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Abstract
We present CellTree, a new architecture for distributed
data repositories. The repository allows data to be
stored in largely independent, and highly programmable
cells, which are “assimilated” into a tree structure. The
data in the cells are allowed to change over time, subject
to each cell’s own policies; a cell’s policies also govern
how the policies themselves can evolve. A design goal
of the architecture is to let a CellTree evolve organically
over time, and adapt itself to multiple applications. Dif-
ferent parts of the tree may be maintained by different
sets of parties interested in the respective parts, and the
core mechanisms used for maintaining the tree can also
vary across the tree and over time.

We present provable guarantees of liveness, correct-
ness and consistency (the last one being a generaliza-
tion of the typical blockchain guarantee of “persistence,”
when data is dynamic), when the CellTree architecture
is instantiated using a simple set of modules. These
properties can be guaranteed for individual cells that
satisfy requisite trust assumptions, even if these trust
assumptions do not hold for other cells in the tree.

We also discuss several features of a CellTree that
can be exploited by applications. We leave it for future
work to develop full-fledged applications on top of this
powerful architecture.

1 Introduction
There has been an explosion of interest in the notion of
a distributed ledger, triggered by the popularity of Bit-
coin [14]. The typical distributed ledgers today have the
form of a blockchain, where each new block points to an
earlier block. A variety of ingenious protocols have been
developed to add and immutably maintain the blocks
in such a ledger in an adversarial environment, while
incentivizing participation. Blockchain applications to-
day have gone well beyond that envisaged by Bitcoin
(namely, to publicly store all the transactions of a cryp-
tocurrency), and have been used (or proposed for use)
∗Author names sorted alphabetically.

as ledgers for supply chains, in gaming, for maintaining
public records, and for general purpose contracts and
transactions.

However, as blockchains have exploded in popularity
and scope, several issues have come to the fore and –
despite several proposed alternatives – many of them
remain unresolved. Typical blockchain architectures
face scalability challenges, as the underlying blockchain
structure is ever-growing and all the “full nodes” need
to store this entire chain to be able to fully validate
any block. Further, this data may include illegal con-
tent, creating legal complications for the blockchains
[11, 15]. Implementation bugs, if exploited, can create
irreversible effects, thanks to the immutable nature of
a blockchain. Another issue of note is that the proof-
of-work consensus protocol used in popular blockchains
have turned out to be ecologically costly.

Many recent works have proposed fixes to these –
using secondary structures [1, 3] to reduce the con-
tent stored on a blockchain, using alternate consensus
mechanisms [2, 7, 9], and using different graph topolo-
gies [4, 16]. However, as these systems grow in scale, or
if new attacks emerge due to changing economic incen-
tives or discovery of new bugs, the deployments of these
solutions may also need revisions.

In this work, we propose a very different approach
to the problem of designing a large scale, long-running
system for distributed data storage. A distributed data
repository is a complex system, with several constituent
components, addressing several disparate sub-problems.
A key philosophy of our approach is to let different so-
lutions coexist in the system, and to leave room for the
system to organically evolve over time and across appli-
cations. For this, various sub-problems are delegated to
modules, and the overall architecture is agnostic to how
each module is implemented.

In identifying the modules, we delineate tasks that
are typically conflated together in current approaches.
For instance, in a typical blockchain, selecting the con-
tents for a new cell, and confirming the cell as part of a
blockchain are usually accomplished by a single mecha-
nism that serves both as a lottery system and a consen-
sus protocol; in our design, these two tasks are assigned
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to separate modules, and typically separate sets of par-
ties are responsible for the two.

An important consideration in our design is to let
different users of the system focus on different parts of
the system, unencumbered by the entire system’s data.
A related feature is the ability of a part of the whole
structure to function as a smaller version of the sys-
tem, complete with its security guarantees and trust
assumptions. In particular, we naturally admit multi-
level confirmation of new blocks, so that clients trusting
lower levels in this hierarchy can get quick confirmation
of the addition of a block to the structure, and those
who do not trust those levels can wait for a higher level
of confirmation.

The CellTree Architecture. We term our new de-
sign CellTree, contrasting it with a blockchain. A Cell-
Tree consists of largely independent cells, with their own
rules for collecting and updating data. As mentioned
above, the data in each cell can evolve subject to poli-
cies programmed into the cell, and even these policies
can evolve as they permit themselves to. Each cell is
“operated” by a crew selected for it (using a selection
procedure that is encapsulated into a module that may
vary across cells).

The cells act collectively to provide various guaran-
tees. Each cell is addressed by associating it with a
node in a tree. Data in the different cells are period-
ically assimilated into the tree. Each cell’s integrity
and availability guarantees would depend only on (the
crews of) the cells in the path from it to the root of the
tree (or to any node whose crew is considered to have
an honest-majority). Subtrees could be easily excised
from the CellTree, or grafted to multiple locations (ef-
fectively making the structure a directed acyclic graph,
rather than a tree), with little effect on cells outside the
subtree.

The cell structure and the tree structure are comple-
mentary, and it is primarily the interface between them
that is fixed by the CellTree architecture. The individ-
ual cells themselves can be programmed to evolve in
customized ways, and the tree’s protocols can also be
customized using various modules at the level of nodes,
edges and paths.

Organization. The rest of this paper is organized
as follows. We start with a high-level discussion of
the design goals and some features in Section 2. Sec-
tion 3 introduces the different cryptographic primitives
and notation used in the design. Section 4 and Sec-
tion 5 present the technical details of a cell and the
tree, respectively, and Section 5.2 lists the various ex-
ternal modules that need to be plugged into the design
to instantiate a CellTree. Section 6 outlines a simple

instantiation of the CellTree architecture, and presents
formal guarantees that can be given for this instantia-
tion. Several features (not exploited in our example) are
discussed in Section 6.3. Before concluding, we discuss
a few related constructions.

2 An Organic Design
Before we present the technical details of our construc-
tion, we pause to reflect on our key design goals: We
seek a flexible distributed repository, where multiple so-
lutions to various sub-problems can co-exist, and even
evolve over time, to address different use-cases and at-
tack scenarios. We require the framework to be rich
enough to directly support a variety of conventional ap-
plications of distributed ledgers (and more), but should
not be over-engineered so that it becomes too rigid for
unforeseen future applications. The CellTree framework
strives to meet this goal by being modular, cellular and
evolving, as sketched below.

Modular We separate out processes (a) for assigning
responsibilities to parties, (b) for selecting updates to
be applied to the data in the system, and (c) for par-
ties to enforce integrity and availability of the data they
are responsible for. Our focus in this work will be on
(c), with support for a wide variety of options for the
modules for (a) and (b). Indeed, concepts from prior
blockchain constructions, like proof-of-work, proof-of-
stake and the use of crypto currencies as incentives, as
well as relying on permissioned systems, all remain pos-
sible means to achieving the goals of (a) and (b) in our
system. Even in our solution for (c), various sub-tasks
are left as modules, which can be implemented in a va-
riety of ways to achieve different efficiency-robustness
trade-offs.

Cellular We generalize the notion of blocks in a
blockchain to add more functionality and flexibility. For
clarity, we use the term cell instead of block. The sys-
tem is designed so as to allow cells to operate somewhat
independent of each other, while retaining a cohesive
structure overall. This independence manifests in dif-
ferent ways:

• As time progresses more cells can be added to the
system. Cells could also be excised from the system,
with limited impact on the rest of the system.

• The parties hosting the distributed system can choose
to focus on cells of interest to them, and ignore the
remaining.

• Each cell may use its own set of mechanisms for im-
plementing the modules mentioned above.
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Evolving We envisage cells as having static addresses,
but their data content could change over time. Data
updates in a cell must follow an evolution policy associ-
ated with the cell. Simple examples of evolution policy
include one that enforces that the data remains static
and one that only allows blocks to be appended to a list
of data blocks. The evolution policy in a cell itself can
evolve, and this is also dictated by the evolution policy.1
There is one more sense in which a CellTree can

evolve: the modules used by various nodes in the tree
can evolve, subject to their own evolutionary policies.
However, we do not mandate a framework for how mod-
ules are chosen and modified, instead leaving this itself
to a module.

2.1 Design Overview

The basic building block of a CellTree is a cell, which
carries the data, as well as a (typically smaller) nucleus.
As detailed in Section 4, the nucleus has code that spec-
ifies how a cell can evolve (e.g., cell data can only be
appended to).

The cell is hosted in a node in a binary tree. Each
node is operated by a crew. Each node’s crew is also
in charge of monitoring the nodes in a relatively small
subtree rooted at that node. Monitoring involves veri-
fying that the evolution of a nucleus is consistent with
its own policies. If so, the monitoring node assimilates
the updated nucleus into its own hash pointer, which is
then propagated to its own ancestors. Further, it also
propagates a proof of assimilation towards the nodes it
is monitoring. These proofs will be verified by a client
accessing a cell.

We specify several algorithms executed by the crew
members operating a node (or clients accessing a node),
to carry out a cell’s evolution, to monitor the evolution
of some other cells, and to assimilate updates and prop-
agate assimilation signals up and down the tree. These
algorithms are given in Section 5. Many tasks like se-
lecting the next step in a cell’s evolution, selecting crews
for new nodes, communicating to other crews, etc. are
left to the modules listed in Section 5.2.

