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Abstract. Along with blockchain technology, smart contracts have
found intense interest in lots of practical applications. A smart contract is
a mechanism involving digital assets and some parties, where the parties
deposit assets into the contract and the contract redistributes the assets
among the parties based on provisions of the smart contract and inputs
of the parties. Recently, several smart contract systems are constructed
that use zk-SNARKSs to provide privacy-preserving payments and inter-
connections in the contracts (e.g. Hawk [KMS™16] and Gyges [JTKS16]).
Efficiency of such systems severely are dominated by efficiency of the
underlying UC-secure zk-SNARK that is achieved using COCQ frame-
work [KZM™15| applied on a non-UC-secure zk-SNARK. In this paper,
we show that recent progresses on zk-SNARKSs, allow one to simplify the
structure and also improve the efficiency of both systems with a UC-
secure zk-SNARK that has simpler construction and better efficiency
in comparison with the currently used ones. To this end, we first show
that given a NIZK argument which guarantees non-black-box simulation
(knowledge) soundness, one can construct a UC-secure NIZK that has
simpler construction and better efficiency than the ones that currently
are used in Hawk and Gyges. We believe, new technique can be of inde-
pendent interest.

Keywords: privacy-preserving smart contracts, zk-SNARKs, UC-
security, CRS model

1 Introduction

Eliminating the need for a trusted third party in monetary transactions, con-
sequently enabling direct transactions between individuals is one of the main
achievements in the cryptocurrencies such as Bitcoin. Importantly, it is shown
that the technology behind cryptocurrencies has more potential than what only
is used in direct transactions. Different blockchain-based systems such as smart
contracts [KMST16/JKS16], distributed cloud storages [WLB14], digital coins
such as Ethereum [Woo14] are some evidence that why blockchain technology
offers much more functionalities than what we can see in Bitcoin. Smart con-
tracts are one of popular applications that along with blockchain technology,
have found intense interest recently. A smart contract is a generic term denot-
ing programs written in Turing-complete cryptocurrency scripting languages,
that involves digital assets and some parties. The parties deposit assets into the
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contract and the contract redistributes the assets among the parties based on
provisions of the smart contract and inputs of the parties.

Different research have shown that even if payments (e.g. in Bitcoin) or
interconnections (e.g. in smart contracts) are conducted between pseudoran-
dom addresses, but still they lack privacy of end-users. Indeed, this mostly
arises from the nature of technology that a decentralized publicly shared ledger
records list of transactions along with related information (e.g. addresses of par-
ties, transferred values, etc), and long-time monitoring and some data analysis
(e.g. transaction graph analysis) on this ledger usually reveals some informa-
tion about the identity of end-users. To address these concerns and provide
strong privacy for end-users, several alternatives to Bitcoin protocol and smart
contract systems have been proposed; e.g. confidential assets [PBFT 18|, privacy-
preserving auditing [NVV18], privacy-preserving cryptocurrencies such as Zero-
cash [BCG™14] and Monero [Noel5]|, privacy-preserving smart contract systems
such as Hawk [KMS™16| and Gyges [JKS16].

Zerocash and Monero are two known anonymous cryptocurrencies that pro-
vide strong privacy for end-users. Each of them uses different cryptographic
tools to guarantee strong privacy. Monero uses ring signatures that allow for
an individual from a group to provide a signature such that it is impossible to
identify which member of that group made the signature. On the other side, Ze-
rocash uses zero-knowledge Succinct Non-interactive Arguments of Knowledge
(zk-SNARKSs [Grol0lLip12/PHGRI13IBCTV13lGrol6lGMI17/Lip19]) to prove the
correctness of all computations inside a direct transaction, without revealing the
source, destination and values of the transferred coins. In a similar technique,
privacy-preserving smart contract system Hawk [KMS™16| and criminal smart
contract system Gyges [JKS16] use universally composable zk-SNARKS to pro-
vide anonymous interconnection and payment in a smart contract.

2zk-SNARKs. Among various Non-Interactive Zero-Knowledge (NIZK) argu-
ments, zk-SNARKS are one of the most popular ones in practical systems. This is
happened because of their succinct proofs, and consequently very efficient verifi-
cations. A zk-SNARK proof allows one to efficiently verify the veracity of state-
ments without learning extra information about the prover. The proofs can be
verified offline very quickly (in few milliseconds) by possibly many independent
verifiers. This can be very effective in efficiency of large-scale distributed systems.
By default a zk-SNARK should guarantee completeness, zero-knowledge and
knowledge soundness, but recently some zk-SNARKSs are proposed that achieve
stronger version of sounduess, called simulation knowledge soundness (a.k.a.
simulation extractability) [GMI7|Lip19]. Intuitively, a simulation-extractable zk-
SNARK satisfies knowledge soundness even if an adversary has seen arbitrary
number of simulated proofs. Simulation-extractability ensures that the proofs are
non-malleable and an adversary cannot modify them to come up with a new valid
proof. Efficiency of zk-SNARKSs mainly comes from the fact that their construc-
tion relies on non-falsifiable assumptions (e.g. knowledge assumptions [Dam91])
that allow succinct proofs and non-black-box extraction in security proofs. On
the other hand, a zk-SNARK with non-black-box extraction cannot achieve Uni-
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versally Composable Security (UC-security) which is an imperative and neces-
sary requirement in constructing larger practical cryptographic systems [Can01].
Due to this fact, zk-SNAKRs cannot be directly adopted in larger systems that
should guarantee UC-security and to address this issue, their security needs to
be amplified before using in UC-secure systems [KZM™15).

Privacy-preserving smart contract systems. Recently, some elegant UC-
based frameworks are presented that allow to construct privacy-preserving smart
contracts, including Hawk [KMS™16] and Gyges [JKS16] for criminal smart
contracts. These systems record zk-SNARK proofs on ledger, instead of pub-
lic transactions between pseudonyms, which brings stronger transactional pri-
vacy. Strictly speaking, Hawk is a system that gets a program and compiles
it to a cryptographic protocol between the contract correspondents (including
users and a manager) and the blockchain. It consists of two main blocks, where
one is responsible for private money transfers and uses a variation of Zero-
cash [BCG™14], while the second part handles other contract-defined operations
of the system. Similar to Zerocash, operations such as Mint, that is required in
minting a new coin, and Pour, that enables anonymous transactions, are located
in the first block. On the other side, contract-related operations such as Freeze,
Compute and Finalize, that are three necessary operations defined by Hawk for
each smart contract, are addressed in the second block. More details regard to
the mentioned operations can be found in [KMS™16] E To achieve anonymity in
the mentioned operations and payments, Hawk widely uses zk-SNARKSs to prove
different statements. As the whole system intended to achieve UC-security, so
they needed to use a UC-secure zk-SNARK in the system. Additionally, since
Zerocash also uses a non-UC-secure zk-SNARK and it is not proved to satisfy
UC-security, so to make it useable in Hawk, they needed a variation of Zerocash
that uses a UC-secure zk-SNARK and also guarantees UC-security. To this aim,
designers of Hawk have used COC) framework [KZM™15| (a framework to lift
a non-UC-secure sound NIZK to a UC-secure one; COC( stands for Composable
0-knowledge, Compact 0-knowledge) to lift the non-UC-secure zk-SNARK used
in Zerocash [BCTV13]|, to a UC-secure zk-SNARK, such that the lifted scheme
can be securely used in composition with the rest of system [Can01]. Then, due
to using a UC-secure zk-SNARK in Zerocash, designer of Hawk modified the
structure of original Zerocash and used the customized version in their system,
which also guarantees UC-security. The lifted UC-secure zk-SNARK frequently
is used in the system and plays an essential role in the efficiency of entire system.

