
Forward Security with Crash Recovery for Secure Logs

ERIK-OLIVER BLASS, Airbus, Germany

GUEVARA NOUBIR, Northeastern University, USA

Logging is a key mechanism in the security of computer systems. Beyond supporting important forward security properties, it is critical

that logging withstands both failures and intentional tampering to prevent subtle attacks leaving the system in an inconsistent state with

inconclusive evidence. We propose new techniques combining forward security with crash recovery for secure log data storage. As the

support of specifically forward integrity and the online nature of logging prevent the use of conventional coding, we propose and analyze

a coding scheme resolving these unique design constraints. Specifically, our coding enables forward integrity, online encoding, and

most importantly a constant number of operations per encoding. It adds a new log item by XORing it to k cells of a table. If up to a

certain threshold of cells is modified by the adversary, or lost due to a crash, we still guarantee recovery of all stored log items. The main

advantage of the coding scheme is its efficiency and compatibility with forward integrity. The key contribution of the paper is the use of

spectral graph theory techniques to prove that k is constant in the number n of all log items ever stored and small in practice, e.g., k = 5.

Moreover, we prove that to cope with up to
√
n modified or lost log items, storage expansion is constant in n and small in practice. For

k = 5, the size of the table is only 12% more than the simple concatenation of all n items. We propose and evaluate original techniques to

scale the computation cost of recovery to several GBytes of security logs. We instantiate our scheme into an abstract data structure which

allows to either detect adversarial modifications to log items or treat modifications like data loss in a system crash. The data structure can

recover lost log items, thereby effectively reverting adversarial modifications.

1 INTRODUCTION

Log services such as Syslog collect data about security-relevant events. Logged data is important for security audits

and used during forensic analysis, where an analyst investigates how an adversary has attacked a system. Yet, if the

adversary is able to fully compromise the machine running the log service, they typically modify stored log data and

remove all traces of their attack. As a result, an analyst checking for attacks does not have any means to verify integrity

and truthfulness of logs. To cope with compromising adversaries, previous works have designed mechanisms to store logs

with forward integrity, see [3–6, 8, 18–20, 27–29, 31, 33, 37, 46, 47].

An adversary who has compromised a system has full read-write access to all system data and can therefore easily

modify previously logged data items. Forward integrity ensures that a data item logged at time t is integrity protected such

that an adversary compromising the system at time t ′ > t cannot modify it without being detected. Consequently, the goal

of forward integrity is not to prevent modifications to data, but to make modifications evident (“tamper evidence”) during

log analysis. The standard notion of forward integrity is rather simple to achieve. In addition to storing the i th log item

datai in a log file, the log service also stores HMACKi (datai ). Key Ki is evolved to Ki+1 by computing Ki+1 = PRFKi (0),
and Ki is discarded. An adversary compromising the system at time i + 1 learns Ki+1, but not Ki and thus cannot modify

previous HMACs without detection. The log service starts with key K0 which is also known to the analyst.

Yet, a real-world challenge arises from the problem that log files can become inconsistent. Systems crash for various

reasons like software bugs, power failure or even hardware failure. As a result, log data might only be partially written to

disk, or previously written data or integrity information such as the HMACs become corrupted. In case of a crash, the

analyst would need to accept bad integrity information as a potential crash inconsistency. As demonstrated before [3, 6],

adversaries can exploit crashes by performing crash attacks: after compromise, an adversary removes or modifies traces
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of their attack and crashes the system. Again, the analyst would accept inconsistent integrity information as a result of the

crash, allowing the adversary to evade detection.

In many logging scenarios where security-critical data is collected, not only the integrity but also the confidentiality of

data must be protected. An adversary who has compromised the system should not be able to get access to sensitive data

collected before the time of compromise, e.g., about other users’ logins and accesses to files and other resources. That is,

we want forward confidentiality. Together, forward confidentiality and forward integrity are called forward security.

This paper. To mitigate the above attacks, we propose techniques combining forward integrity and confidentiality with

crash recovery for secure data storage. In particular, we present a new coding scheme with unique design constraints such

as forward integrity and most importantly an online encoding with a constant number of operations per encoded symbol

which is not possible with typical error/erasure correction codes such as LDPC, Reed-Solomon, or Fountain codes. In this

context, online encoding refers to the property that a symbol is encoded at once and without knowledge of previously

encoded symbols.

While the proposed scheme is a random linear code, it has not been considered or analyzed before, as it addresses

special constraints of secure logging. It is not suitable for typical communications and storage scenarios. We instantiate

the proposed coding techniques in a new abstract data structure Π with operations addItem and listItems. Operation

addItem(data) adds data item data (a bit string) to Π, and listItems outputs all data items in the order they have been

previously added. Data structure Π is useful for, e.g., storing a sequence of incoming log entries, but we stress that Π is

general, and one can conceive other applications. Besides providing forward integrity and similarly forward confidentiality,

the crucial feature of Π is the ability to recover data in case of system crashes with data loss or in case of data corruption.

Specifically, if up to some amount δ of Π’s internal data representation gets deleted or corrupted, then listItems still

recovers and outputs all data items with high probability. As δ is a parameter for Π, it is chosen such that it matches the

expected amount of data lost during a real-world crash, e.g., due to the system’s cache sizes, cache eviction frequency,

and file system details. Consequently, the adversary can only modify up to δ data, otherwise malicious modifications

become distinguishable from a real crash and lead to detection. Yet, if the adversary modifies at most δ data, listItems

will recover all original data, neutralizing the adversary’s modifications.

The key technical challenge in the design of such a data structure is to combine forward integrity and recovery, but still

achieve high efficiency in terms of computational complexity and low storage overhead. In many logging scenarios, a log

service must be able to cope with a high frequency of incoming log events.

Coding Overview. Our coding bears similarity to Gallager’s Low-density Parity-Check (LDPC) codes [16, 40]. We,

however, have unique constraints that prevent the use of such codes. In order to provide forward integrity and for

performance reasons, the encoding has to happen in an online manner without knowledge of previous encodings, and an

addItem operation must only imply a constant number of (simple) computations and disk writes. These requirements

exclude the use of conventional codes such as LDPC codes [35], or even Reed-Solomon and Fountain Codes (e.g., LT,

Tornado, and Raptor) as we discuss in the related work section. Our encoding forward-securely selects k pseudo-random

locations in a table and XORs encrypted data to these locations. So, we build a system of linear equations, with the table

cells representing its right-hand side and indices of pseudo-random locations its left-hand side. We show that if k and

the size of the table are chosen appropriately, then the matrix of coefficients of the left-hand side has full rank with high

probability 1 − o(1). This allows for decodability, i.e., we recover all data using standard Gaussian elimination. More

importantly, even if an amount of up to δ data items in the table becomes invalid, and thus a certain number of equations

are removed from the system, the left-hand side has still full rank, and we recover all data.
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While the coding scheme is purposefully simple for high efficiency, our main contribution lies in its analysis where we

show for which parameters decoding can be guaranteed with high probability. In order to prove decodability guarantees, we

extend Calkin’s analysis [10] of dependent sets of constant weight binary vectors to binary vectors of hypergeometrically

distributed weight. The analysis is of independent interest and leverages spectral graph theoretic techniques: we connect a

transition matrix’ binary eigenvectors, which have hypergeometrically distributed weight, to the rank of such vectors. We

also show tightness of decodability bounds.

To also achieve forward confidentiality, we combine our coding scheme with standard techniques for authenticated

encryption. By using the same evolving keys as for integrity, we achieve confidentiality for “free”.

In summary, the major contributions of this paper are:

• We present a new online encoding scheme for forward integrity, formally prove its security and decodability, and

analyze its complexity. Our proof shows that encoding is extremely efficient and has Θ(k) time complexity, constant

in the number n of data items encoded. Time complexity is not only asymptotically optimal, but also low in practice

(e.g., k = 5). Computation time is dominated by k applications of cheap symmetric-key cryptography. Moreover,

space overhead is in Θ( 1
1−e−k ) which is also constant in n and low in practice (12% for k = 5). Contrary to related

work [17, 32], our coding scheme tolerates not only a constant amount δ of data loss, but any δ <
√
n.

• Augmented by standard techniques for forward confidentiality, we deploy our coding scheme into data structure Π

with operations addItem (performing encoding) and listItems (performing decoding). As a result, Π essentially allows

ignoring an adversary A tampering with data. Operation listItems will still output all data items previously added with

probability 1−o(1). As we assumeA to have fully compromised the computer system running the log service,A could

also modify or remove more than δ of all content. However in that case, A is detected with probability 1. All data loss

due to a regular system crash is recoverable with probability 1 − o(1).
• We propose and evaluate additional techniques (e.g., multi-bucket storage) to scale the computation cost of recovery to

several GBytes of security logs. We use our implementation in millions of experiments and indicate that, as long as

δ <
√
n, listItems outputs all data items with high probability.

2 MODELS AND SECURITY DEFINITIONS

System Overview. We start by introducing the general system setup we consider in this paper. We envision three parties:

(1) The logging device. The logging device collects security-relevant data from different sources over time and stores

and maintains this data in an internal data structure. The logging device is initialized with some cryptographic

information K0 that it shares with the analyst. In our setting, the logging devices is trusted until compromised

by the adversary. A logging device might also crash which can result in some modifications to its internal data

structure. Compared to the analyst, we assume the logging device to be a lightweight device, e.g., an Internet of

Things (IoT) device, so the main computation burden of any logging scheme must lie on the analyst.