2.2 CellTree vs. Blockchains

A conventional blockchain, like that of Bitcoin, could be
viewed as a single node CellTree, with an appropriately
programmed cell, and a very large crew. Conversely, a
CellTree has many parallels with a blockchain, with cells
in lieu of blocks. But the CellTree architecture differs

1For meaningful guarantees, when a policy rewrites itself, we
require the newly resulting policy to validate that the old policy
is acceptable to it as a policy to evolve from.

from blockchains in several important and fundamental
ways. Below, we discuss a few such differences.

Multi-Level Confirmation. In a CellTree, a crew op-
erating a node can update its cell autonomously, based
on its own local policies, and then have it assimilated
into the tree. Unlike in a blockchain architecture, where
the whole system has to approve the update, the up-
dates within a cell are wholly determined by the crew
of the node hosting the cell (subject to the policies pro-
grammed into the cell); a client that trusts the node’s
crew has immediate confirmation of the update. The
purpose of assimilation and higher levels of confirma-
tion is only to protect against (and hence disincentivize)
misbehaving crews.

Reversed Hash Pointers. One of the easily spot-
ted difference between the CellTree architecture and
blockchains is that the former uses a tree topology, in-
stead of a chain.

At first glance, one may view a blockchain as a unary
Merkle Tree [12, 13] (i.e., each node has a single child),
while a CellTree uses a binary Merkle tree. However,
this comparison is misleading. In a CellTree, the “hash
pointers” point from a parent (older node) to its children
(newer nodes), whereas in a blockchain, newly added
nodes carry hash pointers to existing nodes.2 That is, if
we view a blockchain as a unary Merkle tree, the “gen-
esis” block would play the role of a leaf, and the most
recently added block becomes the root. The reversed
direction of hash pointers reflects the fact that in a con-
ventional blockchain, a block gets confirmed when fu-
ture blocks attach to it, whereas in a CellTree, a cell
(or an update to a cell) is confirmed by already existing
nodes.

Distributed Ownership. An alternate attempt to re-
late the CellTree structure to a blockchain would be to
compare it to a blockchain that “forks” often (and re-
tains the forks). This analogy too misses the mark, due
to the reversed hash pointers, as mentioned above. But
there is a further difference that this comparison brings
to light. In a blockchain, if multiple forks have to be
permanently retained, consensus across the entire sys-
tem will be needed for each fork, making it unviable as
the number of forks increases. In the CellTree architec-
ture, on the other hand, each individual node is owned
and operated by its own crew. Distributing the owner-
ship of nodes to relatively small crews (say, involving a
few dozen parties) which can operate in parallel, vastly
improves the scalability of the system.

2Even architectures like IOTA’s Tangle [16], that do not stick
to a chain structure use hash pointers in the same direction as
blockchains.
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We point out that selecting a crew to entirely own a
node does raise some issues that need to be handled.
Firstly, whenever possible, we would like to ensure that
a sufficiently large majority of the parties selected for
a crew are honest, and secondly, in the event that the
crews for some nodes are compromised (say, because a
small crew is used), we would still like to retain as many
security guarantees as possible. The first issue is left for
a module to address: A typical approach would be to
randomly sample from a pool that is considered to have
a sufficiently large majority of parties (weighted appro-
priately by the extent of their computational power,
stake in the system etc.). Practical instantiations of
such schemes appear in protocols like Algorand [7]. The
second issue is addressed by the CellTree architecture,
via monitoring: Even if a node’s crew is corrupt, any
updates to the node’s cell will be assimilated into the
CellTree only if they are validated and agreed upon by
the crews monitoring it. (The exact mechanism of ar-
riving at a consensus across crews is left as a module.)

Dynamic Nodes. Crucial to implementing a Merkle
tree based data structure is the ability to dynamically
update the contents of previously existing nodes in the
tree, so that they can assimilate newly created cells
(even if we did not plan to support the evolution of
individual cells). But allowing cell data itself to evolve,
in a programmable manner, brings a whole new dimen-
sion to distributed data repositories. We point out a
couple of aspects.

While prior constructions have focused on the im-
mutability or “persistence” guarantee of the blocks in
a blockchain, for dynamic data we introduce a notion
of consistency, to assure that a cell has evolved into its
current form in accordance with the policies declared by
the cell. These policies govern the modification of the
cell’s data as well as the policies themselves.

Though persistence is sometimes desirable, many a
time it can be a burden on the system. The CellTree
design allows individual cells to forget their history (un-
less they are programmed to retain it – using a suitably
programmed cell, a single node could be used to host
an entire blockchain).

Excising Malignant Cells. A blockchain, by design,
does not allow removing any blocks already accepted to
be part of the chain. This (exacerbated by the need
to store the entire chain to verify it) creates practical
socio-legal complications when illegal data (say, confi-
dential information) is hosted on a blockchain. A Cell-
Tree, in contrast, makes it possible to deactivate “ma-
lignant” cells, with little impact on the rest of the tree.
The node containing a deactivated cell could be brought
back to service (with a fresh cell in it), if all the nodes
monitoring it cooperate.

3 Background
We shall use a binary tree structure to hold the data
cells. Below we introduce some basic notation and def-
initions.

• Each node v in the tree is uniquely identified using
a binary string that encodes the path from the root
to v. The root node corresponds to the empty string,
denoted by ε, and for any binary string v, the strings
v0 and v1 denote the left and right children, respec-
tively, of the node denoted by v.

• We say u � v if u is a prefix of v. In terms of the
tree, u is an ancestor of v (possibly u = v). We write
u ≺ v if u � v and u 6= v. We shall also write u ≺` v
(resp., u �` v) to denote that the distance between u
and v is at most ` and u ≺ v (resp., u � v).

• Given a set of nodes L that form an antichain (i.e.,
no node in L is an ancestor of another), and a node
u, we say that u � L if ∀v ∈ L, u � v. We say that
u - L if ∃v ∈ L s.t. u � v. Note that if v � L, then
the set of nodes {u : v � u - L} forms a subtree
rooted at v with L as its set of “terminal” nodes (i.e.,
nodes with no outgoing edges).

A (full-domain) hash function hash takes an input of
arbitrary size and maps it deterministically to a fixed
size output. We require a collision resistant hash func-
tion, in which it is infeasible to find two input strings x
and y such that hash(x) = hash(y). We shall often ap-
ply the hash function to a list of values (e.g., hash(x, y)),
implicitly requiring that the inputs to hash are first un-
ambiguously encoded to allow such lists.
A Merkle Tree [12,13] is a technique that allows hash-

ing several blocks of data together into a single block,
with the ability to show that a certain data block is part
of the hash using a succinct proof [10]. We use a variant
of Merkle tree in which the data blocks are associated
with all the nodes of a tree (rather than just the leaves).
We use the following notation.

• ηv - data block at a node v. (In our construction, ηv
itself will be a hash of certain data associated with
the node v in a CellTree.) For convenience, we shall
require that ηv is defined for all nodes (existing in the
tree or not).

• hv is recursively defined as hv := hash(ηv, hv0, hv1)
for nodes that exist in the tree. If a node v does not
exist in the tree, hv := hash(ηv), forming the base of
the recursion.

• Given an antichain L, and a node w � L, hw can be
computed from the set of values(

{ηu}w�u-L , {hu}w�parent(u)-L,u 6-L

)
.
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We shall also employ a standard digital signature
scheme given by a key-generation algorithm and a pair
of algorithms (sign, verify). We shall typically use it in
the form of a collective signature created by a set of par-
ties G (publicly represented by their verification keys in
the signature scheme). We write crewSign.sign(G,m)
to denote the collective signature on a message m
produced by G, {signg(m)}g∈G; similarly, we write
crewSign.verify(G,m, σ) to denote the verification of
a collective signature σ on a message m using the public
keys of G. crewSign.verify may be programmed with
a parameter that specifies how many missing signatures
should be tolerated (additional signatures if any, cor-
responding to public-keys not in G would typically be
ignored).

4 Cell Design
Content of each cell consists of two parts, cell-data
cdata, and a nucleus nuc. The nucleus is an entity that
typically encodes a fingerprint of the data, and also con-
strains the trajectory of the data evolution (in the past
and the future). The exact functionality of the nucleus
is fully customizable and can be used to design a wide
variety of cell behaviors, as we explain below.

Typically, the nucleus contains a summary of the cell-
data, in addition to some code. The nuclear code con-
sists of algorithms that dictate cell evolution. For an
update of a cell evolve from (cdata, nuc) to (cdata′, nuc′)
to be valid, both the nuclei involved should agree to the
evolution. This is required to enable making inferences
about the past and future of a cell from the current nu-
cleus (e.g., to ensure that the data stored in a cell is
unmodified and unmodifiable). For efficiency purposes,
it will be important that the nuclei should arrive at
this agreement without seeing the cell data of the other
state (past or future) of the cell, but only the nuclear
data. Formally, a nucleus is a pair (ncode, ndata), where
ncode, consists of 3 algorithms (in some well-defined ma-
chine model) and ndata holds data for use in these al-
gorithms. These algorithms are for verifying that the
cellular data matches the nucleus of the cell (chkCell),
and for checking if the succeeding and preceding nuclei
are compatible with the current nucleus (chkNext and
chkPrev, respectively). Each of these algorithms takes
the nucleus it belongs to (code and data), or the entire
cell, as its first argument and outputs b ∈ {true, false}:

chkCell : cell 7→ b

chkNext : (nuc, nuc(+)) 7→ b

chkPrev : (nuc, nuc(−)) 7→ b

Here, nuc(+) refers to the new nucleus formed af-
ter evolution of nuc, and nuc(−) refers to the

previous nucleus that evolves into nuc. For
brevity, we shall write chkCell(cell) instead of
cell.nuc.ncode.chkCell(cell), chkNext(nuc, nuc(+)) instead
of nuc.ncode.chkNext(nuc, nuc(+)), etc.