Problem statement. In the performance evaluation of Hawk [KMS™16| au-
thors show that the efficiency of their system severely depend on efficiency of
the lifted UC-secure zk-SNARK (which is the case in Gyges [JKS16] as well). In
fact, computational complexity of both systems are dominated with complexity
of the underlying UC-secure zk-SNARK. Particularly, Kosba et al. [KMS™16]

! A tutorial about the system can be found in http://cryptowiki.net/index.php?
title=Privacy_preserving_smart_contracts:_Hawk_project
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emphasize that practical efficiency is a permanent goal of Hawk’s design, so
to get the best, they also propose various optimizations. By considering this
one may ask, can we construct more efficient UC-secure zk-SNARKSs such that
new constructions will allow to improve efficiency of both complete systems?
Efficiency improvements can be either on running time of algorithms or size
of public parameters. Such constructions can be useful in any other UC-secure
systems which aims to benefit zk-SNARKSs.

Our Contribution. As the main contribution, we show that one can simplify
the construction and improve the efficiency of Hawk (and similarly Gyges) smart
contract system by substituting the underlying UC-secure zk-SNARK with some
new constructions of UC-secure zk-SNARKSs.

To this end, we first show that given a NIZK argument that guarantees non-
black-box simulation (knowledge) soundness, one can construct a black-box sim-
ulation extractable NIZK by adding a linear size commitment and a NIZK proof
for a slightly modified language. To do so, we present a variation of non-black-
box simulation extractable zk-SNARK of Groth and Maller [GM17] (refereed as
GM zk-SNARK in the rest) and show that it can achieve black-box simulation
extractability. Roughly speaking, we define a new language L’ based on the lan-
guage L in the input NIZK that is embedded with encryption of witness, and
then proof that this modification is sufficient to achieve black-box simulation ex-
tractability and consequently UC-security. The modification enforces the prover
to send encryption of witnesses using a public key in CRS along with the proof.
We do the proofs for GM zk-SNARK, but actually this works for any NIZK
argument that guarantees non-black-box simulation (knowledge) soundness.

Then, we show that the proposed technique allows one to construct more
efficient UC-secure zk-SNARKs and improve efficiency of both smart contract
systems. Recall that both Hawk and Gyges have used CAC() framework to lift
a variation of Pinocchio zk-SNARK [PHGR13] which was deployed in Zerocash
(proposed by Ben Sasson et al. [BCTV13]). Later it details we show that, as Lip-
maa’s [Lip19] and GM [GM17] zk-SNARKs have better efficiency than the men-
tioned variation of Pinocchio zk-SNARK, and as our changes are lighter than the
changes that are applied on Ben Sasson et al.’s zk-SNARK in Hawk |[KMS™16|
and Gyges [JKS16], so we obtain UC-secure zk-SNARKSs that have simpler con-
structions and better efficiency than the ones that currently are deployed in the
systems. Indeed, we will see that our changes are a small part of their changes,
which leads to have less overload.

A key note about the modifications is that we do the changes in CRS circuit
level and keep the prover and verifier procedure as the input NIZK which allows
significant simplifications. We believe new technique of constructing UC-secure
NIZKs can be of independent interest and the output NIZKs can be deployed
in any large cryptographic system that aim to guarantee UC-security and need
to use non-interactive zero-knowledge proofs. From a different perspective, new
constructions also can be used as a commit-and-proof system [Lip16,DGP"19|,
as prover can send encryption (sort of commitment) of witnesses earlier than
the proof elements. In such cases, one can consider linear commitment size and
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succinct proof size (particularity with GM [GM17] zk-SNARK, the proof would
be 2 elements in G; and 1 element in Gy). We note that in UC-secure zk-
SNARKS, the proofs are linear in witness size but still independent of size of the
circuit that encodes the language.

Discussions on UC-secure NIZK arguments. Most of efficient zk-
SNARKs only guarantee knowledge soundness, meaning that if an adversary
can come up with a valid proof, there exists an extractor that can extract the
witness from the adversary. But in many practical cases, including signatures of
knowledge SoKs [CL06|, knowledge soundness is not enough, and one needs a
stronger security guarantees. More accurately, most of zk-SNARKSs are vulnera-
ble to the malleability attacks which allows an adversary to modify an old proof
to a new valid one, that is not desired in some cases. To address this, the notion of
simulation exractability is defined which ensures that an adversary cannot come
up with a new acceptable proof (or an argument), even if he already has seen ar-
bitrary simulated proofs, unless he knows the witness. In other words, simulation
extractability implies that if an adversary, who has obtained arbitrary number
of simulated proofs, can generate an acceptable new proof for a statement, there
exists an extractor that can extract the witness. Based on extraction procedure
which is categorized as Black-Box (BB) or non-Black-Box (nBB), there are var-
ious notions of simulation extractibility [Gro06lKZM™15|/GMI7[LipT19]. In BB
extraction, there exists a black-box (universal) extractor which can extract the
witness from all adversaries, however in the nBB extraction, for each adversary
there exists a particular extractor that can extract only if it has access to the
adversary’s source code and random coins. It is already observed and proven
that a NIZK system that achieves simulation extractibility with BB extraction,
can guarantee the UC-security [CLOS02)Gro06/GOS06|. Therefore, constructing
a simulation-extractable zk-SNARK with BB extraction is sufficient to construct
a UC-secure zk-SNARK (which the proof will be only circuit succinct). Precisely
speaking, in a UC-secure NIZK the simulator of ideal-world should be able to
extract witnesses without getting access to the source code of environment’s
algorithm, which this is guaranteed by BB extraction.

A known technique to achieve a simulation-extractable NIZK with BB ex-
traction is to enforce the prover to send the encryption of witnesses (with a public
key given in the CRS) along with proof, so that in security proofs the extrac-
tor can use the pair secret key for extraction [Gro06]. Using this technique, the
proof (communication) size will not be succinct anymore, as impossibility result
in [GW11] confirms, but the verification will be efficient yet and the extraction
issue that zk-SNARKs have in the UC framework [Can01] will be solved.