(2) The adversary. At some point in time after the initialization, an adversary compromises the logging device. The

adversary learns all information stored on the device at the time of compromise and can fully control the device’s

behavior. The goal of the adversary is twofold. First, the adversary wants to learn about data stored before the time

of compromise. Second, the adversary wants to tamper with the device’s internal data structure and the data stored

before the time of compromise. However, the adversary wants to remain covert, i.e., not be detected by the analyst.

(3) The analyst (also called verifier). The analyst is initialized with the same cryptographic information K0 as the

logging device. At some point in time, possibly after the device has been compromised by the adversary, the
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Table 1. Notation used in this paper
Symbol Description

c
Stretch factor, determines how much longer Table T is compared to maximum number
of data items n

δ
Threshold number of deleted or modified data values in data structure Π (up to where
decoding succeeds)

DS Internal state of data structure Π, comprises table T
k Number of buckets in Table T where new data is XORed to
Ki Cryptographic keys
ℓ Length of data items
m Number of cells in Table T
n Maximum number of data items to store
Π Abstract data structure to store data
ϕ Number of buckets in multi-bucket technique
s Security parameter

stA Adversary A’s internal state
T Table storing encoded data items
Ti Contents of Table T at time i

Enc,Dec,PRF,PRG,h
Encryption, decryption, pseudo-random function, pseudo-random generator, hash func-
tion

∆(DS,DS ′) Function computing the number of different data values between states DS and DS ′

DRN(seed) Generate k distinct pseudo-random numbers using seed

L(n) number of data values in Π

analyst is given the internal data structure of the device (in practice, they might simply download it from the log

device). The goal of the analyst is to learn all original data collected by the logging device, at least from before the

time of a potential compromise or before the time of a crash. If this is not possible due to adversarial tampering,

the analyst wants to find out that there actually was adversarial tampering and not a crash. The analyst is always

trusted in our scenario. Note that we do not assume any network connection between the logging device and the

analyst during the device’s regular collection of data.

In general, data structures with operations are also called Abstract Data Types (ADTs). However, whenever the

separation is clear in this paper, we simply refer to Π as a data structure. To allow proper reasoning about security and

later data recovery, we briefly formalize both (simple) storage data structures and the threat model.

2.1 Data Structures for Storage

A storage data structure Π = (Init, addItem, listItems,DS) comprises state DS and the following three algorithms.

(1) (DS, sk) ← Init(1s ,n): on input a security parameter s and the maximum number n of data items which will be

stored, Init outputs an empty state DS ∈ {0, 1}poly(s). Moreover, Init also outputs auxiliary bit string sk ∈ {0, 1}s .

In our specific instance of Π later, sk will be a secret cryptographic key, the start of a key chain to ensure forward

integrity and confidentiality.

(2) DS ′ ← addItem(data,DS): on input bit string data ∈ {0, 1}∗, this algorithm adds data to the data structure given

by state DS . It outputs an updated state DS ′. addItem does not require auxiliary information sk. In practice,

addItem is typically run by the logging device for each data item.
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(3) (data1, . . . ,dataη ) ∨ ⊥ ← listItems(DS, sk,n): on input a data structure’s state DS and auxiliary information sk,

listItems either outputs a sequence of data datai or special symbol ⊥ indicating failure. To be able to output

failure, e.g., in case of a crash, listItems also receives system parameter n. In practice, listItems is typically run by

an analyst.

DS represents Π’s whole state as a bit string. In practice, after adding n data items to Π with addItem, DS itself is

internally organized as a collection of L(n) internal data values. For example, a hash table consists of L(n) cells, a tree

consists of L(n) nodes etc., but one can imagine other organizations. Representing Π’s whole state, DS does not only

contain the collection of internal data values, but also includes cryptographic keys and other data required for operations

addItem and listItems.

This paper assumes that it is possible to estimate the maximum number of data items n that will ever have to be stored

in Π in advance. Knowing an upper bound n for the number of data items is crucial: we will see later that our new coding

fails if more than n items are added, and vastly overestimating n can hurt performance of listItems. While n (including a

reasonable security margin) can be estimated in many scenarios based on past experience and heuristics, we conjecture

that it might not be estimated in other scenarios — where our techniques would not be applicable.

Any data structure Π for storage must hold two properties. Informally, if you add data with addItem, then listItems

should with high probability output data later. Similarly, if listItems outputs a sequence of data, then this data should

have previously been added with addItem. We formally define soundness and completeness (in the absence of crashes or

adversarial modifications) below.

Definition 1 (Soundness). For all s,n ∈ N,η ≤ n, and all sequences (DS0, sk) ← Init(1s ,n), (DS1 ← (addItem(DS0,
data1), . . . ,DSη ← addItem(DSη−1,dataη )) we have

Pr [listItems(DSη , sk,n) = (data1, . . . ,dataη )] = 1 − o(1).

Definition 2 (Completeness). For all s,n ∈ N,η ≤ n, and tuples (DSη , sk,data1, . . . ,dataη ) with (data1, . . . ,dataη ) =

listItems(DSη , sk), there exists (DS0, . . . ,DSη−1) such that

Pr [(DS0, sk) ← Init(1s ,n),DS1 ← addItem(DS0,data1), . . . ,DSη ← addItem(DSη−1,dataη−1)] = 1 − o(1).

In both definitions, probabilities are taken over random coins of Init, addItem, and listItems.

2.2 Crashes and Recovery

A crash is an event which modifies or deletes some number δ of Π’s internal data values in DS . The exact amount δ can

often be estimated in advance as it depends on system parameters such as the system’s buffer cache size, physical disk

cache size, and cache eviction rates. We now extend soundness and completeness to the case of crashes.

Definition 3 (δ -Recovery). Let DSη be the result of the sequence of operations ((DS0, sk) ← Init(1s ,n),DS1 ←
addItem(DS0,data1), . . . ,DSη ← addItem(DSη−1,dataη )), and let DSη ’s internal state have L(n) data values. Function

∆(DSη ,DS
′
η ) outputs δ , if state DS ′η is the result of modifying or deleting δ ≤ L(n) internal data values in DSη .

Storage data structure Π provides δ -recovery, iff for all DSη and DS ′η with ∆(DSη ,DS
′
η ) ≤ δ , the calls to listItems(DSη ,

sk,n) in definitions 1 and 2 can be replaced by listItems(DS ′η , sk,n), but soundness and completeness still hold with

probability 1 − o(1).
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2.3 Adversary Model

We now discuss our target security requirements and define an adversary model. We assume that at some point a fully-

malicious adversary A compromises the computer system hosting data structure Π. By compromise, we mean that A

reads out all current memory (RAM, disk) contents and learns all possible cryptographic secrets. This includes the current

bit representation DS of Π. Also, A controls the computer system from now on. That is, A might diverge from program

execution and perform operations of their liking.

Overview. Informally, the security properties we want to guarantee are forward Confidentiality and forward Integrity

(together abbreviated as CI). The combination of forward confidentiality and forward integrity is called forward security.

• The notion of forward confidentiality states that A cannot learn anything about data added to data structure Π

before the time of compromise.

• Forward integrity describes the effect of A’s possible modifications on state DS captured during compromise.

Typically, A should not be able to tamper with data collected before the time of compromise without being

detected.

• However, in our specific context of crashes, we augment forward integrity by a data recovery property. Without

any adversarial behavior, a regular crash might change some of state DS . A crash is regular system behavior and

not cause for any concern. Yet, even though a crash might change DS , we want to be able to recover log data

collected before the crash. (In practice, this is often achieved by various techniques for data coding.)

Interestingly, if A’s tampering and their modifications to DS are “small”, comparable to a regular system crash,

the recovery property will also imply that A’s modifications will not have an effect on the outcome of listItems

regarding data items added before the time of compromise. So, listItems will correctly output all items added

before the time of compromise. In case A modifes “large” amounts of DS , differently from a regular crash, we

want to be able to at least detect these modifications (tamper evidence).

As we assume A to have privileged system access, they can do anything they want with DS , and the strongest integrity

notion one can achieve (and we will achieve) is tamper evidence. Such an adversary, allowed to arbitrarily divert from a

protocol, but wanting to avoid detection, is also called covert adversaries in the literature [2]. In our case, listItems should

either output all data added before the time of compromise correctly or detect modifications and output ⊥.

We now formalize our Confidentiality, Integrity, and Recovery intuition.

Security Definition. Consider experiment ExpCIR
A,Π(s,δ ) in Figure 1, where s denotes a security parameter and δ the number

of internal data values A can modify. For sequence seq = (data1, . . . ,datan ) of data items, PREFIX(seq,η) outputs the

first η ≤ n items (data1, . . . ,dataη ).

In ExpCIR
A,Π(s,δ ), adversary A starts by specifying the maximum number of data items n that data structure Π should

be able to store. A outputs two sequences of data items, one with η0 items, and the other with η1 items, η0,η1 ≤ n. One

of the two sequences is randomly chosen and added with addItem to an initially empty data structure Π. Then, A fully

compromises the system hosting Π and learns the system’s complete state and thus DS .A can tamper with DS in any way

they want and output new state DS ′. Finally, listItems lists DS ′ contents.

