
A Countermeasure Against Statistical Ineffective
Fault Analysis

Jakub Breier, Mustafa Khairallah, Xiaolu Hou and Yang Liu

Abstract—When considering practical attacks against cryp-
tographic implementations, Fault Injection Attacks (FIA) pose
a powerful tool that can recover the secret key within few
encryptions. Over the past few decades they have become a well-
studied topic both by academic an industry practitioners.

Current state-of-the-art countermeasures against Fault In-
jection Attacks (FIA) provide good protection against analysis
methods that require the differences in the correct and faulty
ciphertext to derive the secret information, such as Differential
Fault Analysis (DFA) or collision fault analysis. However, recent
progress in Ineffective Fault Analysis (IFA) and Statistical IFA
(SIFA) constitutes a real threat against cryptographic imple-
mentations. Such methods cannot be thwarted by standard
FIA countermeasures that focus on detecting the change in the
intermediate data.

In this paper, we present a novel method based on error
correcting codes that protects implementations against SIFA.
We design a set of universal error-correcting gates that can be
used for block cipher implementations. We analyze a hardware
implementation of protected GIFT-64 and show that our method
provides 100% protection against SIFA.

Index Terms—fault injection attacks, ineffective fault analysis,
countermeasures, error-correcting codes, SIFA

I. INTRODUCTION

In the era of Internet-of-Things, people interact with small
inexpensive low-power devices on a daily basis. These devices
are often easily accessible, and to keep the costs down, without
comprehensive protection against sophisticated adversaries.
One class of such adversarial models are physical attacks that
exploit the physical characteristics of the device to derive
the secret information, often in a form of a cryptographic
key. These are further divided into side-channel attacks that
passively observe the device, and fault injection attacks that
actively tamper with the device.

Fault injection attacks have become a powerful tool for
implementation attacks against cryptography [1]. Many dif-
ferent fault analysis methods have been proposed up to date,
so the attacker can choose based on her capabilities and
the target cipher implementation. Recently, several powerful
proposals utilizing Statistical Ineffective Fault Analysis (SIFA)
have been introduced [2]–[4]. SIFA can be either executed
by injecting stuck-at fault in the intermediate value during
the execution of an algorithm or by exploiting the bias that
can be observed by faulting inputs of logic gates. Based on

Jakub Breier and Yang Liu are with School of Computer Science and En-
gineering, NTU Singapore. E-mail: jbreier@jbreier.com, yangliu@ntu.edu.sg

Mustafa Khairallah is with School of Physical and Mathematical Sciences,
NTU Singapore. E-mail: mustafam001@e.ntu.edu.sg

Xiaolu Hou is with Physical Analysis & Cryptography Engineering Lab,
NTU, Singapore. E-mail: ho0001lu@e.ntu.edu.sg

observing the statistical bias in the ciphertext, the attacker
can gain information of the attacked intermediate value and
eventually get the secret key. As stuck-at fault is considered
to be a stronger adversarial model, in the rest of this pa-
per we will focus on preventing against it. Such prevention
work for the other model in the same manner. The main
strength of (S)IFA lies in the ineffectiveness of standard fault
injection countermeasures to thwart the attack. Normally, the
implementation-level prevention techniques aim at detecting
value changes in the computation to raise an alarm. This can be
done by using a redundant computation circuits, various code-
based techniques, of infective countermeasures that “infect”
the entire cipher state after fault to hide the information
leakage from the fault. However, in case of (S)IFA, the attacker
exploits the knowledge whether the computation was correct
or not – she does not need to check the difference between
the faulty and correct ciphertext. The key guess then can be
made based on the knowledge of the correct ciphertext and the
bias of the fault value in the intermediate state. And therefore,
raising an alarm from the countermeasure is enough for the
attacker to determine the value she wants to discover.

As mentioned in [4], to prevent from these attacks, it is
advised to utilize sensitive-enough physical sensors, e.g. ring
oscillator based [5], that detect the physical disturbances of
the circuit no matter whether the value has changed or not.
However, since the sensor is not a part of the cryptographic
circuit, there is always a possibility to unplug it or make it
ineffective. For that reason, it is better to have multiple layers
of protection, both on the circuit and the implementation level.

