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Abstract. LoRaWAN is an IoT protocol deployed worldwide. Whereas
the first version 1.0 has been shown to be weak against several types
of attacks, the new version 1.1 has been recently released, and aims,
in particular, at providing corrections to the previous release. It intro-
duces also a third entity, turning the original 2-party protocol into a
3-party protocol. In this paper, we provide the first security analysis
of LoRaWAN 1.1 in its 3-party setting using a provable approach, and
show that it suffers from several flaws. Based on the 3(S)ACCE model of
Bhargavan et al., we then propose an extended framework that we use to
analyse the security of LoRaWAN-like 3-party protocols, and describe a
generic 3-party protocol provably secure in this extended model. We use
this provable security approach to propose a slightly modified version of
LoRaWAN 1.1. We show how to concretely instantiate this alternative,
and formally prove its security in our extended model.

Keywords: Security protocols · Security model · Internet of Things ·
LoRaWAN.

1 Introduction

Establishing a secure communication between two parties is a fundamental goal
in cryptography as well as formally proving that such a protocol is secure.
In their seminal paper, Bellare and Rogaway [9] propose a security model for
the symmetric 2-party setting, and describe provably secure mutual authentica-
tion and key exchange protocols. Subsequent models have been proposed (e.g.,
[8, 13, 15, 17, 18, 30, 35, 41] to name a few). Of particular interest are the secu-
rity models proposed to analyse real-world protocols such as TLS [30, 34, 41],
IPsec and IKE [16, 19, 26], SSH [6]. All these models consider protocols in a 2-
party setting. However there exist concrete deployments making use of protocols
defined or improperly seen as 2-party schemes, that involve, in fact, three (or
more) entities, which different cryptographic operations are attributed to. For
example, the 3G/4G mobile phone technology can be described at first glance
as a 2-party scheme involving, on the one hand, a set of end-devices, and, on
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the other hand, a backend network owned by the operator. However, when the
end-device is abroad, the communication is relayed by a server affiliated with a
different operator. Such a protocol, unlike classical 2-party setting, requires three
participants, and known 2-party security models cannot be seamlessly applied
to such a 3-party setting.

Whereas the field of 2-party protocols has been intensively investigated, the
3-party case has received less attention so far. Yet (unsurprisingly) this does not
prevent 3-party protocols from being deployed in real-life, despite the lack of
a suitable security model that allows seizing precisely, and incorporating their
specifics. An example of such a protocol is LoRaWAN 1.1.

1.1 Overview of LoRaWAN 1.1

The LoRaWAN protocol has been designed to set up a Low-Power Wide-Area
Network (LPWAN) based on a long range, low rate, and wireless technology
dedicated to IoT and M2M. The version 1.0 [51] has been released in 2016. It
has been shown to be weak against several types of attacks [4], hence its security
is quite questionable. The last version, LoRaWAN 1.1 [50], has been published
in 2017. This version aims, in particular, at providing corrections to the previous
release, and is assumed to be more secure. A typical LoRaWAN 1.1 network in-
volves a set of end-devices (ED) communicating with a backend network through
the intermediary of a Network Server (NS), which is the entry point to the net-
work. Security in LoRaWAN 1.1 is based on two static symmetric master keys: a
communication key, and an application key. In order to establish a secure chan-
nel, the ED executes a key exchange with a Join Server (JS), relayed by the NS.
Once the session keys are derived, they are provided by the JS to the NS, and to
an Application Server (AS). During the subsequent application phase, messages
are exchanged between the ED and the NS, which may forward data to the AS
(see Figure 1). Thus, NS is an important node in the network, and, together
with the ED and the JS, is involved in the LoRaWAN 3-party authenticated key
exchange and secure channel establishment.

Fig. 1. LoRaWAN 1.1 network (simplified view)
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Whereas the version 1.0 of LoRaWAN describes a 2-party protocol between
an end-device (ED) and a Network Server (NS), the version 1.1 introduces a third
entity: the Join Server (JS). In this new version, the cryptographic operations of
the authenticated key exchange are now shared among these three components.
This change turns the previous 2-party protocol into a non-standard 3-party
protocol with unknown security properties. Tampering with a 2-party protocol in
order to turn it into a 3-party protocol should be done with care. This motivates
a formal analysis in order to define the security goals, and to verify that the
protocol meets the latter.3

1.2 Related Work

Security Models. Alt, Fouque, Macario-Rat, Onete, and Richard [2] analyse
the authenticated key exchange of the 3G/4G mobile phone technology in its
complete 3-party setting (with the addition of components from the core net-
work). Based on their formal analysis, they describe how to provide a much
stronger security with a small modification which can be easily incorporated in
the protocol (despite previous results which indicate privacy flaws and suggest
strong changes). Regarding the same key exchange scheme, Fouque, Onete, and
Richard [27] use a 3-party security model to show that several remediations pro-
posed in order to thwart end-device-tracking attacks are, in fact, ineffective. In
addition, they propose an improvement that aims at mitigating these attacks
while retaining most of the 3G/4G key exchange scheme structure.

Regarding the secure channels, Bhargavan, Boureanu, Fouque, Onete, and
Richard [12] consider the use of TLS when it is proxied through an intermediate
middlebox (such as a Content Delivery Network (CDN)). They propose the no-
tion of 3(S)ACCE-security in order to analyse such a setting. This model extends
the classical 2-party ACCE model of Jager, Kohlar, Schäge, and Schwenk [30] to
the 3-party setting, and in particular adds, to the properties of entity authenti-
cation and channel security, a third property aiming at “binding” several entities
involved in the protocol. They describe several attacks targeting a specific CDN
architecture, and show that the latter does not meet its claimed security goals.

Naylor, Schomp, Varvello, Leontiadis, Blackburn, Lopez, Papagiannaki, Ro-
driguez, and Steenkiste [42] describe a multi-context TLS protocol (mcTLS)
which extends TLS to support middleboxes, in order to offer in-network ser-
vices. With mcTLS the middlebox becomes visible to the client and the server.
In addition these two end-points control the (read, write) privileges attributed
to the middlebox.

In turn, Naylor, Li, Gkantsidis, Karagiannis, and Steenkiste [43] propose Mid-
dlebox TLS (mbTLS) which aims, in particular, at supporting legacy client, and
being almost seamlessly integrated in current TLS deployments (based on new
TLS extensions). Although Naylor et al., and Naylor et al. list a set of security
requirements that mcTLS and mbTLS are supposed to guarantee, they do not
formally prove in an explicit security model that their proposal actually achieves

3 In the remainder of this paper, “LoRaWAN” refers to “LoRaWAN 1.1”.
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these security goals.
In the same context of proxied TLS connections, Bhargavan, Boureanu,

Delignat-Lavaud, Fouque, and Onete [11] describe several types of attacks against
mcTLS, showing that the latter is in fact insecure. They propose a security
model called authenticated and confidential channel establishment with account-
able proxies (ACCE-AP), and describe a generic 3-party construction secure in
their model, that they instantiate with TLS 1.3 [46]. Their model aims at pro-
viding fine-grained rights (defined through the context) to the middlebox. They
observe that their model is complex and achieves limited record-layer guarantees
in multi-middlebox setting. Their analysis also suggests that the most important
middlebox be placed closest to the server.

These works illustrate that 3-party protocols deserve suitable security mod-
els in order to be properly analysed and to enlighten subtleties that, otherwise,
would remain ignored to the cost of the security.

LoRaWAN 1.1. Butun, Pereira, and Gidlund [14] make a threat analysis of
LoRaWAN 1.1. Their results do not mention any novel attack or vulnerability
compared to what has been observed regarding the LoRaWAN 1.0 architecture.
Among the few threats they consider relevant (the others being physically in-
truding an ED and deploying a rogue gateway), Butun et al. describe an attack
aiming at exhausting the daily quota of frames ED can send, which is based on a
technical limitation that they incorrectly attribute to LoRaWAN (citing another
paper [1] that mentions in fact Sigfox with respect to that limitation). They sug-
gest several recommendations in order to improve the security of LoRaWAN 1.1
such as protecting the secret keys stored by ED in a tamper-resistant module (as
recommended by the specification [50]), using public-key cryptography in order
to update the master keys, or replacing the cntE and cntJ parameters (used
as input in the session keys derivation) with a nonce negociated during the key
exchange (and to be used during the next key exchange). Seemingly, one nonce
only, sent by ED, is used in that proposal. The goal seems to preclude a reuse of
the nonce. NS keeps track of all received nonces, and discards any key exchange
message carrying an reused value.

