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Abstract. This paper introduces new prq-based one-way functions and companion signature schemes.
The new signature schemes are interesting because they do not belong to the two common design
blueprints, which are the inversion of a trapdoor permutation and the Fiat–Shamir transform.

In the basic signature scheme, the signer generates multiple RSA-like moduli ni = pi
2qi and keeps

their factors secret. The signature is a bounded-size prime whose Jacobi symbols with respect to the
ni’s match the message digest. The generalized signature schemes replace the Jacobi symbol with
higher-power residue symbols.

Given of their very unique design the proposed signature schemes seem to be overlooked “missing
species” in the corpus of known signature algorithms.

Keywords: rth-power residue symbol · rth-order imprint · prq moduli · Number theory · One-way
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1 Introduction

One-Way Functions. A fundamental building block for constructing secure signature schemes or public-
key cryptosystems is one-way functions [15, Chapter 2]. Informally, a one-way function (OWF) is a function
f that is easy to compute in polynomial time (by definition) on every input, but hard to invert given the
image of a random input.

Basically, there exist three families of OWFs: (i) one-way permutations which are bijective OWFs,
(ii) trapdoor OWFs which are one-way unless some extra information is given, and (iii) collision-free or
collision-resistant hash functions. Almost all known OWFs have been based on intractable problems from
number theory or some related mathematical fields like coding theory.

Digital Signatures. Diffie and Hellman in their seminal work [11] first pointed out the notion of digital
signatures. Since then, there have been many signature proposals built from trapdoor one-way permutations
based on different algebraic assumptions. The most well-known being the one devised by Rivest, Shamir and
Adleman from the so-called RSA assumption [36].

Concurrently to the above, another popular approach to construct signature schemes is by using the
Fiat–Shamir tranform [13]. It consists in turning a public-coin proof of knowledge into a signature scheme,
which has yielded many efficient signature schemes like the Schnorr signature [42].
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Cryptography Modulo prq. Moduli of the form prq have found a few applications in cryptography
since the mid 1980s, the most notable of which are probably the ESIGN signature scheme and its variants
using p2q [33,14,31,18,43], Okamoto–Uchiyama’s cryptosystem [32,41], Schmidt-Samoa’s cryptosystem [40]
or constructions such as [44] and [38].

There are four main approaches of factorization algorithms for the structure prq: The Elliptic Curve
Method (ECM) [27] which was improved by Peralta and Okamoto [35], the Number Field Sieve (NFS) [23],
the Lattice Factoring Method (LFM) [4] and factoring using Jacobi symbols. Note that the special structure
of prq is not threatened by NFS beyond regular RSA moduli are threatened by that same attack. Actually,
it turns out that using p2q moduli does not seem to render factoring significantly easier. Boneh, Durfee and
Howgrave-Graham [4] showed that n = prq can be factored in polynomial time when r is large (i.e., r ' log p).
Consequently, as stated in [30], this LLL-based approach [24] does not apply to the setting considered in this
paper where r is rather small. See also [29,28].

Organization. The rest of this paper is organized as follows. In the next section, we introduce some useful
notation and review the definitions of the Jacobi symbol and of a signature scheme. Section 3 proposes a new
OWF, building on the concept of Jacobi imprint. We then present in Section 4 a first signature scheme relying
on this new OWF and prove its security. In Section 5, we generalize our basic design to higher-order residue
symbols and introduce the corresponding signature schemes. As an illustration, we implement Quartapus
in Section 6, a signature scheme based on the quartic residue symbol. Finally, we conclude the paper in
Section 7.

2 Notation and Basic Definitions

IfD is a finite domain, we let x
$← D denote picking an element ofD uniformly at random and assigning it to x.

A boldface variable x is used to denote a vector of elements identified by that variable; i.e., x = (x0, . . . , xk−1).
The symbol P stands for the set of (rational) primes. Given a vector n = (n0, . . . , nk−1) of pairwise co-
prime integers nj (0 ≤ j ≤ k − 1) and a vector x = (x0, . . . , xk−1) of integers, we use CRT(x,n) for the
Chinese-remainder function, returning the smallest non-negative integer y such that y ≡ xj (mod nj) for
0 ≤ j ≤ k − 1 [12, Chapter 2].