Our contribution. In this paper, we propose a countermeasure
against (S)IFA that utilizes error-correcting codes. The main
idea is to prevent the attacker from knowing whether the fault
occured or not. We provide a set of universal error-correcting
gates that can be used for implementing linear and non-linear
operations of block ciphers. Our results show 100% fault
coverage against the considered attacker model. Additionally,
any type of side-channel protection can be implemented over
our SIFA countermeasure.

Organization. The rest of this paper is organized as follows.
Section II presents the related work in this field. Section III
provides the theoretical background for our method. Appli-
cation of the method to ciphers is described in Section IV,
followed by evaluation in Section V. Discussion is provided
in Section VI, and finally, Section VII concludes this work.



II. RELATED WORK

In this part, we provide the necessary background on
ineffective fault attacks, statistical fault attacks, and their
combination. Later, we give an overview of countermeasures
against fault attacks.

A. Ineffective Fault Attacks

Ineffective Fault Attacks (IFA) were originally proposed by
Clavier in 2007 [6]. This fault analysis method exploits type
of fault which changes a variable to a particular value – and
in case the variable already holds this value, no change can
be observed. As an example, let us assume we have a one bit
variable x which is secret. This variable is being processed in
a device we have previously profiled and we can assume with
a high probability that we are capable of changing a certain bit
in a data unit to “1” with a well-aimed fault injection. Now,
we process x with our device, launch the fault injection, and
observe the output. In case we see a difference at the output,
it means the original value of x was “0.” Otherwise, if there
is no observable change at the output, we can assume with a
high probability that the original value of x was “1.”

B. Statistical Fault Attacks

Statistical Fault Attacks (SFA), introduced by Fuhr et al. [7]
exploit the situation when the attacker is able to change an
intermediate value to a biased value by injecting a fault. Three
fault models were presented: 1) stuck-at-0; 2) stuck-at-0 with
probability of 0.5 or logical AND with random uniform value
with probability 0.5; 3) logical AND with random uniform
value. The authors showed how the method works on AES,
where the recovery of 4 bytes of the secret key took between
6-80 faulty ciphertexts, depending on the used model.

C. Statistical Ineffective Fault Attacks

Statistical Ineffective Fault Attacks (SIFA) [4] are an inter-
section between IFA and SFA.

In [2]–[4] authors experimentally used ineffective faults to
break cryptosystems without the need of the deeper analysis
of the cipher, which is normally necessary for using other
methods, such as Differential Fault Analysis.

D. Fault Attack Countermeasures

Fault attack countermeasures mostly focus on preventing
fault models that aim at altering the values during the execu-
tion, e.g. differential fault analysis. They either try to detect
the change or prevent the attacker from getting information
from the faulty output. On the other hand, in case of (S)IFA,
the information whether there was a change during the compu-
tation is sufficient to get some information about the internal
state. Currently, only device-level countermeasures can be used
for preventing (S)IFA, such as sensors or special packages.
However, the cipher implementer has normally no control
over these countermeasures and a specialized device needs
to be used to provide them. For further overview of different
countermeasures, we refer the interested reader to [8].

III. METHODS

In this part, we first detail the necessary background on
coding theory, followed by the idea of using codes against
(S)IFA. Later, we describe ways to implement our counter-
measure with an example on binary AND operation.

A. Coding theory background

A binary code, which we denote by C, is a subset of Fn
2 ,

the n−dimensional vector space over F2, where n is called the
length of the code C. Each element c ∈ C is called a codeword
of C and each element x ∈ Fn

2 is called a word [9, p.6].
Take two words x,y ∈ Fn

2 , the Hamming distance between
x and y, denoted by dis (x,y), is defined to be the number
of places at which x and y differ [9, p.9]. More precisely, if
x = x1x2 . . . xn and y = y1y2 . . . yn, then

dis (x,y) =

n∑
i=1

dis (xi, yi) ,

where xi and yi are treated as binary words of length 1 and
hence

dis (xi, yi) =

{
1 if xi 6= yi

0 if xi = yi
.

Furthermore, for a word x ∈ Fn
2 , the Hamming weight of

x, HW(x) := dis (x,0) [9, p.46]. For a binary code C, the
(minimum) distance of C, denoted by dis (C), is [9, p.11]

dis (C) = min{dis (c, c′) : c, c′ ∈ C, c 6= c′}.