The rationale behind Butun et al.’s proposal is unclear to us since the current
cntE and cntJ parameters are monotonically increasing counters which are not
supposed to wrap around (under the same session keys). In addition, in that
proposal, the nonce must be updated after a successful key exchange. Therefore,
a simple attack appears feasible. Upon reception of a RekeyInd command, NS
deems that the key exchange is correct, and updates the nonce (in particular, the
nonce used during the current key exchange is stored in the list of old nonces).
Let us assume that an attacker forbids ED from receiving the RekeyConf com-
mand sent by NS. Then the key exchange is not successful from ED’s perspective.
Hence, following Butun et al.’s proposal, it does not update the nonce, and uses
the same nonce during the next key exchange. Yet this nonce is an old one for
NS, which discards the Join Request message. Since ED does not receive a re-
sponse from NS, it keeps using the same nonce (which is continuously rejected
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by NS). ED is then unable to reach the back-end network once and for all.
Dönmez and Nigussie [22] investigate the possible vulnerabilities due to the

fallback mechanism allowed in version 1.1. They consider the case when ED
in version 1.1 faces NS in version 1.0 (and then switches back to version 1.0)
and conclude, predictably, that the attacks against version 1.0 become possi-
ble anew. Yet they do not consider the case when the 2-byte monotonically
increasing counter that ED uses in version 1.1 meets same values as the 2-byte
pseudo-random parameter used by ED in version 1.0. They also investigate the
case (not treated by the LoRaWAN specification) when ED in version 1.0 faces
NS in version 1.1 (which is assumed by Dönmez et al. to fall back to version 1.0),
and come essentially to the same conclusion.

Dönmez and Nigussie [21] consider the possibility to perform against Lo-
RaWAN 1.1 (i.e., when both ED and NS implement that version) the attacks
targeting version 1.0 (summarised in [22]) and conclude they are not feasible.

LoRaWAN 1.1 uses two master keys MK1 and MK2 in order to crypto-
graphically separate the communication layer (between ED and NS) and the
application layer (between ED and AS). Dönmez et al. note that when NS owns
the communication master key, it can access the application layer. Indeed, in such
a case, NS can compel ED to fall back to version 1.0 which uses one key only
to protect the communication and the application layers: the communication
master key MK1. Therefore surrendering MK1 to NS defeats the purpose of the
double-key scheme and the existence of JS in LoRaWAN 1.1. The LoRaWAN 1.1
specification claims that “when working with a v1.1 Network Server, the appli-
cation session key is derived only from the [application master key], therefore
the [communication master key] may be surrendered to the network operator to
manage the JOIN procedure without enabling the operator to eavesdrop on the
application payload data” ([50], §6.1.1.3). Dönmez et al. show that this state-
ment is wrong. As a mitigation, they propose ED (and AS) keeps computing the
application session key as in version 1.1.

Dönmez et al. claim that the involvement of intermediary NS servers (the
so-called serving and forwarding NS) between ED and its home NS extends the
possibility to alter an application frame. Yet, according to us, this is incorrect.
We acknowledge the lack of clarity of the LoRaWAN 1.1 specification regard-
ing this point. Nonetheless, according to the specification [50] (cf. §6.1.2.3) and
a companion document [53] (cf. §11.3.1 and §12.2.1) both serving NS and for-
warding NS may be able to verify at least partially the MAC tag of an uplink
frame (which means by the way that, at this point, data integrity relies upon
16 bits only instead of 32 bits since these servers cannot verify the whole tag).
Eventually, the home NS should verify the whole 32-bit MAC tag.

Dönmez et al. also investigate the possibilities enabled by a malicious NS.
They suggest a session key reuse (hence the possibility to replay or decrypt ap-
plication frames) if the counter cntJ managed by JS wraps around (despite the
fact that the specification demands the latter be not possible). We observe that
this allows to target AS but not ED. Indeed the session keys computation in-
volves also the cntE counter managed by ED. If, in such a case, a malicious NS
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can replay to JS any Join Request message (previously received from ED) which
carries an old counter value, ED faithfully uses this monotonically increasing
counter for the key derivation. Dönmez et al. recommend JS to keep track of the
counter values sent by ED (the specification demands only NS do this). In con-
trast, we explain in Section 2.2 how a malicious (or corrupted) NS can compel
AS to reuse a previous session key, without JS’s counter wrapping around.

Finally, Dönmez et al. observe that the protocol does not provide forward
secrecy (as it is based on static master symmetric keys), and suggest to apply
the proposal of Kim and Song [31]. The latter consists essentially in using the
current session keys to perform the next key exchange, and then to replace the
current keys (or the initial master keys during the first key exchange) with the
newly computed session keys. We observe that this update mechanism implies
that one party makes the first move (it is ready to use the new keys) while the
other still holds the current keys. Then the other party follows upon reception
of one of the messages sent during the key exchange. An issue arises when that
message, which triggers the replacement of the keys, is not received. The two
parties are then desynchronised with respect to the keys evolution. In such a
case, both parties remain unable to perform any subsequent key exchange. This
means that ED is forbidden once and for all from reaching the back-end network.
Neither Kim et al. nor Dönmez et al. explain how to maintain this essential syn-
chronisation between ED and the back-end network.4

In turn, Han and Wang [28] propose that ED and JS update the LoRaWAN
master keys prior to each new key exchange. Their proposal implies exchanging
two additional messages during the key exchange phase. According to us, this
proposal leads also to a synchronisation issue. One party (ED or JS) has to make
the first move (i.e., replacing its current master keys with the new ones). Then
the other party does the same upon reception of some message sent during the
key exchange phase. If this message is not received, then the parties are desyn-
chronised with respect to their master keys. In such a case, they are unable to
perform any subsequent key exchange. Han et al. do not deal with this issue,
and leave it unsolved.

Eldefrawy, Butun, Pereira, and Gidlund [24] perform a formal security anal-
ysis of LoRaWAN 1.1 using the Scyther verification tool. They conclude to the
absence of weaknesses in the protocol. Yet they acknowledge there may still exist
vulnerabilities not found due to the limitations of the model they employ.

In contrast to previous analyses, we address, in this paper, the new 3-party
aspect of the LoRaWAN protocol introduced in version 1.1, using a provable
security approach. We also describe new vulnerabilities.

1.3 Contributions

In this context, our contributions are threefold:

4 An example of an authenticated key exchange protocol in the symmetric-key setting
that provides forward secrecy and explicitly deals with the synchronisation issue is
the SAKE protocol [3].
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1. We present an improved security model that we call 3-ACCE, based on that
of Bhargavan et al. [12]. This meets the need of a general framework that in-
corporates the subtleties of a LoRaWAN-like protocol, and allows expliciting
the security requirements of such 3-party protocols. As additional enhance-
ments, we add (i) ED authentication, (ii) the security operations done by NS
during the channel establishment, and (iii) an extended “binding” property
that links all the entities involved in the key exchange.

2. We describe a generic 3-party protocol that is provably secure in our en-
hanced model. That is, we provide a general theorem with its full proof in
our 3-ACCE security notion. This generic protocol can be concretely instan-
tiated with LoRaWAN but also other protocols.

3. We present the first security analysis of LoRaWAN 1.1 in its 3-party setting
using a provable approach. First, we describe several flaws that weaken the
protocol. Next, we apply our generic result to LoRaWAN 1.1, and propose
a slightly modified version of the protocol which achieves stronger security
properties. We show how to concretely instantiate this alternative, and for-
mally prove its security in our extended 3-party model.

1.4 Paper Outline

In Section 2, we describe the protocol LoRaWAN 1.1, and show that it suffers
from several flaws that enable theoretical attacks. A general framework that
we call 3-ACCE, and aiming at analysing the security of 3-party protocols is
presented in Section 3. In addition, we propose a generic 3-party protocol that
we formally prove to be secure in this extended model. We use this framework, in
Section 4, to propose a slightly modified version of LoRaWAN 1.1 with stronger
security properties, that we prove to be secure in our 3-ACCE model. Finally, we
conclude in Section 5.

2 LoRaWAN 1.1

2.1 Description of the Protocol

We recall the main lines of the LoRaWAN 1.1 protocol. Figure 2 depicts the
protocol. A complete description can be found in the specification [50].

Architecture. Three entities are involved in the key exchange and secure chan-
nel establishment:

– ED: the end-device, wireless sensor or actuator, that communicates with the
NS through gateways.

– NS: the entry point to the network.
– JS: the server, located in the backend network, that owns the master keys

of each ED.
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A fourth entity, the AS, participates to the session once the authenticated key
exchange is completed, and the secure channel is established.

LoRaWAN 1.1 offers three sub-protocols to establish a session, called Join
procedure, Rejoin type 1 procedure, and Rejoin type 0/2 procedure. The Join
procedure is the standard way to start a session. The Rejoin type 1 procedure is
an “emergency” method aiming at reconnecting an ED in case of total loss of the
cryptographic context by the NS. The Rejoin type 0/2 procedure is mainly used
to change the radio parameters, even if it may also be used to update the session
keys. In this paper we consider the method likely the most used to execute the
protocol, that is the Join procedure.

Authentication and Key Exchange. LoRaWAN 1.1 is a protocol based on
shared (static) master keys. Each ED stores two distinct 128-bit master keys: a
communication key MK1, and an application key MK2, and JS owns the list of
all the master keys.