2.1 The Jacobi Symbol

Given a positive integer n, an integer a with gcd(a, n) = 1 is called a quadratic residue modulo n if and only
if x2 ≡ a (mod n) is solvable. If a is not a quadratic residue then it is called a quadratic non-residue modulo
n.

Let a be an integer and let p ∈ P, p 6= 2. The Legendre symbol
(
a

p

)
is defined as:

(
a

p

)
=


1 if a is a quadratic residue modulo p ,

−1 if a is a quadratic non-residue modulo p ,

0 if gcd(a, p) 6= 1 .

The Legendre symbol satisfies Euler’s criterion, namely
(
a

p

)
≡ a

p−1
2 (mod p).

The Jacobi symbol is a natural generalization of the Legendre symbol.

Definition 1. Let n be an odd positive integer with prime factorization n =
∏
j pj

ej . Then, for an integer

a, the Jacobi symbol
(
a

n

)
is given by (

a

n

)
=
∏
j

(
a

pj

)ej
with the convention

(
a

1

)
= 1 for all integers a.
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Interestingly, the prime factorization of n is not required for evaluating
(
a

n

)
. It can be efficiently computed

with O((log2 a)(log2 n)) bit operations [1, § 5.9]. We point out that the Legendre and Jacobi symbols are
indistinguishable when n is an odd prime. Also, we note that the Legendre symbol allows to determine
whether an integer is a quadratic residue or not, whereas the Jacobi symbol does not allow checking this
property.

2.2 Digital Signatures

A signature scheme [20] is a tuple, Σ = (KeyGen,Sign,Verify), of probabilistic polynomial-time algorithms
satisfying:

KeyGen(1κ) On input security parameter 1κ, key generation algorithm KeyGen produces a pair (pk, sk) of
matching public and private keys.

Sign(sk,m) Given a private key sk and a message m in a setM of messages, signing algorithm Sign produces
a signature σ.

Verify(pk,m, σ) Given a public key pk, a message m ∈M, and a signature σ, the verifying algorithm Verify
checks whether σ is a valid signature on m with respect to pk.

The classical security notion for signature schemes is existential unforgeability against chosen-message
attacks (in short, EUF-CMA) [16]. Basically, it requires that an adversary having access to a signing oracle
returning the signature on messages of its choice is unable to produce a valid signature on a message not
previously submitted to the signing oracle. In the random oracle model [2], the adversary has in addition
access to a hash oracle viewed as a random oracle. More formally:

Definition 2. A signature scheme Σ is EUF-CMA secure if, for every probabilistic polynomial-time adver-
sary A, the success probability, AdvEUFA,Σ(κ) := Pr

[
EUFAΣ(κ) = 1

]
, is negligible against the security game

defined in Figure 1.

EUFAΣ(κ):

Hist← ∅
(sk, pk)

$← Σ.KeyGen(1κ)

(m∗, σ∗)← ASign(sk,·)(pk)
if m∗ 6∈ Hist

return Σ.Verify(pk,m∗, σ∗)
return 0

Sign(sk,m):

σ
$← Σ.Sign(sk,m)

Hist← Hist∪{m}
return σ

Verify(pk,m, σ):

return Σ.Verify(pk,m, σ)

Fig. 1. EUF-CMA experiment for digital signature schemes.

3 A Candidate One-Way Function

If p is an odd prime then half of the integers in the sequence 1, 2, . . . , p− 1 are quadratic residues modulo p,
and half are not. The problem of counting the number of occurrences of k distinct integers (a0, a1, . . . , ak−1)

modulo p obeying a given pattern (ε0, ε1, . . . , εk−1) with εj =
(
aj
p

)
∈ {−1, 1} and variations thereof has been

studied in a number of papers, including [9,10,7,34,17,37]. In particular, the results of Peralta in [34] indicate
that the probability of ((

a0
p

)
,
(
a1
p

)
, . . . ,

(
ak−1

p

))
matching any particular sequence (ε0, ε1, . . . , εk−1) ∈ {−1, 1}k is in the range 1

2k
±O(kp−1/2).
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This section considers a related problem. It relies on a new notion that we call Jacobi imprint. In essence,
the imprint is an integer formed of bits representing the sequence of Jacobi symbols where −1’s are replaced
by 1’s and 1’s by 0’s.