Definition 1: [9, p.39] In case C is a subspace of Fn
2 , C is

called a linear code. A linear code with dimension k, length
n and minimum distance d is called an [n, k, d]-binary code.

Definition 2: [9, p.13] Let v be a positive integer. C
is v−error-correcting if minimum distance decoding with
incomplete decoding rule is applied, v or fewer errors can
be corrected.

Remark 1: C is v−error correcting if and only if dis (C) ≥
2v + 1 [9, p.13].
Considering the (S)IFA, as we are mostly dealing with 1- and
2-bit faults, the distance for the used codes should be at least
3 and 5, respectively.

B. Our Countermeasure Idea

Normally, it would be of no use for the attacker to affect
high number of bits at the same time, since the probability
of the original variable to have the exact value that is being
injected gets lower with each stuck-at faulty bit. Therefore, it
is safe to assume that practical attacks would aim at changing
1 or at most 2 bits of the variable.

The main idea of our countermeasure is to make the attacker
unsure whether there was a change to the variable or not.
For this purpose, we propose usage of error correcting codes
that were thoroughly evaluated against fault injection in [10].
The working principle of the (S)IFA protection is depicted in
Figure 1. The error correction ensures that in case the fault was
injected, the variable will regain its original value. Therefore,



11110000

11110100

error
correction

11110000

set to “1”

equal

00001111

00001111

error
correction

00001111

set to “1”

equal

(a) (b)
Fig. 1. Error correction against IFA when attacking the same bit position
in two different codewords – 11110000 and 00001111. In case of set to “1”
fault: (a) original value changes after fault and later is corrected back, (b)
original value does not change after fault.

the attacker is not able to distinguish whether the change due
to the fault occured or not.

The crucial parameter of the code in this case is the distance
d, which specifies how many bits we allow the attacker to
target. To allow v bits to be targeted, we need distance to be
at least 2v+1 to be able to correct the codeword to the original
value [9].

C. Implementation Options

In general, there are two ways to implement encoding
based countermeasures: either in a table look-up form where
the address navigation is done by using codewords [10];
or by computing the operations on the codewords directly,
while performing integrity checks after predefined number
of operations [11]. In our work we focus on the second
approach due to the fact that it is faster and has lower memory
consumption.

D. Example

Let us consider a simple binary AND operation, taking two
single bits as inputs and one single bit as output. To correct
one bit, distance between codewords needs to be at least 3.
We can construct a truth table for an implementation of error-
correcting AND gate (implementation details of the gate are
explained in the next section), stated in Table I, where the
encoding is as follows: 0 7→ 000 and 1 7→ 111. Columns
correspond to the first operand and rows correspond to the
second operand. We can see that the table entries contain only
two values, depending on the distance between the input word
and the two codewords. That also means that even if both
input values get faulted, the correction will still work. It is
important to note that this particular example might leak side-
channel information, since in case the Hamming weight (HW)
of the word is ≤ 1, it corrects to 000, and if the HW is ≥ 2,
it corrects to 111.

IV. APPLICATION TO CIPHERS

In this section we describe a low-cost hardware imple-
mentation of our countermeasure. We use the lightweight
SPN ciphers Skinny-128-128 [12] and GIFT-64-128 [13] as

TABLE I
TRUTH TABLE FOR ERROR-CORRECTING AND GATE, USING A LINEAR

CODE WITH TWO CODEWORDS: 0 7→ 000; 1 7→ 111.

& 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 000 000 000 000 000 000 000
010 000 000 000 000 000 000 000 000
011 000 000 000 111 000 111 111 111
100 000 000 000 000 000 000 000 000
101 000 000 000 111 000 111 111 111
110 000 000 000 111 000 111 111 111
111 000 000 000 111 000 111 111 111

examples. Additionally, we outline a protection method for
2-bit faults.

A. Single-Bit Faults

First, we consider the [3,1,3]-binary code (3-Repetition
Hamming code) stated in Section III-D. To reduce the cost,
we use the fact that this code is a linear code. Hence,
XOR/XNOR/Inversion operations can be performed on the
codewords simply by applying the corresponding Boolean
operations in a bitwise manner. This approach allows us
to reduce the cost of implementing linear operations of the
ciphers. However, this also means that the faults will propagate
linearly through the gates. We assume that the correction will
only be performed in the non-linear (Sbox) Layer. We study
a fault model where each codeword has at most 1 faulty bit
at the input of each round.