Initiated only by ED, the key exchange is made of four main messages. The
first two (Join Request and Join Accept) are used to mutually authenticate ED
and JS, and to share the data used to compute the 128-bit session keys. The
other two (RekeyInd and RekeyConf) are used to validate the session keys. The
Join Request message sent by ED carries three main parameters: JS’s identifier
idJ , ED’s identifier idE , the current ED’s counter cntE . These parameters are
protected with a 4-byte MAC (= AES-CMAC) tag computed with the master
key MK1.5

Join Request = idJ‖idE‖cntE‖τE
with τE = MAC(MK1, idJ‖idE‖cntE)

Upon reception of the Join Request message, NS checks that the cntE counter is
valid (i.e., greater than the last value received from that ED), and forwards the
message to JS. In turn, JS verifies the MAC tag, and computes a Join Accept
response. This message carries a counter cntJ , NS’s identifier idN , and other
parameters prms (such as radio parameters).6 It is protected with a CMAC
tag computed under a (static) master key MK3, which is derived from ED’s
master key MK1 and ED’s identifier idE . The MAC tag involves in addition
the parameters cntE and idJ sent by ED.7 The data carried in the Join Accept
message are encrypted with the AES decryption function in ECB mode, and the
master key MK1. Once ED receives the Join Accept message, it verifies the

5 For the sake of clarity, we slightly simplify the formulas and do not make appear the
value corresponding to the message’s type (which is also sent and involved in the
MAC tag computation).

6 Since these parameters are not relevant to the remaining of this paper, we skip their
description and refer the interested reader to the specification [50].

7 This aims at forbidding a replay of previous Join Accept messages to the ED (which
the previous version of the protocol, LoRaWAN 1.0, is subject to [4]).
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MAC tag and the cntJ counter.

Join Accept = AES−1(MK1, cntJ‖idN‖prms‖τJ)
with τJ = MAC(MK3, idJ‖cntE‖cntJ‖idN‖prms)
and MK3 = KDFmk(MK1, idE)

The KDFmk function corresponds to

KDFmk(K,x) = AES(K, 0x06‖x‖cst′)

where cst′ is some constant value.
In order to validate the session keys, ED sends a special message called

RekeyInd that triggers the change, by NS, of its security context. In turn, NS
sends a RekeyConf response. These messages are computed as any other post-
accept messages (i.e., sent through the secure channel). Akin to the Finished
messages in TLS, these messages, protected with the session keys, are used to
conclude the key exchange phase.

Session Keys Computation. The counters cntE and cntJ (sent during the
key exchange) are unique per ED. They are initialised to 0 and monotonically
increased (respectively by ED and JS) at each new session. From these two
counters, idJ , and the master keys MK1, MK2, ED and JS compute four 128-
bit session keys Ki1

c , Ki2
c , Ke

c , and Ke
a:{

Ki1
c ‖Ki2

c ‖Ke
c = KDFc(MK1, cntJ‖idJ‖cntE)

Ke
a = KDFa(MK2, cntJ‖idJ‖cntE)

The session keys Ki1
c , Ki2

c , Ke
c are given by JS to NS (through an undefined

by the specification but allegedly secure protocol). Ke
a is given by JS either to

AS (through a protocol undefined by the specification), or to NS (in such a case
Ke
a is encrypted with a key independent of LoRaWAN, only known to JS and

AS [53]). The KDFc function, on input a key K and value x, outputs the three
following values Ki1

c = AES(K, 0x01‖x‖cst)
Ki2
c = AES(K, 0x03‖x‖cst)

Ke
c = AES(K, 0x04‖x‖cst)

where cst is some constant value. The function KDFa is defined as

KDFa(K,x) = AES(K, 0x02‖x‖cst)

Secure Channel. To that point, ED can send protected messages to the net-
work. The messages are encrypted with AES-CTR and Ke

c or Ke
a depending on

the message type. A command message is encrypted with Ke
c and exchanged be-

tween ED and NS. An application message is encrypted with Ke
a and exchanged

between ED and AS. LoRaWAN provides data integrity only between ED and
NS (and relies upon an additional – and undefined – protocol to guarantee data
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integrity between NS and AS). The messages are MAC-ed with two different
functions (depending on the direction) which are based on a tweaked version
of AES-CMAC (a block is prefixed to the input), and output a 4-byte tag. In
the downlink direction, the MAC function uses the key Ki1

c , and corresponds
to (tweaked) AES-CMAC which output is truncated to 32 bits. In the uplink
direction, the function used is MAC‖ defined as

MAC‖(K
i1
c ,K

i2
c , x) = MACb(K

i1
c , x)‖MACb(K

i2
c , x)

where MACb corresponds to the downlink MAC function which output is trun-
cated to 16 bits.

2.2 Cryptographic Flaws in LoRaWAN 1.1

Several vulnerabilities that lead to likely practical attacks against LoRaWAN 1.0
have been corrected with version 1.1. Nonetheless, some peculiarities of this last
version still allows impairing the security of a LoRaWAN network.

Size of the Counters. The counters cntE , cntJ are respectively 2-byte and
3-byte long. It is likely that so few values can be exhausted, which brings ED to
be unable to initiate a new session and be lastly (if not for good) “disconnected”
from the network.

There are two other methods that allow ED to initiate a session (the so-called
Rejoin procedures). However the Rejoin type 0/2 procedure is available only if
a session is ongoing (because the first request is sent through the current secure
channel). As for the Rejoin type 1 procedure, it is invoked periodically based on
a predefined frequency, which means that it is not available at will.

The specification states that if the cntE counter wraps around, then ED must
use a different idJ value (parameter used in the Join Request and Join Accept
messages, and in the session keys computation). In fact, idJ‖cntE behaves as a
counter where idJ corresponds to the most significant bits, and cntE to the least
significant bits. Therefore it may not be enough to exhaust the cntE counter in
order to stuck ED. However, we do think that, due to lack of clarity of the speci-
fication regarding the rationale in storing more than one idJ value into ED, and
the fact that LoRaWAN 1.1 inherits from the previous version of the protocol, it
is likely that only one idJ value will be stored into ED (as in the previous version,
where cntE is a pseudo-random value). Moreover it has been shown [4] that it is
possible to compel ED to repeatedly send Join Request messages, hence to likely
use all the cntE values. Therefore exhausting ED’s counter appears feasible.

Assuming that ED sends one Join Request message every 5 seconds [36], the
duration of this attack is 216 × 5 seconds ' 91 hours. Note that, if ED stores k
samples of idJ values, the duration of the attack is k × 91 hours.

Now, let us assume that ED stores several idJ values. Then the attacker can
target the cntJ counter. As said above, the attacker can compel ED in repeat-
edly sending Join Request messages. Each Join Request message triggers a new
Join Accept response, hence consumes a new cntJ value. Yet, cntJ is 3-byte
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ED NS JS
(MK1, MK2) (MK1, MK2)

cntE ← cntE + 1
mutual auth.←−−−−−−−−−−−−→

τE ← MAC(MK1, idJ‖idE‖cntE)
Join Request← idJ‖idE‖cntE‖τE

Join Request−−−−−−−−−−−−−−→
Verify cntE

Join Request
=============⇒

Verify τE
cntJ ← cntJ + 1

MK3 ← KDFmk(MK1, idE)
τJ ← MAC(MK3, idJ‖cntE‖cntJ‖idN‖prms)

Join Accept← AES−1(MK1, cntJ‖idN‖prms‖τJ)
Ke

c‖Ki1
c ‖Ki2

c ← KDFc(MK1, cntJ‖idJ‖cntE)
Ke

a ← KDFa(MK2, cntJ‖idJ‖cntE)
Join Accept←−−−−−−−−−−−−−− Join Accept⇐=============

Ke
c , Ki1

c , Ki2
c , Ke

a⇐==============

cntJ‖idN‖prms‖τJ ← AES(MK1, Join Accept)
MK3 ← KDFmk(MK1, idE)
Verify τJ and cntJ
Ke

c‖Ki1
c ‖Ki2

c ← KDFc(MK1, cntJ‖idJ‖cntE)
Ke

a ← KDFa(MK2, cntJ‖idJ‖cntE)
Compute RekeyInd

RekeyInd
=============⇒

Verify RekeyInd
Compute RekeyConf

RekeyConf⇐=============

Verify RekeyConf
post-accept phase⇐============⇒

Fig. 2. Correct execution of LoRaWAN 1.1. Double line arrows indicate the use of
secure channel keys. There are two secure channels: ED-NS (LoRaWAN), and NS-JS
(undefined).

long, whereas cntE is 2-byte long. Therefore, in order for ED to send as many
Join Request messages as possible cntJ values, ED must store a number of idJ
values equal to |cntJ |/|cntE | = 224/216 = 256. The duration of this attack is
224 × 5 seconds = 2.66 years. This is a very long attack, yet less than the ex-
pected lifespan of ED (up to 10 years), and it ends up with ED being possibly
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unable to connect the back-end network ever again.
The only remaining possibility in order for ED to connect the back-end net-

work is the Rejoin type 1 procedure. This is an “emergency” procedure aiming
at reconnecting ED in case of total loss of the cryptographic context by NS, and
the latter is not compelled to respond to a Rejoin type 1 Request.

