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Abstract. This work presents sigma protocols to prove knowledge of:
– a solution to a system of quadratic polynomials,
– a solution to an instance of the Permuted Kernel Problem and
– a witness for a variety of lattice statements (including SIS).

Our sigma protocols have soundness error 1/q′, where q′ is any number
bounded by the size of the underlying finite field. This is much better
than existing proofs, which have soundness error 2/3 or (q′ + 1)/2q′.
The prover and verifier time of our proofs are O(q′). We achieve this by
first constructing so-called sigma protocols with helper, which are sigma
protocols where the prover and the verifier are assisted by a trusted
third party, and then eliminating the helper from the proof with a “cut-
and-choose” protocol. We apply the Fiat-Shamir transform to obtain
signature schemes with security proof in the QROM. We show that the
resulting signature schemes, which we call the “MUltivariate quaDratic
FIat-SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homo-
geneous linear SYstem FIat-SHamir” scheme (SUSHSYFISH), are more
efficient than existing signatures based on the MQ problem and the Per-
muted Kernel Problem. Our proof system can be used to improve the
efficiency of applications relying on (generalizations of) Stern’s protocol.
We show that the proof size of our SIS proof is smaller than that of
Stern’s protocol by an order of magnitude and that our proof is more
efficient than existing post-quantum secure SIS proofs.

Keywords: Zero-Knowledge, Post-Quantum digital signatures, SIS, Mul-
tivariate cryptography, Permuted Kernel Problem, Silly acronyms

1 Introduction

Zero-knowledge proofs of knowledge and more specifically Sigma protocols are
a technique in cryptography that allows a prover to prove to a verifier that they
know a value x that satisfies some relation, without revealing any additional
information about x [19]. Sigma protocols are useful to build a wide variety of
cryptographic applications, including digital signatures, group/ring signatures,



e-voting protocols, and privacy-preserving cryptocurrencies. In some cases these
sigma protocols are not completely sound, meaning that a cheating prover can
convince a verifier he knows some value, without actually knowing it. If a prover
can do this with a probability at most ε, then ε is said to be the soundness error
of the sigma protocol. The soundness of a sigma protocol can be amplified; by
repeating the protocol k times the soundness error of the entire protocol becomes
εk. Therefore, if one repeats a protocol with soundness error ≤ 1 often enough,
one can obtain a sound protocol. However, if a large number of repetitions is
required, this makes the protocol less efficient and makes applications of the
protocol less practical. This is the case for Stern’s protocol [34] and the sigma
protocols underlying some post-quantum signature schemes [14, 12, 10]. The goal
of this paper is to develop new variants of these sigma protocols that have a
smaller soundness error, such that fewer repetitions are necessary and such that
the overall efficiency of the protocols is improved.

Zero-Knowledge based Post-Quantum signatures. One way to construct a
signature scheme is to first construct a zero-knowledge identification scheme and
then make it into a non-interactive signature scheme with a transformation such
as the Fiat-Shamir transform [17] or the Unruh transform [35]. Looking at the
NIST Post-Quantum Standardization project, three of the Round II signature
schemes, MQDSS, Picnic, and Dilithium use this approach. MQDSS [13] uses
a zero-knowledge proof that, given a multivariate quadratic map P : Fnq → Fmq
proves knowledge of a solution s ∈ Fnq such that P(s) = 0. Picnic [12] uses an
identification scheme constructed using the “MPC-in-the-head” technique [20]
that relies on symmetric primitives. Dilithium is a lattice-based signature scheme
that relies on the Fiat-Shamir with aborts technique [29]. Another example
is PKP-DSS [10], which uses a zero-knowledge proof introduced by Shamir in
1989 for proving knowledge of a solution of an instance of the Permuted Kernel
Problem (PKP) [33]. This means that, given a matrix A ∈ Fm×nq and a vector
v ∈ Fnq , the proof system can prove knowledge of a permutation π ∈ Sn such
that Avπ = 0, where vπ is the vector obtained by permuting the entries of the
vector v with the permutation π. A drawback of these schemes (with exception
of Dilithium) is that the underlying identification schemes have a large sound-
ness error, so a large number of parallel repetitions are required to get a secure
signature scheme. This increases the signature sizes and the signing and verifi-
cation times. For example, the protocol underlying the Picnic signature scheme
has a soundness error of 2

3 and hence requires k = 219 repetitions to get the
soundness error down to less than 2−128.

Recently, Katz et al. [24] improved on the approach of Picnic by building a
zero-knowledge proof from MPC in the preprocessing model, where the parties
can use some auxiliary data that was generated during a preprocessing phase.
The advantage of moving to the new MPC protocol is that it allows for secure
computation with dishonest majority with an arbitrary number of parties n,
which results in a zero-knowledge proof with a soundness error of 1

n . Hence, fewer
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parallel rounds are required to get a secure signature scheme. A “cut-and-choose”
protocol is used to deal with the preprocessing phase, which makes signing and
verification slower compared to the original Picnic scheme. This new signature
scheme is called Picnic2 and is, together with the original Picnic scheme, one of
the Round 2 candidates of the NIST PQC standardization project.

Stern’s protocol. In 1993, Stern proposed a code based sigma protocol [34].
For a publicly known parity check matrix H ∈ Fm×n2 , syndrome s ∈ Fm2 and
weight t, Stern’s zero-knowledge proof can prove knowledge of an error vector
e ∈ Fn2 with hamming weight t such that He = s. Internally, Stern’s protocol is
very similar to Shamir’s protocol for PKP, and in fact, Stern’s protocol general-
izes easily to proving knowledge of a witness of the inhomogeneous PKP (IPKP)
relation. The motivation behind Stern’s protocol was to obtain a code-based
identification scheme (and hence also a signature scheme with the Fiat-Shamir
transform). However, Stern’s protocol has been used extensively in lattice-based
cryptography, because the IPKP relation can be bootstrapped to prove knowl-
edge of a solution to the SIS problem, knowledge of an LWE secret and more
complex lattice statements such as proving that a given LWE ciphertext is a
valid encryption of a known message satisfying certain constraints [28]. This led
to the construction of many advanced primitives from lattices, such as identity-
based identification schemes, group signatures (with verifier local revocation),
logarithmic size ring signatures and group encryption [28, 25, 27, 26]. Improving
Stern’s protocol is an important and long-standing open problem because this
would improve the efficiency of all these constructions.

Contributions. In this paper we generalize the idea behind Picnic2 [24] to
something we call “sigma protocols with helper”. Concretely, a sigma protocol
with helper is a 3-party protocol between a prover, a verifier and a trusted third
party called the “helper”. The protocol begins with the helper who honestly
generates some auxiliary information that he sends to the verifier. The helper also
sends the randomness seed that he used to generate his randomness to the prover.
Then, the protocol resumes like a normal sigma protocol. A sigma protocol
with helper is similar to a sigma protocol in the Common Reference String
(CRS) model, except that the trusted third party sends some secret information
(the randomness seed) to the prover and that the trusted third party needs to
participate in every execution, rather than just doing the trusted setup once.

We then construct a sigma protocol with helper to prove knowledge of a
solution of a system of quadratic equations and a sigma protocol with helper
for proving knowledge of a solution of an inhomogeneous PKP instance (i.e. the
same relation as the Shamir and Stern protocols). Our proofs have soundness
error 1

q′ and prover time Θ(q′), where q′ is any number bounded by the size of
the finite fields that are used. This soundness error is much better than exist-
ing proofs which have soundness error 1

2 + 1
2q or soundness error 2/3. We then
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show how to remove the helper with a “cut-and-choose” protocol, analogous to
the approach used by Katz et al. [24]. This transformation gives rise to stan-
dard sigma protocols (i.e. without helper) which can then be transformed into
signature schemes using the Fiat-Shamir transform or used as a more efficient
variant of Stern’s protocol as a building block for advanced privacy-preserving
constructions.