Definition 3 (Jacobi Imprint). For an integer a and n = (n0, . . . , nk−1) ∈ Nk such that gcd(a, nj) = 1
for 0 ≤ j ≤ k − 1, the Jacobi imprint In(a) is given by

In(a) =

k−1∑
j=0

{
a

nj

}
2j where

{
a

nj

}
=

1−
(
a

nj

)
2

.

(At times we will interchangeably use In(a) to denote the integer In(a) or its binary representation.)

3.1 Function F0

Let q = (q0, . . . , qk−1) be a set of k distinct (odd) primes and let Q =
∏k−1
j=0 qj . Consider the function F0

given by
F0 : D ⊂ Z∗Q → N, x 7→ F0(x) = Iq(x) .

We argue that an appropriate selection for the domain of F0 and the number of primes qj ’s turns F0 into
a one-way function.

Of course, D cannot be the whole group Z∗Q. Otherwise, given a challenge ŷ = F0(x̂), an attacker could
execute Algorithm 1.

Algorithm 1: Finding a (large) pre-image

Data: ŷ =
∑k−1
j=0 ŷj 2j with ŷj ∈ {0, 1} and q = (q0, . . . , qk−1)

Result: x ∈ Z∗Q such that F0(x) = ŷ
for 0 ≤ j ≤ k − 1 do

rj
$← Z∗qj such that

{
rj

qj

}
= ŷj

end
x← CRT(r, q) where r = (r0, . . . , rk−1)
return x

This algorithm yields outputs that are smaller than Q =
∏k−1
j=0 qj . An obvious way to prevent an attacker to

successfully run Algorithm 1 would be to restrict D to entries smaller than a given bound B.
But there is another way to tackle the problem of finding pre-images to F0. Let Z be the set of k-bit

integers in N. Now if we regard an imprint in Z as an element of (Z2)k (that is, if we look at its binary
representation), we see that F0 induces a group homomorphism from (Z∗Q, ·) to (Z,⊕):

F0(x1 · x2 mod Q) = F0(x1)⊕F0(x2) , ∀x1, x2 ∈ Z∗Q .

Therefore, an attacker could generate a set of ` “small” primes pi’s (with pi - Q) and compute the corre-
sponding imprint zi = F0(pi), for 1 ≤ i ≤ `. It suffices then for the attacker to use linear algebra modulo 2
(i.e., Gaussian elimination) to find a subset of the zi’s having the target imprint ŷ as an xor:5

ŷ = ε1z1 ⊕ · · · ⊕ ε`z` with εi ∈ {0, 1} .

A pre-image is given by

x =
∏

1≤i≤`
εi=1

pi ,

5 If a solution ε1, . . . , ε` does not exist, refresh the pj ’s as necessary.
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which is valid provided that x < B. This second attack is avoided by limiting D to primes.
Furthermore, each prime qj in q imposes a condition on the pre-image. The birthday paradox suggests

to choose the number k of primes qj ’s to be at least 2κ, where κ is the security parameter.

All in all, we recommend to select k = 2κ and D =
{
x ∈ P | x < B with B � Q where Q =

∏k−1
j=0 qj

}
.

3.2 From F0 to F1

We use function F0 as a starting point to define a (conjectured) trapdoor one-way function. The resulting
function F1 has the extra property that it can be inverted when it is given a trapdoor as an additional input.
To insert a trapdoor, we replace the primes qj ’s with RSA-like moduli of the form nj = pj

2qj . This does
not affect the output value since In(x) = Iq(x) for all x such that gcd(x, nj) = 1 for 0 ≤ j ≤ k − 1. The
trapdoor is q.

We conjecture:

Assumption 1. Let κ denote a security parameter. Let also k = k(κ) and ` = `(κ). Define D =
{
x ∈ P |

x < 2k`
}

and
F1 : D→ N, x 7→ F1(x) = In(x)

where n = (n0, . . . , nk−1) is a set of k pairwise co-prime moduli of the form nj = pj
2qj for `-bit primes pj

and qj, 0 ≤ j ≤ k − 1. For every polynomial-time algorithm A, the success probability

Pr
[
x̂

$← D;A(F1(x̂)) = x | F1(x) = F1(x̂)
]

is negligible.

Note that finding a pre-image to ŷ = F1(x̂) is easy given the trapdoor q = (q0, . . . , qk−1):

1. Run Algorithm 1 and obtain x such that Iq(x) = ŷ;

2. Update x as x← xu2 mod Q with u
$← Z∗Q until x is prime;

3. Return x.

Clearly, the so-obtained x is a valid pre-image: x ∈ D and F1(x) = ŷ.