2 Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. Let A € N be the security parameter, say A = 128. All adversaries will be
stateful. For an algorithm A, let im(A) be the image of A, i.e., the set of valid
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outputs of A, let RND(A) denote the random tape of A, and let r <—s RND(.A) de-
note sampling of a randomizer r of sufficient length for A’s needs. By y + A(x;r)
we mean given an input x and a randomizer r, A outputs y. For algorithms A
and Ext 4, we write (v | y') < (A|| Exta)(x;r) as a shorthand for "y < A(x;r),
y' <+ Ext4(z;r)". An arbitrary negligible function is shown with negl(\). Two
computationally indistinguishable distributions A and B are shown with A ~. B.

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gy, [a],, = a[1] ,, where [1] , is a fixed generator of G,,. A
bilinear group generator BGgen(1*) returns (p, G1, G2, Gr, ¢, [1];, [1],), where p
(a large prime) is the order of cyclic abelian groups G1, G2, and Gy. Finally, é :
G1 x G — Gr is an efficient non-degenerate bilinear pairing, s.t. é([a], , [b],) =
[ab] - Denote [a], o [b], = é([a]; , [b],).

We bellow present a short review on Quadratic Arithmetic Programs (QAPs)
and Square Arithmetic Programs (SAPs) that both define NP-complete lan-
guages specified by a quadratic equation over polynomials and have efficient re-
duction from the well-known language (either Boolean or Arithmetic) CIRCUIT-
SAT [GGPRIZIGMI7ILipio).

Quadratic Arithmetic Programs. QAP was introduced by Gennaro et
al. [GGPR13] as a language where for an input x and witness w, (x,w) € R
can be verified by using a parallel quadratic check. Consequently, any efficient
simulation-extractable zk-SNARK for QAP results in an efficient simulation-
extractable zk-SNARK for CirRcuiT-SAT.

An QAP instance Q,, is specified by the so defined (Z,, mo, {u;, v;, w; };-”:0).
This instance defines the following relation, where we assume that Ay = 1:

{(x7w):x:(Ah...,AmU)T/\w:(AmO+17...,Am)T/\ }
(S0 A5 (X)) (S As0s(X)) = 7 Ajw; (X) - (mod £(X))

Alternatively, (x,w) € R if there exists a (degree < n — 2) polynomial h(X), s.t.
(50 gy (X)) (S 4505 (X)) = S Ajws (X) = h(X)U(X)

where ¢(X) = [[}_, (X —«*™!), and w is an n-th primitive root of unity modulo
p, is a polynomial related to Lagrange interpolation. In summary, the goal of the
prover of a zk-SNARK for QAP [GGPR13IGrol6JABLZ17|Lip19| is to prove
that for public (Ay,...,An,) and Ag = 1, he knows (Amy+1,-..,Am) and a
degree < n — 2 polynomial h(X), such that above equation holds.

Ro, =

P

Square Arithmetic Program: It is shown that any quadratic arithmetic circuit
with fan-in 2 gates over a finite field Z,, can be converted to a SAP instance over
the same finite field (e.g. by considering ab = ((a + b)? — (a — b)?)/2) [GM17].
Similar to QAP, a SAP instance is defined as S, = (Zp, mo, {u;, w;}72,). This
instance defines the following relation:

(W) x = (A1, .o, Amg) T AW = (Amg i1, Am) A

Rs = 2
7 (S A (X)) = Sg Agws (X)) (mod £(X))
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where ¢(X) := [[/_,(X—w'~!) = X™—1is the unique degree n monic polynomial
such that ¢(w'~!) = 0 for all i € [1..n]. Alternatively, (x,w) € Ry, if there exists
a (degree < n — 2) polynomial h(X), s.t.

(S Ajus (X)) = S0y Ajuny (X) = h(X)(X)

2.1 Definitions

We use the definitions of NIZK arguments from [Gro06/Grol6lGMT7IKZM™15].
Let R be a relation generator, such that R(1%) returns a polynomial-time de-
cidable binary relation R = {(x,w)}. Here, x is the statement and w is the
witness. We assume one can deduce A from the description of R. The relation
generator also outputs auxiliary information £g that will be given to the hon-
est parties and the adversary. As in [Grol6JABLZ17], {gr is the value returned
by BGgen(1*). Due to this, we also give (g as an input to the honest parties;
if needed, one can include an additional auxiliary input to the adversary. Let
Lr = {x: 3w, (x,w) € R} be an NP-language.
A NIZK argument system W for R consists of tuple of PPT algorithms, s.t.:
CRS generator: K is a PPT algorithm that given (R,&r), where (R,ér) €
im(R(1%)) outputs crs = (crsp,crsy) and stores trapdoors of crs as ts. We
distinguish crsp (needed by the prover) from crsy (needed by the verifier).
Prover: P is a PPT algorithm that, given (R, &R, crsp,x, w), where (x,w) € R,
outputs an argument 7. Otherwise, it outputs L.
Verifier: V is a PPT algorithm that, given (R,¢g,crsy,x, ), returns either
0 (reject) or 1 (accept).
Simulator: Sim is a PPT algorithm that, given (R, &g, crs, ts,x), outputs an
argument 7.
Extractor: Ext is a PPT algorithm that, given (Ry, &R, ,crs, x, 7, te) extracts
the w; where te is extraction trapdoor (e.g. a secret key).
We require an argument system ¥ to be complete, computationally
knowledge-sound and statistically ZK, as in the following definitions.

Definition 1 (Perfect Completeness [Grol6|]). A non-interactive argu-
ment ¥ is perfectly complete for R, if for all A, all (R,¢r) € im(R(17Y)), and
(x,w) € R,

Prcrs + K(R,&r) : V(R, &R, crsy, x, P(R, &R, crsp,x,w)) = 1] =1 .

Definition 2 (Computational Knowledge-Soundness [Grol6]). A non-
interactive argument ¥ is computationally (adaptively) knowledge-sound for R,
if for every NUPPT A, there exists a NUPPT extractor Exty, s.t. for all X,

(Ra gR) — R(l)\)7 (CI’S || tS) — K(R7 ER)a
Pr |1, RND(A), ((x,7) || w) 4 (A Exta) (R, &g, crs;v) :| =2 0 .
(x,w) € RAV(R, R, crsy,x,m) =1
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Here, €g can be seen as a common auxiliary input to A and Exty4 that is gener-
ated by using a benign [BCPR14] relation generator; A knowledge-sound argu-
ment system is called an argument of knowledge.