Note that, even though the soundness error is q′, it is not possible to do
one-shot proofs if the field size is exponential because the prover time is Θ(q′).
However, we can still realize a large practical improvement over existing proofs:
The proof size of existing proofs is O(λX), where λ is the security parameter
and X is the proof size of a single iteration of the protocol. In comparison, the
proof size of our proofs is O( λ

log q′ (X + log q′ ∗ |seed|)), because the number of

iterations is now O( λ
log q′ ), and each iteration incurs an overhead of log q′|seed| (

a path in a Merkle tree of size q′). In practice, the proof size is often dominated
by the O(λ|seed|) term even for small values of q′. Since X is usually much larger
than |seed| = λ, this gives a large improvement in practice. X and |seed| are both
linear in λ, so the improvement factor remains the same at higher security levels.

We apply the Fiat-Shamir transform to our Sigma protocol for the MQ rela-
tion to get a signature scheme whose security reduces to the problem of finding
a solution to a random system of multivariate quadratic polynomials. We call
this the “MUltivarite quaDratic FIat-SHamir” scheme (MUDFISH). MUDFISH
is more efficient than MQDSS, the existing signature scheme based on the same
hard problem. At NIST security level 1, the MUDFISH signatures are roughly
half as big as the MQDSS signatures, while our constant-time MUDFISH im-
plementation is roughly twice as fast as the optimized MQDSS implementa-
tion that was submitted to the NIST PQC standardization project. Using the
Fiat-Shamir transform on our sigma protocol for the PKP relation, we obtain
the “ShUffled Solution to Homogeneous linear SYstem FIat-SHamir” scheme
(SUSHSYFISH), a signature scheme whose security reduces to finding a solu-
tion of a random PKP instance. SUSHSYFISH has smaller signatures than PKP-
DSS, the existing scheme based on the PKP problem while being only slightly
slower. Moreover, unlike MQDSS and PKP-DSS, the MUDFISH and SUSHSY-
FISH signature schemes are based on sigma protocols (i.e. 3-round proofs) rather
than 5-round proofs, which results in tighter security proofs in the ROM and
even allows us to use the recent results of Don et. al. [16] to prove their secu-
rity in the QROM. A comparison of the signature sizes and signing speed of
MUDFISH and multiple instantiations of SUSHSYFISH with those of existing
Post-Quantum Fiat-Shamir signatures is given in Fig. 1. Our implementation is
available on GitHub [9].

We can improve the lattice-based constructions such as identity-based iden-
tification schemes, group signatures (with verifier local revocation), logarithmic
size ring signatures and group encryption that rely on Stern’s protocol [28, 25,
27, 26], by replacing Sterns protocol by our more efficient proof for IPKP. In par-
ticular, we make a case study for the SIS problem, where we see that with our
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proof system, the proof size is a factor 10 smaller than with Stern’s protocol. And
smaller than proof sizes arising from other post-quantum exact proofs for SIS,
such as using “MPC-in-the-head” techniques [5] or an algebraic approach [11].
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Fig. 1. Comparison of MUDFISH and SUSHSYFISH to existing signatures based on
the MQ problem (MQDSS) and PKP problem (PKP-DSS). Cycle counts of picnic and
MQDSS are taken from the NIST Round2 submission packages (the optimized, but not
AVX2 optimized implementations, updated to take the attack of Kales and Zaverucha
into account [23]), cycle counts for PKP-DSS are taken from [10].

Roadmap In sect. 2 we lay out some basic preliminaries required for the re-
mainder of the paper. In Sect. 3 we formalize the notion of a sigma protocol
with helper, then we construct sigma protocols with helper for the MQ problem
and the Permuted Kernel Problem in sections 4 and 5. In Sect. 6 we show how
to convert a sigma protocol with helper in a normal zero-knowledge proof (with-
out helper). Then, we convert our zero-knowledge proofs into signature schemes
in Sect. 8, where we also briefly discuss our proof-of-concept implementations.
Finally, in Sect. 9 we show how to use the IPKP proof to construct a zero-
knowledge proof for the SIS relation, and we compare our SIS proof to existing
SIS proofs.
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2 Preliminaries

2.1 Hard problems

We introduce (variants of) the Permuted Kernel Problem (PKP), the Multivari-
ate quadratic problem (MQ) and the Short Integer Solution problem (SIS), three
computationally hard problems that are used in the remainder of the paper.

Permuted Kernel Problem (PKP/IPKP). Given a matrix A ∈ Fm×nq and
a vector v ∈ Fnq defined over a finite field Fq, the Permuted Kernel Problem is to
find a permutation π ∈ Sn, such that Avπ = 0, where vπ is the vector obtained
by permuting the entries of v with the permutation π, that is, the vector defined
by (vπ)i = vπ(i). There is also a inhomogeneous version of the problem, where
given A ∈ Fm×nq , v ∈ Fnq and a target vector t ∈ Fmq , the task is to find a
permutation π ∈ Sn, such that Avπ = t.

The permuted kernel problem is a classical NP-Hard problem that was first
introduced in cryptography by Shamir, who designed an identification scheme,
whose security reduces to the problem of solving a random PKP instance [33].
Several works have introduced new algorithms and time-memory trade-offs for
solving the PKP [30, 3, 18, 21], but solving the problem remains prohibitively
difficult, even for small parameters (see Table 3).

Subgroup IPKP The Subgroup Inhomogeneous Permuted Kernel Problem
(SIPKP) is the same as the IPKP problem, with the additional constraint that
the solution is a member of a certain subgroup of Sn. Concretely, a solution to
the a SIPKP instance (A,v, t, H), with A ∈ Fm×nq ,v ∈ Fnq , t ∈ Fmq and H a
subgroup of Sn is a permutation π ∈ H such that Avπ = t.

Multivariate Quadratic (MQ). Given a multivariate quadratic map P :
Fnq → Fmq of m quadratic polynomials in n variables defined over a finite field
Fq, the MQ problem asks to find a solution s ∈ Fnq such that P(s) = 0. The
best known methods for solving this problem rely on Grobner basis methods or
linearization methods in combination with guessing a number of the variables [8,
22]. This is the central problem underlying most of multivariate cryptography,
and for random systems F , the hardness of the problem is well understood.

Short Integer Solution (SIS/ISIS). The well known Short Integer Solution
problem, introduced in the seminal work of Ajtai [1] asks to, given a matrix
A ∈ Zn×mq , and a bound β, find a vector x, such that Ax = 0 whose norm is
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bounded by ||x|| ≤ β. There is also a inhomogenues version of the problem (ISIS),
where, given A ∈ Zn×mq , t ∈ Znq and a bound β the taks is to find x ∈ Zmq such
that Ax = t, again subject to ||x|| ≤ β. The problem enjoys reductions from
worst case lattice problems, and is one of the fundamental problems underlying
lattice-based cryptography.

2.2 Commitment schemes

Many sigma protocols, including ours, depend heavily on secure non-interactive
commitment schemes. In the remainder of the paper we assume a non-interactive
commitment function Com : {0, 1}λ × {0, 1}? → {0, 1}2λ, that takes as input λ
uniformly random bits bits, where λ is the security parameter, and a message
m ∈ {0, 1}? and outputs a 2λ bit long commitment Com(bits,m).