Size of MAC Tags. The MAC’s output is 4-byte long. Hence, MAC forgeries
are made easier, and, in combination with the fact that data encryption is done
in CTR mode, so are attacks against data integrity. Note that the duration of
this attack is higher if the attacker acts on the air interface than if she is able
to act in the back-end network.

Known Encryption Keystream. Per specification, ED must send a (en-
crypted) RekeyInd message as long as it does not receive a RekeyConf response
(up to a fixed number of RekeyInd messages, afterwards ED must start a new
session). Conversely, NS must respond to each RekeyInd message with a (en-
crypted) RekeyConf response. The (plaintext) content of both kind of messages
is known. Hence, an attacker can get multiple valid encryption keystreams for
free. If she succeeds in forging a valid MAC tag, then she can get messages car-
rying the plaintext of her choice. Of course, simple encryption does not provide
data integrity, and the attacker needs to forge a valid MAC tag. However this
provides a way to compute encrypted messages which underlying plaintext is
semantically correct.

In order to collect the keystreams, the attacker can forbid NS from receiv-
ing the RekeyInd messages, or discard the RekeyConf messages sent by NS. This
compels ED to send multiple messages. The adversary collects all these messages
(and lets the first RekeyInd reach NS so that NS uses the new session keys). The
adversary can then use the other n− 1 messages to try to forge a valid message
(i.e., compute a valid MAC tag).

Similarly, the adversary can forbid ED from receiving the RekeyConf message
sent by NS (which receives the RekeyInd messages from ED). This compels NS
to respond with multiple messages. The adversary collects all these messages.
It sends the first RekeyConf message to ED (in order for ED to continue the
session) and can use the remaining n−1 RekeyConf messages in order to mount
the attack.

The parameter n = ADR ACK LIMIT is at most 215. Nonetheless, the default
settings [36] in several geographical areas (e.g., USA, Europe, China) demand
that n = 64. Therefore, the attacker has at his disposal between 64 and 215

frames (in both directions).

Downgrade Attack. According to the specification, an ED implementing ver-
sion 1.1 must fall back to version 1.0 when it faces an NS implementing version
1.0. Hence, even an ED in version 1.1 may succumb to the attacks that have
been shown possible against LoRaWAN 1.0 [4]. Therefore, a current deployment
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of LoRaWAN 1.1 may inherit the flaws of the previous version. This scenario
implies that the (upgraded) ED in version 1.1 either uses as its MK1 master key
the same key used in version 1.0, or has already faced an NS in version 1.0.

It may be possible that, when executing 1.0, ED implements also the recom-
mendations published by LoRa Alliance [37] which aim at strengthening version
1.0. In such a case, the attacks against that version are (partially or completely)
mitigated.

Lack of Data Integrity. There is no end-to-end data integrity provided by
LoRaWAN between ED and AS. The specification demands data integrity be
guaranteed by an additional (and undefined) protocol between NS and AS. At the
same time, a companion document [53] demands that data integrity (and other
security properties such as data confidentiality and mutual authentication) be
ensured hop by hop between the components of a LoRaWAN network. Managing
data security in such an hop-by-hop fashion is hazardous because it does not
take into account the intermediate servers between NS and AS. Handing down
security properties that is, according to us, incumbent upon the LoRaWAN
protocol may lead to security breaches, as some of these servers (such as a
MQTT server) have been shown to be insecurely managed [38].

An attacker that succeeds in accessing a weak point between NS and AS
can exploit the lack of data integrity in a LoRaWAN application frame, and
alter or truncate the frame. It may also be possible to break data confidentiality
by applying a kind of “message oracle attack”. The attacker first makes a guess
regarding the plaintext data encrypted in some message. She replaces the alleged
message with a (per specification defined) LoRaWAN command. Based on the
behaviour of the AS (it may apply the commands chosen by the attacker, or
reject the message), the attacker learns if her guess is correct (hence deduce the
plaintext data).8

Reuse of an Application Session Key. The session key Ke
a used by AS to

encrypt application messages is either sent by JS to AS (through a protocol un-
defined by the specification), or sent by JS to NS (which relays it to AS with the
corresponding encrypted application frame). In the latter case, Ke

a is encrypted
with a key known only to JS and AS. The LoRaWAN specification does not
make clear the properties of the security scheme used to wrap Ke

a. We observe
that if this scheme does not provide non-replayability of the messages, then it
may be possible to compel AS to reuse a previous application session key Ke

a.
The attacker acts on a weakly protected intermediary point between NS and AS
where it can replace the current application key (and the corresponding appli-
cation frame, due to the lack of end-to-end data integrity between ED and AS)
with a previous one.

8 Rupprecht, Kohls, Holz, and Pöpper [48] have shown (though in another context)
the consequences of the combination of encryption in CTR mode and lack of data
integrity.
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If AS reuses a past application session key, all the previous messages en-
crypted by ED with this key become cryptographically valid anew. Hence the
attacker can replay these messages to AS. Furthermore, AS uses that same key to
send back new application frames to ED. Since encryption is done in CTR mode,
the attacker can decrypt application messages. Indeed, two different messages
(each from two distinct sessions) protected with the same key, and correspond-
ing to the same counter, are encrypted with the same keystream. Therefore the
bitwise combination of the two encrypted messages is equal to the combination
of the two corresponding plaintexts. Hence the two plaintexts can be partially
or completely retrieved, in an obvious manner if either message is known, or
through statistical analysis [39].

Another issue arises also. The application frame encrypted by AS with a pre-
vious session key Ke

a, and intended to ED, is MAC-ed by NS (with the current
MAC session key). Upon reception of that frame, ED deems it is correct since
data integrity is valid. However decryption with the current session key yields
roughly garbage. It is unclear how ED behaves with the output of the decryption
process.

Malicious or Corrupted NS. A malicious or corrupted NS which receives
the encrypted application keys Ka

e from JS can apply the scenario described
above, and compel AS to reuse a previous application key. Note that this can be
done even if the malicious or corrupted NS does not own any master key. More
generally, a third party reduces the security of a client-server type connection
(as in LoRaWAN 1.0) by increasing the attack surface. Whereas a given ED is
bound to a given JS, many NS servers may relay the data between an ED and its
JS and AS. Thus the security of a whole network can be shattered by a malicious
NS or the weakest NS which relays data back and forth between many ED and
AS.

2.3 The Need for a Suitable Security Model

During the key exchange phase, the only cryptographic operation that NS does,
in order to accept ED as partner, is verifying the RekeyInd message with keys
received from JS. This allows the following theoretical attack (see Figure 3).
If the attacker, on the one hand, succeeds in sending keys of her choice to NS
on behalf of JS, she can, on the other hand, provide a consistent RekeyInd
message (computed under these keys), bringing NS to accept although no ED
(and possibly no JS) is actually involved in the session. The attacker is then able
to send valid messages to NS on behalf of ED (the same session keys are used to
compute the RekeyInd message and the subsequent messages of the post-accept
phase).

This scenario implies being able either to impersonate JS to NS, or to break
the channel security established (with a protocol undefined by the LoRaWAN
specification) between NS and JS. This attack does not even need to target the
core LoRaWAN protocol. It is conceivable because of the way the cryptographic

14



A (ED) NS A (JS)
(attacker) (victim) (attacker)

τE ← rand()

j̃r ← · · · ‖τE
j̃r−−−−−−−−−−−→ Verify cntE

j̃r
===========⇒

j̃a←−−−−−−−−−−− j̃a⇐=========== j̃a ← rand()

s̃k⇐=========== s̃k ← rand()

Compute

r̃i with s̃k
r̃i

===========⇒ Verify

r̃i with s̃k
rc⇐=========== Compute

rc with s̃k

Fig. 3. Impersonation of ED based on a weak protocol between NS and JS

operations in LoRaWAN are shared between ED, NS and JS, and interleaved
with the undefined protocol used between NS and JS. This highlights how the
security of LoRaWAN crucially depends on this additional protocol. Analysing
LoRaWAN implies to take the latter into account.

LoRaWAN 1.1 is a 3-party protocol, not a 2-party protocol between a client
(ED) and a backend network (NS-JS). Assessing its security (as a 3-party proto-
col) needs care. Therefore, it requires a suitable security model that incorporates
all its subtleties, and makes explicit the security requirements which, for some
of them (such as the protocol between NS and JS), are barely mentioned in the
specification despite their crucial role in the overall security of a LoRaWAN net-
work. In Section 3, we describe a 3-ACCE security model that aims at capturing
the security goals of such 3-party protocols.

3 Extended 3-ACCE Model

3.1 Preliminaries

In this section, we recall the definitions of the main security notions we use in
our results.

Pseudo-Random Function. A pseudo-random function (PRF) F is a deter-
ministic algorithm which given a key K ∈ {0, 1}λ and a bit string x ∈ {0, 1}∗
outputs a string y = F (K,x) ∈ {0, 1}γ (with γ being polynomial in λ). Let Func
be the set of all functions of domain {0, 1}∗ and range {0, 1}γ . The security of
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a PRF is defined with the following experiment between a challenger and an
adversary A:

1. The challenger samples K
$←− {0, 1}λ, G

$←− Func, and b
$←− {0, 1} uniformly

at random.
2. The adversary may adaptively query values x to the challenger. The chal-

lenger replies to each query with either y = F (K,x) if b = 1, or y = G(x) if
b = 0.

