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Abstract. Key encapsulation mechanism (KEM) variants of the Fujisaki-
Okamoto (FO) transformation (TCC 2017) that turn a weakly-secure
public-key encryption (PKE) into an IND-CCA-secure KEM, were wide-
ly used among the KEM submissions to the NIST Post-Quantum Cryp-
tography Standardization Project. Under the standard CPA security as-
sumptions, i.e., OW-CPA and IND-CPA, the security of these variants in
the quantum random oracle model (QROM) has been proved by black-
box reductions, e.g., Jiang et al. (CRYPTO 2018), and by non-black-box
reductions (EUROCRYPT 2020). The non-black-box reductions (EURO-
CRYPT 2020) have a liner security loss, but can only apply to specific
reversible adversaries with strict reversible implementation. On the con-
trary, the existing black-box reductions in the literature can apply to
an arbitrary adversary with an arbitrary implementation, but suffer a
quadratic security loss.
In this paper, for KEM variants of the FO transformation, we first
show the tightness limits of the black-box reductions, and prove that a
measurement-based reduction in the QROM from breaking the standard
OW-CPA (or IND-CPA) security of the underlying PKE to breaking the
IND-CCA security of the resulting KEM, will inevitably incur a quadrat-
ic loss of the security, where “measurement-based” means the reduction
measures a hash query from the adversary and uses the measurement
outcome to break the underlying security of PKE. In particular, most
black-box reductions for these FO-like KEM variants are of this type,
and our results suggest an explanation for the lack of progress in im-
proving this reduction tightness in terms of the degree of security loss.
Then, we further show that the quadratic loss is also unavoidable when
one turns a search problem into a decision problem using the one-way to
hiding technique in a black-box manner, which has been recognized as
an essential technique to prove the security of cryptosystems involving
quantum random oracles.

? This is the full version of the paper with the same title published at Asiacrypt’21.
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1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] has been
considered as a standard security notion for a key encapsulation mechanism
(KEM) [2]. For designing efficient cryptographic protocols, an idealized model
called Random oracle model (ROM) [3] is usually used, where a hash function is
idealized to be a publicly accessible random oracle (RO). Generic constructions
of an IND-CCA-secure KEM in the ROM were well studied by Dent [4] and
Hofheinz, Hövelmanns and Kiltz [5].

Essentially, the generic constructions in [5] can be classified into two cate-
gories. One category is the KEM variants of the Fujisaki-Okamoto (FO) trans-

formation [6, 7] including FO⊥, FO⊥m, FO�⊥, FO�⊥m, QFO⊥m and QFO�⊥m
5, which

turn a public-key encryption (PKE) with the standard CPA security (one-
wayness against chosen-plaintext attacks (OW-CPA) or indistinguishability a-
gainst chosen-plaintext attacks (IND-CPA)) into an IND-CCA KEM. The second
category is the KEM variants of the REACT/GEM transformation [9, 10], in-

cluding U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m, which turn a PKE with non-standard
security (e.g., OW-PCA, one-way against plaintext checking attack [9, 10]) or a
deterministic PKE (DPKE, where the encryption algorithm is deterministic) in-
to an IND-CCA-secure KEM. The modular analysis of the FO transformation
by Hofheinz et al. [5] suggests that the FO transformation implicitly contains
the REACT/GEM transformation at least as far as the proof techniques are
concerned. Thus, in what follows, we just call these variants FO-like KEMs for
brevity.

In modern cryptography, cryptosystem constructions are usually proposed
together with a proof of security. Typically, when proving a security of a crypto-
graphic scheme S under a hardness assumption of an underlying problem P , one
usually constructs a reduction algorithm RA that runs an adversary A against S
as a subroutine to break the underlying hardness assumption of P . Let (TA, εA)
and (TR, εR) denote the running times and advantages of A and RA, respec-
tively. The reduction is said to be tight if TA ≈ TR and εA ≈ εR. Otherwise, if
TR � TA or εR � εA, the reduction is non-tight. Generally, the tightness gap,
(informally) defined by TAεR

TRεA
[11], is used to measure the quality of a reduction.

Tighter reductions with smaller tightness gap are desirable for practical cryp-
tographic applications especially in large-scale scenarios, since the tightness of
a reduction determines the strength of the security guarantees provided by the
security proof. Thus, pursuing tighter reduction has been recognized as a vital
goal in cryptographic community.

5 Q means an additional Targhi-Unruh hash [8] (a length-preserving hash function) is
appended to the ciphertext. m (without m) means K = H(m) (K = H(m, c)).�⊥ (⊥)
means implicit (explicit) rejection. In implicit (explicit) rejection, a pseudorandom
key (an abnormal symbol ⊥) is returned for an invalid ciphertext.
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A reduction is called black-box if it merely uses the adversary’s input-output
behavior, and does not depend on the internals like the adversary’s code (e.g.,
concrete gate operations). As surveyed by Marc Fischlin [12], black-box reduc-
tions are pervasive in cryptography. In contrast, a non-black-box reduction re-
quires knowledge of the adversary’s internals. For several cryptographic tasks,
e.g., zero-knowledge proofs [13], it can be shown that non-black-box reduction-
s have significantly more power than black-box ones [14]. In particular, this
additional power of non-black-box reductions can be used to obtain new result-
s, which were previously proven to be impossible to obtain when using only
black-box techniques [14]. However, in some settings, e.g. secure computation,
non-black-box reductions may cause high efficiency costs, and are unlikely to be
very useful in practice [15]. In addition, as argued by Pass, Tseng and Venki-
tasubramaniam [16], in the context of basing cryptographic primitives on one
another, black-box reductions provide a semantically stronger notion of secu-
rity than non-black-box reductions, since non-black-box reductions require an
explicit description of the adversary’s code that might be hard to find in prac-
tical attacks. Thus, typically, when proving the security of a cryptosystem, a
black-box reduction is always the first choice.

In the ROM, if an adversary queries the random oracle with m, the reduction
can see this query and learn m. This is sometimes called extractability. When
proving the IND-CCA security of a PKE/KEM under various standard assump-
tions in the ROM, one usually constructs a query-based6 reduction that uses a
hash query from the adversary to break the underlying hard problem, such as
when proving the FO transformation [6, 7], the REACT/GEM transformation [9,
10], the Bellare-Rogaway transformation [3], the OAEP transformation [18, 19],
and the hashed ElGamal encryption scheme [20]. A query-based reduction is also
used in getting a tight security proof for a unique signature [17]. In particular, for
FO-like KEMs from standard CPA assumptions (in what follows, standard C-
PA assumptions refer to OW-CPA and IND-CPA), the currently known security
reductions in the ROM [4, 5, 21] are all query-based.

Recently, post-quantum security of FO-like KEMs has gathered great inter-
est [5, 22–29] due to the widespread adoption [23, Table 1] in KEM submissions
to the NIST Post-Quantum Cryptography (PQC) Standardization Project [30].
The goal of this project is to standardize new public-key cryptographic algo-
rithms with security against quantum adversaries. Motivated by the fact that
quantum adversaries can execute all “offline primitives” such as hash functions
on arbitrary superpositions, Boneh et al. [31] introduced quantum random o-
racle model (QROM), where the adversary can query the random oracle with
quantum state, and argued that to prove post-quantum security one needs to
prove security in the QROM7.

Unfortunately, the aforementioned query-based reduction in the ROM can
not carry over to the QROM setting offhand due to the fact that the extractabil-
ity might be problematic when the query is a quantum state which can be a

6 This name comes from Guo et al.’s paper [17].
7 Separations of ROM and QROM were given by [31–33].
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superposition of exponentially many classical states [31]. In a quantum world,
measurement allows us to extract classical information from a quantum state and
thus is a way that we can “read out” information. Thus, naturally, a QROM ver-
sion of the aforementioned query-based reduction can be a reduction that mea-
sures a hash query from the adversary and uses the measurement outcome to
break the underlying hard problem. In this paper, we call this type of reductions
a measurement-based reduction.

Particularly, for FO-like KEMs from standard CPA assumptions, most black-
box reductions8 (e.g., [5, 22–27]) and non-black-box reductions [37] in the QROM
are of this type, and have the tightness9, (1) TR is about TA; (2) εR ≈ 1

κε
τ
A, where

κ and τ are respectively called the factor and degree of security loss in the
following. Let q be the total number of adversary’s queries (including quantum
and classical) to various oracles.

– In [5], Hofheinz et al. presented security reductions for QFO�⊥m and QFO⊥m
from the OW-CPA security of the underlying PKE with κ = O(q6) and

τ = 4, for QU�⊥m and QU⊥m from the OW-PCA security of the underlying
PKE with κ = O(q2) and τ = 2.

– In [22], Saito, Xagawa and Yamakawa presented a tight security reduction

(i.e., κ = O(1) and τ = 1) for U�⊥m from a new non-standard security called
disjoint simulatability (DS) of the underlying DPKE, and also provided a

security reduction for a variant of FO�⊥m from the standard IND-CPA security
of the underlying PKE with κ = O(q2) and τ = 2.

– In [23], Jiang et al. first presented security reductions for FO�⊥ and FO�⊥m from
the standard OW-CPA security of the underlying PKE with κ = O(q2) and

τ = 2. Then, they presented security reductions for U�⊥ (U⊥, resp.) from the

OW-qPCA (OW-qPVCA, resp.) security of the underlying PKE, U�⊥m (U⊥m,
resp.) from the OW-CPA (OW-VA, resp.) security of the underlying DPKE
with κ = O(q2) and τ = 2, where OW-qPCA, OW-qPVCA and OW-VA are
new non-standard security notions of PKE introduced by [5, 23].

– Using the semi-classical oracle technique in [38], [24, 25, 27] improved the
tightness of security reductions in [23]. Precisely, under the standard IND-
CPA security of the underlying PKE, security reductions with tightness κ =

O(q) and τ = 2 were given for FO�⊥, FO�⊥m and their variants with explicit

rejection. For U�⊥, U⊥, U�⊥m and U⊥m, the reduction tightness was improved
to be κ = O(q) and τ = 2 under the same security assumptions as in [23].

– In [26], following Zhandry’s compressed oracle technique [34], Bindel et al.

further gave tighter security reduction for U�⊥ and its variants with κ = O(1)
and τ = 2.

8 The reductions in [34–36] that use the compressed oracle technique developed by
[34] do not belong to the class of measurement-based reductions, since they access
information contained in the adversary’s queries in a non-trivially different way than
by measurement.

9 When comparing the tightness of different reductions, we assume perfect correctness
of the underlying scheme for brevity.
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– In [37], introducing a new technique called “Measure-Rewind-Measure” (M-
RM), Kuchta et al. first gave non-black-box reductions for FO-like KEMs.

In particular, for U�⊥ (FO�⊥, resp.) and its variants, the reduction tightness
was improved to be κ = O(q) and τ = 1 (κ = O(q2) and τ = 1, resp.).

As we can see, the existing black-box reductions in the QROM for FO-
like KEMs from standard CPA assumptions, are far from desirable due to the
quadratic security loss (at least). Although this quadratic loss can be avoided
by non-black-box reductions [37], as we will show in Sec. 1.4, the non-black-box
reductions in [37] can only apply to specific reversible adversaries10 with strict
reversible implementation (the existing black-box reductions in the literature
can cover arbitrary adversaries with arbitrary implementations). These results
are quite different from the ones in the ROM setting, where security reductions
with linear loss can be achieved in a black-box manner [4, 5].

The quadratic loss in these security proofs arises from the usage of the one-
way to hiding (OW2H) technique [39], which essentially gives a reduction from an
extraction algorithm against the one-wayness-style property (search problem) to
a distinguishing adversary against hiding-style property (decision problem) with
quadratic loss. Actually, the OW2H technique has been recognized as an essential
technique to prove security of various cryptosystems involving quantum random
oracles [39, 38]. Besides FO-like constructions, the OW2H technique was also
used to prove the security of revocable timed-release encryption schemes [39],
authenticated key exchange [27], position verification protocol [40], PRF and
MACs [41], non-interactive zero-knowledge proof systems and signature schemes
[42–44]. Very recently, several works [38, 26, 37] tried to improve the tightness of
the OW2H technique. However, as in the case of the aforementioned proofs for
FO-like KEMs, the tightness improvements are only restricted to the factor of
reduction loss, and the quadratic loss still exists (except the improvement using
a non-black-box reduction for reversible distinguishing adversaries in [37]).

Thus, a natural question is that

For FO-like KEMs and the one-way to hiding technique, is the quadratic loss
unavoidable for measurement-based black-box reductions?

1.1 Our contributions

In this paper, we give an affirmative answer for the above question, and show
that the current quadratic loss is indeed unavoidable for any measurement-based
black-box reduction that runs the adversary once without rewinding11.

10 In post-quantum setting, most adversaries are irreversible since most oracles (e.g.,
decapsulation oracle) in the security model can only be classically queried. Thus,
a quantum adversary has to measure his quantum query registers to perform a
classical query. Moreover, adversaries may also perform a mix of classical (probably
irreversible) and quantum algorithm, see Appendix G for details.

