,ik′∈[N ],f(i1,...,ik′ ,xk′+1,ik′+2,...,ik)=0
ri1,...,ik′

for every ik′+2, . . . , ik ∈ [N ] and every xk′+1 ∈ Sk′+1, and the elements qxk′+2,...,xk for every
(xk′+2, . . . , xk) ∈ Sk′+2 × · · · × Sk; for every (xk′+1, . . . , xk) ∈ Sk′+1 × · · · × Sk, the element rx1,...,xk′
is part of each sum of sxk′+1,xk′+2,...,xk . Intuitively, for every (xk′+1, . . . , xk) ∈ Sk′+1 × · · · × Sk, the

26



Protocol P(1bk/2c,Ndk/2e)

k

The secret: An element s ∈ F.
Inputs: Parties P1, . . . , Pk hold the inputs x1 ∈ [M ] and x2, . . . , xk ∈ [N ], respectively.
Common randomness: Let k′ = bk/2c. The k parties hold the following uniformly distributed and
independent random elements.

• ri1,...,ik′ ∈ F, for every i1 ∈ [M ] and every i2, . . . , ik′ ∈ [N ].

• tij ,...,ik′ ∈ F, for every j ∈ {2, . . . , k′} and every ij , . . . , ik′ ∈ [N ].

• qjij ,...,ik ∈ F, for every j ∈ {k′ + 2, . . . , k} and every ij , . . . , ik ∈ [N ].

The protocol:

1. Define qik′+2,...,ik =
∑k

j=k′+2 q
j
ij ,...,ik

for every ik′+2, . . . , ik ∈ [N ].

2. Party P1 sends to the referee the elements ri1,...,ik′ for every i1 ∈ [M ] such that i1 6= x1 and every
i2 . . . , ik′ ∈ [N ], and the elements rx1,i2,...,ik′ + ti2,...,ik′ for every i2, . . . , ik′ ∈ [N ].

3. For every j ∈ {2, . . . , k′ − 1}, party Pj sends to the referee the elements tij ,...,ik′ for every
ij , . . . , ik′ ∈ [N ] such that ij 6= xj , and the elements txj ,ij+1...,ik′ + tij+1,...,ik′ for every
ij+1, . . . , ik′ ∈ [N ].

4. Party Pk′ sends to the referee the elements tik′ for every ik′ ∈ [N ] such that ik′ 6= xk′ .

5. Party Pk′+1 sends to the referee the elements

sxk′+1,ik′+2,...,ik = s+ qik′+2,...,ik +
∑

i1∈[M ],i2,...,ik′∈[N ],f(i1,...,ik′ ,xk′+1,ik′+2,...,ik)=0
ri1,...,ik′

for every ik′+2, . . . , ik ∈ [N ].

6. For every j ∈ {k′ + 2, . . . , k}, party Pj sends to the referee the elements qjxj ,ij+1...,ik
for every

ij+1 . . . , ik ∈ [N ].

7. If f(x1, . . . , xk) = 1, the referee computes

sxk′+1,xk′+2,...,xk
+ qxk′+2,...,xk

+
∑

i1∈[M ],i2,...,ik′∈[N ],f(i1,...,ik′ ,xk′+1,xk′+2,...,xk)=0
ri1,...,ik′ .

Figure 7: A linear k-party CDS protocol P(1bk/2c,Ndk/2e)

k for a function f : [M ]× [N ]k−1 → {0, 1}.
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element rx1,...,xk′ acts as one-time-pad protecting s in sxk′+1,xk′+2,...,xk , and for every xk′+1 ∈ Sk′+1 and
every (ik′+2, . . . , ik) /∈ Sk′+2 × · · · × Sk, the element qik′+2,...,ik acts as one-time-pad protecting s in
sxk′+1,ik′+2,...,ik . Formally, the messages are independent of s since s + rx1,...,xk′ and s + qik′+2,...,ik for
every (ik′+2, . . . , ik) /∈ Sk′+2 × · · · × Sk are uniformly distributed, so a simulator for the protocol chooses
uniformly distributed random elements as in the protocol for s = 0, and computes the messages as in the
protocol P(1bk/2c,Ndk/2e)

k .
Additionally, the referee cannot learn any information on the secret s from the messages of party Pk′+1

on all the inputs xk′+1 ∈ [N ], since by our assumption (i.e., f(a1, i2, . . . , ik) = 0 for every i2, . . . , ik ∈
[N ]), these messages are masked by the elements ra1,i2,...,ik′ for every i2, . . . , ik′ ∈ [N ].