Definition 3 (Statistically Zero-Knowledge [Grol6]). A non-interactive
argument W is statistically ZK for R, if for all ), all (R,&R) € im(R(1%)), and
for all NUPPT A, £§™° =, 4™ where

ey = Prf(crs | ts) « K(R,&r) : A2 (R, €R,crs) = 1] .

Here, the oracle Og(x,w) returns L (reject) if (x,w) € R, and otherwise it returns
P(R, &R, crsp,x,w). Similarly, O1(x,w) returns L (reject) if (x,w) € R, and
otherwise it returns Sim(R, (g, crs, x, ts). ¥ is perfect ZK for R if one requires
that g = €1.

Intuitively, a non-interactive argument ¥ is zero-knowledge if it does not leak
extra information besides the truth of the statement.

Beside the mentioned properties defined in Def. a zk-SNARK has suc-
cinctness property, meaning that the proof size is poly (A) and the verifier’s
computation is poly (A) and the size of instance.

In the rest, we recall the definitions of simulation soundness and simulation
extractability that are used in construction of UC-secure NIZKs.

Definition 4 (Simulation Soundness [Gro06]). A non-interactive argu-
ment ¥ is simulation sound for R if for all NUPPT A, and all X,

oo [(RoEm) = RO, (ers 19)  K(R, &), () ¢ A°0 (Romers) S| _
"l 1) € QAx €L AV(R, Er, crsv, x, 1) = 1 ke

Here, @ is the set of simulated statement-proof pairs generated by adversary’s
queries to O, that returns simulated proofs.

Definition 5 (Non-Black-Box Simulation Extractability [GM17]). A
non-interactive argument ¥ is non-black-box simulation-extractable for R, if
for any NUPPT A, there exists a NUPPT extractor Ext4 s.t. for all A,

(R,&r) ¢ R(1Y), (ers [ ts) < K(R. &r),
Pr |y, RND(A), ((x,7) | w) (A% | Ext)(R, &r,crs;r) :| = 0 -
(x,m) € QA (x,w) € RAV(R,Er,crsy,x,m) =1

Here, @ is the set of simulated statement-proof pairs generated by adversary’s
queries to O that returns simulated proofs.

It is worth to mention that non-black-box simulation extractability implies
knowledge soundness (given in Def. , as the earlier is a strong notion of the
later which additionally the adversary is allowed to send query to the proof
simulation oracle. Similarly, one can observe that nBB simulation extractability
implies simulation soundness (given in Def. {)) [Gro06].
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Definition 6 (Black-Box Simulation Extractability [KZM™15]). A non-
interactive argument ¥ is black-box simulation-extractable for R if there exists
a black-box extractor Ext that for all NUPPT A, and all X,

(R,&r)  R(1%), (crs | ts]| te) « K(R, &),
Pr | (x,7) + A°O(R, (R, crs), w + Ext(R, £g, crs, te,x, ) :| ~=x 0 .
(x,m) QN (x,w)  RAV(R,Er,crsy, x,m) =1

Similarly, @ is the set of simulated statement-proof pairs, and te is the extraction
trapdoor. A key note about Def. [f]is that the extraction procedure is BB and
unlike the nBB case, the extractor Ext works for all adversaries.

2.2 CO@CO: a Framework for Constructing UC-secure zk-SNARKs

Kosba et al. [KZM™15| have constructed a framework with several converters
which the most powerful one gets a sound NIZK and lifts to a NIZK that achieves
BB simulation extractability (defined in Def. |§[), which is sufficient to achieve UC-
security [Gro06]. Here we review construction of the most powerful converter that
is used by both Hawk and Gyges to construct a UC-secure zk-SNARK.

Construction. Given a sound NIZK, to achieve a UC-secure NIZK, CHCQ
framework applies several changes in all setup, proof generation and verification
procedures of the input NIZK. Initially the framework defines a new language L’
based on the language L in underlying NIZK and some new primitives that are
needed for the transformation. Let (KGen,, Enc,, Dec,) be a set of algorithms for
a semantically secure encryption scheme, (KGeng, Sig,, Vfy,) be a one-time signa-
ture scheme and (Com,, Vfy,) be a perfectly binding commitment scheme. Given
a language L with the corresponding NP relation Ry,, define a new language L’
such that ((x, ¢, p, pky, pke, p), (1,70, W, S0)) € Ry iff:

(C = Ence(pke,w;r)) A ((Xa W) €RLV (/J' = fso(pks) ANp= Comc(SO;TO)))v

where {fs : {0,1}* — {0,1}*}¢(0,1}» is a pseudo-random function family. Now,
a sound NIZK argument system ¥ for R constructed from PPT algorithms
(K,P,V,Sim, Ext) can be lifted to a UC-secure NIZK ¥’ with PPT algorithms
(K’,P", V', Sim’ Ext’) as follows.

CRS and trapdoor generation K'(Ry,¢r, ): Sample (crs|| ts) —
KRy, Ry, )i (Pkessk,) <= KGen(12); so, 70 <= {0,1}*; p := Come(s0;70);
and output (crs’ || ts’ || te’) := ((crs, pk., p) || (S0, 70) || sk.)-

Prover P'(Ry, &R, ,crs,x,w): Parse crs’ = (crs, pk,, p);
Abort if (x,w) ¢ Rp; (pk,,sk,) ¢+  KGeny(1}); sample
20,21, 22,71 +s{0,1}*;  compute ¢ = Ence(pk,,w;r1);  gener-

ate Q A P(RL/,ERL,,CI'S, (X, C, 20, pksa pkeap)ﬂ (Tlazlvwsz)); Sign
o <+ Sig,(sky, (x, ¢, 20, m)); and output 7’ := (¢, 2o, 7, pkg, 7).
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Verifier V/(RL, R, ,crs’,x,7’): Parse  crs’ = (crs,pk,,p)  and
7 = (¢, p,m,pks,0); Abort if Vfy (pk,, (x,c,pu,m),0) = 0; call
V(Ry/, &Ry, - Crs, (X, ¢, 1, pky, pk,, p), m) and abort if it outputs 0.

Simulator Sim’(Ryr, R, ,crs’, ts’,x): Parse crs’ = (crs, pk,,p) and
ts' = (s0,70); (pks,sky) < KGens(1}); set u = f,(pky);
sample z3,71 <s{0,1}*; compute ¢ =  Enc.(pk,,23;71); gener-

ate +— PRy, &R, - crs, (X, ¢, i1, pky, pke, p), (11,70, 23, 50));  sign
o « Sig,(sky, (x, ¢, i, m)); and output 7 := (e, p, 7, pky, o).

Extractor Ext’ (Ry, (R, ,crs’,te/,x, m’): Parse 7’ := (c, pu, m, pky, o), te' := sk;
extract w < Dec(sk,, ¢); output w.

On input a SAP instance S, = (Zp, mo, {u;, w;}jo, £).