11 Our impossibility results can also be extended to cover measurement-based reduc-
tions with simple rewinding (a quantum counterpart of classical sequential rewinding
[45]), see Remark 5 and Appendix D.
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Given a real p (0 ≤ p ≤ 1) and a FO-like KEM construction,

1. We first construct an unbounded quantum adversary A that breaks the IND-
CCA security of the resulting KEM by querying the random oracle with a
well-designed quantum state and solving a discrimination problem between
two quantum states. The advantage of A is at least

√
p, i.e., εA '

√
p.

2. Then, using the meta-reduction methodology [46, 47], we bound the advan-
tage εR of a measurement-based reduction RA that runs aboveA as a subrou-
tine to break the OW-CPA (or IND-CPA) security of the underlying PKE. In
particular, the advantage εR can not substantially exceed p, i.e., εR / p, un-
less there exists an algorithm breaking the OW-CPA (or IND-CPA) security
of the underlying PKE efficiently.

Therefore, for FO-like KEMs, our results show that a measurement-based
black-box reduction in the QROM from breaking the standard OW-CPA (or
IND-CPA) security of the underlying PKE to breaking the IND-CCA security
of the resulting KEM, will inevitably incur a quadratic loss of the security.

Moreover, our impossibility results can also be extended to show that the
quadratic loss is also unavoidable when one turns a search problem into a decision
problem via the essential OW2H technique in a black-box manner. That is, the
black-box OW2H technique [39, 38, 26] is essentially optimal in terms of the
degree of reduction loss.

1.2 The interest of our result

As pointed out by [5, Sec. 1.2], FO-like constructions remain the only known
generic constructions from CPA to CCA security. That is, our results cover all
the current generic constructions of an IND-CCA-secure KEM based on a CPA-
secure PKE. On the other hand, our impossibility results can apply to typical
measurement-based reduction, which is a QROM version of the query-based
reduction that has been widely used in proving CCA security of a PKE/KEM
under various standard assumptions. For FO-like KEMs from a standard CPA
PKE, the currently known black-box reductions in [5, 22–27] belong to this type.
Thus, our results suggest an explanation for the lack of progress in improving
the reduction tightness in terms of the degree of security loss in these works [5,
22–27].

The tightness of security reductions is important to evaluate the concrete
security of a cryptosystem [11]. Our results first give a black-box reduction bound
for FO-like KEMs, which can be taken as a baseline for tightness comparison. For
example, at TCC 2019, Bindel et al. [26] took this result as a theoretical support

for their “tight” reduction (their main contribution) for U�⊥ and its variants since
their black-box reductions essentially match our impossibility bound.

As pointed out by Baecher et al. [48], an impossibility result, which clearly
specifies the type of reduction it rules out, enables us to identify the potential
leverages to bypass the limits. Fischlin [12] mentioned that the impossibility re-
sult can also been viewed as a shortcoming of the proof technique itself, and
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non-black-box techniques can be used to circumvent a black-box impossibility
result. At EUROCRYPT 2020, following our work, Kuchta et al. [37] intro-
duced a new technique called “measure-rewind-measure” (MRM), and proposed
a non-black-box reduction that can bypass our black-box impossibility results to
achieve a linear loss, see Sec. 1.4 for detailed discussion. Therefore, our impos-
sibility results can be taken as guidance toward a positive answer, and will be a
step forward into looking for new approaches to prove security in the QROM.

In NIST PQC standardization process, all the Round-3 KEM candidates
use FO-like constructions to achieve the CCA security [30]. For NIST’s round-3
evaluations, our results suggest that in order to derive a tight QROM proof, one
(especially the NIST submission teams) has to research on developing new proof
techniques (particularly for their specific constructions).

1.3 Technique overview

In FO-like KEMs, the (session) key K is derived by H(m) (or H(m, c)) and the
ciphertext c = Enc(pk,m;G(m)) (or Enc(pk,m) if Enc is deterministic) is the
corresponding encapsulation of the keyK, where Enc is the encryption algorithm
of the underlying PKE, m is uniformly picked at random, G and H are random

oracles. In this section, for a concise presentation, we just take KEM−U�⊥m (see
Fig. 1 for details) as an example, and thus K = H(m) and c = Enc(pk,m). It
is easy to extend the techniques here to other FO-like KEMs and the general
OW2H technique, see Secs. 5.1 and 6.

Meta-reduction methodology. Since the introduction by Boneh and Venkate-
san in [46], the meta-reduction methodology has proven to be a versatile tool in
deriving impossibility results and tightness bounds of security proofs for many
cryptosystem constructions [46, 47, 49–55, 45, 56], please see the review [12]. Let
R be a reduction that breaks the underlying hard problem P with access to
an adversary A against a scheme S. Roughly speaking, a meta-reduction MRR

simulates the adversarial part A, runs R as a subroutine, and break the un-
derlying hard problem P directly without reference to an allegedly successful
adversary. That is, a meta-reduction MRR treats the reduction R as an adver-
sary itself, and reduces the existence of such a reduction R to a presumably
hard problem. Note that the meta-reduction methodology clearly requires the
existence of a successful adversary A against the scheme S in the first place, and
such an adversary is usually unbounded [12]. A more detailed description of the
meta-reduction methodology can be found in Appendix A.

When attacking the IND-CCA security of KEM−U�⊥m, an adversaryA(pk, c∗,
Kb) needs to distinguish K0 = H(m∗) from a uniformly random key K1, where
c∗ = Enc(pk,m∗) is an encryption of a uniformly random m∗, the coin b ∈
{0, 1} is uniformly random. We note that the random oracle H has a useful
property that ifm∗ has not been queried byA, then the valueH(m∗) is uniformly
random in A’s view. Thus, A’s distinguishing advantage is negligible when A
does not query H with m∗. Intuitively, to achieve a non-negligible distinguishing
advantage, A has to query H with m∗.
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In the ROM, A can only make classical queries to H. For any p (0 ≤ p ≤ 1),
if A makes a query m∗ to H with probability p, he will learn K0 = H(m∗) with
probability p and break the IND-CCA security with advantage approximately p
by testing whether K0 is equal to Kb. For a reduction RA against the OW-CPA
security of the underlying DPKE, a natural way is to take A’s query as a return.
Then, with probability p, RA will return the m∗ and break the OW-CPA security
of the underlying DPKE. That is, the advantages of RA and A are approximately
equal, which is consistent with the currently known tight reduction in [5].

Unbounded quantum adversary A. In the QROM, a quantum adversary A
makes queries to H with quantum states. Consider the following quantum state

|ψ−1〉 :=
√
p|m∗〉|0〉+

√
1− p|m′〉|Σ〉,

where m′ 6= m∗, |Σ〉 =
∑
k∈K 1/

√
|K||k〉 and K is the (session) key space. For a

quantum query with |ψ−1〉, the random oracle H will return

|ψ0〉 : =
√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.

We remark that if the adversary A directly measures |ψ0〉 in the standard com-
putational basis, he will obtain K0 with probability p, and break the IND-CCA
security with advantage (approximately) p by testing whether K0 is equal to Kb

as the aforementioned ROM adversary does.
Here, we construct an unbounded quantum adversary A(pk, c∗,Kb) that first

determines m∗ such that c∗ = Enc(pk,m∗) by exhaustive search (if none is
found, A outputs 1) and randomly selects a uniform m′ such that m′ 6= m∗,
then queries H with |ψ−1〉, lastly guesses b by testing whether |ψ0〉 is equal to
|ψb〉, where

|ψb〉 : =
√
p|m∗〉|Kb〉+

√
1− p|m′〉|Σ〉.

Testing whether |ψ0〉 is equal to |ψb〉12 can be accomplished using the standard
state discrimination method (known as Helstrom measurement) [57, 58] with
advantage (approximately) at least

√
p. Thus, quantum adversary A can break

the IND-CCA security with advantage (approximately) at least
√
p. That is,

εA '
√
p.

In the currently known proofs for KEM−U�⊥m in [23], the reduction algorithm
RA against the OW-CPA security of the underlying DPKE just randomly mea-
sures one of A’s queries to H in the standard computational basis and takes the
measurement outcome as a return. The security bound is given by εA / q

√
εR.

We note that the aforementioned unbounded adversary A does not query the
decapsulation oracle, and just reveals one quantum query |ψ−1〉 to H and a
guessing of b. Thus, the total number of A’s queries to various oracles is one,
i.e., q = 1. We also note that the advantage of the reduction algorithm RA in
[23] is exactly the probability of the measurement outputting m∗, which is equal
to p. That is, εR = p. Thus, for above unbounded quantum adversary A, the
advantage can match the bound εA / q

√
εR in [23].

12 Formally, we need to judge |ψ0〉〈ψ0| comes from |ψb〉〈ψb| or EK1−b |ψ1−b〉〈ψ1−b| (the

the expectation is taken over K1−b
$← K), please refer to Sec. 3 for details.
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The advantage of a measurement-based reduction. Here, we consider
a measurement-based black-box reduction RA that runs A once and without
rewinding, measures A’s query |ψ−1〉 and uses the measurement outcome (any
further postprocessing is allowed) to break the OW-CPA security of the underly-
ing DPKE. We say a reduction R is efficient if the running time of R (excluding
A’s running time) is polynomial in the security parameter. We make a convention
that RA measures |ψ−1〉 in the standard computational basis13.

Consider the advantage of RA in the following three cases, where Ine is
denoted as the event that the exhaustive search does not return an m∗ such
that Enc(pk,m∗) = c∗, Exi is denoted as the event that such an m∗ is found,
Good is denoted as the event that the measurement outcome is m∗, and Bad
is denoted as the event that the measurement outcome is not m∗.

Case 1: Ine. In this case, A just outputs 1 without queries to H. Thus, exhaus-
tive search for m∗ in this case is vain, and A can be replaced by an adversary
A1 that always outputs 1 without the search for m∗ and the query to the
random oracle H. Therefore, we can easily construct a meta-reduction MRR1
that simulates A1 and takes RA1 as a subroutine to break the OW-CPA se-
curity of the underlying DPKE such that the running time of MRR1 is about
the running time of R, and under the condition Ine the advantage of MRR1
is about the advantage of R.

Case 2: Exi ∧Good. Since Pr[Good|Exi] = p, we can bound the advantage
of R in this case by p.

Case 3: Exi∧Bad. In this case, R gets m′ 6= m∗. Let A2 be an adversary that
makes a single query to H with quantum state

∑
m,k 1/

√
|M| · |K||m〉|k〉

and outputs 1 without searching for m∗. Thus, the advantage of R under the
condition Exi∧Bad remains unchanged when A is replaced by A2. As in the
case 1, we can also construct a meta-reduction MRR2 against the underlying
OW-CPA security that simulates A2 and takes RA2 as a subroutine such
that the running time of MRR2 is about the running time of R, and under
the condition Exi ∧ Bad the advantage of MRR2 is about the advantage of
R.

Under the assumption that the advantage of any efficient algorithm breaking
the OW-CPA security of the underlying DPKE is negligible, we have that both
advantages ofMRR1 andMRR2 are negligible since the running time is polynomial
in the security parameter. Thus, both advantages of R in Case 1 and Case 3 are
negligible, which implies that the upper bound of R’s advantage is approximately
p. That is, the advantage of a measurement-based black-box reduction against
the OW-CPA security of the underlying DPKE can not substantially exceed p
unless there exists an algorithm that can break the OW-CPA security of the
underlying DPKE efficiently.

13 The discussion on other measurements is given by Sec. 4.
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1.4 Subsequent work

Observing our constructed quantum state distinguisher, Kuchta et al. [37] found
that in one of the measurement basis states, the amplitude of |m∗〉 has a relative-
ly high norm. That is, such a measurement basis state essentially encodes m∗,
thus measuring this measurement basis state can give m∗ with a high probabili-
ty. In order to extract m∗ from adversary’s quantum registers, Kuchta et al. [37]
developed a novel MRM extractor. In particular, the extractor of m∗ first runs
the adversary A until the end, performs the first-measurement on A’s internal
outputting registers, and then rewinds A conditioned on the first-measurement
outcome, finally conducts a second-measurement on A’s query registers. Note
that above rewinding is done in the end of A’s run by applying the inverses of
the quantum gate operations (i.e., codes) that A has applied earlier, rather by
restarting A in a black-box manner from the very beginning. Thus, the MRM
extractor can only apply to reversible adversaries. In particular, the MRM ex-
tractor must access A in a non-black-box way since it requires knowledge of A’s
internal codes and needs to access A’s internal quantum registers.

Based on the aforementioned MRM extractor, Kuchta et al. [37] gave a new
non-black-box version of the OW2H lemma. Modifying the proofs in [26] by re-
placing the black-box OW2H with this non-black-box one, Kuchta et al. first
achieved a linear reduction loss for FO-like KEMs. However, due to fact the M-
RM extractor can only be used for reversible adversaries, thus the non-black-box
proofs [37] can only cover reversible CCA adversaries with reversible implemen-
tation. We also note that the prior black-box security proofs, including [5, 22–27],
can apply to arbitrary adversaries with arbitrary implementation. In particular,
the prior black-box OW2H lemmas do not require the underlying adversary A
unitary, e.g., [38, Theorems 1 and 3], see Appendix G.

