An Efficient and Compact Reformulation of
NIST Collision Estimate Test

P. R. Mishra* Bhartendu Nandan' Navneet Gabat

Abstract

In this paper we give an efficient and compact reformulation of NIST
collision estimate test given in SP-800 90B. We correct an error in
the formulation of the test and show that the test statistic can be
computed in a much easier way. We also propose a revised algorithm
for the test based on our findings.

1 Introduction

NIST’s collision estimate test is one of the ten tests given in NIST special
publication SP-800 90B [1] for entropy estimation for non-IID data. This
test is based on the collision estimate proposed by Hagerty and Draper [2].
It calculates the probability of the most-likely output value, based on the
collision of bits in a binary data.

This test mainly comprises three steps viz., counting and storing the
distance between consecutive indices where collisions are found, computing
a modified value of mean with help of mean and standard deviation and
carrying out binary search to find the probability. We propose an alternate
formulation of the first and the third steps. We indicate an error in step three
and give the correct formulation. We also show that with our formulation, the
costly binary search can be replaced with a single square root computation.
The paper is structured in the following manner.

In the next section we provide description of Collision Estimate Test given in
NIST special publication SP-800 90B [1]. In the third section, we provide an
alternate formulation of step 1. In the fourth section we discuss an error in
NIST’s description of the test and give our corrected formulation. The next

*prasanna.r.mishra@gmail.com
thhartendun@gmail.com
fnavneetgaba2000@gmail.com

i.e., the fifth section contains an algorithm for the test based on our findings
and the computation of its complexity. We take NIST’s implementation of
the test as a benchmark and compare the timings for different data sets.

2

NIST’s Description of Collision Estimate
Test[1]

Given the input S = (s1,...,s.), where s; € A ={0, 1},

1.
2.

Set v =0, index = 1.

Beginning with $;,4e., step through the input until any observed value
is repeated; i.e., find the smallest j such that s; = s;, for some ¢ with
ndex <1 < j.

Set v=v+1, t, =7 —index + 1 and index = j + 1.
Repeat steps 2-3 until the end of the dataset is reached.

Calculate the sample mean X, and the sample standard deviation (&),
of t; as

v

i=1 =1

Compute the lower-bound of the confidence interval for the mean, based
on a normal distribution [3] with a confidence level of 99 %,

. 1
X=X-2576—
VU

Using a binary search (bisection method [4]), solve for the parameter
p, such that

) B 1, 1
X’Ipq2(1+§(p1—q1))F(Q)—pq1§(p1—q1) (1)
where
g=1-p, (2)
P =>q,

F(1/2) =T(3,2)z %7,

and T is the incomplete Gamma function [6]. The bounds of the binary
search should be 1/2 and 1.

8. If the binary search yields a solution, then the min-entropy estimation
is the negative logarithm of the parameter, p:

min-entropy = — logy(p).

If the search does not yield a solution, then the min-entropy estimation
is:
min-entropy = log,(2) = 1.

3 Counting and Storing Collision Intervals

Since the binary sequences contain only 0 and 1, any 3-bit pattern must
contain a collision and the collision length is either 2 or 3. Let (b1, by, b3) be
a 3-bit pattern. The collision length corresponding to different values of by, by
and b3 are given in the following table. It may be verified that the collision

by | by | by | Collision length ()
01010 2
0,01 2
01110 3
0111 3
117010 3
1101 3
117110 2
11111 2

length for 3-bit patterns follows the following relation.

The only cases left are the left over 1-bit or 2-bit pattern at the end of the
sequence which can be catered separately. If there is single at the end, just
discard it. If there are two identical bits, the collision length will be two else
discard the case.

4 Computation of Probability for Min-Entropy

4.1 Error in Description of Test

Refer to section 6.3.2 of [1]. For the Collision Estimate test, a function
F(1/z) has to be calculated. It is defined as

F(1/2) =T(3,2)z €.

3

For the efficient implementation of this function, a continued fraction repre-
sentation of F'(1/z) is given in Appendix-G.1.1 on page 74 of [1]. It is written
that, The function F(1/z), used by the collision estimate (Section 6.3.2), can
be approzimated by the following continued fraction:
1
1+
o

(3)

We observed that an extra parameter k appears in the above continued
fraction. It was found that this continued fraction occurs in representation
of I'(k, z) [5]. For a positive integer k and a non-zero complex number z, we
have,

I'(k,z)= — (4)

S
%

It is clear from (4) that (3) can be equal to F(1/z) only when k = 3, and
not for an arbitrary value of k as stated in the document.

4.2 Polynomial Expression for F'(z)

Based on the observation of previous subsection, we derive a polynomial
expression for F' which is given in the following proposition.