Intuitively, the commitment scheme should not reveal anything the message
it commits to, and it should not be possible to open the commitment to some
different message. These properties are formalized as follows:

Definition 1 (Computational binding.). For an adversary A we define its
advantage for the commitment binding game as

AdvBindingCom (A) = Pr[Com(bits,m) = Com(bits′,m′)|(bits,m, bits′,m′)← A(1λ)]

We say that Com is computationally binding if for all polynomial time algorithms
A, the advantage AdvBindingCom (A) is a negligible function of the security parameter
λ.

Definition 2 (Computational hiding.). For an adversary A we define the
advantage for the commitment hiding game for a pair of messages m,m′ as

AdvHidingCom (A,m,m′) =

∣∣∣∣ Pr
bits←{0,1}λ

[1 = A(Com(bits,m)]− Pr
bits←{0,1}λ

[1 = A(Com(bits,m′)]

∣∣∣∣
We say that Com is computationally hiding if for all polynomial time algorithms
A, and every pair of messages m,m′ the advantage AdvHidingCom (A,m,m′) is a neg-
ligible function of the security parameter λ.

In our implementations, we use SHAKE256 as commitment function. If we
model SHAKE256 as a quantum random oracle, then it satisfies the computa-
tional binding and hiding properties.

3 Sigma protocols with helper

This paper introduces two Sigma protocols with helper, which are like normal
sigma protocols, with the addition of a trusted third party (called the helper)

7



that runs a setup algorithm based on a random seed at the beginning of each
execution of the protocol. The helper then sends some auxiliary information to
the verifier and sends the seed value that was used to seed the setup algorithm
to the prover. A more formal definition is as follows:

Definition 3 (Sigma protocol with helper). A protocol is a sigma protocol
with helper for relation R with challenge space C if it is of the form of Fig. 2
and satisfies:

– Completeness If all parties (Helper, Prover and Verifier) follow the proto-
col on input (x,w) ∈ R, then the verifier always accepts.

– 2-Special soundness. From an adversary A that outputs with noticeable
probability two valid transcripts (x, aux, com, ch, rsp) and (x, aux, com, ch′, rsp′)
with ch 6= ch′ and where aux = Setup(seed) for some seed value seed (not
necessarily known to the extractor) one can efficiently extract a witness w
such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge. There exists a PPT simula-
tor S that on input x, a random seed value seed and a random challenge ch
outputs a transcript (x, aux, com, ch, rsp) with aux = Setup(seed) that is com-
putationally indistinguishable from the probability distribution of transcripts
of honest executions of the protocol on input (x,w) for some w such that
(x,w) ∈ R, conditioned on the auxiliary information being equal to aux and
the challenge being equal to ch.

4 Proving knowledge of a solution to a system of
quadratic equations

Two zero-knowledge proofs to prove knowledge of a solution of a system of mul-
tivariate quadratic equations over a finite field Fq were proposed by Sakumoto et
al. [32]. The first proof is a 3-round protocol which has soundness error 2

3 , while
the second proof is a 5-round protocol with soundness error 1

2 + 1
2q , where q is

the size of the finite field over which the system of polynomials is defined. The
MQDSS [13] signature scheme is obtained by applying the Fiat-Shamir trans-
form to the 5-round protocol of Sakumoto et al. Because the soundness error
of 1

2 + 1
2q is rather big, and because the Fiat-Shamir transformation does not

tightly preserve security for 5-round protocols [23] a large number (e.g. 184 for
the NIST security level I parameter set) of parallel rounds is required to obtain
a secure signature scheme.

In this section, we present a sigma protocol with helper to prove knowledge of
a solution of a system of multivariate quadratic equations. The scheme improves
the knowledge error to only 1/q, but this comes at the cost of having an honest

8



Helper(x)

seed
$←− {0, 1}λ

aux← Setup(seed)
Send seed to the prover and aux to the verifier.

Prover(x,w, seed) Verifier(x, aux)

com,P state← P1(x,w, seed)

com−−−−→
ch

$←− C

rsp← P2(P state, ch)

ch←−−−−−

rsp−−−−−→
return V (x, aux, com, ch, rsp)

Fig. 2. The structure of a sigma protocol with trusted setup.

party that helps the prover and the verifier in their execution of the protocol.
Similar to the schemes of Sakumoto et al. the new protocol relies on the fact that
if F : Fnq → Fnq is a multivariate quadratic map of m polynomials in n variables,
then the polar form of F , which is defined as

G(x,y) := F(x + y)−F(x)−F(y) (1)

is linear in both x and y.

To prove knowledge of a secret s such that F(s) = v the protocol goes as
follows: During the first phase the helper picks a random vector r0 and commits
to linear secret sharings t + tc = cr0, e + ec = cF(r0) for each c ∈ Fq. These
commitments are public auxiliary information which the helper sends to the
verifier. The helper also sends the seed that he used to generate his randomness
to the prover. Then, the prover publishes the masked secret r1 = s − r0 and
commits to the value of e +G(r1, t). Finally the verifier challenges the prover to
reveal eα and tα for a random choice of α ∈ Fq and checks whether the following
equation, which is equivalent to Eqn. 1, holds.

e + G(r1, t) = c (F(s)−F(r1))− ec − G(r1, tc) , ∀c ∈ Fq (2)

A more detailed version of the protocol is displayed in Fig. 3.

Theorem 1. Suppose the used commitment scheme is computationally binding
and computationally hiding, then the protocol of Fig. 3 is a sigma protocol with
trusted setup as in definition 3 with challenge space Fq.
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Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

Completeness: The fact that in a honest execution of the protocol x =
e + G(r1, t) follows from Eqn. 2, so completeness follows immediately.

2-Special Soundness: Suppose an extractor is given two transcripts
(aux, com, α, (r, rα, r1, eα, tα)), (aux, com, α, (r′, r′α, r

′
1, eα′ , tα′)) with α 6= α′ that

are accepted by the verifier and such that aux = Setup(seed) (for some seed value
unknown to the extractor). Then we show how to extract a witness s such that
P(s) = v if the binding of the commitments does not fail.

Let x := α(v−F(r1))−eα−G(r1, tα) and x′ := α′(v−F(r′1))−eα′−G(r′1, tα′),
then the verifier only accepts if we have com = Com(r, r1,x) = Com(r′, r′1,x

′),
so the binding property of Com implies that r1 = r′1 and x = x′.

Even though the extractor does not know e, t, r0 or the commitment random
strings {rc | c ∈ Fq}, the extractor still knows that

aux = {Com(̃rc, (cF(r0)− e, cr0 − t)) | c ∈ Fq}

for some values of e, t, r0 and {r̃c | c ∈ Fq}, because the helper computed aux =
Setup(seed) honestly.

The verifier only accepts both transcripts if Com(̃rα, (αF(r0)−e, αr0−t)) =
Com(rα, (eα, tα)) and Com(̃rα′ , (α

′F(r0)− e, α′r0 − t)) = Com(r′α, (eα′ , tα′)), so
the binding property of Com implies that

αF(r0)− e = eα , αr0 − t = tα ,

α′F(r0)− e = eα′ and α′r0 − t = tα′ .