We require that A should not have any advantage in breaking confidentiality or integrity of data added before the time

of compromise. Note that A has full access to DS at the time of compromise, but not to the initially generated auxiliary

information sk. Only listItems will have access to sk. This setup reflects typical scenarios where a logging device adds
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1 {n, (data01, . . . ,data
0
η0 ), (data

1
1, . . . ,data

1
η1 ), stA } ← A(1

s );
// Let η0,η1 < n

2 {DS, sk} ← Init(1s ,n);

3 b
$
← {0, 1};

4 for i = 1 to ηb do
5 DS ← addItem(DS,databi );
6 {b ′,DS ′} ← A(stA ,DS);
7 confidentiality = False; integrity = False;
8 if b , b ′ then
9 confidentiality = True;

10 result ← listItems(DS ′, sk,n);
11 if [PREFIX(result ,ηb ) = (datab1 , . . . ,data

b
ηb )] ∨ [result = ⊥ ∧ ∆(DS,DS ′) > δ ] then

12 integrity = True;
13 output {confidentiality, integrity};

Fig. 1. Experiment ExpCIR
A,Π(s, δ )

log entries until eventually another party, the analyst, receives all log entries and analyzes them. In Figure 1, stA denotes

A’s internal state which A carries through the experiment.

Definition 4. Data structure Π = (Init, addItem, listItems) provides F (·)-CIR-security, iff for all PPT adversaries A and

same-length data items, there exist function F (·) and negligible function ϵ such that the following two probabilities hold:

Pr [ExpCIR
A,Π(s,δ ).confidentiality = False] =

1
2
+ ϵ(s)

Pr [ExpCIR
A,Π(s,δ ).integrity = False] ≤ F (·).

Here, security parameter s is sufficiently large, and the probabilities are taken over the random coins of A and Π.

Discussion. Definition 4 captures forward confidentiality and forward integrity together with data recovery in a model

fashion.

The first part of the security definition above addresses forward confidentiality. Even though the adversary gets access

to the complete internal state with possible secrets and cryptographic keys, they cannot learn anything about data items

added before the time of compromise. A cannot learn how many data items have already been added. As with standard

definitions of confidentiality (IND-CPA), we require all items data0i ,data
1
j to have the same length.

The second part of the definition targets forward integrity and data recovery. If A has tampered with DS only within

up to δ modifications to DS’s internal data values, listItems should output all data from before the time of compromise.

If A has modified more than δ , then listItems outputs ⊥ indicating failure. In the real world, this corresponds to either

recovering all data items inserted before the time of compromise or detecting an adversary who modifies more than δ

internal values. As we can adjust δ to the expected modifications of a real crash, we will be able to recover from crashes,

detect adversarial behavior beyond δ modifications, and cancel adversarial modifications less than δ .

Also observe that we limit A to add at most n data items in ExpCIR
A,Π(s,δ ). If A adds more than the n items initially

configured, we allow listItems to fail (output ⊥), but this does not correspond to any valid attack in the real-world.

The goal of definitions 1 and 2 is to make basic correctness properties explicit, while Definition 4 focuses on δ -Recovery

and confidentiality in the face of adversarial modifications.
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3 OUR APPROACH

High-Level Idea. Essentially, we offer a new data structure which allows to add new (log) data items and later list all

of them. To add a new data item, we will encode it in a specific way before writing it to disk. The coding we use is

customizable in that it allows listing (“recovering”) all previously added data items as long as not more than a threshold

parameter δ of the data structure is invalid, e.g., overwritten, corrupted, inconsistent or modified by an adversary. We

then set parameter δ to a value which matches the amount of data possibly lost during a real crash of computer system

running the logging service. Based on the computer’s specifics such as file system cache or disks buffers, one can typically

estimate and bound δ . As a result, in case of a real crash, we will be able to recover all previously logged data. Moreover,

all adversarial modifications of up to δ data will be neutralized. If the adversary tampers with more than δ , we know that

the corrupted data cannot be due to a real crash and thus provide tamper evidence.

Our approach has three key components: (1) as its underlying basis, a coding scheme with an online encoding property,

i.e., encoding new symbols without knowledge of previous encodings, constant write operations per encoded symbol, and

high probability of decodability for up to
√
n erasures, (2) techniques to augment coding schemes to provide forward

integrity and forward confidentiality, and (3) an abstract data structure, combining (1) and (2), that provides key secure

logging operations of adding and listing logged items while provably guaranteeing properties of forward confidentiality,

integrity, and recovery.

In the following, we gradually describe each of the components. After presenting the idea how to encode data and how

to provide forward security, we sketch how this is integrated in data structure Π. Formal details with pseudo-code follow

in Section 4.

3.1 Online Coding Scheme

Our coding scheme is formally defined through its generator matrix G. An uncoded binary vector u from Galois field

GF (2n ) of length n is coded into a codeword v ∈ GF (2m ) of lengthm, such that v = G · u. Matrix G is anm × n matrix

where each column has exactly k random entries equal to 1 and the remaining ones equal 0. This coding scheme is very

efficient to implement and extends to non-binary input symbols u specified one at a time. The idea for encoding is then

to XOR each new data item to k distinct, randomly chosen cells in a table ofm cells. To decode, one solves the system

of linear equations, with the table ofm cells defining the right-hand side and G the coefficients of the unknowns of the

left-hand side.

One might note similarities to LDPC codes or other efficient erasure codes such as Fountain codes. However, as

discussed in great detail in Section 8, such codes (Reed-Solomon, LDPC, LT, Raptor, Tornado etc.) cannot be used in this

context. From a coding perspective, our code looks rather simple, yet it enjoys a computational complexity of encoding

which is constant in the number of input symbols, and it supports online encoding. Moreover, it has strong decodability

guarantees which we will prove.

3.2 Forward Security

One approach to store data with forward confidentiality and integrity builds on key chains, see, e.g., Bellare and Yee

[4]. Two parties, the log device and an analyst, initially share a cryptographic key K0. Both agree that a new key Ki

is computed from previous key Ki−1 by applying a PRF as Ki = PRFKi−1 (γ ) for some constant γ or by applying a

cryptographic hash function Ki = h(Ki−1). To store data itemi , the log device computes Ki out of Ki−1, deletes Ki−1, and

stores an authenticated encryption of itemi with key Ki . To decrypt and check integrity, the analyst re-computes all Ki
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starting from K0. Forward confidentiality and integrity follow from the fact that an adversary can only learn a key Ki at

the time of compromise and cannot rewind to previous keys.

Note that in the coding scheme above, to successfully decode, it is required for the analyst to knowG, i.e., the k random

locations where each data items was placed in the table. Therefore, the log device derives the k random locations using a

PRG, seeded with the current key Ki to encode a symbol. The analyst can then replay random coins and deduce the k

locations for each symbol. This is forward secure, because the adversary only learns the current key and cannot replay

previously used random locations. Along the same lines, forward security automatically implies that the coding scheme

must allow online encoding: information about random locations chosen previously is not available anymore after an

encoding.

3.3 Abstract Data Structure

We now combine coding and forward security techniques and apply them into a new data structure Π. First, we use

authenticated encryption with the current key to encrypt the current data item. A standard trick is then to evolve the key

which automatically yields forward confidentiality and forward integrity as with related work [37]. Then, our main idea

and contribution is a new way to encode the resulting ciphertext. We XOR the ciphertext to k distinct, pseudo-randomly

chosen cells in a table of m cells. After adding n data items we decode (table cells represent right-hand side of system of

linear equations, cell indices represent left-hand side). For certain choices ofm > n and k , we will prove that the resulting

system of equations has rank n even if we remove up to δ equations from it. Thus, we use Gaussian elimination to recover

all n data items previously added.

We now give a more technical overview over our data structure Π, with full technical details following in Section 4.

Let k ∈ N be a small system parameter.

Authenticated Encryption AE$. Let Algorithms (EncK ,DecK ) realize authenticated encryption as follows: the encryption

part is IND$-CPA [36] secure, and integrity tags are generated by a pseudo-random function family. We call the resulting

authenticated encryption, where the whole bit string output by EncK is indistinguishable from a random string, AE$
encryption. A standard real-world example for AE$ encryption is encrypt-then-MAC with AES-CTR and HMAC. Let

function PRFK specify a pseudo-random function family indexed by key K . In practice, HMAC might serve as such a

PRF. Finally, PRG(s) denotes a pseudo-random generator with seed s, e.g, an AES-CTR based construction.

Simplification: Single Key. To keep our exposition simple, we omit an important security detail and come back to it

later. For now, our exposition uses the same key Ki as a key for different cryptographic primitives, e.g., Enc,PRF, and

PRG. While this eases understanding of our main techniques, it also leads to unclear security. Instead, one should employ

separate keys for each primitive, and we show how to do that later in Section 4.4. Note that, below, we also use a PRF

with inputs of different lengths. This is possible with, e.g., HMAC, but other PRFs might require appropriate padding.

3.3.1 Initialization. First, assume that the maximum number of data items ever to be added into our data structure

can be estimated and upper bound by n. Also, assume that all data items have a maximum (padded) length of ℓ bits.

During initialization of Π, Init creates an empty table T0 withm > n cells T0[i]. Init also generates the start of a key chain

K0
$
← {0, 1}s . The initial state (bit representation) of Π is DS0 = (T0,K0), and Init outputs (DS0,K0). In our case with a

table, the internal data values of our data structure are the table’s cells; the number L(n) of internal data values is L(n) =m.

3.3.2 Adding data to Π. At the beginning of the ith invocation of addItem, Π’s state is DSi = (Ti ,Ki ). When adding

length ℓ bit item datai , the following modifications to Ti turn it into Ti+1. First, we encrypt datai to ci ← EncKi (datai ).
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AM =



c1 c2 · · · cn Tn

0 0 · · · Tn [1]
... 1

...
...

0 0

1
...

0 0
... 1
0 0

1
...

0
...

... Tn [m]


Fig. 2. Augmented matrix AM = [Mn |Tn ]

We randomly choose k distinct cells in Ti . Table Ti becomes Ti+1 by XORing ci to each of these k cells. Finally, we

compute Ki+1 out of Ki and discard Ki .