The message of party P1 contains MNk′−1 field elements, the messages of parties P2, . . . , Pk′ contain
Nk′−1, Nk′−2, . . . , N2, N − 1 field elements, respectively, the message of party Pk′+1 contains Nk−k′−1

field elements, and the messages of parties Pk′+2, . . . , Pk contains Nk−k′−2, Nk−k′−3, . . . , N, 1 field ele-
ments, respectively.

Remark 6.2. In the 3-party (1, N,N)-robust CDS protocolP(1,N,N)
3 of Claim 6.1 we do not have the random

elements tij ,...,ik′ . Party P1, when holding the input x1 ∈ [M ], sends to the referee only the elements
r1, . . . , rx1−1, rx1+1, . . . , rM , party P2, when holding the input x2 ∈ [N ], sends to the referee the elements
sx2,i3 = s+qi3+

∑
i1∈[M ],f(i1,x2,i3)=0 ri1 for every i3 ∈ [N ], and party P3, when holding the input x3 ∈ [N ],

sends to the referee the element qx3 . The message size of party P1 is O(M log |F|) and the message size of
parties P2, P3 is O(N log |F|).

The next robust k-party CDS protocol is a k-party version of the protocol of Claim 3.2, balancing the
sizes of the messages of the parties.

Lemma 6.3. Let f : [M ] × [N ]k−1 → {0, 1} be a k-input function, for some integer k > 2. Then,
for every finite field F and every d ∈ [M ], there is a linear k-party (1bk/2c,Ndk/2e)-robust CDS pro-

tocol P(1bk/2c,Ndk/2e),balanced

k for f with one-element secrets in which the message size of party P1 is
O
(
(M/d)N bk/2c−1 log |F|

)
and the message size of parties P2, . . . , Pk is O

(
dN dk/2e−1 log |F|

)
.

Proof. The proof is similar to the proof of Claim 3.2. The description of the protocolP(1bk/2c,Ndk/2e),balanced

k

is as follows: Let s be the secret, and partition the set [M ] to d disjoint sets A1, . . . , Ad of size at most
dM/de. Every input of [M ] is in exactly one set Ai. For every i ∈ [d], we execute the linear CDS protocol

P(1bk/2c,Ndk/2e)

k independently for the restriction of f to the inputs of Ai × [N ]k−1 with the secret s. Party
P1, when holding x1 ∈ [M ], only sends the message in the protocol for the restriction of f to the inputs of
Ai × [N ]k−1 for which x1 ∈ Ai. Parties P2 . . . , Pk, when holding x2, . . . , xk ∈ [N ], respectively, send the
messages in all the above independent protocols.

As in Claim 3.2, the correctness and robustness can be verified. The message of party P1 contains
O((M/d)N bk/2c−1) field elements and the messages of parties P2, . . . , Pk contain O(dN dk/2e−1) field

elements. Thus, the message size of the CDS protocol P(1bk/2c,Ndk/2e),balanced

k is as in the lemma.

6.2 From (1bk/2c,Ndk/2e)-Robust CDS Protocols to (tbk/2c,Ndk/2e)-Robust CDS Protocols

As in our robust 2-party CDS protocol, we use the above linear CDS protocol P(1bk/2c,Ndk/2e)

k and a family

of hash function to construct the following linear robust k-party CDS protocolP(tbk/2c,Ndk/2e)

k , for an integer
k > 2. This protocol is efficient for constant k, so we present its message size for such values of k.
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Lemma 6.4. Let f : [M ]bk/2c × [N ]dk/2e → {0, 1} be a k-input function, where M ≤ N , for
some constant integer k > 2, and t ≤

√
2M/k be an integer. Then, for every finite field F, there

is a linear k-party (tbk/2c,Ndk/2e)-robust CDS protocol for f with one-element secrets, in which for
an odd k the message size of the protocol is O

(
tkN (k−1)/2 logN log |F|

)
, and for an even k the mes-

sage size of party P1 is O
(
tk−1N (k−1)/2 logN log |F|

)
and the message size of parties P2, . . . , Pk is

O
(
tk−1N (k−3)/2(t2

√
N +M) logN log |F|

)
.