Based on the previous rationale, we can define a set of gates
that are used to operate on the codewords:

RNOT : {z2, z1, z0} = {x2 ⊕ 1, x1 ⊕ 1, x0 ⊕ 1}
RXOR : {z2, z1, z0} = {x2 ⊕ y2, x1 ⊕ y1, x0 ⊕ y0}
CAND : {z2, z1, z0} = {(x2x1 ∨ x1x0 ∨ x0x2)

∧(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∧(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∧(y2y1 ∨ y1y0 ∨ y0y2)}
COR : {z2, z1, z0} = {(x2x1 ∨ x1x0 ∨ x0x2)

∨(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∨(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∨(y2y1 ∨ y1y0 ∨ y0y2)}

The circuit diagrams are depicted in Figure 2. As mentioned
earlier, both the NOT and XOR gates have no effect on the
fault value. The AND/OR gates have to be implemented at
least 3 times independently to make sure that if the adversary
injects a fault in one of the instances, it does not propagate to
the other two bits.

Given this set of gates, we study the implementation of
the GIFT cipher’s Sbox, proposed in [13]. We chose the
software-optimized implementation of the Sbox as a refer-
ence as it has lower number of NOT/XNOR/NAND/NOR
gates, making it more suitable for our gate set. This imple-
mentation requires 5X+1N+3A+1R, where X,N,A,R stands



x2

x1

x0

z2

z1

z0

1

x2

x1

x0

y2

y1

y0

z2

z1

z0

(a) RNOT (b) RXOR

y2

y1

y0

x2

x1

x0

z0,1,2

(c) CAND

y2

y1

y0

x2

x1

x0

z0,1,2

(d) COR

Fig. 2. Adjusted gates to operate on codewords (a,b), and error-correcting
gates (c,d).

for XOR, NOT, AND and OR gates, respectively. Over-
all, one round of GIFT-64 needs 16 Sboxes and 32 XORs
for key addition, 112X+16N+48A+16R. Using our gate
set instead, we can implement the GIFT-64 round using
336X+48N+1728A+624R. We estimate the overall cost
compared to the unprotected implementation of GIFT-64 as
follows: X=2.25GE,N=0.7GE,A=R=1.2GE. We also need
to take into consideration that we have to store the state,
which requires 64 Flip-Flops for the unprotected case and 192
Flip-Flops for the protected case. Hence, the countermeasure
requires 6× area overhead for ASIC. For FPGA, we can reduce
such cost to only 3×, since the CAND and COR gates can

take advantage of the 6-to-1 Look Up Table structures in the
modern FPGA, such that each of them can be implemented
using only 3 LUTs.

Similarly, we study the implementation of the members
of the Skinny family of tweakable block ciphers. They use
two different Sboxes, one is a 4-bit Sbox and the other is
an 8-bit Sbox. The 4-bit Sbox requires 4X+4R+4N, while
the 8 bit Sbox requires 8X+8R+8N. Moreover, Skinny also
uses two different diffusion layers, depending on the block
size. The Round Constants require 6X+1N, while the Key
addition requires either 32X or 64X. Finally, the MixCol-
umn operation requires either 64X or 128X. Overall, if the
block size is 64 bits, one round requires 166X+65N+64R.
If the block size is 128 bits, it requires 326X+129N+128R.
For the protected case, we need 498X+195N+2112R and
978X+387N+4224R, respectively. Hence, we estimate the
overhead for ASIC to be around 5.6×, which is slightly lower
compared to GIFT-64. This is because Skinny has higher
X/(A+R) ratio, i.e. the ratio between linear components
and non-linear components is higher, due to the MixColumn
operation, as opposed to the bit permutation in GIFT.