Unfortunately, most adversaries in post-quantum setting are irreversible s-
ince most oracles (e.g., decapsulation oracle) in the security model can only be
classically queried. That is, a quantum adversary has to measure his quantum
query registers to perform a classical query. There are a well-known generic
transform [59, Chap. 3.2.5] that can convert any irreversible adversary into a
reversible one, and can be used to extend Kuchta et al.’s non-black-box OW2H
to cover arbitrary adversaries with arbitrary implementation. However, on the
one hand, such a transform will cost a space overhead linearly increased with the
adversary’s running time. On the other hand, it requires that the oracles (e.g.,
decapsulation oracle) accessed by the adversary must be simulated such that the
adversary can make quantum queries instead of classical queries considered in
the typical post-quantum setting. That is, the MRM OW2H extended by the
aforementioned generic transform can only apply to the case where there are
efficient quantum simulations for all the oracles accessed by the adversary. We
provide a detailed discussion on these issues in Appendix G.

1.5 Other related works

Before our work, the meta-reduction methodology was only used to derive a
QROM impossibility for Fiat-Shamir signature by Dagdelen, Fischlin, and Gagliar-
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doni [53]. More specifically, they used the meta-reduction technique to show that
if the Fiat-Shamir transformation applied to the identification protocol would
support a knowledge extractor, then a contradiction to the active security will be
obtained. In this paper, we focus on the limits of FO-like KEMs and more gener-
al one-way to hiding, and the meta-reduction constructions are totally different
from theirs.

At ASIACRYPT 2020, Hosoyamada and Yamakawa [60] also studied black-
box impossibility in quantum setting, and showed that there does not exist
a quantum black-box reduction from collision-resistant hash functions to one-
way permutations (or even trapdoor permutations). In particular, different from
our work where the meta-reduction methodology is used, the results in [60] is
obtained by using another typical technique called two-oracle technique [61] that
is also popular in deriving the limitations of black-box reductions.

2 Preliminaries

The cryptographic primitives used in this paper are given by Appendix B. For
basics of quantum computation, one can refer to [59].

Symbol description. A security parameter is denoted by λ. We use the s-
tandard O-notations: O and ω. The abbreviation PPT stands for probabilistic
polynomial time. A function f(λ) is said to be negligible if f(λ) = λ−ω(1). We
denote a set of negligible functions by negl(λ). K, M, C and R are respectively
denoted as key space, message space, ciphertext space and randomness space.
Given a finite set X, we denote the sampling of a uniformly random element x

by x
$← X. Denote the sampling from some distribution D by x←D. x =?y is

denoted as an integer that is 1 if x = y, and otherwise 0. Denote deterministic
computation of an algorithm A on input x by y = A(x). Probabilistic compu-
tation of an algorithm A on input x is denoted by y ← A(x). If necessary, we
also make the used randomness r explicit by writing y = A(x; r). Let |X| be
the cardinality of set X. AH means that the algorithm A gets access to the
oracle H. Time(R) is the running time (computational steps) of an algorithm R.
Time(RA) = Time(R) + kTime(A) is the running time of an algorithm RA that
takes A as a subroutine14, where k is the number of times A is invoked by R.

3 An unbounded quantum adversary against the
IND-CCA security of KEM

In this section, we will construct an unbounded quantum adversary against the

IND-CCA security of KEM−U�⊥m = U�⊥m[DPKE,H,f ] shown by Fig. 1, where
DPKE = (Gen′, Enc′, Dec′), a hash function H :M→K, and a pseudorandom

function (PRF) f with key space Kprf . The IND-CCA game of KEM−U�⊥m is
given by Fig. 2.

14 Here, in this paper, A is forbidden to call R as a subroutine.
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Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′) = c

4 : return K := H(m′)

5 : else return K := f(k, c)

Fig. 1: IND-CCA-secure KEM−U�⊥m = U�⊥m[DPKE,H,f ]

IND-CCA game of KEM−U�⊥m

1 : (pk, sk′)← Gen;H
$← ΩH

2 : m∗
$←M; c∗ := Enc′(pk,m∗)

3 : K∗0 := H(m∗);K∗1
$← K; b

$← {0, 1}

4 : b′ ← AH,Decaps(pk, c∗,K∗b )

5 : return b′ =?b

Decaps (c 6= c∗)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′) = c

4 : return K := H(m′)

5 : else return K := f(k, c)

Fig. 2: IND-CCA game of KEM−U�⊥m

Let A(pk, c∗,Kb; r1, r2) (r1 and r2 are classical randomness) be a quantum

adversary against the IND-CCA game of KEM−U�⊥m that does as follows.

A(pk, c∗,Kb; r1, r2)

1 : Search a m∗ ∈M such that Enc′(pk,m∗) = c∗

// If no one (or more than one) is found, output 1 and terminate the procedure.

2 : Sample a real p ∈ [0, 1] using randomness r1

3 : Sample a uniform m′ from {m′ ∈M : m′ 6= m∗} using randomness r2

4 : Query H with quantum state |ψ−1〉 :=
√
p|m∗〉|0〉+

√
1− p|m′〉|Σ〉

// |Σ〉 =
∑
k∈K

1/
√
|K||k〉 can be derived by H

⊗ log |K||0〉.

5 : Perform Helstrom measurement M on |ψ0〉 (the state returned by H)

6 : Return the measurement outcome.

Remark 1. The |ψ0〉 returned by H is given by

|ψ0〉 = OH |ψ−1〉 =
√
p|m∗〉|H(m∗)〉+

√
1− p|m′〉|(

∑
k∈K

1/
√
|K||k ⊕H(m′)〉)

=
√
p|m∗〉|K0〉+

√
1− p|m′〉|(

∑
k∈K

1/
√
|K||k〉)

=
√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.
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Remark 2. Helstrom measurement M is a binary POVM measurement with
measurement operators M1 and M0 = I −M1. M1 can be derived by follow-
ing the standard method in [57, 58]. In details, let ψb = |ψb〉〈ψb| and ψ1−b =

EK1−b
|ψ1−b〉〈ψ1−b|, where the expectation is taken over K1−b

$← K and |ψb〉 =√
p|m∗〉|Kb〉+

√
1− p|m′〉|Σ〉. Note that A knows ψb and ψ1−b since he gets m∗,

p, m′ and Kb. Thus, by the spectral decomposition of ψb−ψ1−b = λ+M1−λ−M0,
A can easily obtain M1 and M0. Theorem 3.1 shows that the adversary A using
Helstrom measurement can break security with advantage at least

√
p(1−1/|K|).

It is well-known that Helstrom measurement has the optimal distinguishing
advantage for two state discrimination15. But for our specific case, there still
exist some alternative measurements that can also be adopted by the adver-
sary to attain advantage at least

√
p(1 − 1/|K|) (although they are not opti-

mal). For example, the adversary can adopt the measurement with operators
M1 = |Ψ〉〈Ψ | and M0 = I −M1, where |Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉
and x = 1

2 arccos(−
√
p√

4−3p
) (sin(2x) ≥ 0). In Appendix C, we will show the ad-

versary with such an alternative measurement can also have advantage at least√
p(1− 1/|K|).

Theorem 3.1 (The advantage of A in the QROM). If the underlying DP-
KE is perfectly correct, the advantage of A against the IND-CCA security of

KEM−U�⊥m is at least
√
p(1− 1/|K|).

Proof. In the IND-CCA game of KEM−U�⊥m, c∗ = Enc′(pk,m∗), where m∗
$←

M, thus there exists at least one m∗ ∈ M such that Enc′(pk,m∗) = c∗. S-
ince DPKE is perfectly correct, there are no more than one m∗ such that
Enc′(pk,m∗) = c∗. Thus, the m∗ that A gets is exactly the one chosen by
the challenger.

Note that the adversary A knows nothing about K1−b. Thus, in A’s view, the
state |ψ0〉 returned by H can be described by a mixed state ψ0 = EK1−b

|ψ0〉〈ψ0|,
where the expectation is taken overK1−b

$← K. It is obvious that ψ0 is equal to ψb
if b = 0, and ψ1−b if b = 1, where ψb and ψ1−b are defined in Remark 2. Therefore,
we have AdvIND-CCA

KEM−U�⊥m
(A) = |Pr[A ⇒ 1|b = 0]− Pr[A ⇒ 1|b = 1]| = |tr(M1ψb)−

tr(M1ψ1−b)|.
Since b

$← {0, 1} andA adopts Helstrom (optimal) measurement, ‖tr(M1ψb)−
tr(M1ψ1−b)| is the optimal advantage of solving the minimum-error state dis-
crimination between ψb and ψ1−b. Thus, |tr(M1ψb)− tr(M1ψ1−b)| = ‖ψb −
ψ1−b‖1 = |λ+|+|λ−| ≥ 2(1−1/ |K|)

√
p2/4 + p(1− p) = 2(1−1/ |K|)√p

√
1− 3/4p

≥ (1 − 1/ |K|)√p ≈ √p, where λ+ and λ− are respectively positive eigenvalue
and negative eigenvalue of operator ψb − ψ1−b. ut

In the ROM, A can only classically query the random oracle H. That is,
before querying H, the input state is measured in the standard computational

15 Optimal quantum state discrimination is in general difficult apart from the case of
two state discrimination, see the review [58].
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basis. Then,A will query H on m∗ with probability p, and on m′ with probability
1− p. Accordingly, H(m∗) or H(m′) will be returned. Note that classical states
(orthogonal quantum states) can be perfectly distinguished. Thus, by testing
whether the returned hash value is equal to Kb, A can break the IND-CCA

security of KEM−U�⊥m with advantage 1 − 1
K if m∗ is queried, and 0 if m′ is

queried. Thus, in the ROM, the advantage of A will become p(1− 1
|K| ).

4 The advantage of a measurement-based reduction

In this section, we will bound the advantage of a measurement-based black-box
reduction that runs the quantum adversary A (given by Sec. 3) once without
rewinding16, measures A’s hash query and uses the measurement outcome to
break the OW-CPA security of the underlying DPKE. Note that the quantum
adversary A in Sec. 3 just makes a single query to the random oracle H and no
queries to the Decaps oracle. Thus, the total number q of A’s queries to various
oracles is one, i.e., q = 1.

Before giving our general result for a general measurement-based reduction,
we first discuss a simple measurement-based reduction adopted by the current
(black-box) proofs [23]. A simple measurement-based reduction RA(pk, c∗) sam-
ples a Kb ∈ K, runs A(pk, c∗,Kb), measures A’s query to H in the computational
basis, and returns the measurement outcome without any further analysis. It is
obvious that the advantage of RA(pk, c∗) against the OW-CPA security of the
underlying DPKE is p, that is AdvOW-CPA

DPKE (RA) = p. Thus, through the adver-
sary A, a simple measurement-based reduction in [23] inevitably has a quadratic

security loss, AdvIND-CCA

KEM−U�⊥m
(A) '

√
p =

√
AdvOW-CPA

DPKE (RA), which matches the

bound given by [23].
Next, we consider a general measurement-based (black-box) reduction R de-

scribed as follows. Since only one RO-query is revealed by the constructed adver-
sary in Sec. 3, we just need to consider the behaviors of a reduction interacting
with an adversary that just makes a single RO-query.

1. Reduction R receives a challenge inpt1 as input, runs a PPT preprocess-
ing (quantum) subalgorithm (inpt, rand, s)← R1(inpt1), and then launches
A(inpt; rand)17.

2. When A makes a query to the RO with quantum state φ, R measures φ in
the computational basis18, and gets the measurement outcome mest.

3. Reduction R runs a PPT postprocessing (quantum) subalgorithm out ←
R2(s,mest), and returns out.

Take the adversary A in Sec. 3 and a reduction R against the OW-CPA
security of DPKE as an example. The reduction RA(inpt1 = (pk1, c

∗
1)) runs

16 An extension to measurement-based reductions with simple sequential rewinding can
be found in Appendix D.

17 Here, inpt1, inpt and rand are classical, and s can be a quantum state.
18 The reduction R just measures the query input registers.
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A(inpt = (pk, c∗,Kb); rand = (r1, r2)) in a black-box manner (any preprocessing
subalgorithm R1 is allowed and (pk, c∗) is not required to be (pk1, c

∗
1)), measures

A’s query in the computational basis, and uses the measurement outcome (any
postprocessing subalgorithm (R2 or R3) is allowed) to break the DPKE OW-
CPA security.

Remark 3. Performing an additional quantum (unitary) operation on adver-
sary’s query before measuring isn’t allowed. But, such an additional unitary
operation U cannot substantially increase reduction’s advantage. The sole RO-
query by our adversary in Sec. 3 is |ψ−1〉 =

√
p|m∗〉|0〉+

√
1− p|m′〉|Σ〉, where

|m′〉|Σ〉 can be efficiently derived without m∗. The direct measurement P =
|m∗〉〈m∗| gives advantage p. If U is applied before P , we still have advantage
‖PU |ψ−1〉‖2 / ‖PU√p|m∗〉|0〉‖2 ≤ p, since ‖PU |m′〉|Σ〉‖2 is negligible (other-
wise we can easily construct |m′〉|Σ〉, and use U to break the DPKE OW-CPA
security without adversary’s aid).