3. Finally, the adversary outputs her guess b′ ∈ {0, 1} of b.

The adversary’s advantage is defined as

advPRFF (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 1 (Secure PRF). A function F :{0, 1}λ×{0, 1}∗ → {0, 1}γ is said to
be a secure PRF if, for all probabilistic polynomial time adversary A, advPRFF (A)
is a negligible function in λ.

Pseudo-Random Permutation. A pseudo-random permutation (PRP) F is
a deterministic algorithm which given a key K ∈ {0, 1}λ and a bit string x ∈
{0, 1}γ outputs a string y = F (K,x) ∈ {0, 1}γ (with γ being polynomial in λ).
Let Perm be the set of all permutations on {0, 1}γ . The security of a PRP is
defined with the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}λ, G

$←− Perm, b
$←− {0, 1} uniformly at

random.
2. The adversary may adaptively query values x to the challenger. The chal-

lenger replies to each query with either y = F (K,x) if b = 1, or y = G(x) if
b = 0.

3. Finally, the adversary outputs her guess b′ ∈ {0, 1} of b.

The adversary’s advantage is defined as

advPRPF (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 2 (Secure PRP). A function F :{0, 1}λ×{0, 1}γ → {0, 1}γ is said to
be a secure PRP if, for all probabilistic polynomial time adversary A, advPRPF (A)
is a negligible function in λ.

Stateful Authenticated Encryption. A stateful authenticated encryption
scheme (sAE) consists of two algorithms StAE = (StAE.Enc,StAE.Dec). The
encryption algorithm, given as (C, st′e) ← StAE.Enc(K,H,M, ste), takes as in-
put a secret key K ∈ {0, 1}λ, a header data H ∈ {0, 1}∗, a plaintext M , and
the current encryption state ste ∈ {0, 1}∗. It outputs an updated state st′e, and
either a ciphertext C ∈ {0, 1}∗ or an error symbol ⊥. The decryption algorithm,
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given as (M, st′d) ← StAE.Dec(K,H,C, std), takes as input a key K, a header
data H, a ciphertext C, and the current decryption state std. It outputs an up-
dated state st′d, and either a value M , which is the message encrypted in C, or
an error symbol ⊥. The states ste and std are initialised to the empty string ∅.
The security of a sAE scheme is defined with the following experiment between
a challenger and an adversary A:

1. The challenger samples uniformly at random K
$←− {0, 1}λ, and b

$←− {0, 1}.
2. The adversary may adaptively query the encryption oracle Encrypt and the

decryption oracle Decrypt, as described by Figure 4.
3. Finally, the adversary outputs her guess b′ ∈ {0, 1} of b.

This game captures both the confidentiality and integrity properties of a stateful
AEAD scheme. The adversary’s advantage is defined as

advsAEStAE(A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 3 (Secure sAE). The encryption scheme StAE is said to be a secure
sAE encryption scheme if, for all probabilistic polynomial time adversary A,
advsAEStAE(A) is a negligible function in λ.

Encrypt(M0,M1, H)

u← u+ 1

(C0, st0e)
$←− StAE.Enc(K,H,M0, ste)

(C1, st1e)
$←− StAE.Enc(K,H,M1, ste)

if C0 =⊥ or C1 =⊥ then return ⊥
(Cu, Hu, ste)← (Cb, H, stbe)
return Cu

Decrypt(C,H)

if b = 0 then return ⊥
v ← v + 1
(M, std)← StAE.Dec(K,H,C, std)
if v > u or C 6= Cv or H 6= Hv

then sync← false

if sync = false then return M
return ⊥

Fig. 4. The Encrypt and Decrypt oracles in the sAE security experiment. The counters
u and v are initialised to 0, and sync to true at the beginning of the experiment.

3.2 Execution Environment

We describe the execution environment related to our model, using the notations
of the ACCE model of Jager et al. [30], and Bhargavan et al. [12]. We use this
execution environment to analyse our generic 3-party protocol Π.

Protocol Entities. Our model considers three sets of parties: a set E of end-
devices, a set N of Network Servers, and a set J of Join Servers. Each party is
given a long term key ltk.
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Session Instances. Each party Pi maintains a set of instances Instances =
{π0

i , π
1
i , . . .} modeling several (sequential or parallel) executions of the 3-party

protocol Π. Each instance πni has access to the long term key ltk of its party
parent Pi. Moreover, each instance πni maintains the following internal state:

– The instance parent πni .parent ∈ E ∪ N ∪ J indicating the party Pi that
owns that instance: πni .parent = Pi.

– The partner-party πni .pid ∈ E ∪ N ∪ J indicating the party πni .parent is
presumably running the protocol with. Pi ∈ E can only be partnered with a
party Pk ∈ J . Pk ∈ J can only be partnered with a party Pj ∈ N . Pj ∈ N
can be partnered with either Pi ∈ E or Pk ∈ J .

– The role πni .ρ ∈ {ed, ns-client, ns-server, js} of Pi = πni .parent. If Pi ∈ E ,
then πni .ρ = ed. If Pi ∈ J , then πni .ρ = js. If Pi ∈ N , then πni .ρ ∈
{ns-client, ns-server}. In such a case, πni .ρ = ns-client if πni .pid ∈ J , and
πni .ρ = ns-server if πni .pid ∈ E .

– The session identifier πni .sid of an instance.
– The acceptance flag πni .α originally set to ⊥ when the session is ongoing,

and set to 1/0 when the party accepts/rejects the partner’s authentication.
– The session keys πni .ck set to ⊥ at the beginning of the session, and set to

a non-null bitstring corresponding to the encryption and decryption session
keys once πni computes the session keys.

– The key material πni .km set to ⊥ if πni .ρ ∈ {ed, ns-server}. Otherwise km is
set to ⊥ at the beginning of the session, and set to a non-null bitstring once
πni ends in accepting state.

– The security bit πni .b sampled at random at the beginning of the security
experiments.

– The partner-instances set πni .ISet stores the instances that are involved
in the same protocol run as πni (including πni itself).

– The partner-parties set πni .PSet stores the parties parent of the instances
in πni .ISet (including Pi = πni .parent itself).

A correct execution of the protocol Π involves four instances πni , πuj , πvj , π`k
such that

– πni .parent = Pi ∈ E , πuj .parent = πvj .parent = Pj ∈ N , π`k.parent = Pk ∈ J
– πuj .ρ = ns-server and πvj .ρ = ns-client

– πni .sid = πuj .sid 6=⊥ and πvj .sid = π`k.sid 6=⊥
– πni .ck = πuj .ck = πvj .km = π`k.km 6=⊥

Then, the partner-instances set and the partner-parties set are defined as π.ISet =
{πni , πuj , πvj , π`k} and π.PSet = {Pi, Pj , Pk}, ∀π ∈ {πni , πuj , πvj , π`k}.

Adversarial Queries. An adversary may interact with the instances by issuing
the following queries.

– NewSession(Pi, ρ, pid): this query creates a new session πni with role ρ, exe-
cuted by party Pi, and intended partner-party pid.
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– Send(πni ,M): the adversary can send a messageM to πni , receiving a response
M ′, or an error message ⊥ if the instance does not exist or if πni .α = 1. (Send
queries in an accepting state are handled by the Decrypt query.)

– Reveal(πni ): this query returns the session keys πni .ck and the key material
πni .km of an instance πni ending in accepting state.

– Corrupt(Pi): this query returns the long term key Pi.ltk of Pi.

– Encrypt(πni ,M0,M1, H): it encrypts the message Mb, b = πni .b, with header
H, with the encryption session keys (stored within πni .ck) of an accepting
instance πni (if πni .α 6= 1, then πni returns ⊥).

– Decrypt(πni , C,H): this query decrypts the ciphertext C with header H, with
the decryption session keys (stored within πni .ck) of an accepting instance πni
(if πni .α 6= 1, then πni returns ⊥). Figure 5 depicts this oracle.

Encrypt(πn
i ,M0,M1, H)

if πn
i .α 6= 1 then return ⊥

u← u+ 1

(C0, st0e)
$←− StAE.Enc(kenc,H,M0, ste)

(C1, st1e)
$←− StAE.Enc(kenc,H,M1, ste)

if C0 =⊥ or C1 =⊥ then return ⊥
b← πn

i .b
(Cu, Hu, ste)← (Cb, H, stbe)
return Cu

Decrypt(πn
i , C,H)

if πn
i .α 6= 1 then return ⊥

if πn
i .b = 0 then return ⊥

v ← v + 1
(M, std)← StAE.Dec(kdec,H,C, std)
if v > u or C 6= Cv or H 6= Hv

then sync← false

if sync = false then return M

Fig. 5. The Encrypt and Decrypt oracles in the 3-ACCE security experiment. The coun-
ters u and v are initialised to 0, and sync to true at the beginning of every session.