Remark 1. By definition, the Jacobi imprint In(x) requires x to be co-prime with nj for 0 ≤ j ≤ k − 1.
Strictly speaking, the domain D should therefore exclude the primes pj and qj . However, since primes pj
and qj are `-bit primes—where ` = `(κ)—the probability to output an x such that gcd(x, nj) 6= 1 for some
0 ≤ j ≤ k − 1 is negligible when the prime factorization of the nj ’s is unknown.

4 Signatures Modulo p2q

We are now ready to formally describe a first signature scheme. We prove that it meets the EUF-CMA security
level in the random oracle model.

4.1 Description

Our basic signature scheme is a tuple of algorithms Σ = (KeyGen,Sign,Verify), which we define as follows:

Key generation The key generation algorithm KeyGen takes as input a security parameter 1κ and defines
parameters k and `. It selects a collision-resistant hash function H : {0, 1}∗ → {0, 1}k. It also produces k
pairs (pj , qj) of `-bit primes and forms the moduli nj = pj

2qj . The public parameters are pp = (k, `,H).
The public key is pk = {nj}0≤j≤k−1 while the private key is sk = {qj}0≤j≤k−1. The outputs are pk and
sk (and pp).
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Signing The signing algorithm Sign takes as inputs a message m ∈ {0, 1}∗ and the secret key sk. The
signature on message m proceeds as follows:

1. Compute H(m) =
∑k−1
j=0 hj 2j with hj ∈ {0, 1};

2. Pick at random k `-bit integers rj such that{
rj

qj

}
= hj , for 0 ≤ j ≤ k − 1 ;

3. Compute
R = CRT(r, q)

with r = (r0, . . . , rk−1) and q = (q0, . . . , qk−1);

4. Set Q =
∏k−1
j=0 qj and choose at random an integer u ∈ Z∗Q such that

σ := Ru2 mod Q ∈ P ;

5. Return σ.
Verification The verifying algorithm Verify takes as inputs the public key pk, a message m, and a signature

σ on message m. It checks whether

(i) σ ∈ P , (ii) σ < 2`k , (iii) In(σ) = H(m)

where n = (n0, . . . , nk−1). Verify returns 1 (i.e., the signature is accepted) if and only if the three
conditions above are fulfilled. Otherwise, Verify returns 0.

The next proposition shows that the signature scheme is correct: for (pk, sk) ← KeyGen(1κ) and any
message m ∈ {0, 1}∗, Verify

(
pk,m,Sign(m, sk)

)
= 1.

Proposition 1 (Correctness). Signature scheme Σ is correct.

Proof. Let ({nj}, {qj}) and σ the respective outputs of KeyGen and Sign, with message m as input. By
construction, σ is prime and σ = Ru2 mod Q < 2`k. Moreover, since σ ≡ rju

2 (mod qj) (0 ≤ j ≤ k − 1), it
follows that

Iq(σ) =

k−1∑
j=0

{
rju

2

qj

}
2j =

k−1∑
j=0

{
rj
qj

}
2j .

Finally, since nj = pj
2qj , we have

{
rj
nj

}
=
{
rj
qj

}
, and so In(σ) = Iq(σ) = H(m).

4.2 Security Proof

Theorem 1. Signature scheme Σ is EUF-CMA secure assuming the hardness of inverting F1, in the random
oracle model.

Proof. The security proof is by contradiction. Suppose we are given as a challenge an output ŝ of the function
F1. We assume that there exists a polynomial-time adversary A that is able to produce an existential
signature forgery with non-negligible success probability. Adversary A is allowed to make qH queries to
random oracle H and qs queries to signing oracle Sign. We then use A’s forgery to invert F1; i.e., to find a
pre-image to ŝ.

Specifically, suppose that the received challenge is the k-bit integer

ŝ← F1(x) = In(x) with n = (n0, . . . , nk−1)

for moduli nj of the form nj = pj
2qj where pj ’s and qj ’s are `-bit primes; 0 ≤ j ≤ k − 1. The simulator sets

the public key to pk = {nj}0≤j≤k−1. It also selects a collision-resistant hash function H mapping to {0, 1}k.
The public key pk as well as public parameters pp := (k, `,H) are given to A.