Remark 4. The currently known black-box reductions [5, 22–27], run the adver-
sary once without rewinding, measure the adversary’s queries, and directly take
the measurement outcome as a return (without any further postprocessing) to
break the underlying assumption. These measurements are standard measure-
ment in computational basis, semi-classical measurement in [38] or the com-
pressed measurement based on Zhandry’s compressed oracle technique [26]. S-
ince the adversary’s RO query is the superposition of two terms |m∗〉|0〉 and
|m′〉|Σ〉, the semi-classical measurement and the compressed measurement are
equivalent to the standard measurement considered in this paper. In addition,
measurement-based reductions do not restrict the simulations of random ora-
cles and other oracles that adversary queries. Thus, our results can cover the
black-box reductions in [5, 22–27].

Constructing meta-reductions against the OW-CPA security, we bound the
advantages of a measurement-based black-box reduction by the advantages of the
meta-reductions. In general, the construction and analysis of meta-reductions are
complicated since the meta-reductions need to efficiently simulate the unbounded
adversary. But, thanks to our well-designed adversary in Sec. 3, the construction
of our meta-reductions is concise, and the analysis is generally accessible.

Theorem 4.1. If the underlying DPKE is perfectly correct, for any above de-
scribed measurement-based reduction RA that run the adversary A once without
rewinding, there exist two meta-reductions MRR1 and MRR2 against the OW-
CPA security of the underlying DPKE such that

AdvOW-CPA
DPKE (RA) ≤ p+ AdvOW-CPA

DPKE (MRR1 ) +
|M|
|M| − 1

AdvOW-CPA
DPKE (MRR2 ),

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Let (pk1, c
∗
1) be the challenge given to RA against the OW-CPA security of

underlying PKE, where (pk1, sk1) ← Gen′, m∗1
$←M, and c∗1 = Enc′(pk1,m

∗
1).
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Then, AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗1]. Let (pk, c∗,Kb) be the input to A

provided by RA. Since the underlying DPKE is perfectly correct, there are no
more than one m∗ such that Enc′(pk,m∗) = c∗. Let Exi be the event that there
exists an m∗ such that Enc′(pk,m∗) = c∗, and Ine be the event that such an
m∗ dose not exist. Thus,

AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗1 ∧Exi] + Pr[RA ⇒ m∗1 ∧ Ine]

≤ Pr[Exi] · Pr[RA ⇒ m∗1|Exi] + Pr[RA ⇒ m∗1 ∧ Ine]. (1)

Denote Good as the event that the measurement on A’s query returns an m∗

such that Enc(pk,m∗) = c∗, and Bad as the event that an m′ 6= m∗ is returned.
It’s apparent that Pr[Good|Exi] = p and Pr[Bad|Exi] = 1− p. Thus, we have

Pr[RA ⇒ m∗1|Exi] = Pr[RA ⇒ m∗1|Exi ∧Good] Pr[Good|Exi]
+ Pr[RA ⇒ m∗1|Exi ∧Bad] Pr[Bad|Exi]

≤ p+ Pr[RA ⇒ m∗1|Exi ∧Bad]. (2)

Combining the equations (1) and (2), we have

AdvOW-CPA
DPKE (RA) ≤ p+ Pr[RA ⇒ m∗1 ∧ Ine] + Pr[Exi] ·Pr[RA ⇒ m∗1|Exi∧Bad].

Then, we give upperbounds of Pr[RA ⇒ m∗ ∧ Ine] and Pr[Exi] · Pr[RA ⇒
m∗1|Bad ∧Exi] by the following Lemmas 4.1 and 4.2.

Lemma 4.1. There exists a meta-reduction MRR1 such that Pr[RA ⇒ m∗ ∧
Ine] ≤ AdvOW-CPA

DPKE (MRR1 ), and Time(R) ≈ Time(MRR1 ).

Proof. Let A1(pk, c∗,Kb) be a trivial adversary against the IND-CCA game

of KEM−U�⊥m that always returns 1 and does nothing else. It is obvious that
when Ine happens, both A and A1(pk, c∗,Kb) just outputs 1, and Pr[RA ⇒
m∗ ∧ Ine] = Pr[RA1 ⇒ m∗ ∧ Ine].

Let MRR1 (pk1, c
∗
1) be a meta reduction that simulates A1, runs RA1(pk1, c

∗
1),

and returnsRA1 ’s output. It’s obvious that AdvOW-CPA
DPKE (MRR1 ) = AdvOW-CPA

DPKE (RA1).
Since AdvOW-CPA

DPKE (RA1) ≥ Pr[RA1 ⇒ m∗ ∧ Ine], we have

Pr[RA ⇒ m∗ ∧ Ine] ≤ AdvOW-CPA
DPKE (MRR1 ).

Since Time(A1) is negligible, Time(MRR1 ) ≈ Time(R) + Time(A1) ≈ Time(R).
ut

Lemma 4.2. There exists a meta-reduction MRR2 such that Pr[Exi] ·Pr[RA ⇒
m∗1|Exi ∧Bad] ≤ |M|

|M|−1Adv
OW-CPA
DPKE (MRR2 ), and Time(R) ≈ Time(MRR2 ).

Proof. Let A2 be an adversary against the IND-CCA game of KEM−U�⊥m which
queries the random oracle H with quantum state ψ′−1 =

∑
m,k

1√
|M|·|K|

|m〉|k〉,
and outputs 1 with probability 1 (after the return of the random oracle H).
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We note that under the condition Exi ∧ Bad, both measurement outcomes
of A’s query and A2’s query obey the uniform distribution over {m′ ∈M : m′ 6=
m∗}. Thus, Pr[RA ⇒ m∗1|Exi ∧Bad] = Pr[RA2 ⇒ m∗|Exi ∧Bad].

Construct a meta reduction MRR2 (pk1, c
∗
1) against the OW-CPA security of

the underlying DPKE that simulates A2, runs RA2(pk1, c
∗
1), and returns RA2 ’s

output.
It is easy to see that for above A2 and MRR2 , Pr[Good|Exi] = 1

|M| and

Pr[Bad|Exi] = 1− 1
|M| . Then, we have

AdvOW-CPA
DPKE (MRR2 ) = AdvOW-CPA

DPKE (RA2) ≥ Pr[RA2 ⇒ m∗|Exi] · Pr[Exi]

≥ (1− 1

|M|
) Pr[RA2 ⇒ m∗|Exi ∧Bad] · Pr[Exi]

= (1− 1

|M|
) Pr[RA ⇒ m∗1|Exi ∧Bad] · Pr[Exi]

as we wanted. Since Time(A2) is negligible, Time(MRR2 ) ≈ Time(R)+Time(A2) ≈
Time(R). ut

5 Impossibility results for FO-like KEMs

Combing Theorems 3.1 and 4.1, we can directly obtain the following main The-
orem.

Theorem 5.1. If the underlying DPKE is perfectly correct, there exists a quan-

tum adversary A against the IND-CCA security of KEM−U�⊥m such that for any
measurement-based black-box reduction RA that runs A (once without rewind-
ing), measures A’s query and uses the measurement outcome to break the OW-
CPA security of the underlying DPKE, there exist two meta-reductions MRR1
and MRR2 which take R as a subroutine to break the OW-CPA security of the
underlying DPKE such that AdvIND-CCA

KEM−U�⊥m
(A) ≥

(1− 1
|K| )×

√
AdvOW-CPA

DPKE (RA)− AdvOW-CPA
DPKE (MRR1 )− |M|

|M|−1 · Adv
OW-CPA
DPKE (MRR2 )

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Assuming that no PPT adversary can break the OW-CPA security of the
underlying DPKE with non-negligible probability, we must have that AdvOW-CPA

DPKE

(MRR1 ) ≈ AdvOW-CPA
DPKE (MRR2 ) ∈ negl(λ) since Time(MRR1 ) ≈ Time(MRR2 ) ≈

Time(R) is polynomial19, and the message space M is exponentially large due
to the brute-force attack. For real-world applications, the key space K is also

exponentially large. Thus, 1− 1
|K| ≈ 1 and |M|

|M|−1 ≈ 1.

19 We remark that Time(RA) = Time(R) + Time(A) is exponential since A is an un-
bounded adversary.
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Thus, informally, Theorem 5.1 shows the existence of a quantum adver-

sary A against the IND-CCA security of KEM−U�⊥m with advantage εA =
AdvIND-CCA

KEM−U�⊥m
(A) such that for any measurement-based black-box reduction RA

that takes A as a subroutine to break the OW-CPA security of the under-
lying DPKE, the advantage εR = AdvOW-CPA

DPKE (RA) is approximately at most

εA
2, i.e., εR / εA

2. Namely, for KEM−U�⊥m from a OW-CPA-secure DPKE,
measurement-based black-box reductions inevitably have a quadratic security
loss.

As discussed in Sec. 4, the black-box reductions in [22–27] belong to the
class of measurement-based reductions considered in this paper. Thus, Theorem
5.1 suggests an explanation for the lack of progress in improving the black-box
reduction tightness in terms of the degree of security loss.

Remark 5. The impossibility result in Theorem 5.1 and subsequent generaliza-
tions in Secs. 5.1 and 6.2 can be extended to cover measurement-based reductions
with simple rewinding20. The simple rewinding here is a quantum counterpart
of classical sequential rewinding [45]. In this rewinding, the reduction restarts
the adversary with the same input and randomness from the very beginning,
which is different from the rewinding in [37] where the reduction applies the
inverses of the adversary’s quantum operations (that have been applied already)
on the adversary’s registers from the end of adversary’s run. In addition, the
adversary is not allowed to use the intrinsic “quantum randomness” or have
auxiliary quantum input, which guarantees the reduction can re-create the same
quantum query state as before at every interaction point. In Appendix D, we
will show that when simple rewinding is applied r times (r ≥ 1), we still have
εR / (r + 1)εA

2. Namely, the simple rewinding might increase the advantage
of R by r · εA2, but the running time of R will be accordingly increased by
r · Time(A), where Time(A) is the running time of A.

5.1 Extension to other FO-like KEMs

U⊥m, U⊥, U�⊥, QU�⊥m and QU⊥m are variants of U�⊥m, where m (without m, resp.)
means K = H(m) (K = H(m, c), resp.), �⊥ (⊥, resp.) means implicit (explic-
it, resp.) rejection21 and Q means adding an additional Targhi-Unruh hash to

the ciphertext. It is easy to see that our main results for U�⊥m can also apply
to above variants from one-wayness security assumption. That is, measurement-
based black-box reductions for these variants from one-wayness security assump-
tion will inevitably have a quadratic security loss.

FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and QFO⊥m in [5] are KEM variants of the FO
transformation [6, 7], and widely used in the NIST KEM submissions. Following

20 In general, the rewinding is challenging when quantum adversaries are considered,
see [62].

21 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is
returned for an invalid ciphertext.
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the same analysis for KEM−U�⊥m, we can also show that for these KEM variants
of the FO transformation from standard OW-CPA security (and even IND-CPA
security) of the underlying PKE, quadratic security loss is also inevitable for
measurement-based black-box reductions.

Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc′(pk,m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′;G(m′)) = c

4 : return K := H(m′)

5 : else return K := f(k, c)

Fig. 3: KEM− FO�⊥m = FO�⊥m[PKE,G,H,f ], where PKE = (Gen′, Enc′, Dec′) with
message space M and randomness space R, G : M → R, H : M → K are hash
functions, and f is a PRF with key space Kprf .

Theorem 5.2. If the underlying PKE is perfectly correct, there exists a quan-

tum adversary A against the IND-CCA security of KEM− FO�⊥m (see Fig. 3)
such that for any measurement-based black-box reduction RA that runs A (once
without rewinding), measures A’s query in the computational basis, and uses the
measurement outcome to break the IND-CPA security (OW-CPA security, resp.)
of the underlying PKE, there exist two meta-reductions MRR1 and MRR2 which
take R as a subroutine to break the IND-CPA security (OW-CPA security, resp.)
of the underlying PKE such that Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ) and
AdvIND-CCA

KEM-FO�⊥m
(A) ≥

(1− 1
|K| )

√
AdvIND-CPA

PKE (RA)− εIND
1 − |M|

|M|−1 · (ε
IND
2 + 1

|M| )

((1− 1
|K| )

√
AdvOW-CPA

PKE (RA)− εOW
1 − |M|

|M|−1 · ε
OW
2 , resp.),

where εIND
1 = AdvIND-CPA

PKE (MRR1 ), εIND
2 = AdvIND-CPA

PKE (MRR2 ), εOW
1 =

AdvOW-CPA
PKE (MRR1 ) and εOW

2 = AdvOW-CPA
PKE (MRR2 ).