K(R5p7€R): Pick g1 < GLQQ r G;: (0575777 X) S (Z;)4 (such that Z(X) 7é 0)7
generate crs < (crsp,crsy) and return (crs, ts); where ts = («, 3,7, x) and

Rs,, [a, (), Y U(x)?, ( + B)v(x), (vx' 72€(x)xi)?;ol] K
(w000 + (@4 B (0) mg 1]+ [Y00s (Vi |
Crsy < ( [av’% (’Ywi(X) + (a + B)ui(X)):iOOh ’ [17 /377}2 ) .

P(Rsp,fR,CrSp,X = (Al, ey Amo),w = (Amo+17 ey Am)):

1. Let a'(X) « Z;ﬂ:o Aju; (X)),
Let cf (X) « 37 Ajw; (X),
Set h(X) =571, PhiX' < ¢ (a (X) — (X)) /0(X),
Set [y?h(x)€(x )] = X050 hi [PXH00] s

Pick r < Zy; Set
— 0 (S0 A s (L + e, )
— b« (ZT:O Aj [y (0], +7"W(x)]2)
—c o« XA [(Pwi() + (e + B ()], + P [v00%], +
rl(a+ B0, + [ 200x) (R0 +2r iy Ay () |

6. Return 7w < (a,b,¢).
V(Rs,,&r,crsv,x = (A1,...,Amy), ™ = (a,b,c)): assuming Ap = 1, check

a.[v]l = [7]2.6 )
(a+[a],) e (b+[8],) = [a], o [Bl, +

+ (Z Aj [(yw;(x) + (a + B)uy (X)]1> o [y], +cell],

Crsp <

Gl W

Sim(Rs,, &R, crs,x = (A1,..., Am,), ts): Pick p < Zy, and compute 7 = (a,b,c)

such that
a<[uly, b uly, e u2+(a+5)u—vZAj(ij(x)+(a+ﬂ)uj(x))]

Fig. 1: Structure of GM zk-SNARK [GM17]
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2.3 Groth and Maller’s zk-SNARK

This section presents the construction of GM zk-SNARK (shown in Fig. [1)) that
is presented by Groth and Maller in [GM17]. It was the first SAP-based zk-
SNARK that achieved nBB simulation extractability, which makes the scheme
secure against the malleability attacks. But recently Lipmaa [Lip19] proposed
several nBB simulation extractable zk-SNARKSs for various languages including
QAPs, SAPs, Quadratic Span Programs (QSPs) and Square Span Programs
(SSPs). Our technique works for all cases but here we mostly focus on QAP-
based and SAP-based constructions, as they work with arithmetic circuits.

3 Efficient UC-secure zk-SNARKSs

In this section, we show that given a non-interactive proof system that guaran-
tees zero-knowledge and nBB simulation (knowledge) soundness, we can con-
struct a BB simulation extractable NIZK proof system by adding a linear size
commitment and a NIZK proof for a new language which is achieved by em-
bedding encryption of witness with the old language. To prove this, we apply
the mentioned changes on GM zk-SNARK [GM17] P| and show that the modi-
fied scheme achieves BB simulation extractability which is sufficient to achieve
UC-security; based on previous results [CLOS02/Gro06/GOS06]. One can ap-
ply the same changes on any nBB simulation (knowledge) sound NIZK to con-
struct a BB simulation extractable NIZK. We should emphasize that since nBB
simulation (knowledge) sound NIZKs (e.g. [GM17|Lip19]) guarantee more secu-
rity than nBB (knowledge) sound NIZKs(e.g. [PHGR13]), so this allows us to
achieve UC-security with less changes in comparison with the changes required
for (knowledge) sound NIZKs.

Main goal. The main goal is to present UC-secure zk-SNARKSs that will have
better efficiency in comparison with the ones that are lifted by COC( framework
and are used Hawk and Gyges [KMST16/JKS16].

3.1 Construction

Our modifications keep the internal computation of both prover and verifier
as computations of the input NIZK but for a larger arithmetic circuit, where
the number of added gates will be less than the case one uses CHC) frame-
work. Instead we define a new language L’ based on the language L in the

2 We write the proofs and efficiency evaluations for GM zk-SNARK that
is published in Crypto 2017 [GMI17] and implemented in Libsnark li-
brary https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_
proof_systems/ppzksnark/rics_se_ppzksnark. But basically the results hold
for any NIZK that guarantees zero-knowledge and nBB simulation (knowledge)
soundness, e.g. for any of nBB simulation extractable zk-SANRKSs proposed by
Lipmaa in [Lip19].


https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark/r1cs_se_ppzksnark
https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark/r1cs_se_ppzksnark
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CRS and trapdoor generation K'(Rw,&{r, ): Generate key pair (pk,,sk,) <
KGen,(1*); execute CRS generator of GM zk-SNARK and sample (crs || ts) <
K(Ry/, &Ry, ); output (crs’ || ts' || te’) := ((crs, pk,) | ts || sk,); where ts’ are sim-
ulation trapdoors and te’ is the extraction key.

Prover P (Ry,&r, ,crs’,x,w): Parse  crs’ = (crs,pk,);  Abort if
(x,w) ¢ Ry; sample r+<-s{0,1}*; compute encryption of witnesses
¢ = Ence(pk,,w;r); execute prover P of GM zk-SNARK and generate

7+ P(Ry/, &Ry, 15, (X, ¢, pk,), (w,7)); and output 7’ := (¢, 7).

Verifier V'(Ry, &R, ,crs’,x,m'): Parse crs’ := (crs, pk,) and 7’ := (¢, 7); call verifier
V(Ry/, &Ry, Crs, (X, ¢, pk. ), m) of GM zk-SNARK and abort if it rejects.

Simulator Sim’(Ry, &R, ,crs’,x,ts’): Parse crs’ := (crs,pk,) and ts’ := ts; sam-
ple z,7+5{0,1}*; compute ¢ = Enc.(pk,,z;7); execute simulator of GM
zk-SNARK and generate m < Sim(Ry/,&r,,,crs, (x,c, pk,),ts); and output

' = (c,m).

Extractor Ext’(Ry, &R, ,crs’,te’,x,n'): Parse n’' := (¢, ) and te’ := sk,; extract
w <— Decc(sk,, c); output w.

Fig.2: GM zk-SNARK with BB simulation extractability

input NIZK (in the rest we particularly write down for GM zk-SNARK [GM17],
but the procedure is the same for any nBB simulation sound NIZK) that is
embedded with encryption of witness. Precisely, given a language L with the
corresponding NP relation Ry, we define the following new language L’ such
that ((x, ¢, pk,), (w,7)) € Ry, iff:

(¢ = Ence(pk,,w; 7)) A ((x,w) € Ry,),

where (KGen, Enc,,Dec.) is a set of algorithms for a semantically secure en-
cryption scheme with keys (pk,,sk.). Accordingly, the modified version of GM
zk-SNARK is given in Fig.