Initializing an empty cell The nucleus of the empty
cell is denoted as nuc0. We define nuc0.chkNext
to always output true, whereas nuc0.chkCell and
nuc0.chkPrev always output false. This will prevent the
acceptance of the empty cell as the result of evolution
of any cell.

4.1 Examples of Nucleus Families
We list a few basic examples of nucleus families below.
For concreteness, we illustrate their functions chkPrev,
chkNext and chkCell in Figure 2.

• Static data: chkPrev ensures that the previous ver-
sion of the cell had the empty nucleus. chkNext always
returns false. This will ensure that a nucleus of this
family does not evolve. Then, chkCell ensures that
the cell-data cannot change either (assuming collision
resistance of the hash function).

• Blockchain Ledger: A cell can be used to imple-
ment an entire blockchain ledger, which is simply a
list of data blocks and the only way in which the cell
data can be modified is to append blocks.

• State Machine: A nucleus can be used to implement
a state machine, so that transitions can occur only
according to the edges in a directed graph G over a
state space. (The state space can be infinite, as in
the case of a counter.) The simple version illustrated
in Figure 2 does not use any cdata and there is no
additional information in the nuclear data other than
the state.

Private Nucleus. Since the nucleus is available out-
side of the node containing the cell (to the nodes moni-
toring it), if the contents of the cell are to be protected,
the nucleus should retain the cell’s secrecy. We point
out the possibility that the nuclear data can be kept
“encrypted” while still making it possible to run the
verification algorithms chkPrev and chkNext. For simple
nuclear families this can indeed be achieved efficiently:
For instance, for static data or the blockchain ledger
above, instead of using the hash of the blocks, a com-
mitted hash can be used (e.g., in the random oracle
model, appending a random block to the data block
before hashing suffices). In the case of the blockchain
ledger, we need to also allow virtual datablocks that
contain a variable number of blocks (possibly none), so
that exactly one virtual block is added during each up-
date, and the actual number of blocks can be hidden.
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Cell data

Nucleus
Nuclear data

Nuclear code

C(i-1) C(i) C(i+1)

Evolving cells

Figure 1 Illustration of cells evolving. The cogwheels indicate the three programs that are part of the nuclear code. The arrows across
evolving cells indicate using the next or previous nucleus as inputs to chkNext (top cogwheel) and chkPrev (bottom cogwheel).

For more complex nuclear functionality, (succinct, non-
interactive) zero-knowledge proofs can be used to let
chkPrev and chkNext verify that the updates are valid
without revealing anything else.

External References. The machine model for the nu-
clear code is implemented using a module exec. Apart
from standard operations, this machine model may al-
low references to certain external resources, like current
time, cells in other nodes of this CellTree, or even data
blocks or code in other blockchains. As a simple exam-
ple, this allows one to use a timestamp included in a
nucleus, and let chkNext accept a new nucleus only if
its timestamp is in the past, but later than the times-
tamp of the current nucleus. Ability to refer to data
in other nodes of the CellTree allows a nucleus, for in-
stance, to prove its relation to cells in other nodes (e.g.,
the nucleus of a cell containing a ledger can prove that
a transaction being added to the cell is also present in
a global ledger, whose Merkle hash is stored as a cell in
a different node).

5 Tree Design
In order to maintain the cells in a single ledger, we shall
use a tree structure. Each cell will be exclusively associ-
ated with a unique node in the tree, and will be imple-
mented by a set of parties – called the node’s crew. As
time progresses, new cells can be added to the tree and
also, each cell may evolve as permitted by its nuclear
code.

To make the tree robust to corruption of some cells,
we shall have each cell’s evolution monitored by several
other cells (more specifically, by several cells that are
its ancestors in the tree). Also, a cell’s evolution is

not confirmed until it is assimilated into the tree. In
this section we describe the mechanisms used for cell
evolution, assimilation and access. We begin with the
structure and contents of a CellTree, before describing
the procedures involved.

Nodes of a CellTree. In a CellTree, the location for
a cell is a node in a binary tree. The node address, v, is
a binary string representation of the path to the node
from the root. For each node v of the tree, there shall be
a set of parties Gv — the crew operating the node v —
who implement the protocols associated with that node,
and maintain a copy of the contents of the node. Each
member of a crew, g ∈ Gv has a signing/verification key
pair (SKg,VKg) associated with it, and can be uniquely
identified by VKg (or alternately, a hash thereof). For
convenience, we shall denote the collection {VKg|g ∈
Gv} by V̂Kv.

Merkle Multi-Trees. We shall use a variant of a
Merkle tree in which the underlying graph structure is
that of a multi-tree rather than a tree. A multi-tree is a
directed acyclic graph such that the set of nodes reach-
able from any node (via the directed edges) is a tree
rooted at the node. While there is a unique tree struc-
ture for a CellTree with every node appearing at a fixed
location in the tree, the reason we need to use a Merkle
Multi-Tree is that the cells in each node can evolve over
time, and each version of a cell appears as a separate
node in the multi-tree (but has the same address in the
binary tree structure).

Recall that in Section 3, we defined a Merkle tree as
having data ηu at each node u, and recursively defined a
hash pointer for the node hu = hash(ηu, hu0, hu1). But
in a Merkle multi-tree, the same binary tree node u is
allowed to have different nodes with different values for
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Static Data: The nuclear data ndata is simply a hash of the cellular data cdata using a collision-resistant hash function.

chkCell(cell) =
{

true if cell.nuc.ndata = hash(cell.cdata)
false otherwise

chkPrev(nuc, nuc(−)) =
{

true if nuc(−) = nuc0

false otherwise

chkNext(nuc, nuc(+)) = false

Blockchain Ledger: cdata is an array of blocks (|cdata| refers to the number of blocks in the array and cdata[i] refers to
the ith block). ndata is a triple (n, blkHash, chnHash) where n is the number of blocks in the ledger and the other two items
are hash values (the last block and the root in a Merkle-chain).

chkCell(cell) =


true if cell.nuc.ndata = (n, γn, hash(hash((. . .hash(hash(γ1, γ2), γ3), . . . , ), γn−1), γn))))

where n = |cell.cdata| and γi = hash(cell.cdata[i])
false otherwise

chkNext(nuc, nuc(+)) =


true if nuc(+).ndata.chnHash = hash(nuc.ndata.chnHash, nuc(+).ndata.blkHash)),

nuc(+).ncode = nuc.ncode and nuc(+).ndata.n = nuc.ndata.n + 1
false otherwise

chkPrev(nuc, nuc(−)) =
{

true if nuc(−) = nuc0, nuc.ndata.n = 1 and nuc.ndata.chnHash = nuc.ndata.blkHash
nuc.chkNext(nuc(−), nuc) otherwise

State Machine: A directed graph G = (V,E) over the set of states V is encoded in the algorithms below. ndata is simply a
state in V . state0 refers to the start state of the machine.

chkCell(cell) =
{

true if cell.nuc.ndata ∈ V and cell.cdata is empty
false otherwise

chkNext(nuc, nuc(+)) =
{

true if (nuc.ndata, nuc(+).ndata) ∈ E and nuc(+).ncode = nuc.ncode
false otherwise

chkPrev(nuc, nuc(−)) =
{

true if nuc(−) = nuc0 and nuc.ndata = state0

nuc.chkNext(nuc(−), nuc) otherwise

Figure 2 Examples of nucleus families. In each case the three algorithms in the nuclear code are described.

ηu, hu0, hu1. We denote such a tuple as mNodeu and it
is uniquely addressed by hu. More precisely,

mNodeu = (nucu, nonceu, hu0, hu1). (1)

where (nucu, nonceu) is the actual data associated with
mNodeu, and we let ηu = hash(nucu, nonceu).

We shall often refer to a “Merkle subtree” that forms
a subgraph of a Merkle multi-tree. The Merkle subtree
that is reachable from a node u, and terminated by a
set of terminals L is recursively defined as follows.

mTreeuL =
{

(mNodeu,mTreeu0
L ,mTreeu1

L ) if u - L
⊥ otherwise

Here, mTreeuL is uniquely specified by the tuple

(u, L, hu), where hu is the hash pointer to mNodeu. We
let mTreeuL.terminals denote the set of terminals L.
For u � v � L, one can extend a Merkle subtree

rooted at v and terminated at L to one rooted at u
and terminated at L, by concatenating it with a Merkle
subtree rooted at u and terminated at {v}. We ab-
breviate mTreeu{v} as mTreeuv below. Then, we can de-
note the above extension as mTreeuL ← mTreeuv ||mTreevL,
where the concatenation operator replaces mTreevv = ⊥
(present in mTreeuv ) with mTreevL.

mEval denotes the algorithm that, on input mTreeuL
computes hu or returns an error, if the input is not a
valid Merkle subtree (e.g., if the hash pointers included
in a node do not match the values computed for the
subtrees of that node).
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Proof of Assimilation. A proof of assimilation of a
node v, with respect to a root of assimilation aroot has
the following form:

poaaroot
v = (mTreearoot

v , σaroot), (2)

where mTreearoot
v is a Merkle tree rooted at aroot with

{v} as the terminal set, and σaroot is a signature of the
root hash of this tree, signed by the crew of aroot.