Substituting this into x = x′ we get

α(v−F(r1))+e−αF(r0)−G(r1, αr0−t) = α′(v−F(r1))+e−α′F(r0)−G(r1, α
′r0−t) ,

which simplifies to

(α− α′) (F(r1) + F(r0) + G(r0, r1)− v) =

(α− α′) (F(r0 + r1)− v)) = 0 ,

so r0 + r1 = tα−tα′
α−α′ + r1 is a solution to F(x) = v. Notice that all the values

on the right hand side of this equation are included in the 2 transcripts, so
extracting the solution from the two transcripts is trivial.

Special honest-verifier zero-knowledge: Define a simulator S, that on
input v, a random seed value seed and a random challenge α ∈ Fq does the
following things:

1. recompute aux, rα, eα and tα from seed.
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2. pick a uniformly random vector u ∈ Fnq .
3. compute fα,eα,tα(u), where fα,eα,tα(x) := α(v −F(x))− eα − G(x, tα).
4. produce commitment randomness r and a commitment com′ to (u, fα,eα,tα(u)) .
5. output (aux, com′, α, (r, rα,u, eα, tα)).

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets u equal to s− r0 rather than a uniformly random value.
It is clear that (α, r, rα,u, eα, tα) and (α, r, rα, s− r0, eα, tα) are both uniformly

distributed in Fq×{0, 1}2λ×
(
Fnq
)3

and hence follow the same distribution. Since
com and comα are completely determined by (α, r, rα, s−r0, eα, tα) it follows that
(comα, com

′, α, r, rα,u, eα, tα) and (comα, com, α, r, rα, s − r0, eα, tα) also follow
the same distribution. Finally, since the commitments comc6=α are never opened,
it follows from the hiding property of the commitment scheme with the standard
hybrid argument that (aux, com′, α, r, rα,u, eα, tα) and (aux, com, α, r, rα, s−r0, eα, tα)
are computationally indistinguishable.

5 Proving knowledge of a solution to a (inhomogeneous)
PKP instance

In this section we give a Sigma protocol with helper with challenge space Fp
to prove knowledge of a solution for an inhomogeneous PKP instance, i.e. given
A,v, t our proof system proves knowledge of a permutation π such that Avπ = t.
The soundness error of our proof is only 1/p, which is much better than the 5-
round proof of Shamir, which has a soundness error of 1

2 + 1
2p [33], and Stern’s

3-round protocol, which has a soundness error of 2/3 [34].

To prove knowledge of a solution π to the instance (A,v, t) the protocol goes
as follows: The helper picks a random vector r ∈ Fnp , and a random permutation
σ ∈ Sn, it then commits to r + cvσ for all values of c ∈ Fp. The helper sends
these commitments as public auxiliary information to the verifier, and he sends
the seed that he used to generate his randomness to the prover. Then the prover
sends ρ = πσ−1 to the verifier and commits to the value of Arπσ−1 . Finally, the
verifier challenges the prover to reveal x = r+αvσ for a random choice of α. Once
the prover reveals x the verifier checks if Axρ − αt = A (rπσ−1 + αvπ) − αt =
Arπσ−1 . For a more detailed description of the protocol we refer to Fig. 4.

Theorem 2. Suppose the used commitment scheme is computationally binding
and computationally hiding, then the protocol of Fig. 4 is a sigma protocol with
trusted setup as in definition 3 with challenge space Fp.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:
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Helper(F)

seed
$←− {0, 1}λ

Generate e ∈ Fmq and t, r0 ∈ Fnq from seed.
for each c in Fq do

ec ← cF(r0)− e
tc ← cr0 − t
Generate commitment randomness rc ∈ {0, 1}λ from seed.
comc ← Com(rc, (ec, tc))

end for
aux← [comc| for c ∈ Fq]
Send seed to the prover and aux to the verifier.

Prover(F , s, seed) Verifier(F ,v, aux)

Regenerate e, t, r0 from seed.
r1 ← s− r0
r← {0, 1}λ
com← Com(r, (r1, e + G(r1, t)))

com−−−−→
α

$←− Fq

Recompute rα, eα, tα from seed.

α←−−−−

(r,rα,r1,eα,tα)−−−−−−−−−→
x← α(v−F(r1))−eα−G(r1, tα)
b1 ← com = Com(r, (r1,x))
b2 ← comα = Com(r, (eα, tα))
return b1 ∧ b2

Fig. 3. A sigma protocol with helper for proving knowledge of a solution to the MQ
problem.
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Completeness: In an honest execution of the protocol we have

y = Axρ − αt = A (rπσ−1 + αvπ)− αt ,

so if π is a solution to the PKP instance (A,v,t), then Avπ = t, which means
y = Arπσ−1 and hence the completeness follows from the completeness of the
commitment scheme.

2-Special Soundness: Given two transcripts (aux, com, α, (r, rα, ρ,x)) and
(aux, com, α′, (r′, r′α, ρ

′,x′)) with α 6= α′ that are accepted by the verifier and such
that aux =Setup(seed), for some value of seed (not necessarily known to the ex-
tractor). Then, if the binding of the commitment scheme does not fail (which, by
assumption, happens with overwhelming probability), one can efficiently extract
a witness π such that Avπ = t.

Let y := Axρ − αt and y′ := Ax′ρ′ − α′t, then the verifier only accepts if
we have com = Com(r, (ρ,y)) = Com(r′, (ρ′,y′)), so the binding property of Com
implies that ρ = ρ′ and y = y′.

Note that even though the extractor does not know r, σ or any of the com-
mitment randomness strings rc, he still knows that aux is of the form

aux = {Com(rc, r + cvσ) | c ∈ Fq}

for some values of r, σ and {rc}c∈Fq , because the helper computed aux =Setup(seed)
honestly.

The verifier only accepts both transcripts if Com(rα, r + αvσ) = Com(rα,x)
and Com(rα′ , r + α′vσ) = Com(rα′ ,x

′), so the binding property of Com implies
that x = r + αvσ, and that x′ = r + α′vσ.

Putting everything together we get

A (rρ + αvρσ)− αt = A (rρ + α′vρσ)− α′t

which simplifies to

(α− α′) (Avρσ − t) = 0,

so ρσ is a solution to the instance of the permuted kernel problem. The value
of ρ is known to the extractor because it is included in the transcripts, and the
value of σ can be deduced from α, α′,x,x′ and v, because x− x′ = (α− α′)vσ.
(If the entries of v are not unique, multiple values of σ are possible, but they
will all give valid solutions to the PKP problem.)

Special honest-verifier zero knowledge: Define a simulator S, that on
input A,v, a random seed value seed and a random challenge α ∈ Fp does the
following things:

1. recompute aux, rα and x = r + αvσ from seed.
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2. pick a uniformly random permutation τ ∈ Sn.
3. produce commitment randomness r, and a commitment com′ to (τ,Axτ ).
4. output (aux, com′, α, (r, rα, τ,Axτ )).

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets ρ equal to πσ−1 rather than a uniformly random value.
It is clear that (α, r, rα, τ,Axτ ) and (α, r, rα, ρ,Axρ) are both uniformly dis-
tributed in Fq × {0, 1}2λ × Sn × Fnq and hence follow the same distribution.
Since com and comα are completely determined by (α, r, rα, ρ,Axρ) it follows
that (comα, com

′, α, r, rα, τ,Axτ ) and (comα, com, α, r, rα, ρ,Axρ) also follow the
same distribution. Finally, since the commitments comc6=α are never opened, it
follows from the hiding property of the commitment scheme and the standard hy-
brid argument that (aux, com′, α, (r, rα, τ,Axτ )) and (aux, com, α, (r, rα, ρ,Axρ))
are computationally indistinguishable.