3.3.3 Listing all data items. Knowledge of K0 permits deriving all Ki and cell indices, and we exploit this for listItems.

That is, knowing K0 permits listItems to replay all random coins which PRG produced during addition of data items, thus

listItems knows the indices in which cells each data item datai has been XORed to. Recall that XORing equals addition

in finite fields of characteristic 2. So, listItems can set up a system of linear equations Mn · ®x = Tn . Each cell of the table

represents one component of the vector. We show the augmented matrix AM = [Mn |Tn ] in Figure 2. Each column vector

of Mn specifies where ciphertext ci has been XORed to Tn . Note that each column vector has constant weight k.

Algorithm listItems solves the system of linear equations AM to receive candidates for ci . Then, it verifies the integrity

tag for each candidate ci and outputs ci if verification succeeds. The key observation is that as long as Mn has rank n,

Gaussian elimination will always succeed and output sequence (c1, . . . , cn ). We will prove in Section 5 that Mn has rank

n with high probability, even if δ equations are removed from Mn and Tn .

Note that there are several optimizations possible which we discuss later in Section 5. We will also discuss the exact

choice of parameters c and k there.

3.3.4 Caveats. Before concluding our high level overview and turning to technical details, we emphasize the need for

several additional techniques to make this approach secure.

• First, there must be a way for listItems to verify whether the ith cell of table Tj is broken, i.e., whether a crash has

overwritten parts of the cell’s content. Otherwise, a broken bit sequence in Tj [i] will lead to an inconsistent system

of linear equations. To mitigate, we extend each cell in the table by an additional integrity tag Ti . Specifically, each

cell comprises as its first part XORi the XOR of AE$ encryptions and as a second part an integrity tag Ti computed

over the first part. During insertion of dataj , after addItem has XORed c j to first part XORi of cell Tj [i], we write

PRFKj (XORi ) into the second part Ti of Tj [i]. Later, algorithm listItems will remove all equations from AM where the

PRF part does not match the XORi part. Adversary A can arbitrarily modify contents of cell Tj [i] and then compute a
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Algorithm 1: Init(1s ,n)

// Let c > 1,k > 2,γ
$
← {0, 1}s

1 m = c · n;
2 T0 = EmptyTable(m, ℓ + 4 · s);

3 K0
$
← {0, 1}s ;

4 pad = PRG(K0);
5 T1 = T0 ⊕ pad;
6 K1 = PRFK0 (γ );
7 DS1 = (T1,K1);
8 output (DS1,K0);

Algorithm 2: addItem(datai ,DSi )
// Parse DSi as (Ti ,Ki )

1 ci ← EncKi (datai );
// Generate Distinct Random Numbers (DRN)

2 {l1, . . . , lk } = DRN(PRG(Ki ));
3 Ti+1 = Ti ;
4 foreach lj do

// Parse Ti+1[lj ] as (XORlj ,Tlj , IDlj ), let γ ′
$
← {0, 1}s be constant

5 XORlj = XORlj ⊕ ci ;
6 Tlj = PRFKi (XORlj );
7 IDlj = PRFKi (γ

′, j);
8 Ki+1 = PRFKi (γ );
9 output DSi+1 = (Ti+1,Ki+1)

Ti using their current Kj . However, if A introduces inconsistencies in AM , listItems detects that such inconsistencies

cannot be a result of a crash.

• For listItems to understand which key Kj was used to generate tag Ti , we also store IDi = PRFKj (γ
′) in Tj [i], where

γ ′ is another constant different from γ . So, listItems can once generate all n possible IDs, store them in a separate

hash table, and then access them in expected time O(1). In conclusion, each cell Tj [i] comprises XORi , Ti , and IDi .

• Table T0 cannot be empty (filled with zeros) after initialization. Otherwise, A would be able to distinguish between

empty and non-empty cells in Tn with some probability. A would then be to focus on deleting non-empty cells from

the table, violating forward integrity with high probability. Consequently, we initialize T0 by filling it pseudo-randomly.

We start with a random K0 and fill T0 with the output of PRG(K0), which results in T1. Later, listItems removes initial

pseudo-randomness by re-computing it and XORing to Tn .

4 DETAILED DESCRIPTION

4.1 Init

For an estimated upper bound of n data items, Algorithm 1 (Init) generates table T withm cells, wherem = c · n, c > 1.

Init also generates a key K0. The total size of each cell in T is ℓ + 4 · s bit. The first ℓ + 2 · s bit are reserved for AE$
encryption of a size ℓ bit data item and include the encryption’s random coins and integrity tag (e.g., AES-CTR and
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HMAC). We call the first ℓ + 2 · s bit of the cell the XOR part, as this is what will be XORed during addItem. Each cell

also includes s bit for an additional integrity tagT and another s bit for a key ID. In conclusion, the i th cell T[i] comprises

(XORi ,Ti , IDi ).

Init fills cells with the output of PRG(K0), see Line 5 of Algorithm 1. Finally, Init outputs Π’s state DS which is the

table, the next key K1, and the number of data items in Π, i.e., 0.

4.2 addItem

To add a new data item datai to data structure Π, which already holds i − 1 data items, Algorithm 2 (addItem) first uses

AE$ encryption and encrypts datai using current key Ki to ciphertext ci . Then, addItem pseudo-randomly chooses k

distinct indices lj , for 1 ≤ lj ≤ m, in table T . To generate required (pseudo-)randomness, addItem uses pseudo-random

generator PRG with Ki as seed. For each cell T[lj ] indexed by lj , addItem XORs ci to T[lj ]’s XOR part. It then computes

PRFKi over this XOR part and stores the result as integrity tag Tlj in T[lj ]. Finally, to later help listItems to find correct

key Ki for decryption, addItem also stores key ID IDlj = PRFKi (γ
′, j) in T[lj ]. Here, “,” is an unambiguous pairing of

inputs such as concatenation of fixed-length j and constant γ ′. Operation addItem outputs the updated table and a new

key Ki+1.

Note that key IDs IDlj are part of table T and thus obtained by adversary A at the time of compromise. This is not an

issue as IDs are not secret. They are the output of a PRF, so for an adversary without knowledge of (previous) key Ki , a

ID is indistinguishable from a random bit string of the same length.

As with IND-CPA encryption, also AE$ encryption requires all data items to have the same length ℓ. In practice, data

items might therefore require padding.

Replacing Ki by Ki+1 enables forward confidentiality and forward integrity. If A compromises after i data items have

been added, they will learn Ki+1. Thus, A cannot modify anything that was encrypted with a key Kj for j ≤ i. Similarly,

indices previously generated by PRG are indistinguishable from random for A.

4.3 listItems

Algorithm 3 (listItems) recovers all data items from DS . It receives initial key K0 as a parameter and starts by re-computing

all n possible keys Ki . To be able to link key Ki with its k corresponding IDs, listItems uses a simple (key,value) store

KeyStore. For all of the k possible locations lj where Ki could have been used to compute Tlj , it stores tuple (Ki , i, lj )

under its key ID in KeyStore.

The main idea now is to compute m × n matrix M , the matrix of coefficients over GF (2) representing the left-hand side

of the system of linear equations. M is initially all zero. As a first step, listItems computes the number of log entries which

have been added to Π, and thus M’s expected rank, by checking which key IDs and which keys have been used (Line 11).

Then, using keys Ki , listItems replays all indices for item datai . For each position lj in T , listItems puts a 1 in column

i, row lj of M . However, it does this only, if the corresponding integrity tag Tlj matches XORlj , i.e., if this table cell was

not modified by the adversary or during a crash. To check Tlj , listItems fetches the corresponding key from KeyStore

using IDlj . Note that listItems also verifies whether content in T[lj ] is supposed to be at position lj (Line 18). If one of

the checks fails, coefficient M[lj , i] remains 0, and XORi is set to 0ℓ+2·s . We essentially remove this equation from the

system of equations. To remove the initial randomness from all XORi , listItems re-computes the random bit string pad

and XORs it to all remaining (non-zero) cells in T . We represent resulting T as a vector ®v of dimensionm.
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Algorithm 3: listItems(DS,K0,n)

// Parse DS as (T ,Kη ) and T[i] as (XORi ,Ti , IDi ), 1 ≤ i ≤ m

// Let KeyStore be a (key,value)-pair data structure.

// Generate all possible keys and IDs, store in KeyStore.
1 for i = 1 to n do
2 Ki = PRFKi−1 (γ );

// Re-Generate k Distinct Random Numbers (DRN)
3 {l1, . . . , lk } = DRN(PRG(Ki ));
4 for j = 1 to k do
5 ID = PRFKi (γ

′, j);
6 KeyStore.put(ID, (Ki , i, lj ));
7 M=m × n zero matrix over GF(2);
// Predict M’s rank rank

8 rank = 0;
9 for i = 1 tom do

10 (Kj , j, ℓ) = KeyStore.get(IDi );
11 rank = max(rank, j);
12 if rank = 0 then output ⊥;
13 else
14 for i = 1 to rank do
15 {l1, . . . , lk } = DRN(PRG(Ki ));
16 for j = 1 to k do
17 (Kt , t , l) = KeyStore.get(IDlj );
18 if l = lj and PRFKt (XORlj ) = Tlj then M[lj , i] = 1; else XORlj = 0ℓ+2·s ;

// Re-generate m(ℓ + 4s) bit pseudo-random pad

19 pad = PRG(K0); // Let pad[i] denote the ℓ + 2 · s bit string covering XORi in T[i].