Contents of a node. A node stores the following items
(accessed via methods of a module store).

• The latest version of its cell. (Updated using method
updateCell and retrieved using currentCell.)

• A list of cells that have been propagated rootwards
for assimilation (possibly stored in a compressed fash-
ion), with an associated hash pointer (stored using
the method addcell). Any proofs of assimilation re-
ceived for each cell are also stored (via addpoa).

• An ordered list UUlist consisting of nuclei of cell ver-
sions since the last rootward propagation. (Items are
appended to this list using the method appendUU, and
the list is retrieved (and emptied) using flushUU.)

• A Merkle multi-tree with roots of the form mNodev,
one for each version of the cell that is propagated
rootward. (Subtrees of this multi-tree are created and
retrieved using methods addmTree and getmTree).

CellTree Procedures. In Section 5.1 below, we shall
specify the following core procedures as part of the Cell-
Tree framework:

• Reading a Cell: The procedure Read will be in-
voked by a client to read a cell from a node.

• Cell Evolution: The procedure Evolve is invoked
by the crew of a node to update its cell.

• Cell Assimilation: There are two comple-
mentary procedures RootwardPropagation and
LeafwardPropagation that are invoked by the
crew of a node to communicate with crews of other
nodes, during the assimilation process.

In addition to these procedures, the CellTree framework
relies on other procedures (e.g., for scheduling the invo-
cation of various procedures, for creating a new node
and assigning it a crew, for deciding what a cell should
evolve into, etc.), that are all implemented as modules
(see Section 5.2 and Section 6).

Robustness Properties. We define the following de-
sirable properties for a CellTree. These properties are
parametrized by a node v, since, even if parts of the tree
are malfunctioning, we seek to guarantee these proper-
ties to other nodes.

• consistency(v): Let C be the set of cells returned by
a set of successful invocations of Read(v) by hon-
est clients. Then, there exists a sequence of nuclei
nuc(0), · · · , nuc(N) such that for all i ∈ [1, N ], both
chkNext(nuc(i−1), nuc(i)) and chkPrev(nuc(i), nuc(i−1))
hold and further, for all cell ∈ C, there exists i ∈
[0, N ], such that cell.nuc = nuc(i) and chkCell(cell)
holds.

• correctness(v): Any cell returned by Read(v) to an
honest client is equal to a cell assigned to v using the
procedure Evolve by the crew Gv prior to that (or
is the empty cell that every node is initialized with).

• liveness(v): If a cell is assigned to a node v at any
point in time (by the crew Gv using the procedure
Evolve), eventually every invocation of Read(v) by
any honest client will return this cell, or a cell assigned
to v subsequently.

Note that the above definitions refer to the crew Gv,
but the “correct” Gv is not necessarily well-defined if
the crews of the CellTree are malicious. A fully for-
mal definition of the above properties requires a formal
definition of the correct crew Gv, which we provide in
Section 6.1.

5.1 CellTree Procedures
Now we list the core procedures of the CellTree archi-
tecture.

5.1.1 Reading a Cell

To read a cell in a node v, a client executes the procedure
read presented below.

procedure read(v, aroot) . aroot � v
(G′v, G′aroot)← discover(v, aroot)
(cell, poa)← fetch.getCell(G′v, v, aroot)
verify(v, aroot, G′aroot, cell, poa)
return cell

procedure verify(v, aroot, Garoot, cell, poaaroot
v )

(mTree, σ)← poaaroot
v

h← hash.mEval(mTree)
assert mTree.terminals = {v} ∧mTree.root = aroot
assert crewSign.verify(Garoot, h, σ)
assert cell.nuc = mTree.mNode.nuc
assert chkCell(cell)

The client can use any node aroot � v as the assimi-
lation root where it requires that the cell being read has
to be assimilated. The client first discovers the crew for
the nodes v and aroot, using a module discover. (A
typical implementation of this module would require the
client to already “know” the crew of one or more nodes
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in the CellTree, and would then carry out a search, rely-
ing on the fact that crews of a node are expected to know
crews of the nodes they monitor and the crews monitor-
ing their node. An example appears in Section 6.)

The algorithm read also uses a module fetch to let a
client access the information about a cell from a node’s
crew (typically, the latest version of the cell for which
the crew possesses a proof of assimilation at the speci-
fied assimilation root). The client verifies the proof of
assimilation (which certifies a nucleus as being assimi-
lated), ensures that the given cell’s nucleus matches the
one in the proof of assimilation and also verifies that the
cell contents are consistent with the nucleus.

5.1.2 Cell Evolution

The cell evolution procedure evolve is invoked at each
crew member of a node by the module selectCell,
to replace the current cell with a new cell cell(+) that
the module has chosen. We expect that selectCell
achieves a consensus among the crew members before
evolve is invoked; on the other hand, the module
store typically acts locally at each crew member’s stor-
age, without requiring any coordination among the crew
members.

procedure Evolve(v, cell(+))
cell← store.currentCell
assert chkNext(cell.nuc, cell(+).nuc)
assert chkPrev(cell(+).nuc, cell.nuc)
assert chkCell(cell(+))
store.updateCell(cell(+))
store.appendUU(cell(+).nuc)

5.1.3 Cell Assimilation

Assimilation is carried out by propagating assimilation
signals from cells towards the root (Rootward Propa-
gation) and proofs of assimilation back from the root
to all the cells (Leafward Propagation). This process is
designed such that the amount of work a node needs to
carry out does not grow as the tree grows. However,
we do let the amount of storage required at a node to
depend on the depth of that node, as a version of the cell
is retained at least until all proofs of assimilation for a
later version are received.

Rootward Propagation: We describe the procedure
invoked by the crew of a node to propagate assimila-
tion signals to its monitoring nodes in the tree. The
requisite communication between the node’s crew and
the crews monitoring it is accomplished through a mod-
ule rootward. This module may use direct communi-
cation between the crews of a monitoring and a mon-

itored node, or alternately, use an indirect route (e.g.,
each node communicating directly only with its parent
and children).

procedure RootwardPropagation(v)
L← rootward.monitored
for b ∈ {0, 1} do

mTreevb
L ← AcceptVerify(vb, L)

hvb ← hash.mEval(mTreevb
L )

UUlistv ← store.flushUU
cellv ← store.currentCell
noncev ← hash.generateNonce
mNodev ← (cellv.nuc, noncev, hv0, hv1)
if v 6= ε then

rootward.send(UUlistv,mNodev)
mTreev

L ← (mNodev,mTreev0
L ,mTreev1

L )
hv ← hash.eval(hash.eval(cellv.nuc, noncev), hv0, hv1)
σv ← crewSign.sign(hv)
poav

v = ((mNodev,⊥,⊥), σv)
leafward.send(poav

v) . send to self
store.addcell(cellv, hv)
store.addmTree(hv,mTreev

L)
procedure AcceptVerify(u, L)

if u 6- L then
return ⊥

(UUlistu,mNodeu)← rootward.receive(u)
(nucu, nonceu, hu0, hu1)← mNodeu

lastmTreeu
L ← store.getmTree(L, u) . latest version

nuc(0)
u ← lastmTreeu

L.mNode.nuc
nuc(1)

u , · · · , nuc(t)
u ← UUlistu

if not consistent(nuc(0)
u , · · · , nuc(t)

u ) then
return lastmTreeu

L . reject update
for b ∈ {0, 1} do

mTreeub
L ← AcceptVerify(ub, L)

if ub - L then
if hash.mEval(mTreeub

L ) 6= mNodeu.hub then
return lastmTreeu

L . reject update
return (mNodeu,mTreeu0

L ,mTreeu1
L )

procedure consistent(nuc(0), · · · , nuc(t))
for j ∈ 1, · · · , t do

x← chkNext(nuc(j−1), nuc(j))
y ← chkPrev(nuc(j), nuc(j−1))
if x = false or y = false then

return false
return true

During rootward propagation, an assimilation signal
from each node u is propagated to every node monitor-
ing it. This message contains the following:

(UUlistu,mNodeu)

where mNodeu is as defined in Equation 1. We require
that nucu in mNodeu be the same as the last entry in
UUlistu (stored together).

In the procedure RootwardPropagation, each
crew member accepts and verifies a list of nuclear up-
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dates from each node it is monitoring. Here, verifica-
tion involves verifying the consistency between consec-
utive updates (using chkNext and chkPrev methods in
the two nuclei), as well as ensuring that the hash point-
ers included in an updated node points to valid cells
that resulted from verified updates. (In case of verifica-
tion failure, the previous version of the node is retained.)
Then, the crew prepares a node in the Merkle multi-tree,
with the current version of its cell, with hash pointers
to the verified versions of the cells of its two child nodes.
This information is propagated to crews monitoring it,
along with a the local list of updates since the last root-
ward propagation.