6 Removing the helper

In this section, we show how to transform a Sigma protocol with helper into
a standard zero-knowledge proof of knowledge (without helper). We use the
same “Cut-and-choose” approach that was used by Katz et al. to get rid of the
preprocessing phase [24].

The idea is to let the prover pick k seeds seed1, · · · , seedk and generate k
sets of auxiliary information auxi = Setup (seedi) which the prover sends to the
verifier, along with the first messages of the protocol comi = P1(x,w, seedi) for
all i from 1 to k. The verifier then picks a random index I and a single challenge
ch ∈ C and sends this to the prover. The prover then sends seedi for i 6= I as well
as a response rsp to the challenge at index I. Using the seeds, the verifier then
checks if all the auxiliary information auxi 6=I was generated properly and checks
if rsp is a correct response to the challenge at index I. The details of the protocol
are displayed in Fig. 5. We prove that this is a honest-verifier zero knowledge
protocol with soundness error max( 1

k ,
1
|C| ).

Theorem 3. Let (Setup, P1, P2, V ) be a sigma protocol with helper and chal-
lenge space C, if the used commitment scheme is hiding, then the protocol of
Fig. 5 is an honest-verifier zero knowledge proof of knowledge with challenge
space {1, · · · , k} × C and max(k, |C|) + 1-special soundness (and hence it has
soundness error max( 1

k ,
1
|C| )).

Proof. We prove completeness, special soundness and special honest-verifier zero
knowledge separately.

Completeness: Follows immediately from the completeness of the underly-
ing Sigma protocol with trusted setup.
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Helper(v)

seed
$←− {0, 1}λ

Generate r ∈ Fnp and σ ∈ Sn from seed.
for each c in Fp do

Generate commitment randomness rc ∈ {0, 1}λ from seed.
comc ← Com(rc, r + cvσ)

end for
aux← [comc| for c ∈ Fp]
Send seed to the prover and aux to the verifier.

Prover(A,v, π, seed) Verifier(A,v, t, aux)

Regenerate r, σ from seed.
ρ← πσ−1

r← {0, 1}λ
com← Com(r, (ρ,Arρ))

com−−−−−→
α

$←− Fq

Recompute rα and
x = r + αvσ from seed.

α←−−−−

(r,rαρ,x)−−−−−→
y← Axρ − αt
b1 ← com = Com(r, (ρ,y))
b2 ← comα = Com(rα,x)
return b1 ∧ b2

Fig. 4. A sigma protocol with helper for proving knowledge of a solution to the inho-
mogeneous PKP problem.
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(max(k, |C|) + 1)-special soundness: If there are max(k, |C|) + 1 valid tran-
scripts then there are at least two valid transcripts with different values of I,
which implies that all k setups were done honestly. The pigeon hole principle
says there are at least two accepted transcripts with the same value of I, but
different ch, so the extractor can use special soundness of the underlying Sigma
protocol with trusted setup to extract a witness w.

Special Honest-verifier zero-knowledge: On input (I, ch), the simula-
tor generates all the setups honestly, and commits to random dummy values to
create the commitments comi6=I . The simulator then uses the simulator of the
underlying sigma protocol with trusted setup to simulate the transcript at in-
dex I. Indistinguishability follows from the hiding property of the commitment
scheme and the honest-verifier zero-knowledge property of the underlying sigma
protocol with trusted setup.

Prover Verifier

for i ∈ {1, · · · , k} do

seedi
$←− {0, 1}λ

auxi ←Setup(seedi)
comi ← P1(x,w, seedi)

end for

auxi,comi∀i−−−−−−−→
I

$←− {1, · · · , k}
ch

$←− C

rsp← P2(x,w, seedI , com, ch)

(I,ch)←−−−−−−−

seedi∀i 6=I,rsp−−−−−−−−→
if ∃i 6= I : auxi 6=Setup(seedi)
then

return 0
end if
return V (x, aux, com, ch, rsp)

Fig. 5. A zero knowledge proof (without trusted setup) from a Sigma protocol with
trusted setup.

7 Optimizations

In this section, we describe optimizations for the MQ and PKP zero-knowledge
proofs with trusted setup, as well as for the transformation that removes the
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trusted setup. The first two optimizations are applications of standard techniques
and the last optimization was proposed by Katz et al. [24], and proven secure
by Baum and Nof [5].

Hashing and Merkle trees. In both the MQ proof and the PKP proof the
auxiliary information consists of q commitments comi for i ∈ Fq, but only one of
these commitments, comα, is opened in each honest execution of the protocol.
To reduce the communication cost (and hence the signature size after the Fiat-
Shamir transform) we can build a Merkle tree on these commitments and only
send the root of the tree. Then the prover includes in his response the dlog2(q)e
nodes of the Merkle tree required to reconstruct the root of the Merkle tree.

When we are doing the transformation to get rid of the trusted party, we do
not have to send all the k roots separately. Instead, it suffices to send a hash
of all the roots to the verifier. Then, during verification, the verifier recomputes
all the roots (either from seedi if i 6= I, or through the verification algorithm if
i = I) and hashes the roots to verify that they were correct.

The prover sends k commitments comi, but only the commitment comI is
used. Therefore, similar to the first optimization, the prover can build a Merkle
tree on his commitments and send the root to the verifier. Then, he includes
comI and some nodes of the Merkle tree in his response, so the verifier can
recompute the root and authenticate comI .

Sending fewer seeds. The prover chooses k seed values and sends all but
one of these seeds to the verifier. We can use a tree strategy to reduce the
communication cost. The prover constructs a binary tree of seed values. First,
he picks the value of the root at random. Then, the value of each internal node
is used to seed a PRNG which generates the values of its two children. In the
end, the leaf nodes act as the seedi values. Now, instead of sending k − 1 seed
values, the prover can send dlog2(k)e node values in the tree and the prover can
recompute the k − 1 seeds himself (but not seedI).

Smaller challenge space. For some applications, the finite field Fq is so large
that it would not be practical to compute Merkle trees of size q. In that case, we
can simply reduce the challenge space to some subset of Fq of size q′ ≤ q. The
soundness error of the scheme then becomes 1/q′ instead of 1/q.

Beating parallel repetition. The basic scheme has soundness error 1
q′ , so to

reach a soundness error of 2−λ we would need to perform r =
⌈

λ
log2(q′)

⌉
parallel

executions of the protocol. The optimization of Katz et al. [24] gives a more
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efficient approach: The idea is that instead of letting the verifier choose 1 out of
k setups to execute, we now let him choose τ out of M setups to execute. Now
suppose a cheating prover does e ≤ τ out of the M setups incorrectly. Since
he cannot produce seedi values for the cheated setups, he can only convince
the verifier if all the setups in which he cheated end up being executed. This

happens with probability
(
M−e
τ−e

)
·
(
M
τ

)−1
. Then, the prover still needs to generate

responses for τ − e honest setups, which he can do with probability at most(
1
q′

)τ−e
. Therefore the soundness error of the adapted scheme is bounded by

max
0≤e≤τ

(
M−e
τ−e

)(
M
τ

)
q′τ−e

.

For a more formal proof we refer to [5].

Example 1. Suppose q = 128, then without the optimization, we would need
19 parallel executions of the basic protocol to reach a soundness error of 2−128,
which amounts to 19∗128 = 2432 setups and 19 executions of the protocol. With
the optimization, it turns out that 916 setups and 20 executions are sufficient.
So, in this case, the optimization reduces the number of setups by a factor 2.6
at the cost of a single extra execution.