The simulator needs to answer the oracle queries made by A. It maintains a history list of tuples
(mi, hi, σi), Hist[H], that keeps track of the hash queries; Hist[H] is initialized to ∅. It also maintains a
counter i initialized to 0 and chooses at random an index i∗ ∈ [1, . . . , qH ].

6



Answering hash queries When A submits a message m to H, the simulator checks whether m was already
queried:
– If m /∈ Hist[H] then i is incremented: i← i+ 1. Next, the simulator sets mi ← m and depending on

the value of i:
• if i = i∗, it sets hi ← ŝ and σi ← ⊥;
• if i 6= i∗, it generates a random `k-bit prime σi and sets hi ← In(σi).

Tuple (mi, hi, σi) is appended to Hist[H]: Hist[H]← Hist[H] ∪ (mi, hi, σi).
– If m ∈ Hist[H], the simulator finds the index i such that m = mi and recovers the corresponding

value hi.
The simulator returns hi as the hash value of input message m.

Answering signature queries Without loss of generality, we assume that when A calls signing oracle Sign
with a message m, it has already submitted m to hash oracle H (observe that the simulator can always
call internally H). Therefore, there exists an index i such that m = mi in Hist[H]. The simulator recovers
the corresponding value for σi. There are two cases:
– If σi 6= ⊥ then the simulator returns σi as a valid signature on input message m;
– Otherwise the simulator fails and stops.

The number of queries to the hash oracle being polynomial, with non-negligible probability, the adversary
will return a signature forgery on its i∗-th query to H; i.e., on message mi∗ . Letting σi∗ the corresponding
signature returned by A, we see that σi∗ is a solution to the challenge since In(σi∗) = H(mi∗) = ŝ.

4.3 Toy Example (k = 8)

Picking the secret primes

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

pj 59069 54139 52639 53813 49871 41269 53653 40361
qj 62989 32917 36583 48383 36653 34963 52517 38971

we have the public moduli

n0 = 219777865328629 n1 = 096480757993357 n2 = 101366529455143

n3 = 140109376837127 n4 = 091160286242573 n5 = 059546546811643

n6 = 151177768427453 n7 = 063484161219691

and the value Q =
∏7
i=0 qi = 9625354820834308444301890854766785161.

Consider a message whose digest is h = (h0, . . . , h7) and draw rj ’s as:

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

hj 1 0 1 1 0 1 1 0
rj 64863 58999 47120 50684 37458 57079 43135 56942

We get CRT(r, q) = 1395786251559231878789764535858641198.
By selecting u = 2152266820709866295140077504687803459, we obtain the signature

σ = 1137542561586761230770585345256092841 ∈ P .

5 Generalized Signatures

The Legendre symbol tells whether an integer is a square modulo a prime p. Given an integer a and an odd
prime p, if p - a, there exists a unique integer j modulo 2 such that a(p−1)/2 ≡ (−1)j (mod p). To obtain the
analogue to a higher power r, the rational integers need to be extended so that they include an rth root of
unity, namely e2πi/r.
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5.1 Cyclotomic Integers and Higher-Order Residuosity

We start by reviewing some classical results on cyclotomic fields. We refer the reader to [19] and [45] for
further introductory background.

Fix ζ := ζr a primitive rth root of unity; i.e., ζ is a root of Xr − 1 and Xs 6= 1 for 0 < s < r.
Adjoining ζ to the field Q of rationals defines the cyclotomic field Q(ζ). It is the splitting field of Xr − 1; its
Galois group Gal(Q(ζ)/Q) is isomorphic to Z∗r , with k mod r corresponding to the map σk : ζ 7→ ζk; see [19,
Proposition 13.2.1] or [45, Theorem 2.5]. The ring of integers of Q(ζ) is Z[ζ] ∼= Z[X]/(Φr) where Φr is the
rth cyclotomic polynomial ; see [45, Theorem 2.6].

The elements α of Z[ζ] are written as

α =
∑

0≤j<ϕ(r)

aj ζ
j with aj ∈ Z

where ϕ denotes Euler’s totient function. The norm of α ∈ Z[ζ] is the rational integer given by N(α) =∏
k∈Z∗

r
σk(α). We assume that Z[ζ] is norm-Euclidean.6

The elements of norm ±1 in Z[ζ] are called units. Two elements α, β ∈ Z[ζ] that are equal up to
multiplication by a unit υ ∈ Z[ζ] (i.e., α = υβ) are said to be associates; we write α ∼ β. A non-unit element
π ∈ Z[ζ] is a prime in Z[ζ] if, for any α, β ∈ Z[ζ], π | αβ implies π | α or π | β. If r is a prime power (i.e.,
r = q` for some rational prime q and ` ≥ 1) then (1 − ζ) is a prime in Z[ζ] and N(1 − ζ) = q; otherwise,
(1− ζ) is a unit in Z[ζ].