Proof. Let k′ = bk/2c and Hk′M,k′t,(k′t)2 =
{
hi : [k′]× [M ]→ [(k′t)2] : i ∈ [`]

}
, where ` =

Θ(k′t log(k′M)) = O(t logN), be the family of hash functions promised by Lemma 2.19 for T =([k′]×[M ]
≤k′t

)
(that is, |T | = Θ((k′M)k

′t)).

Protocol P(tbk/2c,Ndk/2e)

k

The secret: An element s ∈ F.
The protocol: Let k′ = bk/2c.

1. Choose ` random elements s1, . . . , s` ∈ F such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Aa,j = {x ∈ [M ] : hi(a, x) = j}, for every a ∈ [k′] and every j ∈ [(k′t)2].

• For every j1, . . . , jk′ ∈ [(k′t)2], independently execute the CDS protocol
P(1bk/2c,Ndk/2e),balanced

k of Lemma 6.3 for the restriction of f to A1,j1 × · · · × Ak′,jk′ ×
[N ]k−k

′
with the secret si, and with d = 1 if k is odd or d = max

{
1,M/(

√
Nt2)

}
if k is even. That is, for every a ∈ [k′], party Pa with input xa sends messages for
the restriction of f to A1,j1 × · · · × Aa,hi(a,xa) × · · · × Ak′,jk′ × [N ]k−k

′
for every

j1, . . . , ja−1, ja+1, . . . jk′ ∈ [(k′t)2], and parties Pk′+1, . . . , Pk with inputs xk′+1, . . . , xk,
respectively, send messages for the restriction of f to A1,j1 × · · · × Ak′,jk′ × [N ]k−k

′
for

every j1, . . . , jk′ ∈ [(k′t)2].

Figure 8: A linear k-party (tbk/2c,Ndk/2e)-robust CDS protocol P(tbk/2c,Ndk/2e)

k for a function f :

[M ]bk/2c × [N ]dk/2e → {0, 1}.

The desired CDS protocol P(tbk/2c,Ndk/2e)

k is described in Figure 8. For a fixed hi ∈ Hk′M,k′t,(k′t)2 , the

message of party P1 contains O
(

(k′t)2(k′−1)(M/(t2d))Nk′−1
)

field elements. This expression equals to

O
(
tk−5MN (k−3)/2

)
for an odd k and to O

(
min

{
tk−4MN (k−2)/2, tk−2N (k−1)/2

})
≤ O

(
tk−2N (k−1)/2

)
for an even k. For a fixed hi ∈ Hk′M,k′t,(k′t)2 , the messages of the parties P2, . . . , Pk contain(

(k′t)2k′dNk−k′−1
)

field elements. This expression equals to O
(
tk−1N (k−1)/2

)
for an odd k and to

O
(
tkN (k−2)/2 + tk−2MN (k−3)/2

)
for an even k. Since there are ` = O(t logN) hash functions, the

sizes of the messages is as in the lemma.
The correctness and robustness follow from the same arguments as in Lemma 3.3 and the details are

omitted.

As for our 2-party protocols, we improve our linear robust k-party CDS protocol using the family of
hash functions of Lemma 2.20.
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Theorem 6.5. Let f : [N ]k → {0, 1} be a k-input function, for some constant integer k > 2. Then, for
every finite field F and every integer t ≤ N/(k log2N), there is a linear k-party (tbk/2c,Ndk/2e)-robust
CDS protocol for f with one-element secrets in which the messages size is Õ

(
t(k+1)/2N (k−1)/2 log |F|

)
for

an odd k and Õ
(
tk/2N (k−2)/2(t+

√
N) log |F|

)
for an even k.

Proof. Let k′ = bk/2c and Hk′N,k′t,2k′t = {hi : [k′]× [N ]→ [2k′t] : i ∈ [`]}, where ` =

Θ(k′t log(k′N)) = O(t logN), be the family of hash functions promised by Lemma 2.20 for T =
([k′]×[N ]
≤k′t

)
(that is, |T | = Θ((k′N)k

′t)).

Protocol PLkRCDS

The secret: An element s ∈ F.
The protocol: Let k′ = bk/2c

1. Choose ` random elements s1, . . . , s` ∈ F such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Aa,j = {x ∈ [N ] : hi(a, x) = j}, for every a ∈ [k] and every j ∈ [2k′t].