3.3 Security Definitions

Partnership. In order to define the partnership between two instances, we
use the definition of matching conversations initially proposed by Bellare and
Rogaway [9], and modified by Jager et al. [30].

Let Ti,n be the sequence of all (valid) messages sent and received by an
instance πni in chronological order. For two transcripts Ti,n and Tj,u, we say that
Ti,n is a prefix of Tj,u if Ti,n contains at least one message, and the messages in
Ti,n are identical to the first |Ti,n| messages of Tj,u.

Definition 4 (Matching Conversations). We say that πni has a matching
conversation to πuj , if

– πni has sent all protocol messages and Tj,u is a prefix of Ti,n, or

– πuj has sent all protocol messages and Ti,n = Tj,u.
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Consequently, we define sid to be the transcript, in chronological order, of all the
(valid) messages sent and received by an instance during the key exchange, but,
possibly, the last message. We say that two instances πni and πuj are pairwise
partnered if πni .sid = πuj .sid. Then, we define the 3-ACCE partnering with the sets
ISet and PSet. πni .ISet stores instances partnered with πni , and πni .PSet stores
parties partnered with πni .

Correctness. The correctness in 3-ACCE is defined as follows. We demand that,
for any instance π ending in an accepting state, the following conditions hold:

– ∀π ∈ {πni , πuj , πvj , π`k}, π.ISet = {πni , πuj , πvj , π`k} and |π.ISet| = 4

– πni .parent = Pi ∈ E , πuj .parent = πvj .parent = Pj ∈ N , π`k.parent = Pk ∈ J
– π.PSet = {Pi, Pj , Pk}
– πni .ck = πuj .ck = πvj .km = π`k.km 6=⊥
– πni .sid = πuj .sid 6=⊥
– πvj .sid = π`k.sid 6=⊥

Security of ACCE protocols is defined by requiring that (i) the protocol is
a secure authentication protocol, and (ii) in the post-accept phase all data is
transmitted over an authenticated and confidential channel in the sense of length-
hiding sAE. Security of 3-ACCE protocols is defined in a similar way (but the
length-hiding property), but we include an additional requirement in the entity
authentication property in order to “bind” all the parties involved in a session.
The adversary’s advantage to win is defined with two games: the entity authen-
tication game, and the channel security game. In both, the adversary can query
all oracles NewSession, Send, Reveal, Corrupt, Encrypt, and Decrypt.

Entity Authentication (EA). This security property must guarantee that any
instance πni ending in accepting state is partnered with a unique instance. In ad-
dition to the two parties explicitly involved in the communication, we guarantee
that a third party participate in the session (each one belonging to a different
set E , N , J ). The purpose of this property, that we borrow from Bhargavan
et al. [12], is to make sure that if some ED establishes a communication with
some NS, there is a JS that is also involved. Conversely if a secure channel is
established between an NS and a JS, we want to make sure that it is with the
aim of establishing a communication between that NS and some ED. In this
EA security experiment, the adversary is successful if, when it terminates, there
exists an instance that maliciously accepts according to the following definition.

Definition 5 (Entity Authentication). An instance is said to maliciously
accept if the adversary succeeds in fulfilling one of the following winning condi-
tions.

ED adversary – An instance πni of parent Pi ∈ E is said to maliciously
accept if
• πni .α = 1 and πni .pid = Pk ∈ J .
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• No instance in πni .ISet was queried in Reveal queries.
• No party in πni .PSet is corrupted.
• There is no unique πuj | (πuj .parent ∈ N ∧ πuj .sid = πni .sid),

or there is no π`k ∈ Pk.Instances | π`k.km = πni .ck.

NS adversary – An instance πuj of parent Pj ∈ N is said to maliciously
accept if at least one of the following two conditions holds

(a) • πuj .α = 1 and πuj .pid = Pi ∈ E.
• No instance in πuj .ISet was queried in Reveal queries.
• No party in πuj .PSet is corrupted.
• There is no unique πni | (πni ∈ Pi.Instances ∧ πuj .sid = πni .sid),

or there is no π`k | (π`k.parent = Pk ∈ J ∧ πni .pid = Pk ∧ π`k.km =
πuj .ck).

(b) • πvj .α = 1 and πvj .pid = Pk ∈ J .
• No instance in πvj .ISet was queried in Reveal queries.
• No party in πvj .PSet is corrupted.

• There is no unique π`k ∈ Pk.Instances | (πvj .sid = π`k.sid),
or there is no πni | (πni .parent ∈ E ∧ πni .pid = Pk ∧ πni .ck = πvj .km).

JS adversary – An instance π`k of parent Pk ∈ J is said to maliciously
accept if

• π`k.α = 1 and π`k.pid = Pj ∈ N .
• No instance in π`k.ISet was queried in Reveal queries.
• No party in π`k.PSet is corrupted.
• There is no unique πvj ∈ Pj .Instances | (πvj .sid = π`k.sid),

or there is no πni | (πni .parent ∈ E ∧ πni .pid = Pk ∧ π`k.km = πni .ck).

The adversary’s advantage is defined as its winning probability:

advEAΠ (A) = Pr[A wins the EA game].

Channel Security (CS). In the channel security game, the adversary can use
all oracles. At some point, the adversary sends a challenge M0, M1 (issuing a
query Encrypt) to some instance πni , and gets Cb the encryption of Mb, b = πni .b.
The adversary is successful if she guesses b. That is, she must output an instance
πni and its security bit. The security bit πni .b is chosen at random at the beginning
of the game.

Definition 6 (Channel Security). An adversary A breaks the channel secu-
rity if she terminates the channel security game with a tuple (πni , b) such that

– πni .α = 1
– No instance in πni .ISet was queried in Reveal queries.
– No party in πni .PSet is corrupted.
– πni .b = b
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The adversary’s advantage is defined as

advCSΠ (A) =

∣∣∣∣Pr[A wins the CS game]− 1

2

∣∣∣∣ .
Definition 7 (3-ACCE-security). A 3-party protocol Π is 3-ACCE-secure if
Π satisfies correctness, and for all probabilistic polynomial time adversaries A,
advEAΠ (A) and advCSΠ (A) are a negligible function of the security parameter.

3.4 Comparison with Existing Models

The 3-ACCE security notion we propose takes inspiration from that of Bhargavan
et al. [12], which is used to analyse the security of TLS when an intermediary
server (the middleware) is involved between the client and the server. In turn
the latter is built on the Authenticated and Confidential Channel Establishment
(ACCE) model introduced by Jager et al. [30] to prove the security of TLS 1.2
[20] in DHE mode, and used by Kohlar et al. to prove the security of TLS 1.2
in RSA and DH modes [32]. Our model follows the same execution environ-
ment and adversarial model, and reuse the corresponding notations to deal with
the entity authentication and the channel security properties. Yet we relax the
stateful length-hiding AE (sLHAE) security used by Jager et al. and use the
sAE-security. That is, we do not demand the “length-hiding” property (i.e., the
ciphertext hides the length of the corresponding plaintext) for the encryption
schemes. Obviously TLS 1.2 remains secure with respect to sAE-security.

The model of Bhargavan et al. includes a property requiring that whenever
a client identifies a server as its partner, that server should be able to decrypt
channels established between the client and the middleware, hence audit the be-
haviour of the middleware.9 In our model, we extend this property in two ways.
Firstly, we demand that it be ensured by all parties involved in a correct exe-
cution of the protocol, in order to “bind” these parties. Secondly, this property
guarantees to JS that an ED is actually involved in the key exchange, prior to es-
tablishing the secure channel between NS and the purported ED (hence JS is not
merely used as a session keys derivation oracle). This means that when an ED
establishes a session with an NS, a JS has been part of the key derivation. When
a JS is requested by an NS, there is an ED expecting to connect the network.
When NS relays data, it is to enlist an ED with the help of a JS. We demand
this additional guarantee because the purpose of such a channel established by
JS is only to compensate for the cryptographic operations that NS is unable to
perform. Another option would have been to separate into two properties: the
entity authentication and the “entity binding”. This entity binding property,
that the three parties involved in the session take on, is a way to extend to three
“dimensions” what tie the parties in a classical 2-party protocol. We do mean
by “entity authentication” in a 3-party setting a property that guarantees not
only a unique partner to a given party, but also the unavoidable involvement of

9 This property is called accountability in [12].
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a third party. This is the reason of our choice, despite a possible lack of modu-
larity.

Moreover, as pointed out by Bhargavan et al., their model has two main lim-
itations: it does not handle client authentication, and does not consider forward
secrecy.10 In addition, in the 3-party protocol they propose, when instantiated
with TLS 1.2, the middlebox merely forwards messages but does not have any
added value. On the contrary, in the model we propose, we do consider client
(ED) authentication, and retain the genuine operations done by NS.