Remark 6. It is not hard to extend above results to other KEM variants of the
FO transformation, including FO�⊥, FO⊥, FO⊥m, QFO�⊥m and QFO⊥m, we just omit
them in this paper.

The proof of Theorem 5.2 is similar to the proof of Theorem 5.1. We first con-

struct a quantum adversary A against the IND-CCA security of KEM− FO�⊥m
with advantage at least (1− 1

|K| )
√
p, and then use the meta-reduction methodolo-

gy to bound the advantage of a measurement-based black-box reduction against
the IND-CPA security (OW-CPA security, resp.) of the underlying PKE. The
complete proofs are presented in Appendix E.
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6 A generalization of our impossibility results

We note that the quantum adversaries against the IND-CCA security of FO-
like KEMs in Sec. 5 make no queries to the decapsulation oracle. Therefore, the
distinction between the IND-CPA security and the IND-CCA security of KEM
is irrelevant. Thus, the impossibility results in Sec. 5 can be roughly interpreted
as the unavoidable quadratic loss incurred by the black-box reduction from a
search problem to an indistinguishability-based security.

In this section, we give a generalization of our impossibility results and
show that a black-box one-way-to-hiding (OW2H) technique22 that turns a one-
wayness-style (search) problem into a hiding-style (decision) problem via a quan-
tum random oracle, will inevitably incur a quadratic reduction loss. Thus, our
impossibility results can also be used to explain why the quadratic loss in the
black-box OW2H lemmas is unavoidable.

6.1 One-way to hiding

Here, the description of one-way to hiding reduction follows [39].
Given a one-way function f : {0, 1}m → {0, 1}n and a random oracle H :

{0, 1}m → {0, 1}n′ , a hiding-style problem can be given as follows.
Construct a distinguishing game DIST for an adversary A.

DIST(|ψ0〉, |ψ1〉)

b
$← {0, 1}, x $← {0, 1}m,K0 = H(x),K1

$← {0, 1}n
′

b′ ← A(f(x),Kb), return b′ =?b

Define the advantage of A against the game DIST as AdvDIST
Hiding(A) :=∣∣2 Pr[DISTAHiding = 1]− 1

∣∣ = |Pr[A ⇒ 1|b = 0]− Pr[A ⇒ 1|b = 1]| .

Such a one-way to hiding technique can be seen as a generalization of FO-
like KEMs. In particular, the one-way function f can be instantiated by the
encryption algorithm of the underlying PKE, the one-wayness of f is exactly
the one-way security of the underlying PKE, and the hardness of solving the
hiding-style problem is exactly the indistinguishable security of the resulting
KEM.

Query-based reduction in the ROM. We note that AdvDIST
Hiding(A) can be

bounded by the probability of the adversary A querying H with x. Thus, in
the ROM, it is easy to construct a query-based reduction RA against the one-
wayness of f by running A and taking one of A’s queries to H as a return.
Obviously,

AdvDIST
Hiding(A) ≤ qAdvOW

f (RA).

Thus, the indistinguishability between K0 and K1 is reduced to the hardness of
inverting f(x).

22 This name follows Unruh’s paper [39].
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Measurement-based reduction in the QROM. The case in the QROM is
complicated since A may make queries to H with quantum state and it’s hard to
well define whether x is queried. To circumvent this issue, Unruh [39] gave the
following OW2H lemma, which essentially gives a measurement-based black-box
reduction from a one-wayness-style property (unpredictability) to a hiding-style
property (indistinguishability security) with quadratic loss.

Lemma 6.1 ([39, Lemma 6.2] and [38, Theorem 3] (OW2H)). Let S ⊆ X
be random. Let G,H : X → Y be random functions satisfying ∀m /∈ S,G(m) =
H(m). Let z be a random value. (S,G,H, z may have arbitrary joint distribu-
tion.) Consider an oracle algorithm AO ( not necessarily reversible23) that makes
at most q queries to O (O ∈ {G,H}). Let B be an oracle algorithm that on input

z does the following: pick i
$← {1, . . . , q}, run AH(z) until (just before) the i-th

query, measure the query input registers in the computational basis, output the
set T of measurement outcomes. (When A makes less than i queries, B outputs
⊥/∈ X).

Let
P 1
A = Pr[b′ = 1 : b′ ← AH(z)],
P 2
A = Pr[b′ = 1 : b′ ← AG(z)],

PB := Pr[S ∩ T 6= ∅ : T ← BH(z)].

Then, ∣∣P 1
A − P 2

A

∣∣ ≤ 2q
√
PB .

The OW2H lemma can be used to reduce the one-wayness of the function f
(search problem) to the hardness of solving the aforementioned distinguishing
problem between K0 = H(x) and a uniformly random K1 (decision problem)
in a black-box manner. Let X = {0, 1}m, Y = {0, 1}n′ , S = {x}, H = H,
G(x) = K1 and z = (f(x),K1). Let AO(z) (O ∈ {G,H}) be an oracle algorithm
that runs AO(z), and returns A’s guessing. Then, we have P 1

A = Pr[A ⇒ 1|b = 1]
and P 2

A = Pr[A ⇒ 1|b = 0]. Let RA(f(x)) be a measurement-based black-box

reduction that picks i
$← {1, . . . , q} and y

$← {0, 1}n′ , runs A(f(x), y) until (just
before) the i-th query, measures the query in the computational basis, output
the measurement outcome. Thus, PB = AdvOW

f (RA). Applying Lemma 6.1, we
have

AdvDIST
Hiding(A) ≤ 2q

√
AdvOW

f (RA).

6.2 Impossibility results for one-way to hiding

As we can see, the reduction given by the OW2H lemma (Lemma 6.1) is highly
non-tight. The degree of reduction loss is two (i.e., τ = 2), and the factor of
reduction loss is about O(q2) (i.e., κ = O(q2)). Very recently, several variants
of the OW2H lemma [38, 26] are introduced with tighter bounds in some special

23 In [38, Theorem 3], Ambainis et al. state that AO is not necessarily unitary. Note
that a unitary algorithm must be reversible. To make a clear comparison with the
non-black-box OW2H in [37], we substitute ‘unitary’ by ‘reversible’.
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cases. In particular, using the semi-classical oracle technique, [38] improved the
factor of reduction loss κ to be O(q). Following the compressed oracle technique
developed by [34] to record adversary’s queries, [26] further improved κ to be
O(1). However, all these OW2H lemmas still have a quadratic reduction loss.
The reductions in [39, 38, 26] are black-box. In the following, we will show such
a quadratic loss is unavoidable for these black-box reductions [39, 38, 26].

Theorem 6.1. If the underlying f is injective, there exists a quantum adversary
A solving the hiding-style problem such that for any measurement-based black-
box reduction RA that runs A (once without rewinding), measures A’s query
and uses the measurement outcome to break the one-wayness of the underlying
f , there exist two meta-reductions MRR1 and MRR2 which take R as a subroutine
to break the one-wayness of the underlying f such that AdvDIST

Hiding(A) ≥

2n
′ − 1

2n′

√
AdvOW

f (RA)− AdvOW
f (MRR1 )− 2m

2m − 1
· AdvOW

f (MRR2 ),

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

The proof of Theorem 6.1 is essentially the same as the one of Theorem 5.1.
We present it in Appendix F.

Assuming f is a one-way function, we have AdvOW
f (MRR1 ) ≈ AdvOW

f (MRR2 ) ∈
negl(λ) since Time(MRR1 ) ≈ Time(MRR2 ) ≈ Time(R) is polynomial. Note that

2m

2m−1 ≤ 2. Thus, informally, Theorem 6.1 shows the existence of a quantum ad-

versary A solving the hiding-style problem with advantage εA = AdvDIST
Hiding(A)

such that for any measurement-based black-box reduction RA that takes A
as a subroutine to break the one-wayness of the underlying f , the advantage
εR = AdvOW

f (RA) is approximately at most εA
2, i.e., εR / εA

2. Namely, for the
one-way to hiding technique, measurement-based black-box reductions inevitably
have a quadratic loss.
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45. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight crypto-
graphic reductions. In Fischlin, M., Coron, J., eds.: Advances in Cryptology –
EUROCRYPT 2016. Volume 9666 of LNCS., Springer (2016) 273–304

46. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In
Nyberg, K., ed.: Advances in Cryptology – EUROCRYPT 1998. Volume 1403 of
LNCS., Springer (1998) 59–71

47. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In
Knudsen, L.R., ed.: Advances in Cryptology – EUROCRYPT 2002. Volume 2332
of LNCS., Springer (2002) 272–287

48. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In Sako, K., Sarkar, P., eds.: Advances in Cryptology - ASIACRYPT 2013. Volume
8269 of LNCS., Springer (2013) 296–315

49. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In Shoup, V., ed.: Advances in Cryptology – CRYPTO 2005. Volume 3621
of LNCS., Springer (2005) 449–466

50. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In Wagner, D.A., ed.: Advances in Cryptology –
CRYPTO 2008. Volume 5157 of LNCS., Springer (2008) 93–107

25



51. Seurin, Y.: On the exact security of Schnorr-type signatures in the random o-
racle model. In Pointcheval, D., Johansson, T., eds.: Advances in Cryptology –
EUROCRYPT 2012. Volume 7237 of LNCS., Springer (2012) 554–571

52. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The
case of Schnorr signatures. In Johansson, T., Nguyen, P.Q., eds.: Advances in
Cryptology – EUROCRYPT 2013. Volume 7881 of LNCS., Springer (2013) 444–
460

53. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat-Shamir transformation in
a quantum world. In Sako, K., Sarkar, P., eds.: Advances in Cryptology – ASI-
ACRYPT 2013. Volume 8270 of LNCS., Springer (2013) 62–81

54. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In Sarkar, P., Iwata, T., eds.: Advances in Cryptology – ASIACRYPT
2014. Volume 8873 of LNCS., Springer (2014) 512–531

55. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In Nguyen,
P.Q., Oswald, E., eds.: Advances in Cryptology – EUROCRYPT 2014. Volume
8441 of LNCS., Springer (2014) 58–76

56. Kakvi, S.A., Kiltz, E.: Optimal security proofs for Full Domain Hash, revisited.
Journal of Cryptology 31(1) (2018) 276–306

57. Helstrom, C.W.: Quantum detection and estimation theory. Journal of Statistical
Physics 1 (1969) 231–252

58. Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. Journal
of Physics A: Mathematical and Theoretical 48(8) (2015) 083001

59. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Number 2. Cambridge University Press (2000)

60. Hosoyamada, A., Yamakawa, T.: Finding collisions in a quantum world: Quantum
black-box separation of collision-resistance and one-wayness. In Moriai, S., Wang,
H., eds.: Advances in Cryptology - ASIACRYPT 2020. Volume 12491 of LNCS.,
Springer (2020) 3–32

61. Hsiao, C., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In Franklin, M.K., ed.: Advances in Cryptology -
CRYPTO 2004. Volume 3152 of LNCS., Springer (2004) 92–105

62. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science – FOCS 2014, IEEE (2014) 474–483
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A More descriptions of the meta-reduction methodology

Here, we follow the description in [12]. Fig. 4 is taken from [12, Figure 1]. A
meta reduction is also called “reduction against the reduction”. Let A be an
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adversary against the security of a scheme S. The reduction R that is given
black-box access to A breaks the hardness of a problem P , by simulating the
scheme S. As shown by Fig. 4, a meta-reduction simulates the adversary A, and
turns the reduction R in a black-box manner into an algorithm MRR against
the hardness of P directly.

Fig. 4: [12, Figure 1]. (a) shows a reduction that turns an adversary A against the
security of a scheme S into an attacker RA against the hardness of a problem P , by
simulating the scheme S. (b) shows the meta-reduction that simulates the adversary
A and turns RA into an attacker MRR against the hardness of P directly.

In the typical meta-reduction methodology, one usually first designs an un-
bounded adversary A that break the security of the scheme, then replaces the
unbounded adversary by an efficient meta-reduction, whose behavior is sufficient-
ly close to the one of the unbounded adversary. Finally, one shows that MRR

breaks the hardness of the problem with probability close to the reduction RA.

B Cryptographic Primitives

Definition B.1 (One-way function (OWF)). We say a function f : {0, 1}n →
{0, 1}m is a one way function if for any PPT adversary A, the following advan-

tage function is negligible in λ: AdvOW
f (A) := Pr[x′ = x∗ : x∗

$← {0, 1}n; y∗ ←
f(x∗);x′ ← A(1λ, y∗)].

Definition B.2 (Public-key encryption). A public-key encryption scheme
PKE = (Gen,Enc,Dec) consists of a triple of polynomial time (in the security
parameter λ) algorithms and a finite message spaceM. (1) Gen(1λ)→ (pk, sk):
the key generation algorithm, is a probabilistic algorithm which on input 1λ out-
puts a public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input
of Gen. (2) Enc(pk,m)→ c: the encryption algorithm Enc, on input pk and a
message m ∈ M, outputs a ciphertext c ← Enc(pk,m). If necessary, we make
the used randomness of encryption explicit by writing c := Enc(pk,m; r), where

r
$← R (R is the randomness space). (3) Dec(sk, c) → m: the decryption algo-

rithm Dec, is a deterministic algorithm which on input sk and a ciphertext c
outputs a message m := Dec(sk, c) or a rejection symbol ⊥/∈M.
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A PKE is deterministic if Enc is deterministic. We denote DPKE to stand for
a deterministic PKE.