Proposition 1. The function F' used in Collision test can be written as
F(2)=22"+22"+ 2

Proof. For s € N and z € R,

(s, 2) = (s — 1)le* i % (5)

Putting s = 3 in (5), we have,

2k
I(3,2) = 2!6—22%
k=0

2

= 2¢*(1+2+ %)

2

F(1/2) = T(3,2)z %" =2 *(1+ 2+ %)27362

= 2273422724 71

4

Therefore,
F(2)=22"+22* + 2

Remark. For implementation purpose, we can write F(2) as
F(z) =2(2(22+2)+ 1) (6)

This takes three floating point multiplications and two floating point addi-
tions or two floating point multiplications and three floating point additions
when 2z is written as z + z. Thus this implementation is quite simpler and
more efficient than the implementation of the continued fraction given in the
document.

4.3 Avoiding the Binary Search

Binary search is generally used for approximating roots of an equation in
cases where it is not possible to solve the equation explicitly. In this section
we show that (1) can be explicitly solved in terms of p, and thus the binary
search can be avoided. We first state the following theorem:

Theorem 1. (1) can be written as

X' = —2p* +2p+2. (7)
Proof. We have from (1)
) B 1 L1
X’qu2(1+§(p1—q1))F(Q)—pq ST =) (8)
Using proposition (1),
) B 1, 1
X' = pq 2(1+§(p —yq 1)) (2¢°+2¢"+9) —pg 507" —q)
B 1, 1, .,
= pq 1<2q2+2q+1+§(p f—a R+ 2+) =507 g 1))
= p(2q+2+q¢ +plg—1+p "t —¢")
= 2pq+q+p+1 9)

Using (2) in (9) we get the required result.

Further, (7) can be written as

pZ—p+<§—1):0 (10)

Solving (10) gives

11\/1—4(%—)

2
1+vV5—-2X'

2

Clearly, (10) will have real roots if and only if X’ < 2.5.
Since p € [0.5,1], we can discard -ve sign and thus we have

LS EAC R
2 = 2 -
— 0<V5-2X'<1
— 0<5-2X'<1

— 2< X'<25

(11)

This means (8) is solvable for p € [0.5,1] if and only if 2 < X’ < 2.5. Once
the solvability is ensured, p can be computed using (11) taking +ve sign.
5 Our algorithm and experimental results

Based on our observations, we propose the following algorithm for computa-
tion of min-entropy.

1: function COLLISION_ESTIMATE(S = {s; |t =0,1,...,L —1})
2 v < 0,index < 0, sum < 0,0’ < 0.

3 lim<+ L—2

4: while (index < lim) do

5: ty < (Sindex S Sinde:c—l—l) +2

6 index < index + t,

7 sum $— sum +t,

8 vv+1

9: end while

10: by < (Sindex S Sindex—H) +2

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

22:
23:
24:
25:
26:
27:

if index = lim and t, = 2 then
sum < sum +t,
veov+1
end if
X ¢ um
fori<0tov—1do
o o + (X —t;)?
end for
o

O./

v(v—1)

X' — X — 2.5760"
if X’ € [2,2.5] then
1+4/5—-2X’

min_entropy<— — log, p
else

min_entropy <— 1
end if

return min_entropy

28: end function

The correctness of the algorithm is evident in view of Sections 3 and 4.

Remark. In our algorithm, the starting index of the sequence is taken to be

ZET0.

5.1 Comparison of Timings

To compare efficiency of our algorithm, four sets of 1000 binary sequences
each, of lengths 1000, 10000, 100000 and 1000000 bits were taken. On each
of the four sets NIST algorithm and our algorithm were run. The experi-
ments were performed on an i-7 machine with 4GB of RAM. The timings are
compared in table 1.

S.No. | Length of the sequence in bits Time taken in secs
NIST Algorithm | Our Algorithm
1 1000 0.19 0.17
2 10000 0.37 0.31
3 100000 2.34 1.65
4 1000000 21.17 14.99

Table 1: Comparison of timings of NIST’s algorithm and our algorihtm

References

1]

Meltem Sonmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, Mike Boyle; Recommendation for the Entropy Sources
Used for Random Bit Generation, NIST Special Publication 800-90B,
January, 2018.

P. Hagerty and T. Draper; Entropy Bounds and Statistical
Tests, NIST Random Bit Generation Workshop, December 2012,
https://csre.nist.gov/csre/media/events /random-bit-generation-
workshop-2012 /documents/hagerty_entropy_paper.pdf.

K. Krishnamoorthy, Handbook of Statistical Distribution with Applica-
tions,Chapman and Hall, 2006.

Richard L. Burden, J. Douglas Flairs, Numerical Analysis, 8th Edition,
Brooks/Cole Cengage Learning. .

Annie A. M. Cuyt, Vigdis Peterson, Briette Verdonk, H. Waadeland,
W. B. Jones, Handbook of Continued Fraction for Special Functions,
Springer, 2008.

G. J. O. Jameson, Notes on Incomplete Gamma Function,
www.maths.lancs.ac.uk /jameson /gammainc.pdf