B. Double-Bit Faults

Our countermeasure can be extended to double-bit faults
by using [5,1,5]-binary code instead. In this case the cost
for the RNOT and RXOR gates is multiplied by 5, while
CAND and COR gates can be implemented using 123A+54R
and 120A+57R, respectively. Hence, the overall cost of the
implementation of GIFT-64 is 560X+80N+7824A+3504R,
in addition to 320 Flip-Flops for the state storage. In case
of ASIC, we estimate the overhead to be ≈ 25×. While the
cost might seem relatively high, given that SIFA is one of the
strongest attacks on cipher implementations, we believe such
cost can be justified for sensitive applications that require high
security.

V. EVALUATION

We have analyzed the ineffective fault analysis conditions of
the GIFT Sbox implementation proposed in Section IV-A. We
have constructed a digital logic circuit analysis tool that loops
through all the possible inputs, injects a stuck-at fault at every
single gate in the circuit, and checks the output for errors.
We have utilized a single fault adversarial model which is the
most common model used in the literature. The assumption
on correcting capabilities of our proposal is that in case there
is a fault that propagates through the Sbox layer, it will either
be corrected at the following Sbox layer (in case of inner
rounds) or at the final decoding stage. Therefore, to simulate
this behavior, we have analyzed two different scenarios:

1) first/middle round fault, followed by another round;
2) last round fault, followed by an error correcting decoder.

These two scenarios are depicted in Figure 3.
As it would be computationally impractical to analyze the

full GIFT state, we took advantage the properties of the
permutation layer that divides the state into four 16-bit sub-
states. We analyzed one 16-bit sub-state, which shows the



Encoding

Round 1

Round i

Round i+ 1

Round 28

Decoding

G
I
F
T

−
6
4

Encoding

Round 1

Round n

Round 28

Decoding
G
I
F
T

−
6
4

(a) Scenario 1 (b) Scenario 2
Fig. 3. Two evaluation scenarios: (a) fault is injected in the middle round
and (b) fault is injected in the last round. Round where the fault is injected
is indicated by red color, while the round/block where the fault is corrected
is indicated by green color.

TABLE II
RESULTS ON SIMULATING INEFFECTIVE FAULT ANALYSIS AGAINST THE
GATES PROPOSED IN SECTION IV. DESCRIPTION OF EACH SCENARIO IS

GIVEN IN FIGURE 3.

Correct outputs Faulty outputs
Gate # Scenario 1 Scenario 2 Scenario 1 Scenario 2
AND 660 100% 100% 0% 0%
OR 396 100% 100% 0% 0%
XOR 276 100% 100% 0% 0%
CAND 28 100% 100% 0% 0%
COR 4 100% 100% 0% 0%
RXOR 30 100% 100% 0% 0%
RNOT 4 100% 100% 0% 0%

behavior of the entire state. That means, for each gate we
analyzed 216 inputs for stuck-at-0 and stuck-at-1 fault. We
tried to fault every bit of each input. That means, for example
in case of AND gates, the total number of experiments was
660 gates ×216 input values ×2 fault models ×2 inputs
= 173, 015, 040, for each scenario.

The results are stated in Table II. Simulation time for dif-
ferent types of gates varied between 30 seconds (COR/RNOT
gate) and 1.5 hours (AND gate) for Java-based implementation
of the simulator. As can be seen, the circuit analysis utilizes
the error-correcting properties of the linear code as described
in Section III. Every ineffective fault was captured either in the
subsequent round in case of Scenario 1, or in the final decoder
in case of Scenario 2. This shows that the implementation
following our proposal is robust against (S)IFA that utilizes
1-bit faults.

VI. DISCUSSION

In this part we first provide discussion on different type of
code that can be used – a Hamming-(7,4) code. Then, we dis-
cuss what happens if a fault is injected into encoding/decoding
circuit. Later, we give an idea on how to implement the
encoding protection in software, followed by discussion on
how error-correcting codes work against differential fault
analysis. We close this section by discussing how to combine
our method with side-channel protection techniques.

A. Hamming-(7,4) Code

Cheaper codes can be used to get cheaper implementations,
such as the Hamming-(7,4) code, which encodes 4-bit nibbles
into 7-bit codewords. This code can correct all single bit faults,
as well. In this scenario, the 4-bit Sbox can be implemented
as an equivalent 7-bit look-up table. Since the overall encoded
state is smaller, the cost of the linear parts of the circuit is
lower. However, the attacker can have more targeted attacks
that aim at internal states of the Sbox. In such case the analysis
of how such faults will propagate to the output of the Sbox is
not clear. In other words, the attacker may be able to inject a
fault in an internal gate that generates codewords with multiple
faulty bits.