20 for i = 1 tom do
21 if XORi , 0ℓ+2·s then XORi = XORi ⊕ pad[i]

// Let vector ®v = (XOR1, . . . ,XORm ) ∈ GF (2(ℓ+2·s)
m
)

// Let vector ®c be a solution vector over (GF (2ℓ+2·s ))n

22 Solve M · ®c = ®v for ®c;
23 if equations are inconsistent then output ⊥;
24 else //Let c1, . . . , crank be the solutions
25 for i = 1 to rank do
26 datai = DecKi (®c[i]);
27 if datai , ⊥ then output datai ;

Finally, listItems solves the resulting system of linear equations M · ®c = ®v, e.g., by applying Gaussian elimination. This

results in solution ®c which listItems decrypts componentwise to get datai . If Gaussian elimination finds an inconsistent

system of equations, listItems outputs ⊥. Otherwise, it outputs (data1, . . . ,datarank ).

4.4 Additional Security Details

To keep our exposition clear, we have omitted two important details.
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Separate Keys. In our description, we have used the same cryptographic key for different cryptographic primitives

to simplify notation. However, one must use different keys for each cryptographic primitive, i.e., KX
i for primitive

X ∈ {Enc,PRF,PRG}, to allow black-box security arguments for each primitive. Also, instead of just evolving Ki to Ki+1

each of these keys must be evolved by computing KX
i+1 = PRFKX

i
(γ ). Another alternative would be to each time derive

key KX
i for primitive X from key Ki using a derivation function such as KX

i = PRFKi (γX) and different constants γX. Only

Ki would be evolved to Ki+1.

Minimum Rank. The system of equations which we are building needs to have a minimum rank. Note that listItems of

Algorithm 3 would output ⊥ for a freshly initialized data structure. That is, (DS,K) ← Init(1s ,n), listItems(DS,K ,n)

returns ⊥. Moreover, during compromise, adversary A can change state DS to a garbage state DS ′ by overwriting DS

with random bit strings. A completely random DS ′ violates the requirement of up to δ modifications or deletions. As

listItems will not find any valid ID, it would set rank to 0, M would remain a m × n zero matrix, and listItems would

output an empty set, but not ⊥.

However, we remedy this issue by simply adding a single dummy data item during initialization. We create a table for

n + 1 data items and then call addItem once to add a dummy data item. If listItems detects a rank of 0, it outputs ⊥.

5 ANALYSIS

We will now prove that data structure Π provides o(1)-CIR-security. So, for function F from Definition 4, we have

F (n) = o(1).

Roadmap. The idea behind proving this is to show that Π is sound, complete, and offers δ -Recovery up to the security of

underlying cryptographic primitives.

As our key chain techniques for forward integrity and confidentiality are rather standard and rely on standard

cryptographic constructions, we simply dismiss adversaries A violating confidentiality (ExpCIR
A,Π(s,δ ).confidentiality is

True) or integrity (ExpCIR
A,Π(s,δ ).integrity is True) by breaking cryptographic primitives. Let s be the security parameter

for cryptographic primitives PRG,PRF, and Enc used in their respective security definitions. We summarize that the

probability of A breaking forward integrity or confidentiality by attacks on cryptographic primitives is negligible in s.

Also note that ϵ(s) ∈ o(1).
Thus, the focus of our analysis is to formally prove crash recovery properties. That is, even in case of a crash or an

adversary tampering with up to δ data items, δ -Recovery of Definition 3 holds, so the original data can be recovered with

high probability. As a warm-up, we first prove that, without a crash or adversarial behavior, Π is both sound and complete

(§5.1). We then turn to the main contribution of our analysis, the proof of δ -Recovery (§5.2).

5.1 Soundness and Completeness

Lemma 1. For any k ≥ 2, there is a c ∈ O(1) such that data structure Π = (Init, addItem, listItems,DS) is sound and

complete with probability 1 − o(1).

PROOF. The key insight is that our way of constructing M corresponds to adding random binary length m vectors with

exactly k “1”s to an initially empty set S . There exist several fundamental results quantifying a threshold size n of S ,

n = |S |, until which vectors remain linearly independent and starting from which vectors in S become linearly dependent

with high probability [9, 10, 13, 14].

For k = 2, ifm = c · n and c > 2, the n vectors in S remain linearly independent almost surely with increasingm and n,

i.e., with high probability 1 − o(1) [14].
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For each k ≥ 3, it has been shown that there exists a c such that, as long as n < m/c, the n vectors in S remain

linearly independent with probability 1 − o(1), see Theorem 2b in Calkin [10]. Moreover, c can be approximated by

c−1 ≈ 1 − e−k
ln 2 −

e−2·k
2·ln 2 · (k

2 − 2 · k + 2·k
ln 2 − 1). With increasing k , values for c go (exponentially fast) towards 1.

A linear independent set S directly translates to ourm × n matrix M having rank n. If M’s rank is n, listItems solves

the related system of linear equations with probability 1. If listItems can solve the system of linear equations, soundness

(Definition 1) and completeness (Definition 2) follow immediately. □

Building on these results, we set k ≥ 3 for the remainder of the paper. Varying k allows for tailoring storage

requirements and computational overhead. For example, Dietzfelbinger and Pagh [13] present that for k = 5 we must set

c > 1.011. With such a configuration, set S remains linear independent (and thus M has rank n) with probability 1 −O( 1n ).
Moreover, it gives reasonable real-world performance: 5 calls to a PRG and accesses to the table per addItem and a small

storage overhead of only 1%.

5.2 δ -Recovery and Choice of c and k

More challening is to show that the rank of M remains equal to n, as long as c = m
n is greater than a threshold c0, and

the number δ of rows removed from M is bound by
√
n. Following Definition 3, full rank despite removal of

√
n rows

automatically implies that Π provides
√
n-recovery. This is our main result and stated in Corollary 1.

While it is possible to show the existence of a phase transition phenomena (i.e., a necessary and sufficient condition for

being able to decode all data items), in this paper we focus on a bound of c = m
n that guarantees recovery (decodablity).

The proof technique follows Calkin’s proof for analyzing the rank of a binary matrix with columns of constant weight [10].

We extend the proof technique to the case of columns with hypergeometrically distributed weight. The hypergeometric

distribution is the result of deleting arbitrary δ rows from the original matrix.

The proof outline is as follows. First, we consider Markov chain MH defined by the random walk on the hypercube 2m

using vectors of hypergeometric weight. In Theorem 2, we show that the expected rank of matrix M directly derives from

the eigenvalues of MH ’s transition matrix (called H ). We establish bounds for the eigenvalues of H , for the considered

values of k,δ , and c, that lead to the asymptotic rank guarantee. In this section, k refers to the constant weight of the

generator matrix column vectors, i.e., the number of distinct cells each data item gets XORed to. Later, we will set k = 5.

Let Sm,k,δ denote the set of vectors overGF (2) of lengthm and Hamming weight k−κ, κ distributed hypergeometrically.

We have

Pr [weight(u ∈ Sm,k,δ ) = k − κ] =

( k
k−κ

) ( m−k
δ−k+κ

)(m
δ
) .

M can be viewed as a matrix of n columns u1,u2, . . . ,un , chosen randomly from Sm,k,δ . Let r be the rank of M , and the

difference between n and rank r is d = n − r . We write E(·) for the expectation of a random variable. Our main result,

Corollary 1, directly derives from the following Theorem 1.

Theorem 1. If δ <
√
n, then there exists c0 > 1 such that

if c > c0 andm > c · n =⇒ E(2d ) → 1 asm →∞.

PROOF. This is the main theorem that we will prove in several steps below. □

Corollary 1 (δ -Recovery). If δ <
√
n, there exists c0 > 1 such that if c > c0 andm > c ·n =⇒ Pr [rank(M) = n] = 1−o(1).
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PROOF. This derives immediately from Theorem 1, since E(2d ) → 1 (when n →∞) implies that d → 0, and therefore

the rank r → n. Finally, if matrix M has rank n, then we recover all n data items with Gaussian elimination, which results

in δ -recovery. □

We now turn to Theorem 1. To prove this theorem, we first define a random walk on the 2m hypercube using steps ui
of hypergeometrically distributed weight. Let the random variable describing the position on the hypercube be xi , and

x0 = 0 and xi = xi−1 + ui .

We introduce the Markov chain MH with state defined by the weight of xi .

Lemma 2. The transition matrix H of MH has the following two properties:

1. H =
∑k
κ=0 Pr [weight(ui ) = κ] · A(κ), where A(κ) is the transition matrix for the random walk Markov chain given by

ui of constant weight κ.

2. H(p,q) =
∑k
κ=0
( k
k−κ)(

m−k
δ−k+κ)

(mδ )

(
q

κ−p+q
2
)(

m−q
κ+p−q

2
)

(mκ )
, for 0 ≤ p,q ≤ k and where the binomial coefficients are interpreted to

be 0, if κ + p + q is odd.

PROOF. H(p,q) denotes the probability of transitioning from state p to state q. Note that here, when we are in state

p, we add a random vector ui of hypergeometrically distributed weight k. Therefore, H(p,q) is basically the sum of the

probability of ui having a given weight κ times the probability that we transition from state p to state q with fixed weight

κ (which is by definition A
(κ)
(p,q) and is equal to

(
q

κ−p+q
2
)(

m−q
κ+p−q

2
)

(mκ )
).