The Authenticated and Confidential Channel Establishment with Account-
able Proxies (ACCE-AP) model of Bhargavan et al. [11] allows capturing a context
where several middleboxes are interspersed between a (TLS) client and a server.
It aims at providing fine-grained rights (defined through contexts) to the middle-
boxes. We choose instead to use the intuitive and elegant 3-ACCE model since,
in our setting, one intermediate server only (NS) is involved, which predefined
rights are attributed to. Moreover, the authors of [11] observe that their model is
complex and achieves limited record-layer guarantees in multi-middlebox setting.

3.5 Building 3-ACCE from 2-ACCE

In this section we describe a generic 3-party protocol Π. Next, we show that Π
is generically secure in the 3-ACCE model described in Sections 3.2 and 3.3.

Our Generic 3-party Protocol. The Figure 6 depicts our view of the 3-ACCE
protocol Π between ED, NS and JS. It is composed of two distinct protocols
denoted P and P ′ respectively. P is a 2-ACCE protocol between ED and NS,
and P ′ is a 2-ACCE protocol between NS and JS. The details of the protocol Π
are given in Figure 7.

Π is generic in the sense that it depicts a whole class of protocols. Informally,
this class corresponds to 3-party protocols where one entity behaves mostly as
a key server (JS), whereas the post-accept phase is managed by the other two
entities (ED, NS). Moreover, the P component has the following features. Its key
exchange is made of four main messages: the first two with the major purpose
of exchanging the material intended for the key derivation, and the last two in
order to confirm the session keys or to authenticate the parties. For example,
TLS-PSK [25], SRP [52], and SIGMA-R [33] can be instances of P . As we will
see in Section 4, LoRaWAN is such another instance.

Main Theorem and Sketch Proof. Based on the security of P and P ′, we
show that Π is 3-ACCE-secure according to Definition 7.

Theorem 1. The protocol Π is a secure 3-ACCE protocol under the assumption
that P is a secure 2-ACCE protocol, and P ′ is a secure 2-ACCE protocol, with the

10 Our model does not require forward secrecy either because of the use of static sym-
metric keys in LoRaWAN.
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Fig. 6. 3-ACCE protocol Π

ED NS JS

Join Request
=============⇒ mutual auth.←−−−−−−−−−−−−→

Verify Join Request
Join Request

=============⇒
Verify Join Request

Join Accept←−−−−−−−−−−−−−− Join Accept⇐=============

Verify Join Accept
Compute sk

RekeyInd
=============⇒

[RekeyInd]
=============⇒

Compute sk
[Verify RekeyInd]

sk⇐=============

Verify RekeyInd
RekeyConf⇐=============

Verify RekeyConf
post-accept phase⇐============⇒

Fig. 7. Correct execution of protocol Π, made of P (left) and P ′ (right) components.
Double line arrows indicate the use of the secure channel keys.

Protocol P Protocol P ′

following reductions

advEAΠ ≤ nE · nN · nJ
(

2advCSP + 3advCSP ′ + 2pjr + 2pja + advEAP ′,client + advEAP ′,server

)
+nE

(
nJ · advEAP,client + nN · advEAP,server

)
+nN · nJ

(
3advCSP ′ + advEAP ′,client + advEAP ′,server

)
advCSΠ ≤ nE · nN · nJ

(
advCSP + 3advCSP ′

)
+ advEAΠ

where nE, nN, and nJ are respectively the number of ED, NS, and JS parties.

24



We give here only a sketch of proof of Theorem 1. The extended proof is pro-
vided in Appendix A. Let us first consider the EA security property. We split the
proof into three parts depending which party (ED, NS, JS) the adversary targets.

ED adversary. Roughly speaking, in order to be successful, the adversary
must make the ED accept without an NS or a JS being involved. Hence the ad-
versary can first try to impersonate the NS to the ED as in a 2-party execution
of protocol P (in such a case no NS and no JS are involved in the session). This
corresponds to an advantage advEAP,client. The adversary can also try to bypass the
intermediate NS in order to get from the JS all the necessary material (Join Ac-
cept message, session keys sk) in order for ED to accept. This implies necessarily
that a server adversary be able to impersonate a legitimate NS to the JS, that
is to break the EA-security of P ′ (corresponding to an advantage advEAP ′,server).
Finally, the adversary can try to make ED and NS have different sid. In order
to be successful, the adversary has to provide a valid RekeyInd message to the
NS different than the one computed by the ED. This implies either forging such
a message, or getting the keys used to compute it and transmitted by the JS to
the NS. We reduce both possibilities to the channel security with respect to P
on the one hand (advCSP ), and to the channel security with respect to P ′ on the
other hand (advCSP ′).

Since we have ruled out the impersonation of NS to ED, and the imper-
sonation of NS to JS, ED uses the Join Accept message sent by the JS upon
reception of the Join Request message computed by the ED. Therefore, ED and
JS compute the P -session keys with the same inputs (and the same function).
Hence they output the same keys (that is πni .ck = π`k.km). In addition, ED and
NS have matching conversations (that is, they share the same sid).

Accounting for the fact that the reduction must guess the identity of the
three parties involved, the advantage of an ED adversary is bounded by

advEAΠ,E ≤ nE · nJE
(
advEAP,client + nN ·

(
advEAP ′,server + advCSP + advCSP ′

))
where nJE ≤ nJ is the number of JSs that can be partnered with a given ED.

NS adversary. First we deal with the winning condition (a). The adversary
can try to impersonate the ED to the NS in order to preclude the existence of a
partner to NS. This implies breaking the EA-security of P when the server side
is targeted. The corresponding advantage is advEAP,server. Then the adversary can
try to impersonate a legitimate JS to NS, in order to preclude the involvement
of the JS in the protocol run. This corresponds to an advantage advEAP ′,client.

The only cryptographic operation that the NS does in order to accept is
verifying the RekeyInd message it gets from the ED with the keys provided by
the JS. Therefore the adversary is successful if, on the one hand, she provides
some keys sk to NS (through the P ′ secure channel), and, on the other hand, she
sends to NS a RekeyInd message computed under these keys sk. Note that the
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adversary can be successful even if a legitimate JS is involved in the protocol.11

This is possible if the adversary forges a valid P ′ application message carrying
the keys sk she has chosen. This can be reduced to the channel security with
respect to P ′, which corresponds to the advantage advCSP ′ .

The remaining possibility in order for the adversary to win is to provide a
RekeyConf message so that NS and ED do not share the same sid (i.e., they
do not have matching conversations).12 This is possible either if the adversary
forges such a message, or if the adversary is able to get the keys used to compute
the message, and transmitted by the JS to the NS through a secure channel with
respect to P ′. We reduce either possibility respectively to the channel security
with respect to P (advCSP ), and to the channel security with respect to P ′ (advCSP ′).
Furthermore, since we have ruled out the impersonation of JS to NS, and also
the possibility to forge P ′ application messages, NS and JS share the same P
session keys. That is πuj .ck = π`k.km.

Accounting for the fact that the reduction must guess the identity of the
three parties involved, the advantage of an NS adversary in winning through
condition (a) is bounded by

pa ≤ nE · nN
(
advEAP,server + nJE

(
advEAP ′,client + 2advCSP ′ + advCSP

))
Regarding condition (b), the adversary can first try to impersonate a legiti-

mate JS to NS in order to preclude the involvement of such a JS. This implies
an adversary able to break the EA-security of P ′ when the client side is targeted,
which corresponds to an advantage advEAP ′,client. Then the adversary can proceed
as under condition (a). That is providing to the NS some keys sk of her choice,
and a RekeyInd message computed under sk. This implies forging a valid P ′

application message carrying the keys sk. We reduce such a possibility to the
channel security with respect to P ′, which corresponds to an advantage advCSP ′ .
Then, in order to have that NS and JS do not share the same sid (i.e., they do not
have a matching conversation), the adversary can try to forge a P ′ application
message (carrying a Join Request or a RekeyInd message) intended to JS.13 We
can reduce the latter to the channel security of P ′ (advCSP ′).

So far, this guarantees that NS and JS have a matching conversation, that
is they share the same sid (πvj .sid = π`k.sid). Finally the adversary wins if the
NS and the ED do not share the same P session keys. This is possible if the
adversary forges either a Join Request message or a Join Accept message. These
two possibilities are respectively bounded by the probabilities pjr and pja (see
Section 4.1).

11 The adversary sends first a fake Join Request message to the NS (random MAC tag,
correct counter cntE). Then the adversary sends a random Join Accept to the NS
followed by session keys sk of her choice, and a RekeyInd message computed under
sk (as depicted in Section 2.3 by Figure 3).

12 Forging a RekeyInd message is already ruled out because we have precluded the
impersonation of ED to NS.

13 Different session keys are (likely) used in either direction in order to protect P ′

application messages.
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Therefore, accounting that the reduction must guess the identity of the par-
ties involved, the advantage of an NS adversary in winning through condition
(b) is bounded by

pb ≤ nN · nJ
(
advEAP ′,client + 2advCSP ′ + nEJ

(pjr + pja)
)

where nEJ
≤ nE is the number of EDs that can be partnered with a given JS.