8 Signature schemes

In this section, we apply the Fiat-Shamir transformation to the zero-knowledge
proofs for MQ and PKP (after applying the transformation of Sect. 6) to ob-
tain 2 signature schemes. We call these schemes the “MUltivariate quaDratic
FIat-SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homogeneous
linear SYstem FIat-SHamir” scheme (SUSHSYFISH). First, we observe that the
recent results on Post-Quantum Fiat-Shamir by Don et al. [15] apply and thus
that our signature scheme are provably secure in the QROM (with non-tight
reductions). We then give some generic optimizations for the signature scheme
and parameter choices for MUDFISH and SUSHSYFISH. We provide a proof-
of-concept implementation to show that MUDFISH and SUSHSYFISH are more
efficient than existing signature schemes based on the MQ and PKP assumptions
(i.e. MQDSS and PKP-DSS respectively) in terms of signature size and speed
(on the NIST reference platform).

8.1 Fiat-Shamir transform

The Fiat-Shamir transform allows us to convert the sigma protocols for MQ and
PKP into signatures. The idea is that instead of letting the verifier choose the
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challenge at random, we derive the challenge deterministically from the com-
mitment and the message that we want to sign. Concretely, to sign a message
m, the signer executes the first part of the identification scheme to produce a
commitment com, then he derives a challenge ch by applying a random oracle
to com|m. Finally, the signer completes his part of the identification scheme to
produce the response rsp. The signature is then simply (com, resp). To verify a
signature (com, resp) for a message m, the verifier simply computes ch by query-
ing the random oracle at com|m, and then he accepts the signature if and only
if (com, ch, resp) is a valid transcript of the identification protocol. Using the
results of [15], it is straightforward to prove that MUDFISH and SUSHSYFISH
are strongly unforgeable in the QROM.

Theorem 4. Assume that a hash function modeled as a Quantum Random Or-
acle is used as commitment scheme and that a Quantum random oracle model is
used as PRG, then the non-optimized variants of MUDFISH and SUSHSYFISH
signature schemes are strongly existentially unforgeable in the QROM.

Proof. (The argument is similar to the proof for the FS variant of Picnic, see Sect.
6.1 of [15].) First, we prove that the Setup function is collapsing: If we model the
commitment functions as Quantum random oracles, then they are collapsing [36].
In both the MUDFISH and SUSHYFISH schemes, the Setup algorithm consists
of expanding a randomness seed, computing some values based on the output of
the PRG, and committing to them. In both cases, the PRG output is more than
three times longer than the input, so this function is injective with overwhelming
probability. Also, it is easily verified that the computing of the values from the
output of the PRG is injective. Since the concurrent composition of collapsing
functions is collapsing [16] and composing a collapsing function with an injective
function preserves collapsingness, it follows that the entire Setup algorithm is
collapsing.

Since the responses of the sigma protocol only consist of openings of com-
mitments (which are preimages to Com), and preimages to the Setup function
it follows from the collapsingness of Com and Setup that the MUDFISH and
SUSHSYFISH sigma protocols have quantum computationally unique responses.
Moreover, the protocols have k-special soundness, so theorem 25 of [15] says that
the non-optimized versions of MUDFISH and SUSHSYFISH are quantum com-
putational proofs of knowledge. Together with their theorem 22, this implies
that MUDFISH and SUSHSYFISH are sEUF-CMA secure.

8.2 MUDFISH

Parameter choices For ease of implementation, we have chosen to use the
same finite field F4 for all the parameter sets. To have a fair comparison with
the MQDSS scheme, and to avoid the technicalities of choosing secure parameters
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for the MQ problem, we use the parameters proposed in the MQDSS submission
to the NIST PQC standardization project. These parameter choices for the MQ
problem are displayed in Table 1.

We still need to pick parameters for the ZK proof (i.e. τ , the number of
executions and M , the number of setups). The choice of τ and M allows for a
trade-off: If one is willing to increase τ , which mainly impacts signature size,
then one can decrease M , which mainly impacts signing and verification time.

NIST PQC Best classical attack Best quantum attack
Security Level q n = m gates gates depth

I 4 88 2156 293 283

III 4 128 2230 2129 2119

V 4 160 2290 2158 2147

Table 1. parameters for the MQ problem used by MUDFISH, and the complexity of
solving them with the Crossbred algorithm. The parameter sets and the complexity
estimates are taken from Table 8.4 of [14].

NIST PQC Parameters |pk| |sk| |sig| KeyGen Sign Verify
Security Level q n M τ (B) (B) (KB) (Mc) (Mc) (Mc)

I 4 88 191 68 38 16 14.4 2.3 14.8 15.3
III 4 128 256 111 56 24 32.9 7.2 51.3 49.6
V 4 160 380 136 72 32 55.6 14.2 140.4 139.3

Table 2. parameters for MUDFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

Implementation results The signing and verification algorithms require to
do a lot of setups and executions of the ZK proof on independent data. We take
advantage of this by fitting data from 64 independent rounds into one word.
Hence, we can do 64 setups or 64 executions of the protocol in parallel on a 64-
bit machine. Since the MUDFISH algorithm is inherently constant-time, there
was no performance penalty for making the implementation constant-time. Our
proof-of-concept implementation uses SHAKE256 as hash function and to ex-
pand randomness. The performance results of the implementation are displayed
in Table 2. We see that MUDFISH is more efficient than MQDSS: Comparing
the parameter sets that achieve NIST security level I, the signatures of MUD-
FISH are only half as big as those of MQDSS. At the same time, the signing
and verification speed of our proof-of-concept implementation of MUDFISH is a
factor 2.5 and 1.8 faster than those of the optimized implementation of MQDSS
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submitted to the second round of the NIST PQC standardization project. We
leave the task of making an AVX2 optimized implementation of MUDFISH and
comparing its performance to the AVX2 optimized implementation of MQDSS
for future work.

8.3 SUSHSYFISH

Parameter choices An advantage of building cryptography on PKP is that the
best attack algorithms are quite simple and easy to analyze. We use the PKP
parameter sets proposed by Faugère et al. [10] to achieve the NIST security
levels 1, 3 and 5. The choice of the remaining parameters q′, τ and M allows for
a trade-off between signature size and signing and verification speed. For each
of the NIST PQC security levels 1, 3 and 5 we propose a parameter set which
aims to be fast (q′ = 4), a parameter sets which aims to have small signatures
q′ = 128 and an intermediate parameter set q′ = 16.

NIST PQC |pk| |sk| |sig| KeyGenSign Verify
Security level q n m q′ M τ (B) (B) (KB) (Mc) (Mc) (Mc)

Fast 997 61 28 4 191 68 72 16 18.1 0.1 3.6 1.7
I Middle 997 61 28 16 250 36 72 16 14.0 0.1 8.6 6.0

Compact 997 61 28 128 916 20 72 16 12.1 0.1 170 169

Fast 1409 87 42 4 256 111 108 24 43.7 0.1 7.3 3.3
III Middle 1409 87 42 16 452 51 108 24 30.8 0.1 22.7 16.5

Compact 1409 87 42 128 1357 30 108 24 27.1 0.1 365 342

Fast 1889 111 55 4 380 136 142 32 72.8 0.2 12.1 5.8
V Middle 1889 111 55 16 643 67 142 32 54.9 0.2 25.7 18.0

Compact 1889 111 55 128 2096 39 142 32 47.5 0.2 602 567

Table 3. parameters for SUSHSYFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

Making the implementation constant-time. Most of the SUSHSYFISH
algorithm is inherently constant-time, except for some operations involving per-
mutations such as composing permutations, applying a permutation to a vector
and sampling random permutations. Naive implementations of these operations
involve accessing memory at secret indices, which could make the implemen-
tation vulnerable to cache timing attacks. In our implementation, we leverage
the djbsort constant-time sorting software library [7] to do these operations in
constant-time. For example, to apply a permutation π ∈ Sn to a vector v ∈ Fnp
we first construct a list of integers xi, such that the high-order bits of xi corre-
spond to πi, and such that the low-order bits of xi correspond to vi. We then
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call the djbsort library to sort this list of integers in constant-time, and we
extract the low-order bits from the sorted list, which correspond to vπ. Since
the performance bottleneck of SUSHSYFISH is hashing, a slight increase in the
cost of the operations involving permutations has a negligible effect on the total
performance of the signature scheme.