Note that the recursive subroutine AcceptVerify
could result in the updates of an entire subtree rooted
at u being rejected, if the update received from the node
u itself fails verification. Further, a faulty update for u
could result in updates from its parent (and recursively,
all its ancestors till v) being rejected, if the parent of
u used a hash pointer that does not match any hash
pointer from u. This may seem to suggest that a ma-
licious crew for a single node can disrupt all updates
from its ancestors and descendents. However, such at-
tacks can be avoided by well-designed rootward and
leafward modules. In particular, in the simple instan-
tiation in Section 6, the descendents of a node cannot
block the nodes updates from being assimilated (though
it allows a node from blocking its descendents’ updates).

Apart from the module rootward, this procedure uses
a few other modules: A module monitoring is used to
obtain the set (subtree) of nodes v monitors: this set is
specified in terms of an antichain L, as {u|v ≺ u - L}.
The module store is used to save the Merkle subtree
corresponding to the update that was propagated root-
ward. The module crewSign is used to produce a col-
lective signature that is part of the proof of assimilation
of the child nodes’ cells. This proof is saved using the
module leafward and recovered later during leafward
propagation.

Leafward Propagation Step: We describe the pro-
cedure used by the crew of a node to propagate proof
of assimilation from an ancestor node aroot (possibly it-
self) to one or more of its subtree nodes (see Equation 2).
The procedure uses a module leafward to collect the
proofs and to propagate them to a subtree (after due
verification).

The set of nodes for which a node’s crew should
prepare the proof is also determined by the module
leafward: The method pickleaves returns a set of ter-
minal nodes L and the proof of assimilation poasetaroot

L

is prepared for all nodes u s.t. v � u - L. This set of
proofs is transmitted to these nodes using the method
leafward.send.

procedure LeafwardPropagation(v)
. Process a proof received
(aroot, Garoot, poaaroot

v )← leafward.receive
(mTreearoot

v , σaroot)← poaaroot
v

hv ← hash.mEval(mTreearoot
v )

assert crewSign.verify(Garoot, hv, σ
aroot)

store.addpoa(poaaroot
v , hv)

L← leafward.pickleaves(aroot) . propagate till L
mTreev

L ← store.getmTree(L, v, hv)
if aroot 6= v then

mTreearoot
L ← mTreearoot

v ||mTreev
L

poasetaroot
L ← (mTreearoot

L , σaroot)
leafward.send(poasetaroot

L )

5.2 Modules
A CellTree relies on several modules, but is oblivious to
their implementation. In this section, we collect all the
modules referred to above, as well as some additional
modules that are used by a CellTree deployment. While
many of the modules are entirely local to a node’s crew,
some modules need to coordinate across multiple nodes.
• Node Creation and Crew Selection. Creating

a new node and selecting a crew for it are tasks carried
out collectively by the nodes which would be monitor-
ing the new node, using a module createNode. This
module could use, e.g., the committee selection proto-
col used within Algorand [7].
• Cell Selection. As mentioned before, cell evo-

lution is triggered by a module selectCell, which is
responsible for obtaining a consensus among the crew
members as to the next version of a cell.
• Propagation. As described earlier, the modules

rootward and leafward are used by crews to send and
receive assimilation signals and proofs of assimilation.
Typically, the send and receive methods operate in the
background and would involve consensus mechanisms
and secure communication protocols used within and
across crews.
• Local Storage. The module store is used by each

party in a crew to locally store and retrieve various val-
ues across separate invocations of the algorithms. Typ-
ically, this module requires no communication among
crew members (as the consistency guarantees of values
being stored are ensured by the other modules).
• Client Access to a CellTree. Modules fetch

and discover are used by the procedure Read. These
modules may implement access control and and denial-
of-service protection.
The proofs of assimilation involve a collective signature
by the crew (on a hash value). The protocol for creating
such signatures and the algorithm for locally verifying
them are encapsulated in the module crewSign.
• Code Execution. The machine model used to
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execute the nuclear code is specified as a module exec.
The module may support multiple languages and library
functions.
• Hashing. The hash algorithm and Merkle tree

evaluation are implemented by the module hash. A
method hash.generateNonce included in this module
can be used to create nonces that control the hash eval-
uation (e.g., if a time-stamp in the nonce is in the future,
the hash evaluation could return an error).
• Scheduling. The sched module decides when the

CellTree procedures are run by the members of a crew.
• Selection and Evolution of Modules. The

CellTree framework admits different implementations
of the various modules to coexist. But the framework
does not specify how modules are chosen, and possibly
changed over time, instead delegating it to a module
moduleManager (which governs its own evolution).

6 Instantiating a CellTree: An
Example and Analysis

In this section we sketch an instantiation of a CellTree,
using a set of relatively simple modules, and give prov-
able robustness guarantees for it (in Section 6.1). This
instantiation, which we dub CT0, is only for illustrating
the robustness and performance guarantees possible in
a CellTree; several improvements are discussed in Sec-
tion 6.3.

We sketch the design of CT0 below. This design
can be implemented entirely using appropriately defined
modules in the CellTree architecture above.

• Every node monitors all its descendent nodes at a
distance of at most `, which is a fixed parameter for
the entire system.

• During the propagation steps, each node’s crew inter-
acts directly only with the crews of its two children
and its parent. That is, the crew of a node v has all of
the assimilation signals {rootward.receive(u)}vb�u
(for b = 0 or 1) communicated to it by the crew of
the node vb; the method receive requires that the
assimilation signal it receives for a node is signed by
the crews of all the nodes monitoring it; for a signa-
ture from a crew, a strict majority of the signatures
by individual crew members should verify.
When a node v invokes leafward.pickleaves it re-
turns L = {v0, v1}.

• Only the root node ε is used as an assimilation root,
and hence proofs of assimilation are not created by
the other nodes during rootward propagation.

• The module discover implements a simple search
algorithm (shown below) to iteratively discover the
crews of each node in the path from the root to the

node to be read. For simplicity, we assume that the
crew of the root node Gε is fixed and hardcoded into
the discover module used by all nodes (at the time
of creating each node). The algorithm is designed
to prevent errors in discovery, provided that the root
crew is “good” and there is a “good” node in every
` long path. Once a crew is discovered, a client can
cache it.

• For scheduling the propagation algorithms, we use an
“epoch period” of ∆ (say half an hour) and a “phase
shift” Φ = ∆/t for some integer t (say, Φ = 5 min-
utes) as follows: A node at depth d invokes the root-
ward propagation algorithm periodically, at time T if
T ≡ dΦ (mod ∆).3 This allows the assimilation sig-
nals from nodes at depth d to cascade to the root, with
a latency of at most ∆ + dΦ. The root node invokes
the procedure LeafwardPropagation after exe-
cuting RootwardPropagation; in the other nodes,
the procedure LeafwardPropagation is triggered
when it receives a proof of assimilation from its par-
ent’s leafward module.

• We do not fully specify the policy used by the module
createNode to find the crew for a node being created.
But we shall require that it uses a final consensus step
to certify the selected crew. A party (which consid-
ers itself as monitoring the newly created node) ac-
cepts the selected crew if it is certified by the signa-
tures of a strict majority among the multiset union4

of (what the party considers as) the crews of all the
nodes that will be monitoring the node being cre-
ated. This module installs the information regarding
the selected crew in all the crews monitoring it, and
vice versa.

procedure discover(v, aroot)
G′ε ← Gε . Gε is hardcoded
for all u s.t. ε ≺ u � v do

if ∃G s.t. {G(w)
u : ε � w ≺` u} = {G} then

G′u ← G
else

abort
for all w s.t. u ≺ w �` u do

G
(u)
w ← fetch.getCrew(G′u, w)

return (G′v, G′aroot)

3The crew members use roughly synchronized clocks, using
a standard protocol like NTP, to determine time. Φ would
be chosen to be comfortably larger than the time needed for a
crew to carry out the RootwardPropagation procedure (up to
rootward.send) plus possible delays due to clock skews, and ∆
would be chosen large enough to keep the crew’s computational
effort and network activity low.

4In the resulting multiset a party has weight equal to the num-
ber of monitoring crews in which it appears. Majority refers to
the weighted majority.
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6.1 Robustness Analysis
First, we formalize the robustness properties of
consistency, correctness and liveness (informally intro-
duced earlier), and present simple assumptions under
which these properties are guaranteed by CT0. Recall
that the definitions of robustness properties correctness
and liveness referred to the crew Gv. To formalize this,
we shall first define a notion of a node v being good, and
then we shall define a crew for v.
To define a good node, we shall refer to the set of

parties that a party g considers as the crew Gu for a
node u (such information is installed in g by the module
createNode). Note that a party may not consider any
set to be the crew of u (if it is not monitoring or being
monitored by u’s crew, or if the node u has not yet been
created).

Definition 1 For sets of parties G and Ĝ and a node
u, we say that G considers Ĝ as Gu if ∃H ⊆ G, with
|H| > |G|/2 and ∀g ∈ H, g is honest and considers Ĝ
as Gu.