B. Faulting Encoding/Decoding Circuit

As one may have noticed, we did not consider faults
into the encoding/decoding circuits that surround the cipher
implementation. We will explain this in the following.

In case of the encoding circuit, if there is a fault in the input,
it will change the value of the codeword to another codeword,
effectively changing the plaintext input to the cipher. That
means, the attacker would get the same situation as in case of
differential cryptanalysis – she would have to cryptanalyze the
entire cipher. If there is a fault in the output of the encoding
circuit, the error-correcting gates in the first round will correct
it the same way as in the middle of the cipher.

In case of the decoding circuit, the attacker would be
effectively faulting the resulting ciphertext. That would not
give her any additional information on either the plaintext nor
the secret key.

C. Software Implementation

Fault injection countermeasures without side-channel pro-
tection can increase the leakage coming from side chan-
nels [14]. Therefore, whenever a fault countermeasure is
implemented, and there is a risk of an adversary capable
of mounting a side-channel attack, it is necessary to con-
sider adding a side-channel protection. There are generally
two approaches to this – either implementing a universal
countermeasure that protects against both types of attacks, or
implementing two different protection methods. [10] proposed
a code-based countermeasure following the first approach by
extending [15], where they constructed codes that provide pro-
tection for different leakage models. While the speed overhead
of such implementation is reasonable – 82.5% for PRESENT-
80 implementation from [16], the memory requirements are
relatively high. For example, in case of 8-bit architectures,
one binary look-up table takes 65 kB [16].

The second approach can be useful in case one of the
countermeasures is already implemented at the hardware level,
but the other one has to be added additionally. This is a case
in many industrial applications, where a secure co-processor
handles and guarantees certain level of protection, and the
software library takes care of the rest. As our method uses
error-correcting gates to deploy fault resistant functionality, it



is easy to implement side-channel countermeasure of choice
on top of that, either in hardware or software.

D. Differential Fault Analysis

A thorough analysis of error-correcting encoding scheme
w.r.t. DFA was given in [10]. The work shows that it is
necessary to match the assumed attacker strength with the
used code. More specifically, the code distance always needs
to be twice as long as the attacker’s capabilities to flip certain
number of bits, otherwise there is a possibility to correct one
codeword into another by flipping enough bits.

E. Side-Channel Protection

Fault injection countermeasures without side-channel pro-
tection can enhance the leakage coming from side chan-
nels [14]. Therefore, whenever a fault countermeasure is
implemented, and there is a risk of an adversary capable
of mounting a side-channel attack, it is necessary to con-
sider adding a side-channel protection. There are generally
two approaches to this – either implementing a universal
countermeasure that protects against both types of attacks, or
implementing two different protection methods.

It was shown before that it is possible to construct a
code with the properties that actually provide side-channel
protection for different leakage models [15], [17], [18]. These
schemes alone can already provide certain level of fault
protection as detailed in [19]. Later, it was also shown that
a code-based countermeasure can be utilized to combine
the protection against both side-channel and fault injection
attacks [10], [20], [21]. As we do not focus on combined
protection method in this work, we would like to direct
interested reader to aforementioned works.

Another approach, a combination of two countermeasures,
can be useful in case one of the countermeasures is already
implemented at the hardware level, but the other one has
to be added additionally. This is a case in many industrial
applications, where a secure co-processor handles and guaran-
tees certain level of protection, and the software library takes
care of the rest. As our method uses error-correcting gates
to deploy fault resistant functionality, it is easy to implement
side-channel countermeasure of choice on top of that, either
in hardware or software.

VII. CONCLUSION

In this paper we have proposed a novel method to protect
cipher implementations against ineffective fault analysis. Our
work is based on error-correcting codes that can be efficiently
implemented in the form of error-correcting hardware gates.
Attacker capabilities can be matched by the choice of proper
code, e.g. for 1-bit fault models, at least a 3-bit code needs to
be used, while for 2-bit fault model, at least a 5-bit code has
to be used. We have evaluated a hardware implementation of
protected GIFT-64 and our results show 100% fault coverage.