It is worth to mention that, due to the particular structure of new language
L/, all verifications will be done inside the circuit, but prover will generate some
new public outputs (ciphertexts) in the extended circuit which increase the size of
communication (statement) to linear but keeps the proof size as the proof size of
input NIZK which here is 3 group elements. Roughly speaking, new modification
enforces prover P to encrypt its witness with a public key given in the CRS and
send the ciphertext along with the proof. In this scenario, in security proof of
BB simulation extractability, the secret key of encryption scheme is given to
the Ext which allows to extract witnesses in the BB manner. Actually this is
an already known technique to achieve BB extraction that also is used in COC()
framework. It is undeniable that sending encryption of witnesses leads to have
non-succinct proofs in witness size but still the proof is succinct in the size
of circuit that encodes the language and depending on efficiency of the input
NIZK, it allows to construct more efficient NIZKs than the ones that are used
in |[KMS™16JTKS16].
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3.2 Efficiency

In new constructions the proof size will be sum of the proof size of input NIZK
plus size of ciphertext ¢ which results to have proofs linear in witness size but
succinct in circuit size. For instance for new variation of GM zk-SNARK shown
in Fig. [2| the proof is 2 elements in G1, 1 element in G, along with ¢ that is
encryption of witnesses. So, proof size is dominated with size of ¢ that is linear
in witness size.

As verifier is untouched, so the verification of new constructions will be sim-
ilar to input NIZKs but with larger size of statement. Strictly speaking about
new variation of GM zk-SNARK shown in Fig. 2] similar to original scheme the
verification procedure consists of checking that the proof contains 3 appropriate
group elements and checking 2 pairing product equations which in total it needs
a multi-exponentiation G; to mg exponents and 5 pairings, where mg is the
length of statement.

In the setup, in result of our changes, the arithmetic circuit will be extended
with a sub-circuit for encrypting the witness which for a particular language it
will have smaller number of gates in comparison with the case that one uses
COCO framework, as it requires more changes than our changes on the language
of input NIZK (a more detailed comparison is provided in Fig. [3]).

3.3 Security Proof

Theorem 1 (Perfect Completeness). If the input NIZK guarantees perfect
completeness, the NIZK argument constructed in Sec. [3, is a mon-interactive
argument of knowledge that guarantees perfect completeness.

Proof. We emphasizes that in new constructions with the proposed technique,
the internal computations of P and V will be the same as input NIZK, just
they need to perform the computation for new instance that has larger size (e.g.
N = Noig+Nnew, where n is number of multiplication ot squaring gates in the new
circuit, and 7y, is the number of multiplication or squaring gates that are added
in result of new changes) and prover needs to output some new elements that
are encryption of witnesses and will be used inside the unchanged verification
equations. So by considering this fact, one can see that the completeness of
modified protocol follows the input NIZK argument. a

Theorem 2 (Computationally Zero-Knowledge). If the input NIZK guar-
antees (perfect) zero-knowledge, the NIZK argument constructed in Sec. @ 18
a mnon-interactive argument of knowledge that guarantees computational zero-
knowledge.

Proof. To prove the theorem, we write a series of hybrid experiments that start
from an experiment that encrypts a random value and uses the simulator, and
finally gets to an experiment that uses the procedure of real prover. We show
that all experiments are indistinguishable two-by-two. The proof is the same
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for any input NIZK arguments that satisfies zero-knowledge and nBB simula-
tion (knowledge) soundness. Strictly speaking about GM zk-SNARK [GM17],
recall that their scheme guarantees perfect zero-knowledge and its simulation
procedure is given in Fig. [l Now, consider the following experiments,

EXPZ*

— Setup: (pk,,sk,) < KGen(1*); (crs || ts) KRy, &r,, ); crs’ = (crs, pk,)

— O(x,w) : Abort if (x,w) &€ Ry;Sample z,r + {0, 1}A;c = Enc.(pk,, z;7);
7 <= Sim(Ry/, €r,, 15, (X, ¢, pk,), ts);

— b+ A% (crs');
return b; fi

EXP3"

— Setup: (pk,,sk,) « KGen(1"); (crs || ts) + K(Ry/, Ry, ); crs’ = (crs, pk,)

— O(x,w) : Abort if (x,w) & Ry;Sample r + {0,1}*; ¢ = Enc.(pk,,w;7);
7 < Sim(Ry/, &Ry, , €18, (%, ¢, pk,), ts);

— b+ A% (crs');
return b; fi

Lemma 1. If the used cryptosystem in the above games is semantically secure,
then, for two experiments EXPZ® and EXPZ*, we have Pr[EXP3"] ~ Pr[EXP?¥].

Proof. By considering the fact that the cryptosystem Il =
(KGen,, Enc.,Dec.) is a semantically secure, so no polynomial-time algo-
rithm can distinguish an oracle that encrypts randomly chosen value z and uses
simulator Sim from the case that it encrypts witness w and again uses Sim. O

EXPZ"

— Setup:(pk,, sk, ) < KGenc(1*); (crs || ts) < K(Ry, Er,, ); crs’ = (crs, pk,)

— O(x,w) : Abort if (x,w) € Ry; Sample r + {0,1}*; ¢ = Enc.(pk,, w; 7);
7 < P(RL/, &Ry, 15, (X, ¢, pk, ), (W,7));

— b+ AW (crs);
return b; fi

Lemma 2. For experiments EXP3® and EXPZ® we have Pr[EXP3F] ~ Pr[EXP3].

Proof. As GM zk-SNARK (or more generally the input NIZK) guarantees zero-
knowledge, so one can conclude that the real proof (generated by prover) in
experiment EXng is indistinguishable from the the simulated proof (generated
by simulator) in experiment EXP;k. O

This completes the proof of theorem. a
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Theorem 3 (Black-Box Simulation Extractability). Assuming the en-
cryption scheme is semantically secure and perfectly correct, and the input NIZK
guarantees non-black box simulation (knowledge) soundness, the NIZK argument
constructed in Sec.[3, satisfies BB simulation extractability.