Definition 2 We say that a node v is good with re-
spect to a set of parties Gε if there exist a sequence of
nodes ε = v0 ≺ v1 ≺ · · · ≺ vn = v, and sets of parties
{Ĝvi

}ni=0, such that the following hold:

• Ĝv0 = Gε;
• ∀i ∈ [0, n], Ĝvi

considers itself as Gvi
;

• ∀i ∈ [0, n), Ĝvi
considers Ĝvi+1 as Gvi+1 .

Note that above, each Ĝvi
is required to have an honest

majority (as in the definition of “considers”). Also, any
node being good with respect to Gε, implies that the
root node ε itself is good.
Recall that the definitions of robustness properties

correctness and liveness referred to the crew Gv. To
formalize these definitions, we shall restrict the defini-
tion of these two properties to only good nodes v (with
respect to a given Gε), and replace the reference to Gv
by (any) crew Ĝv guaranteed by the above definition of
v being good.

We shall state our guarantees for the CellTree CT0
in terms of the following pre-conditions:

Definition 3 For a node v and a set of parties Gε:

• Av(Gε) states that the node v is good with respect to
Gε.

• Aiv(Gε) states that in any set of i consecutive nodes
in the path from the root node ε to v (or if no such
set exists, then in the entire path) there is at least one
node that is good with respect to Gε.

We point out that these assumptions are made per node,
so that it may hold for some nodes and not others. The
assumption of a node being good requires only an honest
majority among the crew members, and may arguably
be made for every node in the CellTree, if createNode
module is implemented is using, say, a scheme like
that in Algorand [7], under similar assumptions as used
there.

Now we are ready to state the gurantees for CT0 (a
proof sketch is given in Appendix C).

Theorem 1 In CT0, let Gε be the root node crew used
by the discover module. Then,

1. A`v(Gε)⇒ consistency(v),
2. A`v(Gε) ∧Av(Gε)⇒ correctness(v), and
3. A1

v(Gε)⇒ liveness(v).

Our guarantees for a node v only depend on (some of)
the nodes in the path from the root to v being good (even
though it may be reasonable to assume that every node
is good, by using sufficiently large crews). Not only
is this an exponentially small fraction of all the nodes
created in the tree (assuming a well-balanced tree), but
also it is a set of nodes that are known at the time
of creating the node v. Nodes created in the future
(even descendents of v) have no effect on any of these
guarantees, including liveness.

6.2 Performance Analysis
The CellTree architecture is designed to be scalable, so
that a node’s communication, computation and storage
stay bounded even as the tree grows. The only parame-
ter of the size of the tree that affects a node’s complexity
is the depth of the node itself (due to the need to store
old versions of a cell until newer versions are assimi-
lated at the root), which does not change once the node
is created.

Latency: CT0 does not exploit the multi-level confir-
mation feature of the CellTree architecture, as it is the
root node which issues all proofs of assimilation. As
mentioned earlier, an update at a node at a depth d
takes at most ∆ + dΦ time to reach the root, where
∆ is the epoch period and Φ is the phase shift param-
eter. During the leafward propagation step, at each
node LeafwardPropagation is triggered right after
the parent node has finished their leafward propagation
procedure. If the time taken for the procedure to run is
at most δ (typically δ � Φ), the proof of assimilation
from the root arrives at the node within ∆ + d(Φ + δ)
time, after an update is made locally at the node.

Storage: Each crew member of a node at depth d
stores the following: (1) a single nucleus for each of
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the nodes monitored by it, (2) the last cell (of its own
node) for which a proof of assimilation was received, all
the cells whose nuclei have been propagated rootwards
but whose proofs of assimilation have not yet arrived,
and the current cell, (3) a single proof of assimilation
from the root consisting of O(d) hash values and a sin-
gle crew-signature, and (4) the nuclei of all the local
updates since the last rootward propagation. At steady
state, the total storage needed can be bounded as fol-
lows. Suppose α is a bound on the nucleus size (plus
a nonce and the nuclear hash), and β on the cell size,
(typically α � β), r is the rate of updates, and L the
latency from above. Then the storage required (apart
from a proof of assimilation)

(2` + rL)α+ (L∆ + 1)β = d(rΦ′α+ φβ) + c,

where Φ′ = Φ+δ ≈ Φ and φ = Φ′/∆ is a small constant
(e.g., φ = 0.2), and c is independent of the depth. Note
that while the storage does depend on the depth, it does
so in a moderate way, with the dominant term being
dφβ.

Communication: A crew member communicates with
its peers in the crew, as well as with members of the
crews of nodes that monitor it or that it monitors.
For concreteness, consider consensus mechanisms which
have an initial phase when the actual data is com-
municated to each party, and a second confirmation
stage that uses signatures on hashes of the data; in
the optimistic (and typical) case where the confirma-
tion stage accepts the original data, the communication
phase need not be repeated. In this case, the total com-
munication incident on each crew member is largely in-
dependent of the size of the crews. So we shall focus
on the amount of data communicated between nodes,
rather than the communication incurred by the crew
members.

In the assimilation steps, each node communicates
directly only with its children and parent nodes. Per
epoch, each node receives at most O(2`r∆α) bits from
the children, and O(d) bits as part of proof of assim-
ilation. The node will also incur communication costs
during reads and in other processes it is part of (includ-
ing selectCell for itself and createNode for nodes it
monitors).

The only potential communication bottleneck in the
protocol is in the module discover. Crew information
of nodes monitored by the root (and nodes close to the
root) would be needed by almost all the clients in the
system. However, the information that different clients
recover from the root (and nodes close to it) is essen-
tially the same, and can be periodically published by
the root. Then, the discover module obtains the crew

information of the nodes within (say) 2` distance of the
root from information published by the root, and if nec-
essary, carries out a tree traversal starting with a node
` away from the root.

6.3 Beyond CT0

While CT0 provides reasonable guarantees, it leaves
room for much improvement. We discuss several such
possibilities below. Mostly these improvements can be
implemented by changing the modules.

Improving Liveness. In CT0, liveness(v) depends on
each ancestor node being good (having an honest major-
ity crew). A single bad ancestor can block v’s updates
from propagating to the root. This can be remedied
at the expense of using more complex rootward and
leafward modules, that allow parties to directly com-
municate with the crews of all the nodes they monitor
or which monitor them. This can be used to replace the
assumption A1

v used by CT0 for liveness(v) to merely
A`v.

Removing the Reliance on a Single Root. Another
limitation of CT0 is the reliance on Gε being good. This
can be remedied by allowing more nodes in the CellTree
to perform the duties of the root: Specifically, many
(or all) nodes can issue proofs of assimilation, and the
discover module can be initialized with the crew infor-
mation of many such nodes, so that it can choose any
of them as its starting point.

Secondly, the assimilation operations carried out by
the root’s crew (or other nodes close to it) are publicly
verifiable (the only secret information used by them be-
ing their signing keys, which have corresponding verifi-
cation keys already published). Further, a set of sub-
trees can easily “migrate” to a new CellTree. This
makes the CellTree less reliant on the root’s crew, and
thereby would also disincentivize the root’s crew from
misbehaving.

Modifying the Crews. CT0 provided no mechanism
to modify the crew for any node. In a more realistic in-
stantiation, one would include such a provision (say, by
extending the scope of the module createNode). This
feature would be useful for revoking the public keys of
crew members, for replacing misbehaving crew mem-
bers, or for resizing a crew.

Quality of Service. In CT0, the propagation sched-
ule, which determines the assimilation rate, is fixed.
However, one could support different rates of assimila-
tion to different nodes, thereby providing varying levels
of quality of service in terms of efficiency. Further, dif-
ferent nodes could be monitored by different number
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of nodes, providing different levels of assurance. These
changes can be implemented by appropriately modify-
ing the modules rootward and leafward.

Other Features. CT0 does not exploit several fea-
tures offered by the CellTree architecture, like the abil-
ity of modules to evolve, and the ability for multiple
modules to coexist in a CellTree. We briefly men-
tion several such features, which are discussed in Ap-
pendix B.

• Pruning, Grafting and Mirroring. Subtrees can
be detached (pruned) from a CellTree, or grafted on
to a CellTree – possibly in multiple locations, in case
of mirroring – with little effect on the other nodes
(which are not monitoring any part of the subtree in
question).

• Excising Cells. A cell’s contents can be deleted, or
altered without respecting its program, if the crews
of all the nodes monitoring it cooperate.

• Computed Reads. It is possible to support access
to a function of a cell’s content (with proof).

• Secret Cells. The crew members of a node need
not be aware of the contents of the cell, but can still
provide authorized clients with access to the cell con-
tents, or functions thereof, via secret-sharing or secure
multiparty computation protocols.

• Computing on Multiple Cells. Concurrent algo-
rithms can be designed to operate on multiple cells,
working independently on each cell. This enables
maintaining multiple views of a database in different
nodes (e.g., in a banking application, each customer’s
ledger is a partial view of a bank’s central ledger).

• Saplings. A sapling is a CellTree whose root is as-
similated into another parent CellTree. While the
parent’s crews do not monitor a saplings nodes’, they
do provide commitment guarantees.

• Higher Arity Trees. Higher arity nodes can be
easily simulated by allowing the same crew to operate
a subtree instead of a single node.

• Incentivization The CellTree architecture is agnos-
tic about higher level mechanisms that could be used
for incentivizing parties to play the role of crew mem-
bers. Different parts of the CellTree may employ dif-
ferent incentivization mechanisms.