In the future, it would be interesting to extend the protection
against side-channel attacks by utilizing adequate codes, as

was shown in [10], or by combining it with additional coun-
termeasure, such as masking. Additionally, it would be good
to look into automatic deployment of such countermeasures,
as was shown in [22] for several other cases.

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in CRYPTO’97. Springer,
1997, pp. 37–51.

[2] C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, and
R. Primas, “Statistical ineffective fault attacks on masked aes with fault
countermeasures,” in ASIACRYPT’18. Springer, 2018, pp. 315–342.

[3] C. Dobraunig, S. Mangard, F. Mendel, and R. Primas, “Fault attacks
on nonce-based authenticated encryption: Application to keyak and
ketje,” in International Conference on Selected Areas in Cryptography.
Springer, 2018, pp. 257–277.

[4] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “Sifa: Exploiting ineffective fault inductions on symmetric
cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 547–572, 2018.

[5] W. He, J. Breier, S. Bhasin, N. Miura, and M. Nagata, “Ring oscillator
under laser: Potential of pll-based countermeasure against laser fault
injection,” in FDTC’16. IEEE, 2016, pp. 102–113.

[6] C. Clavier, “Secret external encodings do not prevent transient fault
analysis,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2007, pp. 181–194.

[7] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on aes
with faulty ciphertexts only,” in 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, 2013, pp. 108–118.

[8] J. Breier and X. Hou, “Introduction to fault analysis in cryptography,” in
Automated Methods in Cryptographic Fault Analysis. Springer, 2019,
pp. 1–10.

[9] S. Ling and C. Xing, Coding theory: a first course. Cambridge
University Press, 2004.

[10] J. Breier and X. Hou, “Feeding two cats with one bowl: On designing
a fault and side-channel resistant software encoding scheme,” in CT-
RSA’17. Springer, 2017, pp. 77–94.

[11] T. Schneider, A. Moradi, and T. Güneysu, “Parti–towards combined
hardware countermeasures against side-channel and fault-injection at-
tacks,” in CRYPTO’16. Springer, 2016, pp. 302–332.

[12] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, “The skinny family of block ciphers and
its low-latency variant mantis,” in CRYPTO’16. Springer, 2016, pp.
123–153.

[13] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“Gift: a small present,” in CHES’17. Springer, 2017, pp. 321–345.

[14] F. Regazzoni, L. Breveglieri, P. Ienne, and I. Koren, “Interaction between
fault attack countermeasures and the resistance against power analysis
attacks,” in Fault Analysis in Cryptography. Springer, 2012, pp. 257–
272.

[15] H. Maghrebi, V. Servant, and J. Bringer, “There is wisdom in har-
nessing the strengths of your enemy: Customized encoding to thwart
side-channel attacks,” in International Conference on Fast Software
Encryption. Springer, 2016, pp. 223–243.

[16] J. Breier, X. Hou, and Y. Liu, “On evaluating fault resilient encoding
schemes in software,” IEEE Transactions on Dependable and Secure
Computing, 2019.

[17] C. Chen, T. Eisenbarth, A. Shahverdi, and X. Ye, “Balanced encoding
to mitigate power analysis: a case study,” in International Conference
on Smart Card Research and Advanced Applications. Springer, 2014,
pp. 49–63.

[18] P. Rauzy, S. Guilley, and Z. Najm, “Formally proved security of assem-
bly code against power analysis,” Journal of Cryptographic Engineering,
vol. 6, no. 3, pp. 201–216, 2016.

[19] J. Breier, D. Jap, and S. Bhasin, “A study on analyzing side-channel
resistant encoding schemes with respect to fault attacks,” Journal of
Cryptographic Engineering, vol. 7, no. 4, pp. 311–320, 2017.

[20] J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi,
“Orthogonal direct sum masking,” in IFIP International Workshop on
Information Security Theory and Practice. Springer, 2014, pp. 40–56.



[21] R. Poussier, Q. Guo, F.-X. Standaert, C. Carlet, and S. Guilley, “Con-
necting and improving direct sum masking and inner product masking,”
in International Conference on Smart Card Research and Advanced
Applications. Springer, 2017, pp. 123–141.

[22] J. Breier, X. Hou, and S. Bhasin, Automated Methods in Cryptographic
Fault Analysis. Springer, 2019.