• For every j1, . . . , jk′ ∈ [2k′t], independently execute the linear k-party (log tbk/2c,Ndk/2e)-

robust CDS protocol P(log tbk/2c,Ndk/2e)

k of Lemma 6.4 for the restriction of f to A1,j1 ×
· · · × Ak′,jk′ × [N ]k−k

′
with the secret si. That is, for every a ∈ [k′], party Pa with input

xa sends messages for the restriction of f to A1,j1 × · · · × Aa,hi(a,xa) × · · · × Ak′,jk′ ×
[N ]k−k

′
for every j1, . . . , ja−1, ja+1, . . . jk′ ∈ [2k′t], and parties Pk′+1, . . . , Pk with inputs

xk′+1, . . . , xk, respectively, send messages for the restriction of f to A1,j1 × · · · ×Ak′,jk′ ×
[N ]k−k

′
for every j1, . . . , jk′ ∈ [2k′t].

Figure 9: A linear k-party (tbk/2c,Ndk/2e)-robust CDS protocolPLkRCDS for a function f : [N ]k → {0, 1}.

The desired CDS protocol PLkRCDS is described in Figure 9. The protocol PLkRCDS contains

(2k′t)k
′
` = O(tbk/2c+1 logN) executions of the protocol P(t′bk/2c,Ndk/2e)

k of Lemma 6.4 with t′ = log t

and M = N/(2t) (since t ≤ N/(k log2N), we have that log t ≤
√
N/(kt) as required). In the protocol

PLkRCDS, the first party P1 sends (2k′t)k
′−1` = O(tbk/2c logN) messages and each of the last k − 1 par-

ties P2, . . . , Pk sends at most (2k′t)k
′
` = O(tbk/2c+1 logN) messages. For an odd k, the number of field

elements that each message of the protocol PLkRCDS contains is

O
(

logk tN (k−1)/2 logN · tbk/2c+1 logN
)

= O
(
t(k+1)/2N (k−1)/2 logk t log2N

)
.

For an even k, the number of field elements that each message of the protocol PLkRCDS contains is

O
(

(logk−1 t ·N (k−1)/2 · tbk/2c + logk−1 t ·N (k−3)/2(log2 t ·
√
N +N/(2t)) · tbk/2c+1) · log2N

)
= O

(
tk/2N (k−2)/2(t log2 t+

√
N) logk−1 t log2N

)
(where the first summand in the first row corresponds to the message size of party P1 and the second
summand in the first row corresponds to the messages size of parties P2, . . . , Pk). Overall, the message size
of protocol PLkRCDS is as in the theorem.
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The correctness and robustness follow from the same arguments as in Theorem 3.4; the details are
omitted.

Remark 6.6. As in the 2-party (T , N)-robust CDS protocol of Theorem 3.4, we can construct
a linear k-party (T1, . . . , Tbk/2c,Ndk/2e)-robust CDS protocol for every T1, . . . , Tbk/2c ⊆

([N ]
≤t
)
.

This results in a linear k-party (T1, . . . , Tbk/2c,Ndk/2e)-robust CDS protocol with one-element se-

crets in which the message size is Õ
(
t(k−1)/2N (k−1)/2

∑bk/2c
a=1 log |Ta| · log |F|

)
for an odd k and

Õ
(
t(k−2)/2N (k−2)/2(t+

√
N)
∑bk/2c

a=1 log |Ta| · log |F|
)

for an even k.
Additionally, we can also construct a multi-linear protocol with smaller normalized message size.

This results in a multi-linear k-party (T1, . . . , Tbk/2c,Ndk/2e)-robust CDS protocol with secrets of size

Θ(log t logN ·
∑bk/2c

a=1 log |Ta| · log |F|) in which the normalized message size is Õ
(
t(k−1)/2N (k−1)/2

)
for an odd k and Õ

(
t(k−2)/2N (k−2)/2(t+

√
N)
)

for an even k.

For t = Θ(N/ log2N) and Ta =
([N ]
≤t
)

for every a ∈ [bk/2c], the normalized message size of this
multi-linear protocol is Õ(Nk−1), which is the best known message size for such protocols in which t = N .
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