Finally, we emphasize that a major feature of the Cell-
Tree architecture is the ability for different implemen-
tations of the same modules to coexist in the tree, of-
fering application specific features in different parts of
the tree. Designing such modules and analyzing their
effect on the robustness and performance guarantees of
a CellTree are left for future research.

7 Related Work
Merkle trees [12,13], and succinct proofs using them [10]
have been valuable tools in cryptographers’ toolkit for a
long time. Cryptographically authenticated blockchains
and public ledgers can be traced back to the work of
Haber and Scott [8], but became popular only with the
advent of Bitcoin [14] and other crypto currencies that
used them for recording their transactions. It is outside
the scope of this work to survey all the ensuing innova-
tions in this area.

But below we shall discuss a few distributed data
repositories which deviate from the blockchain topology,
and mention how the CellTree architecture is different
from them in its goals and features.

The Hashgraph [4] is a distributed ledger with high
transaction throughput as compared to blockchains. Its
efficient functioning, however, requires that the set of
parties involved in the protocol be aware of all the oth-
ers. (This is comparable to how a single node’s crew
operates in a CellTree.) The blocks (or events as they
are called) in the Hashgraph form a directed acyclic
graph (DAG) with hashpointers as edges (unlike in a
blockchain, where the graph is a single path), with new
blocks pointing to old blocks (like in a blockchain). As
in standard blockchains, the selection and confirmation
of new blocks in the ledger are probabilistic, but the
ability of all the parties to interact with each other al-
lows the use of an efficient voting protocol (rather than
one based on, say, proof-of-work). Also, as in standard
blockchains, the desired guarantee is that of immutabil-
ity or persistence of blocks that are confirmed.

The Tangle [16] is a permissionless distributed data
structure which also uses a DAG structure to store
the transactions, again with the goal of increasing the
throughput compared to a blockchain. Tangle allows
users to be aware of only parts of the entire data struc-
ture. Incidentally, the specific algorithms used for build-
ing the DAG structure and considering a node confirmed
are known to be susceptible to “parasitic chain attacks,”
and is the subject of ongoing research [6].

The above two systems store data in a graph with
hashpointers as edges that has the form of a DAG
(rather than a path), to increase the throughput of
transactions. The CellTree architecture shares this fea-
ture, but promises even better performance when multi-
level confirmation can be exploited. Also, the other dif-
ferences that CellTree has with blockchains continue to
apply to these systems as well.

The Inter-Planetary File System (IPFS) [5] is a peer-
to-peer version controlled file system in which data
items, with (optional links to other data items) can be
stored. While different in its goals from blockchains,
IPFS is also a distributed data repository, with parties
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storing some of the IPFS objects in local storage, and
accessing others from a peer. The IPFS uses content-
addressed sharing, where the address is a hash of the
content (with linked objects replaced by their hashes).
To detect and avoid duplication, IPFS uses determin-
istic hashing (no nonces used) so that the same file is
hashed to the same address.

Unlike a data repository that is queried using ad-
dresses (e.g., the node address in a CellTree), IPFS does
not attempt to provide any form of consensus on the
“correct” data. All data items, linking to previously
existing data items, are valid, and they have their own
content-based address. As such, only liveness (all stored
data can be retrieved) is of concern to IPFS.

8 Conclusion
In this work we have introduced the CellTree architec-
ture for distributed data repositories. A CellTree is de-
signed to be flexible and heterogenous, allows data and
policy evolution, allows parties to focus on only parts of
the repository that are of interest to them, and separates
out sub-tasks into modules that can be instantiated dif-
ferently in different parts of the tree. We also illustrated
an instantiation of the architecture, CT0, and presented
formal security guarantees.

A CellTree is rich in features and is highly pro-
grammable. We leave it for future work to exploit this
novel architecture for applications.
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A Modules: Further Details
In this section, we expand on the modules mentioned in
Section 5.2.

Node Creation and Crew Selection. A new node
is created by the set of nodes who would be monitoring
it. They also select a crew for the new node at that
time. The exact mechanism used to initiate node cre-
ating and carry out crew selection are left to a module,
createNode. As an example, the crew selection algo-
rithm in this module could be based on the committee
selection protocol used within Algorand [7]. We empha-
size that, like all modules, multiple implementations of
createNode can operate in various parts of a CellTree
simultaneously.

As part of this module’s functionality, the addresses
of the members of the crew selected for a newly cre-
ated node will be made available to the crews of the
monitoring nodes. Also the new node’s crew is given
the addresses of the crew members of nodes monitoring
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it. Further, the module is also expected to set (default)
modules for the newly created node.

Cell Selection. When a node is created, it has an
empty cell, which can then evolve over time. As men-
tioned before, cell evolution is triggered by a module
selectCell, which is responsible for obtaining a con-
sensus among the crew members as to the next version
of a cell. As an example, the selectCell module could
use a payment based model to allow a client to choose
the next version of a cell, possibly subject to custom
policies. Note that irrespective of the mechanism used
by selectCell, the CellTree algorithm Evolve checks
that the selected cell is compatible with the existing cell.

Propagation. As described earlier, the modules
rootward and leafward are used by crews to send and
receive assimilation signals and proofs of assimilation.

We envisage the send and receive methods as op-
erating in the background. When they are invoked by
a party as part of a propagation algorithm, they may
use local buffers to interface with the background pro-
cesses. The background processes may involve protocols
with multiple rounds of interaction among the parties
in a crew or across crews. In particular, a typical in-
stance of the method receive will have the parties in a
crew use a consensus algorithm to agree on the update
signals being received, before storing them in a buffer.
The send and receive methods would typically also in-
volve secure (especially, authenticated) communication
protocols for crew-to-crew communication.

Note that as part of rootward propagation, there are
two services that a node’s crew performs: (1) It checks
consistency of nuclear updates at the nodes it is moni-
toring, and (2) It generates proofs of assimilation. One
can configure the system so as to make these operations
selective, so that not all crews perform all of these opera-
tions at every instance of propagation. For instance, the
code execution module exec (described below) can be
configured to require a payment for carrying out consis-
tency checks, or the module crewSign can be configured
to produce a signature only once every several updates.
The leafward could be configured to let a crew directly
deliver proofs of assimilation from an assimilation root
to any of the nodes it monitors (selected via the method
pickleaves).

Local Storage. The module store is used by each
party in a crew to locally store and retrieve various val-
ues across separate invocations of the algorithms. While
the data stored using this module pertains to an en-
tire node, rather than an individual crew member, we
envisage this module as operating locally at each crew
member location, without any communication. As such,

consistency guarantees are derived from the other mod-
ules (e.g., createNode, selectCell, rootward.receive
and leafward.receive all would incorporate consensus
mechanisms).

The store module may also support garbage collec-
tion to remove old versions of cells and nuclei of moni-
tored nodes.

Client Access to a CellTree. Recall that as part of
the CellTree procedure Read, a client uses a method
getCell from a module fetch, to read a cell from the
crew of a node v. Note that for this the client needs to
first obtain the addresses of the crew members of the
node it is reading from – a functionality encapsulated
in the module discover. We point out that, within
this module, a client will need to know some public-
key material to bootstrap its access to a CellTree that
it is interested in. (This could be in the form of the
public-keys of (some of) the crew members for one or
more nodes. The module discover may itself rely on
the module fetch to access pieces of information from
these nodes.)

The method fetch.getCell, along with a cell, also
returns a proof of assimilation of the cell, at a speci-
fied assimilation root. Note that many versions of a cell
may be available at a node, and the module can deter-
mine which one to return (possibly after a negotiation
between the client and the crew); a natural choice is the
latest version which has a proof of assimilation from the
specified assimilation root.

The fetch module may include a layer of customized
access control, to restrict the set of clients who are al-
lowed to query a node. It may also incorporate measures
to prevent denial-of-service attacks by malicious clients
(e.g., by requiring a proof-of-work by the client).

The proofs of assimilation involve a collective signa-
ture by the crew (on a hash value). The protocol for cre-
ating such signatures and the algorithm for locally ver-
ifying them are encapsulated in the module crewSign.

Code Execution. The machine model used to execute
the nuclear code is specified as a module exec. Mak-
ing this a module allows different nodes of a CellTree
to use different sets of languages. Also, a language can
be updated over time, for instance, by introducing new
library functions. The exec module would use the ap-
propriate interpreter for a nucleus’ code (note that we
expect that clients reading a node and crews monitoring
would use exec modules that can correctly interpret its
nuclear code).

Hashing. The module hash provides methods for eval-
uating a hash function on a list of inputs (eval) and
computing the hash-pointer for a Merkle tree (mEval).
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The module could allow multiple hash algorithms (with
a header in the output indicating which one is used),
and they could be updated over time. A method
hash.generateNonce included in this module can be
used to create nonces with customized content, to con-
trol the hash evaluation (e.g., if a time-stamp in the
nonce is in the future, the hash evaluation could return
an error).

Scheduling. The sched module decides when the Cell-
Tree procedures are run by the members of a crew.
The frequency with which these procedures are run de-
cides how quickly the changes to a cell take place and
are assimilated into a CellTree. The scheduling can
be static (run once every epoch), or dynamic (e.g., a
leafward propagation message from the parent trigger-
ing leafward propagation in child). Scheduling can also
react to incentives or negotiations.