Definition B.3 (Correctness). A public-key encryption scheme PKE is per-
fectly correct if for any (pk, sk)← Gen and m ∈M, we have that Pr[Dec(sk, c) =
m|c← Enc(pk,m)] = 1.

Definition B.4 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
of PKE as in Fig. 5. Define the OW − CPA advantage of an adversary A against
PKE as AdvOW-CPA

PKE (A) := Pr[OW-CPAAPKE = 1].

Game OW-CPA

1 : (pk, sk)← Gen;m∗
$←M

2 : c∗ ← Enc(pk,m∗)

3 : m′ ← A(pk, c∗)

4 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk)← Gen; b← {0, 1}
2 : (m0,m1)←A(pk); c∗ ← Enc(pk,mb)

3 : b′ ← A(pk, c∗)

4 : return b′ =?b

Fig. 5: Game OW-CPA and game IND-CPA for PKE.

Game IND-CCA

1 : (pk, sk)← Gen; b
$← {0, 1}

2 : (K∗0 , c
∗)← Encaps(pk);K∗1

$← K

3 : b′ ← ADecaps(pk, c∗,K∗b )

4 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 6: Game IND-CCA for KEM.

Definition B.5 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message spaceM. Define IND− CPA game of
PKE as in Fig. 5, where m0 and m1 have the same length. Define the advantage
of an adversary A against the IND− CPA security of PKE as AdvIND-CPA

PKE (A) :=
|2 Pr[IND-CPAAPKE = 1]− 1|.
Definition B.6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps. (1) Gen(1λ)→ (pk, sk):
the key generation algorithm Gen outputs a key pair (pk, sk). Usually, for brevity,
we will omit the input of Gen. (2) Encaps(pk) → (K, c): the encapsulation
algorithm Encaps, on input pk, outputs a tuple (K, c), where K ∈ K and c is said
to be an encapsulation of the key K. (3) Decaps(sk, c) → K: the deterministic
decapsulation algorithm Decaps, on input sk and an encapsulation c, outputs
either a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition B.7 (IND-CCA-secure KEM). We define the IND− CCA game
as in Fig. 6 and the IND− CCA advantage of an adversary A against KEM as
AdvIND-CCA

KEM (A) := |2 Pr[IND-CCAAKEM = 1]− 1|.
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C An alternative measurement for the adversary in
Sec. 3

In this section, we show that an alternative measurement with operators M1 =
|Ψ〉〈Ψ | and M0 = I − M1 can also help the adversary in Sec. 3 to achieve
advantage at least

√
p(1 − 1/|K|), where |Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉

and x = 1
2 arccos(−

√
p√

4−3p
) (sin(2x) ≥ 0).

Theorem C.1 (The advantage of A with an alternative measurement).
If the underlying DPKE is perfectly correct, the IND-CCA advantage of A with
the above alternative measurement is at least

√
p(1− 1

|K| ).

Proof. According to the proof of Theorem 3.1, the m∗ that A gets is exactly the
one chosen by the challenger.

Let |ψ0〉 =
√
p|a〉 +

√
1− p|c〉, |ψ1〉 =

√
p|b〉 +

√
1− p|c〉, |Ψ0〉 = sin(x)|a〉 +

cos(x)|c〉 and |Ψ1〉 = sin(x)|b〉+cos(x)|c〉, where |a〉 = |m∗〉|K0〉, |b〉 = |m∗〉|K1〉,
and |c〉 = |m′〉|Σ〉. Then, the probability Pr[A ⇒ 1] is |〈ψ0|Ψ0〉|2 if b = 0, and

|〈ψ0|Ψ1〉|2 if b = 1. Thus,

AdvIND-CCA

KEM−U�⊥m
(A) =

∣∣∣|〈ψ0|Ψ0〉|2 − |〈ψ0|Ψ1〉|2
∣∣∣ .

When K0 = K1, |Ψ0〉 = |Ψ1〉 and the advantage of A is 0. In the following,
we consider the case K0 6= K1. It’s easy to verify that when K0 6= K1, 〈a|b〉 =

〈a|c〉 = 〈b|c〉 = 0 since m∗ 6= m′. Thus, |〈ψ0|Ψ1〉|2 = |〈ψ1|Ψ0〉|2. Therefore, the
advantage of A will become

AdvIND-CCA

KEM−U�⊥m
(A) =

∣∣∣|〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2
∣∣∣ .

Simple calculations show that
∣∣∣|〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2

∣∣∣ =
√
p(
√
p+
√

4−3p

2 ). It

is easy to verify that
√
p+
√

4− 3p ≥ 2 for 0 ≤ p ≤ 1. Thus, we can have∣∣∣|〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2
∣∣∣ ≥ √p. Note that K0 6= K1 with probability 1 − 1

|K| .

Therefore, we have AdvIND-CCA

KEM−U�⊥m
(A) ≥ √p(1− 1

|K| ) ≈
√
p. ut

D Impossibility results with sequential rewinding

In this section, we show Theorem 5.1 can be extended to cover measurement-
based reductions with simple rewinding. Similarly, the generalized impossibility
results in Secs. 5.1 and 6.2 can be also extended, we just omit them here.

As noted by Remark 5, simple rewinding considered here is a simple quan-
tum counterpart of classical sequential rewinding [45]. In particular, quantum
adversary A is not allowed to use intrinsic “quantum randomness” or have aux-
iliary quantum input. The reduction R can sequentially restart A with the same
input and (classical) randomness used in the first invocation. Thus, A queries
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with a fixed quantum state in every invocation. Take the adversary in Sec. 3 as
an example. When reduction RA rewinds A, RA restarts A with the same input
(pk, c∗,Kb) and randomness (r1, r2) from the beginning.

Next, we will bound the advantage of a measurement-based black-box reduc-
tion with simple rewinding, and extend Theorem 4.1 to the following theorem.

Theorem D.1. If the underlying DPKE is perfectly correct, for any measurement-
based black-box reduction RA that sequentially rewinds the adversary A at most
r (r ≥ 1) times, there exist two meta-reductions MRR1 and MRR2 against the
OW-CPA security of the underlying DPKE such that

AdvOW-CPA
DPKE (RA) ≤ (r+1)·p+AdvOW-CPA

DPKE (MRR1 )+(
|M|
|M| − 1

)r+1AdvOW-CPA
DPKE (MRR2 ),

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Proof. The proof of Theorem D.1 has the same skeleton as the one of Theorem
4.1. Let (pk1, c

∗
1) be the challenge given to RA against the OW-CPA security of

underlying PKE, and AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗1], where Enc(pk1,m

∗
1) =

c∗1. Let (pk, c∗,Kb) be the input to A provided by RA. We only consider the
reduction that rewinds the adversary with the same input and randomness.
Thus, (pk, c∗,Kb) and r1, r2 are fixed in every rewinding of A. If the event Exi
(Ine, resp. ) happens in the first invocation of A, then the event Exi (Ine,
resp.) happens in the sequent rewinding with probability 1, where the events
Exi and Ine are defined as in Sec. 4. Then, define Ine (Exi, resp.) as the
event that Ine (Exi, resp.) happens in every invocation of A. Denote Goodi
(i ∈ {1, . . . , r + 1}) as the event that Exi happens, the measurement of A’s
query in the i-th invocation returns m∗ such that Enc(pk,m∗) = c∗, and all the
measurement outputs of A’s queries in the previous i − 1 invocations are not
m∗. Denote Bad as the event that Exi happens, and all the the measurement
outputs of A’s queries in the r + 1 invocations are not m∗. Thus, we have

AdvOW-CPA
DPKE (RA) =

∑
i∈[r+1]

Pr[RA ⇒ m∗1 ∧Exi ∧Goodi]

+ Pr[RA ⇒ m∗1 ∧Exi ∧Bad] + Pr[RA ⇒ m∗1 ∧ Ine] (3)

Note that for any i ∈ {1, . . . , r + 1}, Pr[RA ⇒ m∗1 ∧Exi ∧Goodi]

= Pr[RA ⇒ m∗1|Exi ∧Goodi] Pr[Goodi ∧Exi]

≤ Pr[Goodi ∧Exi] = Pr[Goodi|Exi] Pr[Exi]

≤ Pr[Goodi|Exi] = (1− p)i−1 · p ≤ p (4)

Thus, combing the equations (3) and (4), we have AdvOW-CPA
DPKE (RA)

≤ (r + 1) · p+ Pr[RA ⇒ m∗1 ∧Exi ∧Bad] + Pr[RA ⇒ m∗1 ∧ Ine]

≤ (r + 1) · p+ Pr[RA ⇒ m∗1|Exi ∧Bad] · Pr[Exi] + Pr[RA ⇒ m∗1 ∧ Ine] (5)
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Note that when the event Ine happens, A just outputs 1 for every invocation,
and can be replaced by a trivial adversary A1 that always returns 1 and does
nothing else. Then, we can construct a meta reduction MRR1 against the OW-
CPA security of DPKE that simulates A1, runs RA1 and returns RA1 ’s output.
Obviously, Time(R) ≈ Time(MRR1 ). As in Lemma 4.1, we can have

Pr[RA ⇒ m∗1 ∧ Ine] ≤ AdvOW-CPA
DPKE (MRR1 ). (6)

Meanwhile, if the event Exi ∧ Bad happens, A can be substituted with A2

that queries the random oracle H with ψ′−1 =
∑
m,k

1√
|M|·|K|

|m〉|k〉, and outputs

1 with probability 1 in every invocation. Then, we can construct a meta reduction
MRR2 against the OW-CPA security of DPKE that simulates A2, runs RA2 and
returns RA2 ’s output. It is easy to see Time(R) ≈ Time(MRR2 ).

We note that conditioned on Exi∧Bad, both measurement outcomes of A’s
query and A2’s query obey the uniform distribution over {m′ ∈ M : m′ 6= m∗}
in every invocation. Thus, Pr[RA ⇒ m∗1|Exi∧Bad] = Pr[RA2 ⇒ m∗1|Exi∧Bad].
Since Pr[Bad|Exi] = (1− 1

|M| )
r+1,

AdvOW-CPA
DPKE (MRR2 ) = AdvOW-CPA

DPKE (RA2) ≥ Pr[RA2 ⇒ m∗1|Exi] · Pr[Exi]

≥ (1− 1

|M|
)r+1 Pr[RA2 ⇒ m∗1|Exi ∧Bad] · Pr[Exi]

= (1− 1

|M|
)r+1 Pr[RA ⇒ m∗1|Exi ∧Bad] · Pr[Exi]. (7)

Combing the equations (5), (6) and (7), we can get the desired bound in
Theorem D.1. ut

Assuming that no PPT adversary can break the OW-CPA security of the un-
derlying DPKE with non-negligible probability, we have AdvOW-CPA

DPKE (MRR1 ) ≈
AdvOW-CPA

DPKE (MRR2 ) ∈ negl(λ). In addition, ( |M||M|−1 )r+1 ≤ (1 + 1
|M|−1 )|M|−1 <

exp(1) (assuming r ≤ |M| − 2). Thus, Theorem D.1 essentially says εR =
AdvOW-CPA

DPKE (RA) / (r+1)·p. According to Theorem 3.1, εA = AdvIND-CCA

KEM−U�⊥m
(A) '

√
p. Thus, for r ≥ 1 (the reduction rewinds the adversary r times), we have

εR / (r + 1) · εA2. Namely, although the rewinding considered in this paper
might increase the advantage of R by r · εA2, the running time of R will be
accordingly increased by r · Time(A). Therefore, the current quadratic loss is
also unavoidable for any measurement-based black-box reduction with simple
rewinding.

E Proof of Theorem 5.2

Proof. The proof of Theorem 5.2 is similar to the proof of Theorem 5.1. We first

construct a quantum adversaryA against the IND-CCA security of KEM− FO�⊥m
with advantage at least (1− 1

|K| )
√
p, then bound the advantage of a measurement-

based reduction against the IND-CPA security (OW-CPA security, resp.) of the
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underlying PKE by running A and measuring A’s query to utilize the measure-
ment outcome.

Let A(1λ, pk, c∗,Kb) be a quantum adversary against the IND-CCA security

of KEM− FO�⊥m that does as follows,

1. Search a m∗ ∈ M and r∗ ∈ R such that Enc′(pk,m∗; r∗) = c∗. If none (or
more than one) is found, output 1 and terminate the procedure.

2. Pick a real p such that 0 ≤ p ≤ 1.

3. Sample a uniform m′ from {m′ ∈M : m′ 6= m∗}.

4. Query the random oracle H with quantum state |ψ−1〉 :=
√
p|m∗〉|0〉 +√

1− p|m′〉|Σ〉, where |Σ〉 =
∑
k∈K

1√
|K|
|k〉. The random oracle returns

|ψ0〉 :=
√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.