H(p,q) =
k∑

κ=0
Pr [weight of ui is κ] · A(κ)

(p,q)

=

k∑
κ=0

( k
k−κ

) ( m−k
δ−k+κ

)(m
δ
) A

(κ)
(p,q) (1)

=

k∑
κ=0

( k
k−κ

) ( m−k
δ−k+κ

)(m
δ
) ( q

κ−p+q
2

) ( m−q
κ+p−q

2

)(m
κ
)

Equation 1 also implies H =
∑k
κ=0 Pr [weight(ui ) = κ] · A(κ). □

Lemma 3. H ’s eigenvalues λHi are a linear combination of the eigenvalues λκ,i of the constant weight (κ) transition

matrices. Formally,

λHi =

k∑
κ=0

( k
k−κ

) ( n−k
δ−k+κ

)(n
δ
) λκ,i (2)

λκ,i =

κ∑
t=0
(−1)t

(i
t
) (m−i
κ−t

)(m
κ
) (3)

ei [j] =

j∑
t=0
(−1)t

(
i

t

) (
m − i

j − t

)
(4)

PROOF. From [10] (Lemma 2.2), A(κ) = 1
2mU∆(κ)U , where U is defined by columns (eigenvectors) ei , and ∆ is the

diagonal eigenvalues matrix defined by λHi . We also note the following property:

U 2 = 2m I . (5)
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Then, H =
k∑

κ=0

( k
k−κ

) ( m−k
δ−k+κ

)(m
δ
) A(κ)

=

k∑
κ=0

( k
k−κ

) ( m−k
δ−k+κ

)(m
δ
) 1

2m
U∆(κ)U

=
1
2m

U (
k∑

κ=0

( k
k−κ

) ( m−k
δ−k+κ

)(m
δ
) · ∆(κ))U =

1
2m

UΛU

where Λ =
∑k
κ=0
( k
k−κ)(

m−k
δ−k+κ)

(mδ )
· ∆(κ). As ∆(κ) is diagonal, Λ is diagonal, and 1

2mUΛU is the eigen-decomposition of H

with eigenvectors the columns of U and eigenvalues
∑k
κ=0
( k
k−κ)(

n−k
δ−k+κ)

(nδ)
λκ,i . □

Remark. Eigenvectors of H do not depend on κ and form matrix U . It therefore does not matter if we take a step of size z

and then z′ or z′ and then z. The probability that u1,u2, . . . ,ut sum to 0 is the 00th coefficient of H t . So, considering

all possible combinations of t columns of ui , and given the fact that we are operating in GF (2), the expected number of

combinations of ui that add-up to 0, we derive

E(2d ) =
m∑
t=0

(
m

t

)
(H t )00.

Theorem 2.

E(2d ) =
m∑
t=0

1
2m

(
m

i

)
(1 + λHi )

n

PROOF. We already know that H = 1
2mUΛU . We can therefore derive H t :

H t = (
1
2m

UΛU )t =
1
2m

UΛtU (6)

Equation 6 derives from equation 5, which states that U ·U = 2n I .
Given that U is defined by the eigenvectors ei , the 00th coefficient of H t can be calculated as:

(H t )00 =

m∑
i=0

1
2m
(λHi )

t
(
m

i

)
Since ui are chosen randomly and independently, the expected number of subsequences that add up to 0 is:

E(2d ) =
n∑
t=0

(
n

t

)
(H t )00 =

n∑
t=0

(
n

t

) m∑
i=0

1
2m
(λHi )

t
(
m

i

)
=

m∑
i=0

1
2m

(
m

i

)
(1 + λHi )

n

□

Lemma 4. H ’s eigenvalues satisfy the following:

(1) ∀0 ≤ i ≤ n: |λHi | < 1
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(2) ∀t < 1
2 , if i = t ·m, then

λHi <(1 −
2i
m
)3 −

4
(k
2
)

m
(1 −

2i
m
)
i

m
(1 −

i

m
)

+O(
k3

c2m2 ) +O((
δ

m
)3)

(3) For i sub-linearly close to m
2 , i.e., m2 − i =

mθ

2 (for some θ < 1), we have

λHi <(
1

m1−θ )
3 −

4
(k
2
)

m
(

1
m1−θ ) +O(

k3

m2 ) +O((
δ

m
)3) (7)

PROOF. The first inequality derives from the formulae of λHi , and λk,i as shown in Lemma 3, equations 2 and 3. The

second inequality derives from the bound of λκ,i as derived by Lemma 3.1(c) in [10], combined with Equation 2 setting k

to 5. The last inequality derives from replacing m
2 − i by mθ

2 . □

Corollary 2. For δ < mγ where γ < 2
3 , if θ < 2

3 and m
2 − i =

mθ

2 , then λHi m → 0 asm → +∞.

PROOF. This derives from Equation 7. □

This is in particular true for γ = 1
2 , and we therefore set δ =

√
n.

Lemma 5. There exists c0 > 1 such that if c > c0 andm > c · n then ∃ϵ such that:

(1) A =
∑ϵm
i=0

1
2m

(m
i
)
(1 + λHi )

n +
∑m
i=(1−ϵ )m

1
2m

(m
i
)
(1 + λHi )

n → 0 asm → +∞

(2) B =
∑i=m2 +m

4
7

i=m2 −m
4
7

1
2m

(m
i
)
(1 + λHi )

n → 1 asm → +∞

(3) C =
∑m

2 −m
4
7

i=m2 (1−ϵ )
1
2m

(m
i
)
(1 + λHi )

n +
∑m

2 (1+ϵ )

i=m2 +m
4
7

1
2m

(m
i
)
(1 + λHi )

n → 0 asm → +∞

(4) D =
∑m

2 (1−ϵ )
i=ϵm

1
2m

(m
i
)
(1 + λHi )

n +
∑(1−ϵ )m
i=m2 (1+ϵ )

1
2m

(m
i
)
(1 + λHi )

n → 0 asm → +∞

Moreover, c0 ≈ 1.1243.

PROOF OF LEMMA 5. Since eigenvalues λH of H satisfy the same asymptotic bounds as λi in the case of [10], the

results derive similarly. Note that (1), (2), and (3) are always true independently of c0. (4) is also, but requires c0 to be a

solution to a function f defined in the next steps.

Given that |λHi | < 1,

A =
ϵm∑
i=0

1
2m

(
m

i

)
(1 + λHi )

n +

m∑
i=(1−ϵ )m

1
2m

(
m

i

)
(1 + λHi )

n

<

ϵm∑
i=0

1
2m−n−1

(
m

i

)
.

Therefore, A→ 0 asm →∞.

When, m2 −m
4
7 ≤ i ≤ m

2 +m
4
7 , we have (1 + λHi )

n = (1 + o( 1m ))
n = 1 + o(1). Therefore, B ≈

∑i=m2 +m
4
7

i=m2 −m
4
7

1
2m

(m
i
)
→ 1,

asm →∞.

For m
2 (1 − ϵ) ≤ i ≤ m

2 −m
4
7 , we get λHi < λHn

2 (1−ϵ )
. Setting ϵ = 1

m1−θ (therefore ϵ = o(n−3), δ =
√
m, and combining

with Equation 7, we obtain λHi < ϵ3 −
(k2)
m ϵ +O( 1

m
3
2
). Thus,
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(1 + λHi )
n < emϵ 3e−

(k2)
m ϵ → 1

m → +∞ (for θ <
2
3
)

We can bound the binomial term in the sum as follows:(
m

i

)
< (

me

m
2 −m

4
7
)
m
2 −m

4
7
= (

2e

1 − 2m
−3
7
)
n
2 −m

4
7

< (2e)
n
2 −m

4
7
.

Therefore, 1
2m

(m
i
)
<
(2·e)

n
2 −m

4
7

2m < (2 · e)
−m
14 , and

B =

i=m2 +m
4
7∑

i=m2 −m
4
7

1
2m

(
m

i

)
(1 + λHi )

n → 0

< 2m
4
7 (2e)

−m
14 → 0 asm → +∞

For the last term

D =

m
2 (1−ϵ )∑
i=ϵm

1
2m

(
m

i

)
(1 + λHi )

n

+

(1−ϵ )m∑
i=m2 (1+ϵ )

1
2m

(
m

i

)
(1 + λHi )

n → 0,

by symmetry we consider the first term. Let α = i
m and β = n

m . We have [15](
m

i

)
< 2mH ( im ) = em log(2)H (α ) = em(−α log(α )−(1−α ) log(1−α )).

Furthermore, from Lemma 4, we have λHi < (1 −
2i
m )

3 = (1 − 2α)3. Thus,

1
2m

(
m

i

)
(1 + λHi )

n

<em(− log 2−α log(α )−(1−α ) log(1−α )+β log(1+(1−2α )3)).

Looking at the exponent in this inequality, we now define a function f which will determine the threshold value c0. This

threshold value is also the expansion threshold used in Theorem 1. Let f (α , β) = − log 2 − α log(α) − (1 − α) log(1 − α) +
β log(1 + (1 − 2α)3). Therefore,

1
2m

(
m

i

)
(1 + λHi )

n < emf (α,β ).

We need to find a value β0, such that for all α (defined as i
m ) ∈ (ϵ, 1 − ϵ), we guarantee that f (α , β) < 0. Such value β0

is found by considering (α0, β0) the root of

f (α , β) = 0
∂ f (α , β)

∂α
= 0.