Proof. Similar to proof of last theorem, we go through a sequence of hybrid
experiences which two-by-two are indistinguishable. The proof uses a similar
approach that is used in C)Cf) framework and consequently in Hawk and Gyges,
but with considerable simplifications. As the first two experiments, consider the
following experiments,

SimExt
EXPYT™MET
— Setup:(pk,, sk,) + KGen.(1%); (crs || ts) + KRy, &r,, );crs’ = (crs, pk,)
— O(x) : Sample r, z + {0, 1}’\;0 = Encc(pk,, z;7);

7 < Sim(Ry/, Ry, , crs, (x, ¢, pk, ), ts); output 7' := (¢, )

— (x,7') A% (crs’, sk,);
— Parse 7' := (c, 7); extract witness w < Decc(c, sk_);
return 1iff (x,7") € Q) A (V(Ry/, &Ry, crs, (x,¢,pk, ), m) = 1) A ((x,w) & RL);
where ) shows the set of statment-proof pairs generated by O(x). fi

— Setup:(pk,, sk,) «+ KGen.(1"); (crs || ts) KRy, &r,, );crs’ = (crs, pk,)
— O(x) : Sample r + {0, 1}A; ¢ = Ence(pk,,w;T);

7+ Sim(Ry/, &Ry, , crs, (x, ¢, pk, ), ts); output 7’ := (c, )
— (x,7") + A% (crs sk,);

— Parse 7’ := (c, 7); extract witness w < Dece(c, sk, );
return 1iff (x,7') € Q) A (V(Ry/, &Ry, crs, (x,¢,pk,),m) = 1) A ((x,w) & RL);
where @ shows the set of statment-proof pairs generated by O(x). fi

Lemma 3. If the used cryptosystem in the above games is semantically secure,
then for two experiments EXPS™E" gnd EXPY™F* we have Pr[EXPS ™ F ~
Pr[EXPy™E),

Proof. By the fact that the used cryptosystem is semantically secure, so no
polynomial-time algorithm can distinguish an oracle that encrypts randomly
chosen value z and uses simulator Sim’ from the one that encrypts true witness
w and again uses simulator Sim’. o
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— Setup:(pk,, sk, ) « KGen.(1"); (crs || ts) KRy, &r,, );crs’ = (crs, pk,)
— O(x) : Sample 7 + {0,1}*; ¢ = Enc.(pk,,w; 7);

T P(RL’ ’ fRL/ , CIS, (Xa ¢, pke)? (W, T)) ;output 7T, = (Cv 7T)

— (x, 7))« A% (crs’ sk, );
— Parse 7’ := (¢, 7); extract witness w < Dec.(c, sk, );
return 1iff ((x,7') € Q) A (V(Ry/, &Ry, , s, (x, ¢, pk,), ™) = 1) A ((x,w) & Ri);

where @ shows the set of statment-proof pairs generated by O(x). fi

Lemma 4. If the underlying NIZK is simulation sound, then for two experi-
ments EXP3"™ ™ and EXPS™E*" we have Pr[EXPS™E*] ~ Pr[EXPS™E=H,

Proof. We note that if (x,7") € @Q, then the (x,c¢,7) (from (x,7')) is a valid
message pair. By simulation soundness property of GM zk-SNARK (or more
generally the input NIZK), that guarantees non-malleability of proofs, we know
that (x,7') € Q.

On the other hand, since the decrypted w is unique for all valid witnesses,
so due to the soundness of GM zk-SNARK (or more generally the input NIZK)E|
the probability that some witness is valid for L’ and (x,w) ¢ Ry, is negl(A). O

We note that in all above experiments, extraction of witnesses is done uni-
versally, independent of adversarial prover’s code, that is a critical issue in
constructing the UC simulator that extracts witness from the proof sent by
environment and the adversarial provers. So, this results that the modified
scheme satisfies BB simulation extractability. Consequently, following previous
results [CLOS02IGro06lGOS06] that a NIZK argument system with BB simula-
tion extractability achieves UC-security, we conclude that the NIZK arguments
constructed using the proposed technique (here particularly the variation of GM
7k-SNARK in Fig. 2)) satisfies UC-security. ]

4 On the Efficiency of Smart Contract Systems

Hawk and Gyges [KMST16/JKST16] frequently generate CRS and use a UC-secure
zk-SNARK to prove different statements. In Hawk authors discuss that their
system is dominated by efficiency of the underlying UC-secure zk-SNARK that
is achieved from a variation of Pinocchio zk-SNARK [PHGR13| lifted by CACQ
framework (the same is done in Gyges as well). In the rest, we discuss how a UC-
secure construction achieved by the proposed technique in Sec. [3| can improve
efficiency of both smart contract systems. Our evaluation is focused precisely on
Hawk, but as Gyges also have used COC{ framework, so the same evaluation
can be considered for Gyges.

3 Note that the definition of nBB simulation extractability implies nBB simulation
soundness and consequently nBB soundness.
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'd Y Y
The modified version of Pinocchio zk-SNARK [BCTV13] [Lip19] or [GM17]
(Proof size: 8 group elements) (Proof size: 4 or 3 group elements)
J - J

TRANSFORMATION WITH COCO \ / THIS PAPER \
Changes applied on the input zk-SNARK:

Changes applied on the input zk-SNARK:

- On Setup phase - On Setup phase
+ Adds a key generation for a public-key * Added a key generation for a public-key
cryptosystem cryptosystem
* Adds a commitment of a trapdoor - On Prover side

* Added encryption of witnesses

- On Prover side - On Verifier side

* Adds encryption of witnesses .

* Adds a key generation for a one-time secure —
signature scheme in each run

* Adds signing the generated proof

- On Verifier side
\- Adds verifying signature of proof &

| |

- N - ~
A UC-secure version of modified version of Pinocchio . .
2k-SNARK [KMS*16] An Efficient UC-secure Version of Input zk-SNARK

- J - J

Fig. 3: The modifications applied by CAC transformation on the modified ver-
sion of Pinocchio zk-SNARK [BCTV13| before using in Hawk system versus
our changes on a nBB simulation (knowledge) sound NIZK to get a UC-secure
version.

Improving Efficiency of Hawk. We begin efficiency evaluation of Hawk by
reviewing the changes that are applied on Ben Sasson et al.’s zk-SNARK (to get
UC-security) before using it in Hawk. As discussed in Sec. in order to lift
any NIZK to a UC-secure NIZK, COC@ applies several changes in setup, proof
generation and proof verification of input NIZK. For instance, each time prover
needs to generate a pair of signing/verifying keys for a one-time secure signature
scheme, encrypt the witnesses using a given public-key, and sign the generated
proof using the mentioned one-time signing key. On the other side, verifier needs
to do extra verifications than the verification of input NIZK.

As we discussed in Sec. [3] in order to construct a UC-secure NIZK from a
nBB simulation (knowledge) sound NIZK, we added a key generation procedure
for a public-key cryptosystem in the setup phase, and prover only needed to
encrypt the witnesses using the public-key in CRS and then generate a proof for
new language as the input NIZK. We did not add new checking to the verifier
side and it is as the non-UC-secure version.