5. Perform a binary measurement M on |ψ0〉 with operators M1 = |Ψ〉〈Ψ |
and M0 = I −M1, where |Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉 and x =
1
2 arccos(−

√
p√

4−3p
) (sin(2x) ≥ 0).

6. Output the measurement outcome.

In the IND-CCA game of KEM− FO�⊥m, c∗ = Enc′(pk,m∗;G(m∗)) for some
m∗ ∈ M, thus there exists at least one m∗ ∈ M and r∗ = G(m∗) such that
Enc′(pk,m∗; r∗) = c∗. Since the underlying PKE is perfectly correct, there exist
no more than one m∗ such that Enc′(pk,m∗; r∗) = c∗ for some r∗. Thus, the
m∗ that A gets is exactly the one chosen by the challenger. Then, following the
proof of Theorem 3.1, we have

AdvIND-CCA

KEM-FO�⊥m
(A) ≥ √p(1− 1

|K|
). (8)

Then, we use Lemma E.1 to bound the advantage of a measurement-based
reduction R which runs A with rewinding at most r times, measures A’s query
input in computational basis and uses the measurement outcome to break the
underlying security assumption. Collecting the inequalities (8), (9) and (10) in
Lemma E.1, we can derive the bounds as we want in Theorem 5.2.

Lemma E.1. If PKE is perfectly correct, for any measurement-based black-box
reduction RA that runs A with rewinding at most r times, there exist two meta-
reductions MRR1 and MRR2 that break the IND-CPA (OW-CPA) security of PKE
such that AdvIND-CPA

PKE (RA) ≤

a+ AdvIND-CPA
PKE (MRR1 ) + b · [AdvIND-CPA

PKE (MRR2 ) +
r + 1

|M|
], (9)

(AdvOW-CPA
PKE (RA) ≤ a+ AdvOW-CPA

PKE (MRR1 ) + b · AdvOW-CPA
PKE (MRR2 )), (10)

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ), where a = (r + 1) · p and b =

( |M||M|−1 )r+1.
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Proof of Lemma E.1 The proof for the case of OW-CPA security is the same
as the one of Theorems 4.1 and D.1. Here, we just consider the reductions RA

against the IND-CPA security of PKE, see Fig. 7.

Game IND-CPA for PKE

1 : (pk1, sk1)← Gen; b̄← {0, 1}; (m0,m1)←RA(pk1)

2 : c∗b̄ ← Enc(pk1,mb̄); b̄
′ ← RA(pk1, c

∗
b̄); return b̄′ =?b̄

Fig. 7: IND-CPA game for PKE.

Since the underlying PKE is perfectly correct, there exists no more than one
m∗ such that Enc′(pk,m∗; r∗) = c∗ for some r∗ ∈ R. Let Ine (Exi, resp.) be the
event that there exists no (a, resp.) m∗ such that Enc′(pk,m∗; r∗) = c∗ for some
r∗ ∈ R. Since in every invocation of A, the input and randomness are identical,
the event Ine (Exi, resp.) happens absolutely if Ine (Exi, resp.) happens in the
first run of A. Define Ine (Exi, resp.) as the event that Ine (Exi, resp.) happens
in all the r + 1 invocations of A.

Thus,

AdvIND-CPA
PKE (RA) =

∣∣2 Pr[RA ⇒ b̄]− 1
∣∣

=
∣∣Pr[Exi](2 Pr[RA ⇒ b̄|Exi]− 1) + Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣
≤
∣∣Pr[Exi](2 Pr[RA ⇒ b̄|Exi]− 1)

∣∣+
∣∣Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣ (11)

Denote Goodi (i ∈ [r + 1]) as the event that Exi happens, the measurement of
A’s query in the i-th invocation returns m∗ such that Enc(pk,m∗; r∗) = c∗ for
some r∗ ∈ R, and all the measurement outputs of A’s queries in the previous
i − 1 invocations are not m∗. Denote Bad as the event that Exi happens, and
all the the measurement outputs of A’s queries in the r + 1 invocations are not
m∗. It’s obvious that for i ∈ [r + 1], Pr[Goodi|Exi] = (1− p)i−1 · p ≤ p. Thus,
we have∣∣2 Pr[RA ⇒ b̄|Exi]− 1

∣∣
=

∑
i∈[r+1]

| (2 Pr[RA ⇒ b̄|Exi ∧Goodi]− 1) Pr[Goodi|Exi]

+(2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1) Pr[Bad|Exi] |
≤

∑
i∈[r+1]

p
∣∣2 Pr[RA ⇒ b̄|Exi ∧Goodi]− 1

∣∣+
∣∣2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1

∣∣
≤ (r + 1)p+

∣∣2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1
∣∣ . (12)

Combining the equations (11) and (12), we have AdvIND-CPA
PKE (RA) ≤ (r+1)p+

| Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1) | +|Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1)|.

By Lemmas E.2 and E.3, we bound | Pr[Ine](2 Pr[RA ⇒ b̄|Ine] − 1) | and
|Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1)|.
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Lemma E.2. There exists a meta-reduction MRR1 such that | Pr[Ine](2 Pr[RA ⇒
b̄|Ine]− 1) |≤ AdvIND-CPA

PKE (MRR1 ), and Time(R) ≈ Time(MRR1 ).

Proof. Define A1(pk, c∗,Kb) as a trivial adversary that always returns 1 and
does nothing else in every invocation. It is obvious that when Ine happens, both
A and A1 just outputs 1, and Pr[RA ⇒ b̄|Ine] = Pr[RA1 ⇒ b̄|Ine].

Construct a meta reduction MRR1 (pk1) against the IND-CPA security of
PKE as follows,

1. Run RA1(pk1).
2. Simulate A1(pk, c∗,Kb) for RA1(pk1).
3. Output RA1 ’s output (m0,m1).
4. Send the challenge ciphertext c∗

b̄
to RA1 .

5. Return RA1 ’s output b̄′.

Since the output of A1 is independent of Exi and Ine, Pr[RA1 ⇒ b̄|Exi] =
Pr[RA1 ⇒ b̄|Ine]. Then we have

AdvIND-CPA
PKE (MRR1 ) = AdvIND-CPA

PKE (RA1) =
∣∣2 Pr[RA1 ⇒ b̄]− 1

∣∣
=
∣∣Pr[Exi](2 Pr[RA1 ⇒ b̄|Exi]− 1) + Pr[Ine](2 Pr[RA1 ⇒ b̄|Ine]− 1)

∣∣
(∗)
≥
∣∣Pr[Ine](2 Pr[RA1 ⇒ b̄|Ine]− 1)

∣∣
=
∣∣Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣ .
The inequality (∗) uses the fact for any reals a · b ≥ 0, we have |a+ b| ≥ |a|.

Note that Time(A1) is negligible, thus we have Time(MRR1 ) ≈ Time(R) +
Time(A1) ≈ Time(R). ut

Lemma E.3. There exists a meta-reduction MRR2 such that | Pr[Exi](2 Pr[RA ⇒
b̄|Exi ∧ Bad] − 1) |≤ ( |M||M|−1 )r+1[AdvIND-CPA

PKE (MRR2 ) + r+1
|M| ], and Time(R) ≈

Time(MRR2 ).

Proof. Define A2(pk, c∗,Kb) as follows,

1. Pick a real p such that 0 ≤ p ≤ 1.
2. Query the random oracleH with quantum state ψ′−1 =

∑
m,k

1√
|M|·|K|

|m〉|k〉.
3. After the return of the random oracle H, return 1 with probability 1.

We note that under the condition Exi∧Bad, both measurement outcomes of A’s
query and A2’s query obey the uniform distribution over {m′ ∈ M : m′ 6= m∗}
in every invocation. Thus, we have Pr[RA ⇒ b̄|Exi∧Bad] = Pr[RA2 ⇒ b̄|Exi∧
Bad] due to the fact that R just uses the measurement outcome to break the
IND-CPA security.

Construct a meta reduction MRR2 (pk1) against the IND-CPA security of the
underlying PKE as follows,

1. Run RA2(pk1).
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2. Simulate A2(pk, c∗,Kb) for RA2(pk1).
3. Output RA2 ’s output (m0,m1).
4. Send the received challenge ciphertext c∗

b̄
to RA2 .

5. Return RA2(pk1, c
∗
b̄
)’s output b̄′.

Since the output of A2 is independent of Exi and Ine, Pr[RA2 ⇒ b̄|Exi] =
Pr[RA2 ⇒ b̄|Ine]. It is easy to see that for aboveA2 and MRR2 , Pr[Goodi|Exi] =
(1− 1

|M| )
i−1 · 1

|M| ≤
1
|M| and Pr[Bad|Exi] = (1− 1

|M| )
r+1. Thus, we have

AdvIND-CPA
PKE (MRR2 ) = AdvIND-CPA

PKE (RA2) =
∣∣2 Pr[RA2 ⇒ b̄]− 1

∣∣
=

∣∣Pr[Exi](2 Pr[RA2 ⇒ b̄|Exi]− 1) + Pr[Ine](2 Pr[RA2 ⇒ b̄|Ine]− 1)
∣∣

(∗∗)
≥

∣∣Pr[Exi](2 Pr[RA2 ⇒ b̄|Exi]− 1)
∣∣

= Pr[Exi] |
∑

i∈[r+1]

Pr[Goodi|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Goodi]− 1)

+ Pr[Bad|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Bad]− 1) |
(∗∗∗)
≥ Pr[Exi]

∣∣Pr[Bad|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Bad]− 1)
∣∣

− Pr[Exi]

∣∣∣∣∣∑
i

Pr[Goodi|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Goodi]− 1)

∣∣∣∣∣
≥ Pr[Exi](1− 1

|M|
)r+1

∣∣2 Pr[RA2 ⇒ b̄|Exi ∧Bad]− 1
∣∣− r + 1

|M|

= (1− 1

|M|
)r+1

∣∣Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1)
∣∣− r + 1

|M|

as we wanted, where the inequality (∗∗) uses the fact |a+ b| ≥ |a| for any reals
a · b ≥ 0, and the inequality (∗ ∗ ∗) uses the fact |a+ b| ≥ |a| − |b| for any any
reals a, b.

It’s obvious that Time(A2) is negligible, thus we have Time(MRR2 ) ≈ Time(R)+
Time(A2) ≈ Time(R). ut

F Proof of Theorem 6.1

Proof. Let A(y,Kb) be a quantum adversary against the hiding-style problem
that does as follows,

1. Search a x ∈ {0, 1}m such that f(x) = y. If none (or more than one) is
found, output 1 and terminate the procedure.

2. Pick a real p such that 0 ≤ p ≤ 1.

3. Sample a x′ according to the uniform distribution over {x′ ∈ {0, 1}m : x′ 6=
x}.
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4. Query the random oracleH with quantum state |ψ−1〉 :=
√
p|x〉|0〉+

√
1− p|x′〉|Σ〉,

where |Σ〉 =
∑
k∈{0,1}n′ 2−

n′
2 |k〉. The random oracle returns |ψ0〉 :=

√
p|x〉|K0〉+√

1− p|x′〉|Σ〉.
5. Perform a binary measurement M on |ψ0〉 with operators M1 = |Ψ〉〈Ψ |

and M0 = I − M1, where |Ψ〉 = sin(z)|x〉|Kb〉 + cos(z)|x′〉|Σ〉 and z =
1
2 arccos(−

√
p√

4−3p
) (sin(2z) ≥ 0).

6. Output the measurement outcome.

Note that f is an injective function and y = f(x) for some x. Thus, the x
that A gets is exactly the one chosen by the challenger. Then, following the proof
of Theorem 3.1, we have

AdvDIST
Hiding(A) ≥ √p(1− 1

2n′
). (13)

Then, we use Lemma F.1 to bound the advantage of a measurement-based
black-box reduction R which runs A, measures A’s query in computational basis
and uses the measurement outcome to break the underlying assumption. Col-
lecting the inequalities (13) and (14) in Lemma F.1, we can derive the bound as
we want in Theorem 6.1.

Lemma F.1. If f is an injective function, for any measurement-based black-box
reduction RA that rewinds A at most r times (r ≥ 0), there exist two meta-
reductions MRR1 and MRR2 that break the one-wayness of f such that

AdvOW
f (RA) ≤ (r + 1) · p+ AdvOW

f (MRR1 ) + (
2m

2m − 1
)r+1AdvOW

f (MRR2 ) (14)

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Proof of Lemma F.1 Let RA be a reduction against the one-wayness of f .
Since f is an injective function, there exists no more than one x such that
f(x) = y. Let Ine (Exi, resp.) be the event that there exists no (a, resp.) x such
that f(x) = y. Since the black-box reduction only rewinds the adversary with the
same randomness, f and y are fixed in every invocation of A. Thus, if the event
Exi (Ine, resp.) happens in the first invocation, then the event Exi (Ine, resp.)
happens with probability 1 in the following rewindings. Then, define Ine (Exi,
resp.) as the event that Ine (Exi, resp.) happens in all the r+1 invocations of A.
Denote Goodi (i ∈ [r + 1]) as the event that Exi happens, the measurement of
A’s query in the i-th invocation returns m∗ such that Enc(pk,m∗) = c∗, and all
the measurement outputs of A’s queries in the previous i−1 invocations are not
m∗. Denote Bad as the event that Exi happens, and all the the measurement
outputs of A’s queries in the r + 1 invocations are not m∗.