Setting c > c0, we get β < β0, and therefore D → 0 asm → +∞.
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Algorithm 4: Init(1s ,ϕ,n′)

1 K
Super
1

$
← {0, 1}s ;

2 for i = 1 ϕ do
3 Πi .Init(1s ,n′);// Store Ki,0

4 output K1,0, . . . ,Kϕ,0,K
Super
1 ;

Algorithm 5: addItem(datai )

1 pos = PRG(KSuper
i );// Random pos, 1 ≤ pos ≤ ϕ

2 Πpos.addItem(datai ,Πpos.DSi );

3 K
Super
i+1 = PRFKi (γ );

Algorithm 6: listItems(Π1.DS, . . . ,Πn .DS,K1,0, . . . ,Kϕ,0,K
Super
1 ,n)

1 for i = 1 to ϕ do
2 orderedListi = Πi .listItems(Π.Ki,0);
3 for i = 1 to n do
4 pos = PRG(KSuper

i ); KSuper
i+1 = PRFKi (γ );

5 output next item from orderedListpos ;

Solving f (α , β) = 0 for β gives β = (α · log (α) − α · log (−α + 1) + log (2) + log (−α + 1))/log (−(2 · α − 1)3 + 1).
Using SageMath, we then numerically approximate the minimum β0 for 0 < α < 1

2 and obtain β0 = 0.88949 which means

c0 = 1.1243. □

PROOF OF THEOREM 1. For δ <
√
n, let c0 = 1

β0
. From Lemma 5, we get: if c > c0 and m > c · n =⇒ E(2d ) =

A + B +C + D → 1 as m →∞. □

Observe thatm is only ≈ 12% larger than n.

6 SUPPORTING LARGE AMOUNTS OF DATA

In practice, the number n of (security critical) data items to be stored can become large, and each data item might have

a size ℓ of several hundred bytes. To support large values of n and ℓ, we present two optimizations. First, we present a

technique that distributes all n data items into ϕ so called buckets. Second, we present a technique to improve performance

of Gaussian elimination over large fields.

6.1 Distributing Data Items to Buckets

Instead of one data structure Π to store n data items, we use ϕ smaller data structures Π1, . . . ,Πϕ and distribute all n

items to them. Each Πi is parameterized to store n′ < n items and can thus recover only δ ′ ≤
√
n′ items. In the following,

we call each of these smaller data structures a bucket.

During initialization, we initialize all buckets Πi separately. For then storing the ith item datai , we use yet another key

K
Super
i to pseudo-randomly choose one of the ϕ data structures Πi , say Π∗, and call addItem of Π∗ to add datai to Π∗’s

internal state. To recover all data items, we call listItems of each Πi , and use KSuper
0 to replay all random coins and bring

recovered data items into their correct order. We summarize this optimization in algorithms 4 to 6.
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Analysis. Assume we configure each Πi for some n′ with k = 5 and c > 1.1243 as shown previously. By union bound, the

probability of successfully decoding all data in all ϕ data structures, despite δ ′ corrupt entries in each of them, remains at

1 − o(1) for constant ϕ or 1 − o(ϕ) which is acceptable for smaller ϕ.

The crucial question is how to choose ϕ and n′ to support large values of n. By a standard balls-into-bins argument [34],

randomly distributing x balls into y bins results in a maximum number MBS(x ,y) ≤ x
y +

√
2x ·lny

y of balls in any bin

with probability 1 − o(1). Thus, we can estimate the lower bound for n′ to n′ ≥ MBS(n,ϕ).

In a crash, the worst case situation is that the whole OS cache contents are only partially written to disk, so δ equals

the number of items in the cache. If r is the maximum peak data item rate the system should sustain, and t is, e.g., the

cache eviction interval, we can set δ ≤ r · t · k as an upper bound for the sum of the number of all possibly corrupted

entries in all data structures. As items are distributed among all Π, we use the same argument from above and have

δ ′ = MBS(r · t · k,ϕ). For any n′ we select,
√
n′ ≥ δ ′ must hold.

Using r , t ,k , and n, this allows choosing ϕ and n′ such that δ ′ ≤
√
n′. We present and benchmark several combinations

in our evaluation in Section 7.

6.2 Smaller Field Sizes

Our listItems in Algorithm 3 solves a system of linear equations using Gaussian elimination. However, vector ®c is a vector

over field (GF (2ℓ+2·s ))n . For many real-world values of plaintext length ℓ, field sizes become very large. For example, for

syslog events of maximum length 1024 byte [25], 128 bit random counters, and 256 bit HMAC-SHA2, operations must be

in GF (28576). Gaussian elimination over large fields is extremely slow in practice even when using modern, optimized

computer algebra systems. To mitigate the problem, we exploit a special property of our addItem algorithm. Observe that

XOR operations during addItem and M’s coefficients of either 0 or 1 make M a (sparse) matrix over GF (2). Thus, we use

the following tweak to speed up solving.

Instead of solving M · ®x = ®v over (GF (2ℓ+2·s ))n , we compute a reduced row echelon form E of M together with a

m ×m transformation matrix T such that T ·M = E. As all operations are over GF (2), computations of E and T are fast,

see the evaluation in Section 7. As M · ®x = ®v, we multiply with T from the left and get T ·M · ®x = E · ®x = T · ®v. So, we

convert T from GF (2) into (GF (2ℓ+2·s ))n and multiply T with ®v to get ®x . T ’s conversion is cheap, and instead of cubic

complexity for Gaussian elimination over a large field, multiplying T with ®v has only quadratic complexity.

As a result, Gaussian elimination becomes significantly faster. To illustrate, computing the rank of a 500 × 500 random

matrix over GF (2) is roughly 4000× faster than computing the rank of the exact same matrix converted to GF (28576) on a

2.2 GHz mobile Intel Skylake i7 CPU (see Section 7 for more experiments). In conclusion, this optimization results in a

significant speed-up of orders of magnitude.

7 EXPERIMENTAL ANALYSIS

To back up our theoretical claims, we have also performed a practical analysis of our coding technique. The goal of this

analysis is twofold. First, we estimate and give confidence in the probability that listItems recovers all data for a concrete

choice of parameters k, c,n, and δ following our theoretical prediction in Section 5.2. Second, we show that even the

more involving decoding is concretely practical by measuring its runtime for logs of different size up to millions of log

items (n = 223 ≈ 8.4 million). For such large logs we rely on our multi-bucket technique of Section 6.

We have implemented our coding and decoding techniques in C, and the implementation is available for download [7].
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7.1 Failure Probability

Our implementation first builds a random binary (m = c · n) × n matrix M where each column has weight k. Thereby,

we simulate encoding (and addItem) for a total of n data items. We also simulate adversarial behavior and crashes: δ

rows are randomly chosen and removed from M by setting all coefficients to 0. To simulate decoding (and listItems), the

implementation computes Gaussian elimination to convert M into reduced row echelon form and derives M’s rank.

As our (standard) Gaussian elimination is asymptotically expensive withO(n3) complexity, the implementation features

two performance improvements. First, M is a binary matrix and Gauss’ operations are only XOR of rows. We use Intel’s

AVX2 SIMD instructions, store rows in 256 bit pieces, and XOR each pair of pieces with only one CPU instruction. Our

second performance improvement integrates OpenMP parallel processing for the inner loop of Gaussian elimination.

Especially for larger n, parallelization gives performance improvements. We also stress that, in our case of sparse matrices

M , Gaussian elimination allows for significant performance improvements [44] which we leave to future work.

We run our experiments with k = 5 and c = 1.1244, as suggested by Section 5.2, for n ∈ {256, 512, 1024, 2048, 4096,
8192} and δ =

√
n. By that, we will indicate that our theory of recovering up to

√
n lost or corrupted entries in M can
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Table 2. Configuration, k = 5, c = 1.1244, t = 30s .

n n′ ϕ r (
logs
s )

Total Space
Overhead

220
8192 236 112 ×2.07

16384 156 100 ×2.74
32768 104 100 ×3.65

221
8192 266 169 ×1.17

16384 156 100 ×1.37
32768 104 100 ×1.83

222
8192 533 220 ×1.17

16384 263 166 ×1.16
32768 131 125 ×1.15

223
8192 1068 432 ×1.17

16384 527 329 ×1.16
32768 261 246 ×1.15

be recovered with high probability. We additionally run experiments with δ = n
3
4 , δ = n

2
3 , and even δ = 0.06 · n, i.e., a

small, but constant fraction of n. The idea here is to show that, as predicted, our coding cannot recover from values of δ

significantly larger than
√
n with high probability. For each combination of parameters, we perform 220 repetitions and

compute p = #(M has rank<n)
220 .

Figure 3 shows the outcome of these experiments. The x-axis (log scaled) shows the number of data items, and the

y-axis shows logp. For δ =
√
n and both n = 4096 and n = 8192, we have p = 0, i.e., all 220 random matrices M had full

rank n. So, starting with relatively low values of n (e.g., n = 4096), the system does not experience any failures, backing

up our formal analysis of setting δ <
√
n to decode with high probability. In contrast, increasing δ significantly beyond

√
n

jeopardizes decodability. For δ = n
3
4 , all M had rank less than n, and for both δ = n

2
3 and δ = 0.06 · n failure probability

is significant. These results are consistent with our theoretical asymptotic bounds. For δ ≥ n
3
4 the recovery fails with

high probability, supporting the claim of near-optimality. We leave it as an open question to derive a tighter bound on the

recoverability of the proposed scheme.

We also stress that the secure crash recovery setup is different from traditional security setups: in each run, the adversary

only gets one chance to tamper with the system log. So, in 220 experiments, not a single time was the adversary able to

delete δ entries that the system could not recover.

Failure of cryptographic primitives. We also emphasize that the probability of failure of the cryptographic primitives we

employ (AES and HMAC) is negligible in their security parameter s. In our evaluation, we set s = 256, i.e., we use AES

with standard 256 Bit keys and HMAC-SHA256.