Implementation results. Our implementation uses SHAKE256 as hash func-
tion and to expand randomness. The signing and verification times are domi-
nated by the use of SHAKE256, and hence there is a lot of potential for speedups
by choosing different symmetric primitives or by parallelizing independent calls
of the SHAKE function. The key and signature sizes and the performance mea-
surements for the 9 proposed parameter sets are displayed in Table 3. We see that
SUSHSYFISH has smaller signatures than PKP-DSS while being only slightly
slower. For NIST PQC security level I, the performance of the “Fast” SUSHSY-
FISH parameter set is the close to the performance of PKP-DSS: Signatures are
12% smaller, while with the current implementations signing and verification are
44% and 80% slower respectively. The “Middle” and “Fast” parameter sets offer
more compact signatures at the cost of slower signing and verification.

Comparison to previous works. In this section, we compare the MUD-
FISH and SUSHSYFISH non-interactive zero-knowledge proof systems to exist-
ing methods for proving knowledge of a solution to the MQ or PKP problem. We
compare to MQDSS [14] and PKP-DSS [10] that are dedicated proof systems for
MQ and PKP respectively, and we compare to Ligero [2] and Aurora [6], which
are generic ZK-proof systems capable of proving knowledge of a witness for any
NP statement. To compare with generic ZK systems we construct a verification
circuit with a minimal number of multiplication gates (since linear gates are for
free). For the MQ problem, the verification circuit just evaluates the multivariate
system, which requires n(n + 1)/2 secret multiplications. Using a permutation
network [37], we can encode a permutation as a sequence of bits, where each bit
controls if a switch in the network is active or not. With this representation, we
can verify if a permutation is a solution of a PKP problem with a small number of
non-linear gates. If the permutation network has k switches the verification can
be done with 2k non-linear gates; k multiplications for applying the k switches
and an additional k multiplications to verify that the witness consists of bits.
Table 4 and 5 show that our proof systems have significantly lower proof sizes
compared to existing solutions.

9 Zero Knowledge proofs for lattice statements

Stern’s zero-knowledge protocol has been used extensively in lattice-based cryp-
tography because it can be used to prove a wide variety of statements. It has been
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sec. Parameters Circuit Proof Size (KB)
level F, n Size MQDSS Ligero Aurora Mudfish

128 GF(4), 88 3916 40 199 59 14
192 GF(4), 128 8256 43 421 90 33
256 GF(4), 160 12880 154 721 358 56

Table 4. Comparison of proof sizes of various ZK-proof systems for proving knowledge
of a solution of an MQ instance. For the MQDSS system the number of iterations is
315, 478 and 637 respecively. At security level λ, the hashes and commitments are 2λ
bits long. The parameter choices do not compensate for the non-tightness of the Fiat-
Shamir transform, instead they only guarantee λ bits of soundness for the interactive
version of the protocols.

sec. Parameters Circuit Proof Size (KB)
level F, n,m Size PKP-DSS Ligero Aurora Sushsyfish

128 GF(997), 61, 28 606 20 251 46 12
192 GF(1409), 87, 42 964 43 385 88 27
256 GF(1889), 111, 55 1300 77 539 239 48

Table 5. Comparison of proof sizes of various ZK-proof systems for proving knowledge
of a solution of a PKP instance.

used to construct, among other things, identity-based identification schemes,
group signatures (with verifier local revocation), logarithmic size ring signatures
and group encryption [28, 25, 27, 26]. The way this works is to transform the
lattice statement into an instance of the IPKP problem, in such a way that
from a solution to the IPKP instance one can efficiently derive a witness for
the lattice statement and conversely, that given a witness for the statement one
can efficiently compute a solution to the IPKP instance. Then, one just uses
Stern’s protocol to prove knowledge of a solution to the IPKP instance, which is
equivalent to proving knowledge of a witness of the lattice statement. However,
it is often the case that witnesses for the lattice statement correspond to IPKP
solutions that lie in a certain subgroup H ⊂ Sn. If this is the case, then the
prover needs to prove that he knows a solution π to the IPKP instance subject
to π ∈ H. Luckily, Stern’s protocol (and as we will see also our IPKP proof)
can be easily adapted to prove knowledge of an IPKP solution that lies in any
subgroup H (assuming one can sample uniformly from H and efficiently verify
membership of H).

In the remainder of this section, we prove that our IPKP proof can handle
proving that a solution lies in a subgroup H ⊂ Sn, which implies that we can
improve all the applications of Sterns protocol by replacing Stern’s proof by our
more efficient protocol. Then, we will focus on proving knowledge of a solution
to the inhomogeneous SIS problem. We briefly illustrate how the ISIS prob-
lem can be embedded into IPKP with the decomposition-extension technique of
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ling et al. [28]. Then, we compare the efficiency of our IPKP proof against the
efficiency of Stern’s protocol for proving knowledge of a solution of an ISIS prob-
lem. Finally, we compare our approach to some recent works that use different
techniques to prove knowledge of a solution of an ISIS instance.

9.1 Generalizing to Subgroup IPKP

It is trivial to generalize the protocol of Sect. 5 to prove knowledge of a solution π
of an IPKP instance with the additional constraint that π lies in a subgroup H ⊂
Sn, assuming that one can efficiently sample uniformly from H and efficiently
test if a group element is a member of H. The only modification required is that
the prover now samples σ from H instead of from Sn and that the verifier checks
that ρ lies in H.

Theorem 5. The modified version of the protocol for IPKP of Sect. 5 is a sigma
protocol with helper as in Definition 3 with challenge space Fq.

Proof. Completeness. If π is a solution of the IPKP instance, then since the
unmodified protocol is complete, the verifier will accept a transcript unless the
additional check that ρ lies in H fails. However, if π ∈ H, then also ρ = πσ−1

lies in H, because σ is sampled from H. Therefore, the verifier will accept with
probability 1 if π is a solution to the SIPKP problem.

2-Special Soundness. The extractor from the security proof of the IPKP
proof system extracts ρσ, which is a solution to the IPKP problem. We only
need to show that ρσ ∈ H. The verifier only accepts if ρ ∈ H, and we know
that σ ∈ H, because it is sampled from H by the honest helper. Therefore the
extracted solution to the IPKP solution is also a solution to the SIPKP problem.

Honest-Verifier Zero-Knowledge. The proof is the same as in the proof
of Theorem 2, except that the simulator samples τ uniformly from H instead of
from Sn.

Remark 1. The proof of Theorem 2 does not use any specific properties of the
action of Sn apart from the property that vσ+wσ = (v+w)σ, which is required
for correctness. Therefore, it is clear that the proof system generalizes to any
representation of a finite group G on Fnq . In particular, we can also consider the
group of signed permutations with it natural representation on Fnq .