Following the analysis in the proof of Theorem D.1, we have

AdvOW
f (RA) ≤ (r+ 1) · p+ Pr[RA ⇒ x∧ Ine] + Pr[Exi] ·Pr[RA ⇒ x|Exi∧Bad].

We give upperbounds of Pr[RA ⇒ x ∧ Ine] and Pr[Exi] · Pr[RA ⇒ x|Bad ∧
Exi] by following lemmas F.2 and F.3.
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Lemma F.2. There exists a meta-reduction MRR1 such that Pr[RA ⇒ x ∧
Ine] ≤ AdvOW

f (MRR1 ), and Time(R) ≈ Time(MRR1 ).

Proof. Let A1(f(x),Kb) be a trivial adversary against the hiding-style problem
that always returns 1 and does nothing else. It is obvious that when Ine happens,
both A and A1(f(x),Kb) just outputs 1, and Pr[RA ⇒ x ∧ Ine] = Pr[RA1 ⇒
x ∧ Ine].

Construct a meta reduction MRR1 (f(x1)) against the one-wayness of f as
follows,

1. Run RA1(f(x1)).
2. Simulate A1 for RA1 .
3. Return RA1 ’s output.

It’s easy to see that AdvOW
f (MRR1 ) = AdvOW

f (RA1). Since AdvOW
f (RA1) ≥ Pr[RA1 ⇒

x ∧ Ine], we have

Pr[RA ⇒ x ∧ Ine] ≤ AdvOW
f (MRR1 ).

Since Time(A1) is negligible, Time(MRR1 ) ≈ Time(R) + Time(A1) ≈ Time(R).
ut

Lemma F.3. There exists a meta-reduction MRR2 such that Pr[Exi] ·Pr[RA ⇒
x|Exi ∧Bad] ≤ ( 2m

2m−1 )r+1AdvOW
f (MRR2 ), and Time(R) ≈ Time(MRR2 ).

Proof. Let A2(f(x),Kb) be an adversary against the hiding-style problem as
follows,

1. Pick a real p such that 0 ≤ p ≤ 1.

2. Query the random oracle H with quantum state ψ′−1 =
∑
x,k 2−

m+n′
2 |x〉|k〉.

3. After the return of the random oracle H, output 1 with probability 1.

We note that under the condition Exi∧Bad, both measurement outcomes of A’s
query and A2’s query obey the uniform distribution over {x′ ∈ {0, 1}m : x′ 6= x}.
Thus, Pr[RA ⇒ x|Exi∧Bad] = Pr[RA2 ⇒ x|Exi∧Bad] due to the fact that R
just uses the information of the measurement outcome to break the one-wayness
of the underlying f .

Construct a meta reduction MRR2 (f(x2)) against the one-wayness of f as
follows,

1. Run RA2(f(x2)).
2. Simulate A2 for RA2 .
3. Return RA2 ’s output.

It is easy to see that for above A2 and MRR2 , Pr[Bad|Exi] = (1− 1
2m )r+1. Then,

we have

AdvOW
f (MRR2 ) = AdvOW

f (RA2) ≥ Pr[RA2 ⇒ x|Exi] · Pr[Exi]

≥ (1− 1

2m
)r+1 Pr[RA2 ⇒ x|Exi ∧Bad] · Pr[Exi]
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= (1− 1

2m
)r+1 Pr[RA ⇒ x|Exi ∧Bad] · Pr[Exi]

as we wanted. Since Time(A2) is negligible, Time(MRR2 ) ≈ Time(R)+Time(A2) ≈
Time(R). ut

G MRM technique for irreversible adversaries

Very recently, Kuchta et al. [37] give the following non-black-box OW2H lemma
with a linear loss.

Lemma G.1 ([37, Lemma 3.3](OW2H with MRM)). Let S ⊆ X be ran-
dom. Let G,H : X → Y be random functions satisfying ∀m /∈ S,G(m) = H(m).
Let z be a random value. (S,G,H, z may have arbitrary joint distribution.) Con-
sider a reversible24 oracle algorithm AO that makes at most q queries to O
(O ∈ {G,H}). Then, we can construct an algorithm DA(z) with access to both
G and H such that Time(DA) / 3Time(A), Space(DA) ≈ Space(A) and∣∣P 1

A − P 2
A

∣∣ ≤ 4qPD,

where
P 1
A = Pr[b′ = 1 : b′ ← AH(z)],
P 2
A = Pr[b′ = 1 : b′ ← AG(z)],

PD := Pr[S ∩ T 6= ∅ : T ← DG,H(z)].

In the proof of [37, Lemma 3.3], the algorithm D(z) is constructed by first

picking i
$← {1, . . . , q}, then running BG,Hi (z) and CG,Hi (z) to obtain TBi and

TCi
respectively, and finally outputting T = TBi

∪TCi
. (When A makes less than

i queries, D outputs ⊥/∈ X). BG,Hi (z) and CG,Hi (z) are defined as follows,

– Algorithm BG,Hi (z). This algorithm runs A(z) using the oracle H for the first
i-th queries, and G/H conditioned on an additional qubit b for the (i + 1)-

th query. After the (i + 1)-th query, BG,Hi (z) measures the qubit b. If b’s

measurement result is 1, then BG,Hi (z) measures A’s query input registers
and outputs the measurement result as TBi

.

– Algorithm CG,Hi (z). This algorithm has the same registers as the BG,Hi (z).

CG,Hi (z) first runs A(z) until the end. In particular, this algorithm responds
with H (G, resp.) for the first i (last q− i−1, resp.) oracle queries, and with
G/H conditioned on an additional qubit b for the (i + 1)-th oracle query.

Then, CG,Hi (z) performs the first-measurements on the qubits b and b′, where
b′ is A’s output qubit. If b’s measurement result is 0 and b′’s measurement
result is 1, CG,Hi (z) rewinds A by applying the reverses of quantum
gate operations that A performed earlier from the i+1-th oracle query
to the end. Finally, CG,Hi (z) performs a second-measurement on A’s (i+1)-th
query input registers and outputs the result as TCi

.

24 Although this reversibility is not explicitly stated by [37, Lemma 3.3], its proof
implicitly assumes AO to be reversible.
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As we can see, unlike the classical rewinding that restarts A with the same
randomness from the very beginning, the rewinding in lemma G.1 is performed
on the A’s internal quantum registers by applying the inverses of the quantum
gate operations that A performed earlier, which requires A’s code to be explic-
itly described and accessed. Thus, such a rewinding requires the algorithm A
reversible, which leads to the fact that the non-black-box OW2H with MRM
in [37] can only apply to specific reversible adversaries with strict reversible
implementation.

When proving security of FO-like KEMs, Kuchta et al. [37] instantiate the
algorithm A in lemma G.1 by the CCA adversary against KEM. However, most
CCA adversaries are irreversible since the decapsulation oracle can only be clas-
sically queried and CCA adversaries have to perform measurements on the quan-
tum registers to make classical queries. Moreover, a CCA adversary may perform
a mix of classical and quantum algorithms25. Thus, the proofs in [37] cannot cov-
er all the post-quantum CCA adversaries.

Next, we explicitly show how a mix of classical (might be irreversible) and
quantum algorithms (measurements may happens at anytime) can be simulated
by a unitary (reversible) quantum algorithm with final measurements.

Lemma G.2. Let A be an algorithm that alternately runs some classical and
quantum sub-algorithms and perform measurements at anytime. Let Event be
an arbitrary classical event, and z be a random value. Then, there is a quan-
tum algorithm Ã (the measurements are only performed in the end) such that

Time(Ã) / O(Time(A)), Space(Ã) / O(Space(A) + Time(A)), and

Pr[Event : A(z)] = Pr[Event : Ã(z)].

Proof. Let A be an algorithm that consists of T1 classical gate operations on
S1 classical registers, T2 quantum gate operations and T3 measurements on S2

quantum registers. Then Time(A) = T1 +T2 +T3 and Space(A) = S1 +S2. Note
that the quantum gate operations are essentially unitary, and the product of two
unitary operations is still unitary. Thus, we just need to show arbitrary classical
gate and quantum measurement can be simulated by unitary quantum gates and
final measurements.

Due to the reversibility of quantum gate operations, a classical gate opera-
tion can be simulated by quantum gate operations only if it is reversible. Luckily,
reversible simulation of irreversible computations have been well studied [63]. In
fact, any classical gate can be simulated by the reversible Fredkin gates (or Tof-
foli gates) [59, Chap. 3.2.5]. In particular, T1 classical gate operations on S1

classical registers can be simulated by O(T1) Fredkin gates on O(T1 +S1) quan-
tum registers. Now, we consider the measurements performed at intermediate
stages. If the intermediate measurement are followed by a classically controlled

25 While a universal quantum computer can do anything any classical computer can,
a mix of classical and quantum computations are always used in reality due to the
practical advantages, please see Qiskit texbook at https://qiskit.org/textbook/

ch-algorithms/defining-quantum-circuits.html
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operations, then this intermediate measurement can commute with the quan-
tum gates according to the principle of deferred measurement [59, Sec. 4.4]. In
addition, it turns out that measuring a qubit can be simulated by applying a
CNOT from that qubit to an another auxiliary quibit [64]. That is, all interme-
diate measurements can be faked by unitary operations. Therefore, intermediate
measurements can always be moved to the end or simulated with the same time
by adding at most O(T3) auxiliary quantum registers. Note that these simulated
measurements do not affect the probability distribution of the outcomes.

Thus, we construct an algorithm Ã that does the same operations as A does
when quantum gate operations are performed, simulats A’s operations with the
aforementioned methods when classical gate operations and quantum measure-
ments are applied. Then, it is easy to see Ã is the desired quantum algorithm
where all the operations are unitary except the final measurements. ut

Now, we explain how prior black-box OW2H lemmas (e.g., Lemma 6.1) can
apply to irreversible adversaries. A proof for an irreversible adversary A consists
of three steps, and is usually overlooked.

1. Irreversible A is replaced by a reversible Ã that can perfectly simulate A.
2. Construct a reduction R that runs a reversible Ã to solve the one-wayness

problem with the desired OW2H bound.
3. Replace Ã by A for the reduction R.

In prior OW2H lemmas [38, 26], since the reduction (e.g., B in Lemma 6.1) is

black-box and does not depend on Ã ’s internals, the step 3 can be realized.
But, for the OW2H lemma with MRM, the reduction (i.e., D in Lemma G.1)

is non-black-box and depends on Ã’s reversibility. Thus, the step 3 can not be
accomplished for the OW2H lemma with MRM [37].

Combing lemmas G.1 and G.2, we can implement the first two steps and
obtain the following lemma.

Lemma G.3 (OW2H with MRM for irreversible algorithms). Let S ⊆
X be random. Let G,H : X → Y be random functions satisfying ∀m /∈ S,G(m) =
H(m). Let z be a random value. (S,G,H, z may have arbitrary joint distri-
bution.) Consider an oracle algorithm AO (not necessarily reversible) that
makes at most q queries to O (O ∈ {G,H}). Then, we can construct an algo-

rithm D(z) with access to both G and H such that Time(DÃ) ≈ O(Time(A)),

Space(DÃ) ≈ O(Space(A) + Time(A)) and∣∣P 1
A − P 2

A

∣∣ ≤ 4qPD,

where Ã is the unitary version of A using the method in lemma G.2, the defini-
tions of P 1

A, P 2
A and PD are the same as lemma G.1.

Remark 7. Note that in the application of Lemma G.3 we need to ensure that
all the oracles accessed by Ã can be efficiently simulated such that Ã can make
quantum queries, which is not required by the known black-box OW2H lemmas.
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For example, when using Lemma G.3 to prove the CCA security of KEM, the
reduction R needs to simulate a quantum decapsulation oracle that is allowed to
make quantum queries. That is, in order to use Lemma G.3, one essentially re-
quires a qCCA proof instead of a CCA proof. Fortunately, a simple modification
of the current CCA proofs for FO-like KEMs in [22–27, 37] can be a qCCA proof,
see [29]. However, for general cases, a CCA proof might not imply a qCCA proof
due to the separation of CCA security and qCCA security given by Zhandry [65].
Thus, for FO-like KEMs, one can slightly modify the proofs in [37], replace the
application of Lemma G.3 by Lemma G.1, then derive non-black-box security
reductions that can cover arbitrary adversaries with arbitrary implementations.

Remark 8. We note that such reductions have a linear security loss [37], but
it will introduce a linear space expansion with the adversary’s running time.
Such a space expansion is introduced by the simulation of irreversible compu-
tation. There are some other approaches that can reduce the reduction’s space
expansion, but will increase the reduction’s running time. That is, there is a
tradeoff between running time and memory space when we reversibly simulate
irreversible computation [63].
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