7.2 Runtime of listItems

Figure 4 shows listItems runtime on a 16 Core Xeon E5-2630 2.2 GHz computer. From n = 256 to n = 8192, we decode

by internally computing Gaussian (“Single Bucket”) elimination as above. The runtime scales closely to the anticipated

cubic complexity. Note that total runtime of decoding, including decryption of log entries, HMAC verification etc. is

dominated by Gaussian elimination. For example, with n = 32768 log entries, each of size 1KByte, Gaussian elimination

takes 91s, but AES decryption and HMAC integrity verification a total of only 1s.

Benchmarks for large logs. To support large amounts of data, i.e., values n > 8192, we employ our “Multi-Bucket”

optimization technique from Section 6.1 and set n′ to one of 8192, 16384 or 32768. Following δ ′ = MBS(rtk,ϕ) ≤
√
n′
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Table 3. High-level comparison to related work (techniques without crash recovery vs. techniques with crash recovery).
Naïve coding: a strawman construction that would combine a standard approach for forward integrity (e.g., [4, 5]) with
conventional coding, ϕ : number of buckets (Section 6)

Forward Public Efficient Non- Crash Complexities
Protocol Integrity Verifiability Membership Tolerance Recovery addItem listItems

[4, 5, 8, 20, 27–29, 37] — — — — O(1) O(n)
[27, 46, 47] — — — O(1) O(n)

[33] — — O(logn) O(n logn)
[3, 6, 31] — — — O(1) O(n)

Naïve coding — — O(n) O(n)
Ours (single bucket) — — O(1) O(n2.4)
Ours (multi bucket) — — O(1) O(ϕ · ( nϕ )

2.4)

and MBS(n,ϕ) ≤ n′, we set ϕ (Section 6.1) such that the peak rate of logs per second r is at least 100 logs
s . For cache

eviction interval t , we use the Linux standard kernel value of t = 30s [24]. Table 2 summarizes configuration parameters

used. A value of n = 223 corresponds to a log with 8 million entries, each of 1024 Byte length and a total size of 8 GByte,

largely sufficient to record the security logs of a wide variety of practical systems. Moreover, since the buckets are

processed independently, computation scales linearly in the number of buckets, and one could realize a parallelization

that decodes each bucket separately. For example, a parallel implementation would decode a 16 GByte log on a computer

with 32 Cores in the same time as a our implementation decodes the 8 GByte, n = 223 log. In the real world, log file sizes

vary depending on the concrete scenario. They range from a few KByte on a personal computer to many GByte on server

systems. Yet, we point out that our techniques are primarily targeting security critical logs. They are often significantly

smaller than logs capturing the events of a whole system. As demonstrated by our experiments for logs of n up to 223 and

the scalability due to parallelization of the multi-bucket technique, we conclude that listItems is practical even for large

security logs. Observe that our techniques obviously support larger logs at an increase in runtime.

Finally, we also point out that constructions exist to reduce the asymptotic complexity of Gaussian elimination from n3

down to n2.4 by building on Coppersmith and Winograd [11] multiplication and the Strassen [42] transformation. We

leave applying such optimizations for future work.

8 RELATED WORK

Secure logging with forward integrity has received some attention, see [4, 5, 8, 18–20, 27–29, 31, 33, 37, 46, 47] for an

overview. However, coping with crash attacks was severely limited so far [3, 6, 31]. An analyst could only distinguish

whether an inconsistency in a log file is due to adversarial modifications or to a real-world crash. In contrast, the goal of

this paper is to treat data lost in a real crash or modified during a crash attack by using a special encoding of logged data.

We treat lost and modified data in the same way and recover up to a configurable amount of δ lost or modified data items.

So, we do not just distinguish between a real crash and a crash attack as previous work, but either recover from a real

crash, neutralize adversarial modifications or detect the adversary.

Directly comparable work. We summarize related work and compare it to our techniques in Table 3. We note that other

works on secure logging feature advanced security properties such as public verifiability [27, 46, 47] or efficient tests for

non-membership [33] of a log event in a file. Similarly, other works also target sophisticated security properties such

as excerpt verification of subsequences of log events [18]. While these are important security properties, we envision

scenarios where crash recovery might be more important, and these properties are therefore non-goals (e.g., systems with
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high chances of crashes, simple embedded systems where public verifiability or non-membership tests do not matter).

Still, we stress that providing such additional security properties are worth future investigations. In conclusion, one might

understand our solution as a first step to crash recovery and a direct extension of schemes like [4, 5, 8, 20, 27–29, 37]. We

leave the additional combination with, e.g., public verifiability and efficient non-membership tests open to subsequent

work.

8.1 Logging based on stronger assumptions

An interesting line of research has recently addressed securing logging using trusted execution environments (TEEs)

like Intel’s SGX [21, 30]. Other works have investigated secure logging given a trusted hypervisor that can observe and

log security critical events in its VMs [22, 38]. Given the availability of TEEs or trusted software components such as

hypervisors, previous works provide stronger security guarantees than the ones targeted in this paper. Instead of tamper

evidence, they achieve tamper-proofness, i.e., it becomes impossible for an adversary to modify or delete security-critical

log data.

While TEEs or trusted software components provide tamper-proofness, we argue that weaker tamper evidence as

targeted in this and other works [3–6, 8, 20, 27, 27–29, 31, 33, 37, 46, 47] is still helpful: in some scenarios, TEEs

might be too expensive, complex to use (cloud scenarios) or simply not available. Also, trusting software or hardware

components might also be dangerous as demonstrated by various security flaws in the Xen hypervisor [45] (and others) or

Intel’s TEE SGX, see van Schaik et al. [43] for an overview.

Moreover, while TEEs and trusted software components allow for elegant solutions to provide forward-integrity and

tamper-proofness, they do not solve the problem of crashes which is the focus of this work. Without the results of this

paper, one would need to employ additional special, dedicated hardware devices [1] to circumvent the problem of crashes.

8.2 Data Structures with Redundancy

There exists previous work on data structures with redundancy which has served as a motivation for this work. Goodrich

and Mitzenmacher [17] and Pontarelli et al. [32] store data in a similar fashion as our addItem operation, but later recover

by only using a peeling mechanism. That is, they check a table of XORs of data item replicas for cells containing only

one replica. As long as they find such a cell, they remove the replica from all other cells containing the replica. While

peeling (and its analysis) is simple and elegant, it limits the performance to recover all data. In contrast, our rather

complex decoding and its analysis show that the encoding allows for high decodability guarantees. Specifically, Goodrich

and Mitzenmacher [17] can recover only from a fixed, constant number of lost or modified data items, independently

of n, while we support up to
√
n lost or modified items. In addition, our storage overhead is significantly less: for a

similar configuration where a data item is written into k = 5 cells in a table, Goodrich and Mitzenmacher [17] require an

additional 43% space overhead while we need only 12%. While theoretically possible, none of the previous works provides

forward integrity or forward confidentiality as this paper does.

8.3 Conventional Coding

At the heart of our approach is a random linear code. Error and erasure correction codes have been extensively studied

since the establishment of information theory in 1948 and the proof of existence of capacity achieving codes for a variety

of channels [12, 39]. Our proposed code bears some similarities to LDPC codes and LT codes. However, it is uniquely

restricted by the secure logging requirements, namely that every log data item (symbol) is encoded at once (in an online
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manner), using a constant number of operations, without maintaining information about the symbols involved in the

encoding (to provide forward integrity).

Well studied codes such as Reed-Solomon, LDPC, and Fountain codes (LT, Raptor, Tornado) are very efficient in terms

of rates and erasure correction ability [23, 26, 41]. Yet, they have constraints that make them unusable in the context of

secure logging. In particular, such codes require operations over a non-constant number of symbols for each input symbol,

or access to previously coded symbols. For instance, in Reed-Solomon codes, each uncoded input symbol (log data item)

contributes to all coded symbols. The uncoded symbols are the coefficients of a polynomial evaluated over the powers of

a primitive root of unity [23]. The evaluation results are the coded symbols. Therefore, changing a single uncoded symbol

(log entry) would result in changing all the coded symbols. LDPC codes have sparse parity matrices, but their generator

matrices are not sparse [16, 40]. Therefore, changing a single uncoded symbol requires the update of a large number of

coded symbols.

The closest type of codes applicable to this context are Fountain codes, e.g., LT-codes or Raptor codes. While these

codes have good erasures-correction performance in typical communications and storage contexts, they cannot be used

in this context as they impose requirements on the distribution of the encoded symbols degree (in the bi-partite graph

representation) such as the Soliton distribution for LT-codes [26], or rely on the explicit concatenation of an inner

and outer codes [41]. The first conflicts with the requirement of a constant number of operations per encoded symbol.

Furthermore, the forward-security requirements prevent enforcement of such degree distributions, as, at any instant of

time, the system should not have knowledge of any information about previously encoded symbols (in particular their

degree). We acknowledge that, in return, our proposed coding scheme is not suitable for conventional communication and

storage scenarios, as secure logging requirements limit its data recovery performance.

9 CONCLUSION

We have presented a new data structure Π together with several new mechanisms combining forward integrity and

confidentiality with data recovery. At the core of our techniques lies an efficient, customizable coding scheme with high

decodability guarantees even when a large number of data items are lost or maliciously modified. This coding scheme

is online, requires a constant number of operations per input symbol, and therefore enables the integration of forward

security mechanisms. Our formal analysis and practical experiments show that for any number of log items, a space

overhead of only 12% and a computational overhead of a factor of 5 suffices to decode and recover all log items with high

probability. The coding scheme is of independent interest on its own. While secure and robust audit data storage is a prime

application for our techniques, one can envision other applications. Whenever an adversary threatens to compromise a

system, tamper with data, and tries hiding traces to avoid detection, our techniques will be useful.
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