Selection and Evolution of Modules. The CellTree
framework admits different implementations of the var-
ious modules to coexist. But the framework does not
specify how modules are chosen, and possibly changed
over time. Some modules like selectCell are entirely
local to a node, and can be freely changed if the node’s
crew has a consensus on it. But certain other modules
like createNode involve several crews and will need a
consensus from all of them. In either case, we propose
that module substitutions follow a mechanism similar
to cell evolution, in that the current and next modules
must agree with each other for a substitution to be con-
sidered acceptable. This would allow long term guaran-
tees regarding the functioning of a node and parts of the
tree (e.g., a createNode module may not allow its core
mechanism to be changed, but only its parameters).

For the sake of completeness, we define a module
moduleManager that is used to update all the code and
data at each node related to the implementation of var-
ious modules, including itself. Among other things,
this module could be used to implement bug fixes and
patches to protocols.

B Additional Features

A CellTree is highly programmable, thanks to the abil-
ity to design nuclei with arbitrary code. Apart from
this, the CellTree architecture also provides several pos-
sibilities that may not be obvious. Here we mention a
few of them. We expect that more possibilities will be
identified and exploited as CellTrees are used for more
applications.

Pruning, Grafting and Mirroring
To prune or detach a node from the tree, the crew of a
node can simply stop propagating the assimilation sig-
nals from its subtree to the root, and vice versa. Subse-
quent updates on this subtree are not assimilated into
the original tree. Note that outside of this subtree, the
original tree can continue to function unaffected by this
change, without requiring the crews to take any spe-
cial action. Also, the pruned out subtree can continue
to function as a live CellTree, with the detaching node
taking on the role of the root.

Grafting refers to the reverse operation, in which the
root of a CellTree is accepted as a newly created node
in another CellTree. We note that the proofs of assimi-
lation of a node v at a node u does not depend on the
absolute addresses of u and v, but only in the relative
address of v with respect to u (implicit in the order in
which hashes are accumulated). This allows the root of
a grafted subtree to immediately propagate its assimi-
lation signals towards the new root.

Mirroring refers to when a subtree of a CellTree is
grafted on to a different location in the CellTree, with-
out detaching itself from its original location. Mirroring
creates multiple paths of assimilation and discovery for
a subtree, buying it protection against potential fail-
ure of one path. A mirrored subtree receives multiple
leafward propagations, one from each location it is mir-
rored at. (The nodes monitoring a node in the newly
mirrored subtree would annotate their proofs of assimi-
lation to indicate when they started monitoring it. Such
annotations can be included in the nonces.)

Excising Cells
A cell may be programmed to disallow removing (or
even altering) its data. Even so, if the crew of a node
wishes to remove (or alter) the contents of its cell from
the CellTree, it may do so in cooperation with the crews
of all the nodes monitoring it. Such a feature, combined
with the ability to change the crew of a node, is helpful
in removing any illegal content discovered in a node.

Computed Reads
While the method fetch.getCell would typically be
used to retrieve an entire cell, it could offer a partial
view of the cell, provided that the nucleus’ chkCell al-
gorithm can verify this partial view. For instance, if a
cell contains a blockchain ledger, the partial view may
include only the last block, and an accumulated hash
of the previous blocks. More generally, chkCell could
accept a zero-knowledge proof that a given function of
the cell is consistent with a commitment (hash) of the
cell that is included in the nucleus.
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Secret Cells
Using cryptographic techniques, it is possible for a crew
to maintain a cell without any crew member (or even a
collusion of malicious parties in the crew) learning the
contents of the cell. Authorized clients can access this
cell data — or a function thereof (as a computed read)
— via secure computation protocols. A cell could also
be used to pool secret data from a set of clients, and
allow authorized clients to query the resulting data.

Computing on Multiple Cells
Evolution of a cell can depend not only on its own data,
but also on the cells in other nodes, by using appropri-
ately designed nuclei, using an exec module that allows
reference to cells in other nodes. Dereferencing would
involve reading a cell (subject to access controls). Such
computations would be relevant in maintaining multiple
views of a database in various nodes (e.g., in a banking
application, each customer’s ledger is a partial view of
a bank’s central ledger).

We remark that since the nodes are updated individu-
ally and asynchronously, the nuclei need to be carefully
designed, so that the consistency guarantee of individual
nuclei translates to a guarantee that the global updates
were carried out correctly.5

Saplings
A sapling is a CellTree “supported by” another Cell-
Tree for time-stamping purposes. The sapling will be
a separate CellTree whose root’s nucleus is included in
the nucleus of a node in the parent tree (along with
additional information like time-stamps). Saplings can
be used to create “enterprise subtrees,” whose contents
are entirely hidden from the rest of the tree, but with
commitment guarantees provided by the larger tree.

Higher Arity Nodes
Since the depth of a node in the tree affects its per-
formance guarantees, restricting to a binary tree may
appear sub-optimal. However, higher arity nodes can
be easily simulated by allowing the same crew to op-
erate a subtree instead of a single node. For instance,

5As an illustration, suppose we wish to support swapping the
cells in nodes u and v (say C1 and C2, respectively). First the
cell in u is updated from C1 to (C1, C2) (with its nucleus carrying
hashes of both the cells); during the time this updated cell is
assimilated by the nodes monitoring u, the cell C2 in v should not
change, so that chkNext accepts the update. Later the node v is
updated to replace C2 with C1; to ensure that this update is part
of a swap, chkNext will confirm that the cell in u has contents
(C1, C2), as expected after the above step. Finally, u will be
updated again, so that it replaces (C1, C2) with C2; chkNext will
confirm that v has C1 at this point.

a crew which operates a node v and its two children
v0 and v1, can simulate a node v with four children
(v00, v01, v10, v11) but at a smaller depth.

Incentivization
The CellTree architecture is agnostic about higher level
mechanisms that could be used for incentivizing parties
to play the role of crew members. In particular, clients
wishing to load their data into a node’s cell could be
required to make a payment (using digital currencies or
legal tenders) to the parties in that node’s crew; in turn,
the crew members could be required to make payments
to the nodes monitoring them, for their continued ser-
vices.

C Proving Robustness of CT0

Here we sketch a proof for Theorem 1.

Proof sketch: Firstly, we argue that under the assump-
tion A`v(Gε), discover(v) may only return a crew that
is considered to be Gv by a good node u monitoring v
(or it will abort). Consider the set of ` ancestors of v all
of which monitor v. By assumption A`v(Gε), there is a
node u among them which is good w.r.t.Gε. Then, there
exist a sequence of nodes ε = u0 ≺ u1 ≺ · · · ≺ un = u,
and sets of parties {Ĝui}ni=0, such that Ĝu0 = Gε,
and the successive crews consider the next one in the
sequence to be the correct crew. Hence if discover
queries Ĝui

for the crew of ui+1, it will receive Ĝui+1 in
response. Then, inductively, discover will accept only
Ĝui as the crew for ui (base case being u0 = ε (or will
abort). Then, it will return a crew only if Ĝun considers
it to be Gv.

Next, we argue that if a proof of assimilation obtained
by Read(v) verifies, then the cell retrieved along with
it must have a nucleus that was verified by a good node
u monitoring v. Again, consider the sequence of nodes
ε = u0 ≺ u1 ≺ · · · ≺ un = u from above. The root’s
crew signed the proof of assimilation only because all the
assimilation signals that were assimilated were signed
by all the nodes monitoring the respective nodes. In
particular, u1 which is monitored by ε = u0 must have
signed the assimilation signals that the root incorpo-
rated in the proof. In turn, u1 required a signature by
u2 on the assimilation signature that u1 incorporated
into the signal sent to u0. Continuing in this manner,
we are guaranteed that the proof of assimilation signed
by the root corresponds to an assimilation signal sent
by un = u. Thus any cell returned by Read(v) will
have a nucleus that was assimilated by the node u. u,
being a good node that monitors v, would incorporate a
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nucleus of v into this signature only after a consistency
check.

Now we are ready to prove consistency. For this,
we consider the sequence of nuclei that u has main-
tained for v, nuc(0), · · · , nuc(N) so far. By the above
argument, the nuclei of any cell cell accepted by Read
appears in this sequence (i.e., cell.nuc = nuc(i) for some
i). Further, u’s consistency checks ensure the conditions
chkNext(nuc(i−1), nuc(i)) and chkPrev(nuc(i), nuc(i−1)).
Also, the verification in Read ensures that chkCell(cell)
holds. These are precisely the conditions required by
the consistency guarantee.

The correctness guarantee follows from consistency
and the extra condition of Av(Gε), as a good node for v
will propagate only the updates created by Evolve for
assimilation.

Finally, if A1
v(Gε) holds we argue that liveness holds.

A non-trivial issue here is to ensure that a node’s sib-
lings (or cousins) or descendents should not be able to
prevent its rootward propagation. This is ensured in
the procedure RootwardPropagation, by retaining
a valid update from one child, even if the update from its
sibling is discarded for failing consistency checks. Also
note that if there is a path of all good nodes from ε to
v, the proof of assimilation is routed back to v’s crew.
Finally, we also rely on the fact that discover(v) will
never abort and the procedure Read will also succeed,
assuming A1

v(Gε). �
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