Let π be a prime in Z[ζ], with gcd(N(π), r) = 1. For every α ∈ Z[ζ] such that π - α, we have αN(π)−1 ≡ 1
(mod π). Further, 〈ζ〉 is a subgroup of order r of (Z[ζ]/(π))∗, it follows that r | (N(π)− 1) and

α
N(π)−1

r ≡ ζj (mod π) for some j ∈ Zr .

This defines the rth-power residue symbol.

Definition 4. Fix ζ a primitive rth root of unity. Let α, π ∈ Z[ζ] with π prime and gcd(N(π), r) = 1. The
rth-power residue symbol is defined by[

α

π

]
r

=

{
α(N(π)−1)/r mod π if π - α ,
0 otherwise .

Let α, β, π ∈ Z[ζ] with π prime and gcd(N(π), r) = 1. It is easily verified from the definition that the
following properties are satisfied:[

αβ

π

]
r

=

[
α

π

]
r

[
β

π

]
r

,

[
α

π

]
r

=

[
α mod π

π

]
r

.

Furthermore, in a way similar to the Jacobi symbol for quadratic residuosity, the rth-power residue symbol
naturally generalizes.

Definition 5. Fix ζ a primitive rth root of unity. Let α, λ ∈ Z[ζ] with λ non-unit and gcd(N(λ), r) = 1.

Then, writing λ =
∏
j πj

ej for primes πj in Z[ζ], if α and λ are co-prime, the symbol
[
α

λ

]
r

is defined by[
α

λ

]
r

=
∏
j

[
α

πj

]
r

ej

.

Moreover,
[
α

υ

]
r

= 1 for every unit υ ∈ Z[ζ].

6 A ring R is said norm-Euclidean or Euclidean with respect to the norm N if for every α, β ∈ R, β 6= 0, there exist
η, ρ ∈ R such that α = β η + ρ and N(ρ) < N(β).
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The notion of Jacobi imprint generalizes to higher powers. To ease the notation, we extend the brace
symbol as follows: {

α

λ

}
r

= j with j ∈ Zr

where
{
α

λ

}
r

= j if and only if
[
α

λ

]
r

= ζj . Note that Definition 3 corresponds to the case r = 2.

Definition 6 (rth-order Imprint). For an integer α ∈ Z[ζ] and a vector λ = (λ0, . . . , λk−1) ∈ Z[ζ]k, such
that α and λj (with 0 ≤ j ≤ k−1) are co-prime, the rth-order imprint of α w.r.t. λ is the integer I(r)

λ (α) ∈ Z
given by

I(r)

λ (α) =

k−1∑
j=0

{
α

λj

}
r

rj .

5.2 Parameter Selection

As discussed in the introduction, the main threat for factoring-related cryptosystems comes from NFS and
its variants. The next table lists different types of security level and the commonly-accepted corresponding
size for the modulus. See e.g. [3].

Table 1. Key lengths and bit security.

Type
Bit-security Modulus

level (bit size)

Legacy 80 1024
Basic 112 2048
Normal 128 3072
High 192 7680
Very high 256 15360

The current state of affairs teaches that moduli could be selected of the form pj
rqj with r ≥ 2 chosen

to have a balanced resistance against both NFS-type and ECM-type factoring algorithms. Given a modulus
whose length is chosen according to Table 1, a bound for the number of factors that may be allowed is
derived in [22, Section 4]. This suggests to select r in the range [2, . . . , 5], depending on the security level.

Remark 2. If ζr is an rth primitive root of unity, the ring Z[ζr] is not necessarily norm-Euclidean. But for
r ∈ {2, 3, 4, 5}, the rings Z[ζr] are known to be norm-Euclidean [21, §8]; see also [26].

Each possible value for r gives rise to a signature scheme. Of particular interest are the following new species
in the signature zoo:

Quadratapus7 r = 2 legacy security;

Cubapus-112 r = 3 basic security;

Cubapus-128 r = 3 normal security;

Quartapus r = 4 high security;

Pentapus r = 5 very high security.