9.2 Embedding ISIS into IPKP.

To illustrate the embedding first suppose that (A, t) ∈ Fm×nq ×Fmq is an instance
of the ISIS problem where a solution is a vector s ∈ Fnq such that As = t and
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the coefficients of s are 0 or 1. In that case we define the extended matrix
A′ =

(
A 0m×n

)
and a vector v ∈ Fq whose first n entries are 1 and whose last

n entries are equal to 0. Then finding a solution to the ISIS instance (A, t) is
equivalent to finding a solution to the IPKP instance (A′,v, t): Given a solution
s to the ISIS instance it is trivial to find a permutation π such that the first half
of vπ equals s, which is then a solution to the IPKP instance. Conversely, if π is
a solution to the IPKP instance, then the first half of vπ is a solution to the ISIS
instance. Therefore, proving knowledge of π is equivalent to proving knowledge
of s.

To improve the efficiency of the proof system we can restrict the IPKP so-
lutions to the subgroup of S2n generated by the transpositions (i i + n) for
0 ≤ i < n. This approach reduces the proof size because elements of the subgroup
can be represented with only n bits, rather than the log2((2n)!) ≈ 2n log2(2n)
bits required to represent an arbitrary permutation of 2n elements.

More generally, if the coefficients of s are required to lie in a range of size B,
one can use the decomposition-extension technique [28] to transform an instance
of the ISIS problem into an equivalent instance of the IPKP with a matrix A′

with 2n dlog2Be columns [28]. Moreover, we can restrict to a subgroup of size
22dlog2 Be to reduce the proof size.

9.3 Concrete examples and comparison to previous works.

To compare the concrete efficiency of our work with the recent work of Bootle
at al [11]. and Baum and Nof [5] we apply our proof system to the following two
SIS parameters sets:

1. q ≈ 232,m = 512, n = 2048, β = 1 : This is the parameter set considered by
Bootle et al [11]. This parameter set is relevant for FHE schemes and group
signature schemes.

2. q ≈ 261,m = 1024, n = 4092, binary solution : This is one of the parameter
sets considered by Baum and Nof. [5], they claim that this parameter set is
relevant for applications such as somewhat homomorphic encryption.

Let A ∈ F512×2048
q be an instance of the SIS problem from the first parameter

set, define the matrix A′ =
(
A 0512×2048

)
and let v ∈ {0, 1}4096 be the vector

whose first 2048 entries are equal to 1 and whose remaining 2048 entries are equal
to 0. Then finding a solution to the SIS instance A is equivalent to finding a
solution to the generalized PKP instance that asks to find a signed permutation
π such that A′vπ = 0. Moreover, this still holds if we restrict the solutions
of the PKP problem to lie in the subgroup H generated by sign swaps and
the transpositions {(i i+2048)| for i from 1 to 2048}. This subgroup has 82048

elements, and we can represent each element by 3 ∗ 2048 bits.
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Therefore, to prove knowledge of a short integer solution it suffices to prove
knowledge of a signed permutation π in H such that A′vπ = 0. We choose
parameters τ = 14,M = 4040, q′ = 210 to achieve a soundness error less than
2−128. The proof size is dominated by the vectors and signed permutations in
the proof, of which there is one per execution. A vector can be represented with
4069 log2(q) bits and each permutation in H can be represented with 2048 ∗ 3
bits. Therefore the total proof size is roughly equal to

14 · (4069 · 32 + 2048 · 3) bits = 233 KB .

Observe that (in a field of characteristic > 2) if 1 is the vector with a 1 in
each entry, then

As = t ⇐⇒ A(2s− 1) = 2t +A1 ,

which means that binary SIS is equivalent to a SIS instance where the entries of s
are restricted to {−1, 1}. Therefore, for the second parameter set, we can embed
the binary SIS problem into a generalized PKP problem of the form A1π = t′

with π in the group with 24092 elements generated by sign flips. If we again pick
τ = 14,M = 4040, q′ = 210 to achieve a soundness error less than 2−128 the total
proof size is approximately

14 · (4092 · 61 + 4092) bits = 444 KB

Comparison to previous works. Table 6 makes a comparison of the proof
sizes of our proof system with that of previous works. First of all, an applica-
tion of Stern’s protocol to the generalized PKP problems derived from the two
parameter sets results in proofs of 2.3 MB and 4.3 MB respectively. This is an
order of magnitude larger than our proof system for both parameter sets. The
work of Bootle et al. [11] uses algebraic techniques rather than combinatorial
ones and achieves a proof size of 384 KB for the first parameter set, which is
65% larger than our proofs.

The proof system of Baum and Nof uses MPC-in-the-head techniques and
has a proof size of 4.0 MB for the second parameter set. This is almost an order
of magnitude larger than our proofs. Baum and Nof also include timings of the
implementation of their protocol. An implementation with 80 bits of statistical
security for the second SIS parameter takes 2.4 seconds, with a proof size of 7.5
MB. (Note that this proof size is larger than for their 128 bits variant, because
this choice was optimized for speed rather than proof size.) If we choose the
parameters for our proof scheme as q′ = 24,M = 149, τ = 23 to reach 80 bits
of statistical security and optimize for speed, our proof size would be 1.4 MB
(still 5 times smaller). Extrapolating from our SUSHSYFISH measurements, we
claim that with these parameter choices our proof system will be significantly
faster than the system of Baum and Nof.

Compared to the generic sub-linear Zero-Knowledge systems Ligero and Au-
rora [6] our proof systems are asymptotically worse, and for the ”large” examples
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in Table [?] aiming at applications such as FHE we also perform significantly
worse in terms of concrete proof sizes. However, for smaller applications, such
as proving knowledge of a secret key that corresponds to a MLWE-encryption
public key. (q ≈ 213, n = 1024,m = 512, β = 3) we expect our proof size to
be smaller than those of Ligero and similar to those of Aurora. Moreover, an
important advantage of our proof system, as well as Stern’s protocol and the
method of Baum and Nof is that they do not require Fq (or a field extension
thereof) to be NTT friendly, this is in contrast to Ligero, Aurora and the work
of Bootle et al..

q = 232, q = 261,
m = 512, n = 2048 m = 1024, n = 4096

Ours 233 KB 444 KB
Stern [34, 28] 2.3 MB 4.3 MB

Bootle et al. [11] 384 KB /
Baum and Nof [5] / 4.0 MB

Aurora [6] 71 KB 71 KB
Ligero [2] 157 KB 200 KB

Table 6. Proof sizes of various protocols for our two SIS parameter sets aiming at 128
bits of security. The hashes and commitments are 256 bits long. The parameter choices
do not compensate for the non-tightness of the Fiat-Shamir transform, instead they
only guarantee 128 bits of soundness for the interactive version of the protocols.

The work of Del Pino et al. [31] uses so-called bulletproofs to achieve much
smaller proof sizes for SIS (for example 1.25 KB for q ≈ 213,m = 2048, n =
4096) at the cost of longer running times. However, one cannot make a direct
comparison with our work and the other works in Table 6, because bulletproofs
rely on the discrete logarithm problem and are hence not post-quantum secure.
Also, there has been a lot of work on “relaxed” proofs for SIS, where the extractor
does not output the witness that is known to the prover, but instead some other
solution that is somewhat short, but bigger than the witness [29, 4]. For some
applications, such as post-quantum signatures [29], this is not a problem, but
for other applications, exact proofs are required.
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