Left side of Fig. [3| summarizes the modifications applied (by using COC(Q
framework) on a variation of Pinocchio zk-SNARK before using in Hawk; and
right side summarizes our changes on a nBB simulation (knowledge) sound NIZK
(e.g. one of the ones proposed in [GM17ILip19]) to get BB simulation extractabil-
ity and equivalently UC-security. As both use encrypting of witnesses, it seems
having linear proof size on witness size currently is an undeniable issue to get BB
extraction. So, except this unavoidable modification, we require minimal changes
in the structure of input nBB simulation (knowledge) sound NIZK to achieve a
UC-secure version of it.
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Table 1: A comparison of Ben Sasson et al.’s [BCTV13], GM [GM17] and Lip-
maa’s [Lipl9] zk-SNARKSs for arithmetic circuit satisfiability with mo element
instance, m wires, n multiplication gates. Since [GM17] uses squaring gates, so
n multiplication gates translate to 2n squaring gates. Implementations of two
first schemes are done on a PC with 3.40 GHz Intel Core i7-4770 CPU, in single-
threaded mode, for an R1CS instance with n = 10% constraints and m = 106
variables, of which mo = 10 are input variables. Performance of [Lip19] is esti-
mated based on asymptotic performance and current similar implementations in
libsnark library. G; and Ga: group elements, E: exponentiations and P: pairings.

CRS Leg., Time| Proof Size| Prover Comp. | Verifier Comp.| Ver. Equ.

IBCTVL?)J 6m +n —mo G1 7 Gy 6m +n — mo E1 mo F1 5
& m GQ 1 GQ m E2 12 P

in libsnark | 104.8 seconds | 287 bytes | 128.6 seconds 4.2 millisec. —

IGM].?J 2m +4n +5 G 2 Gy 2m +4n — mo B4 mo F1 9
& 2n + 3 Go 1 Go 2n Eo 5P

in libsnark | 100.4 seconds | 127 bytes | 116.4 seconds 2.3 millisec. —

[Lip19] m+3n+5 G 3G, m+4n — mo E4 mo +1 E1 5
& n -+ 4 G2 1 GQ n E2 5 P

estimation | = 82 seconds | 160 bytes =~ 94 seconds | ~ 2.3 millisec. —

Additionally, Tab[T] compares asymptotic and practical performance of Ben
Sasson et al.’s [BCTV13], GM [GM17] and Lipmaa’s [Lipl9] zk-SNARKSs
from various perspectives before applying any changes. Empirical performance
of [BCTV13| and [GM17] are reported in libsnark library for a particular in-
stance. The experiments are done on a machine equipped with 3.40 GHz Intel
Core 17-4770 CPU, in single-threaded mode, using the BN128 curve. But the
performance of Lipmaa’s QAP-based scheme is estimated based on similar ex-
isting QAP-based (e.g. Groth’s scheme [Grol6|) implementations on the same
machind’] Lipmaa’s and Ben Sasson et al.’s zk-SNARKs both are constructed for
the QAP relation, while Groth and Maller’s scheme works for the SAP relation
by default. As discussed in [Grol6JGMI17], a SAP instance can be constructed
based on a simplification of systems on arithmetic constraints, such that all mul-
tiplication gates are replaced with squaring gates, but with at most two times
gates. This is a key factor effecting on efficiency of GM zk-SNARK.

Tab. [I] shows that both Lipmaa’s and GM zk-SNARKSs outperform Ben Sas-
son et al.’s zk-SNARK in all metrics. Beside faster running times in all algo-
rithms, Lipmaa’s and GM zk-SNARKSs has only 2 verification equations, instead
of 5 in [BCTV13|. An important note is that GM zk-SNARK is constructed for
SAP relation while similar to Lipmaa’s scheme [Lip19], the currently deployed
zk-SNARK in both smart contract systems is constructed for QAP relation. Due
to this fact, appending a new sub-circuit for a particular computation to GM zk-
SNARK is more costly than appending a sub-circuit for the same computation
to Lipmaa’s QAP-based zk-SNARK, as a squaring gate requires two multiplica-

* Based on reported implementations on https://github.com/scipr-1lab/libsnark/
tree/master/libsnark/zk_proof_systems/ppzksnark


https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark
https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark
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tion gates. So, by considering efficiency report in TablI] and the fact that our
modifications (summarized in Fig. |3 are lighter than what are applied on Ben
Sasson et al.’s zk-SNARK before deploying in Hawk system, one can observe
that a UC-secure version of Lipmaa’s and GM zk-SNARKSs can simplify the sys-
tems but the lifted version of Lipmaa’s scheme would be more efficient than the
one that currently is used in Hawk (similarly in Gyges). Indeed our changes are
a small part of their already applied changes, so they have less overload.

Hawk needs to generate CRS of zk-SNARK for each smart contract and as
the UC-secure zk-SNARK is widely deployed in various operations of the system,
so substituting current UC-secure zk-SNARK with a UC-version of Lipmaa’s zk-
SNARK, can simplify the system and improve the efficiency of whole system.
Moreover, in the construction of Hawk system, authors applied various effective
optimizations to maximize the efficiency of underlying UC-secure zk-SNARK
(Sec. Vin |[KMST™16]). The same techniques can work with new constructions.
For instance, it is shown that in the Finalize operation of a smart contract in
Hawk, one may use non-UC-secure zk-SNARK, which similarly in new case one
can use non-UC-secure version of Lipmaa’s QAP-based [Lipl9] or GM SAP-
based [GM17] zk-SNARKs that are more efficient than the one that currently is
used (compared in Tab. [I) and additionally they ensure non-block-box simula-
tion extractability. In another noticeable optimization, Kosba et al. used some
independently optimized primitives in the lifted UC-secure zk-SNARK, that had
considerable effect in the practical efficiency of Hawk. Again, by reminding that
our changes are a small part of the changes applied by COC0 , so a part of their
optimized primitives (for encryption scheme) can be used in this case as well,
but the rest can be ignored. Based on their experiences, such optimizations lead
to have a gain of more than 10x in the arithmetic circuit that is required for
Finalize operation. We predict it should be even more with new constructions.

5 Open Discussions

In Hawk and Gyges [KMS™16/JKS16], authors used the fact that Pinocchio zk-
SNARK and its variation by Ben-Sasson et al. [BCTVI3| satisfies knowledge
soundness and consequently soundness, and then used C(C{@ framework and
lifted a variation of Pinocchio zk-SNARK to a UC-secure one. On the other
hand, knowledge soundness of the mentioned zk-SNARKSs are proven under
some knowledge assumptions, that are not clear how to use such assumptions
in the UC framework. We used a similar technique and corollary in our security
proofs. We considered the fact that simulation extracability implies simulation-
soundness [Gro06|, because if we can extract a witness from the adversary’s
proof, then the statement must belong the language. So, an interesting future
direction might be reproving the soundness of Pinocchio zk-SNARK [PHGR13|
(or the variation by Ben-Sasson et al. [BCTV13]), or simulation-soundness of
nBB simulation extractable zk-SNARKSs [GM17|Lip19] under some different non-
falsifiable assumptions (different from knowledge assumptions).
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