7 Quadratapus is an endangered species.
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6 Quartapus

The p2q signature scheme given in Section 4 extends to any value of r > 2 (provided that Z[ζr] is norm-
Euclidean). As an illustration, we detail the Quartapus signature scheme, which is an adaptation to the case
r = 4.

Throughout this section, we let ζ := ζ4 = i denote a primitive 4th root of unity. The Galois group of
Q(ζ)/Q contains the two automorphisms σk : ζ 7→ ζk with k ∈ {1, 2}. For an element α ∈ Z[ζ], we write
αk = σk(α). The norm of α is given by N(α) = α1α2.

6.1 Description

The Quartapus signature scheme, (KeyGen,Sign,Verify), is defined as follows.

Key generation KeyGen takes as input a security parameter 1κ and defines parameters k and `. It selects
a collision-resistant hash function H : {0, 1}∗ → (Z4)k. It also produces k pairs (πj , ψj) of primes in Z[ζ],
where N(πj) and N(ψj) are `-bit long, and forms the moduli νj = πj

4ψj .The outputs are pp = (k, `,H),
pk = {νj}0≤j≤k−1, and sk = {ψj}0≤j≤k−1.

Signing On input a message m ∈ {0, 1}∗ and sk, Sign does the following:

1. Compute H(m) =
∑k−1
j=0 hj 4j with hj ∈ Z4;

2. Pick at random k integers ρj ∈ Z[ζ] of `-bit norm such that{
ρj

ψj

}
= hj , for 0 ≤ j ≤ k − 1 ;

3. Compute

% = CRT(ρ,ψ)

with ρ = (ρ0, . . . , ρk−1) and ψ = (ψ0, . . . , ψk−1);

4. Set Ψ =
∏k−1
j=0 ψj and choose at random an integer υ ∈ (Z[ζ]/(Ψ))∗ such that

σ := % υ4 mod Ψ is prime in Z[ζ] ;

5. Return σ.

Verification On input σ, m and pk, Verify checks whether

(i) σ is prime , (ii) N(σ) < 2`k , (iii) I(4)

ν (σ) = H(m)

and, if so, accepts the signature.

Remark 3. The primes πj ’s and ψj ’s must be chosen of norm of ` bits for an ` sized for the factoring problem
over the rational integers. Indeed, suppose an attacker is given as a challenge ν = πψ, a product of two
primes in Z[ζ]. The goal of the attacker is to recover π and ψ.

The norm of ν satisfies N(ν) = N(π) N(ψ) := pq for two `-bit rational primes p, q ≡ 1 (mod 4). If ` were
chosen too small so that the problem of factoring the product of two rational `-bit primes becomes feasible,
the attacker could factor N(ν) and recover p and q. Once p and q are found, its remaining task is to find
π, ψ ∈ Z[ζ] with N(π) = p and N(ψ) = q. This can be efficiently achieved by generalizing Cornacchia’s
algorithm [6, Algorithm 1.5.2] to fourth roots, as done in [8, § 1.2] for cubic roots. The first step is to solve
for r over F∗p the equation r2 + 1 = 0 (mod p). Next, to consider the integer ρ := r− ζ ∈ Z[ζ], whose norm is
a multiple of p. Hence, the computation of gcd(ρ, p) yields π ∈ Z[ζ]—remember that Z[ζ] is norm-Euclidean,
and p = ππ2 where π2 = σ2(π). And similarly for q.
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6.2 Evaluating Quartic Residue Symbols

Quartapus requires the evaluation of the 4th-power residue symbol. We refer to [46,8] for efficient implemen-
tations.

A generic algorithm for computing the rth-power residue symbol for any prime r ≤ 11 is described in [5,
Section 7]. The case r = 3 is discussed in [47,8,39] and the case r = 5 in [39].

7 Concluding Remarks

In this paper, we have introduced a formal definition and construction of a new family of one-way functions
and signature schemes. They are related to the hardness of factoring moduli of the form n = prq. Since our
constructions rely on newly introduced assumptions, further cryptanalytic efforts are demanded in order to
get more confidence about their exact security.

Acknowledgments We are grateful to Dan Bernstein, Dan Boneh, and Antoine Joux for comments and
discussions on the ECM factoring method.
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