Therefore

advEAΠ,N ≤ pa + pb

≤ nE · nN
(
nJE ·

(
advCSP + 2advCSP ′ + advEAP ′,client

)
+ advEAP,server

)
+nN · nJ

(
advEAP ′,client + 2advCSP ′ + nEJ

(pjr + pja)
)

with nEJ
≤ nE, and nJE ≤ nJ.

JS adversary. In this setting, the adversary can first try to impersonate the
NS to the JS, which corresponds to an advantage advEAP ′,server. Then, in order to
have that the NS and the JS do not share the same sid (i.e., do not have a match-
ing conversation), the adversary can try to forge one of the messages exchanged
through the secure channel (in either direction), which can be reduced to the
channel security with respect to P ′ (advCSP ′). Ruling out all these possibilities
guarantees that JS and NS share the same sid (π`k.sid = πvj .sid).

Finally, the adversary can try to make the ED and the JS compute different
P -session keys. Since these keys depend on the data carried in the Join Request
and Join Accept messages, this implies forging either message, corresponding
to a probability pjr + pja. Hence, ruling out both possibilities guarantees that
πni .ck = π`k.km.

Taking account of all the parties involved, the advantage of a JS adversary
is bounded by

advEAΠ,J ≤ nJ · nN
(
advEAP ′,server + advCSP ′ + nEJ

(pjr + pja)
)

Regarding the CS property ofΠ we apply the following hops. First we rule out
the possibility that an instance maliciously accepts. That is we follow the same
steps as in the EA proof. This leads to an advantage equal to advEAΠ . This leaves
two possibilities in order for the adversary to be successful: either she targets
directly the secure channel between the ED and the NS, or she targets the secure
channel between the NS and the JS. We can reduce the latter possibility to the
CS-security of P ′ corresponding to an advantage advCSP ′ . Regarding the former
possibility, the adversary can first try to get the P session keys (sk) sent by
the JS to the NS (which we reduce to the channel security with respect to P ′

leading to an advantage advCSP ′). Then the adversary can try to break the channel
security with respect to P (advCSP ). We have also to take into account that the
session keys sk are sent by the JS to the NS through the secure channel provided
by P ′. Since the CS-security of P relies implicitly on the indistinguishability of
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sk from random, we have to rely on the real-from-random indistinguishability
for the plaintexts guaranteed by the channel provided by P ′ (which we reduce
to advCSP ′).
Accounting that the reduction must guess the identity of the parties involved,
the advantage of the adversary is bounded by

advCSΠ ≤ nE · nN · nJ
(
advCSP + 3advCSP ′

)
+ advEAΠ

4 3-ACCE Security with LoRaWAN 1.1

In this section, we use the generic result of Section 3.5, and apply it to Lo-
RaWAN. For this purpose, we have to (i) show that LoRaWAN 1.1 fulfills the
structure of the protocol Π proved to be secure by Theorem 1, (ii) prove that
the underlying protocol P = PLoRaWAN is 2-ACCE-secure, and (iii) choose a
2-ACCE-secure instantiation for the protocol P ′ = P ′LoRaWAN .

As described in Section 2.1, a typical LoRaWAN network involves four enti-
ties: ED, NS, JS, and AS. But only the first three are actually involved in the key
exchange, and the channel establishment. Moreover, in actual deployments, AS
is often co-localised with NS. That is, AS is in fact merely a functionality handled
by NS, and the latter is given the four session keys Ke

a, Ke
c , Ki1

c , Ki2
c . Hence, we

instantiate LoRaWAN accordingly: our protocol is made of three active entities
(ED, NS, JS) which the different cryptographic operations are attributed to.

Since LoRaWAN is based on static symmetric keys, we define the long term
key of each party to be ltk = (pk, sk,mk), made of (i) a private key sk, (ii) the
corresponding certified public key pk, and (iii) a master symmetric key mk. If
Pk ∈ J , the three components of ltk are defined. Otherwise, Pj .ltk = (pk, sk,⊥)
if Pj ∈ N , and Pi.ltk = (⊥,⊥,mk) if Pi ∈ E . Each party Pi ∈ E has a unique
master key mk, shared with a party Pk ∈ J .

4.1 2-party Protocol P in LoRaWAN 1.1 is 2-ACCE Secure

Theorem for PLoRaWAN . Let PLoRaWAN correspond to the messages ex-
changed, and the operations done between a client (ED) and a server (NS-JS).
Let StAEclient (resp. StAEserver) be the AEAD function used by the client (resp.
server) to encrypt and MAC the messages.

Theorem 2. Under the assumption that StAEclient and StAEserver are sAE-secure,
PLoRaWAN is a secure 2-ACCE protocol with the following reductions:

advEAP ≤ q
[
(nC + nS)

(
advPRFMAC + 2advPRFAES

)
+ nC

(
advPRPAES + advsAEStAEserver

)
+nS · advsAEStAEclient

+ 2−µ
(
nC · (1− 2−β) + nS

)]
advCSP ≤ q2 · nC · nS

(
advsAEStAEclient

+ advsAEStAEserver
+ 2advPRFAES

)
+ advEAP

where q is the number of instances per party, nC (resp. nS) is the number of
client (resp. server) parties, µ is the bit length of the MAC tag, and β is the bit
length of the counter cntJ .
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Sketch Proof of Theorem 2. We consider the ACCE security model of Jager
et al. [30], and define the entity authentication and the channel security experi-
ments accordingly, but we forbid any corruption of the party (and its presumed
partner) involved in the security experiments (the entity authentication game
and the channel security game). That is LoRaWAN does not provide forward se-
crecy, nor protects against key-compromise impersonation attacks [13]. We give
here only a sketch of proof of Theorem 2. The full proof is given in Appendix C.

As for the EA-security of PLoRaWAN , we consider first a client (ED) adver-
sary, and then a server (NS-JS) adversary.

Regarding a client adversary, we idealise each cryptographic function used
to compute a Join Accept message: the KDFmk function used to compute the
MAC key (MK3), the MAC function, and the encryption function AES. Be-
ing able to distinguish such changes corresponds respectively to the advan-
tages advPRFAES, advPRFMAC, and advPRPAES . To that point, the ability of an adversary
to forge a valid Join Accept message lies on the ability to provide a valid

counter (probability at most 2β−1
2β

), and a valid MAC tag (probability 2−µ)
carried in the Join Accept message. Hence Pr[forgery Join Accept] ≤ pja =

advPRFAES + advPRFMAC + advPRPAES + 2−µ(1 − 2−β). Then the adversary is successful if
the client and the server do not share the same sid (i.e., if they do not have a
matching conversation). This is possible if the adversary succeeds in forging a
valid RekeyConf message. We reduce this event to the security of the underlying
AEAD function StAEserver used to compute that message (corresponding to an
advantage advPRFAES + advsAEStAEserver

). Taking account of all possible client instances
adds a factor q · nC, where nC is the number of client parties, and q the number
of instances per party.

Therefore, the advantage of a client adversary in winning the EA experiment
is bounded by

advEAP,client ≤ q · nC
(
advsAEStAEserver

+ 2−(µ+β)(2β − 1) + advPRPAES + advPRFMAC + 2advPRFAES

)
Regarding the server adversary, the reasoning is quite similar. First we ide-

alise each cryptographic function used to compute a Join Request and a RekeyInd
message: the MAC function used to compute the Join Request’s MAC tag, and
the KDFc and KDFa functions used to compute the session keys involved in the
calculation of the RekeyInd message. Being able to distinguish these changes
corresponds respectively to the advantages advPRFMAC, and 2advPRFAES. To this point,
the probability to forge a valid Join Request message corresponds to the proba-
bility to forge a valid MAC tag (that is 2−µ). Hence Pr[forgery Join Request] ≤
pjr = advPRFMAC + 2−µ. Finally, the only remaining possibility for the adversary is
that client and server do not share the same sid (i.e., they do not have a match-
ing conversation). This implies forging a valid RekeyInd message. We reduce this
event to the security of the underlying AEAD function StAEclient used to compute
that message (corresponding to an advantage advsAEStAEclient

). Taking account of all
possible server instances adds a factor q · nS, where nS is the number of server
parties, and q the number of instances per party.
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Therefore, the advantage of a server adversary in winning the EA experiment
is bounded by

advEAP,server ≤ q · nS
(
advsAEStAEclient

+ 2advPRFAES + 2−µ + advPRFMAC

)
In addition, we have also

Pr[forgery Join Request] ≤ pjr = advPRFMAC + 2−µ

Pr[forgery Join Accept] ≤ pja = advPRFAES + advPRFMAC + advPRPAES + 2−(µ+β) · (2β − 1)

Regarding the CS experiment, we first abort if there exists an instance of
some client or server party that accepts maliciously, which adds an advantage
advEAP . Then we idealise the cryptographic functions used to compute the session
keys Ke

a, Ke
c , Ki1

c , and Ki2
c . Being able to distinguish the change leads to an

advantage 2advPRFAES. Finally we reduce the ability to win the CS experiment to
the security of the underlying AEAD functions that are used to encrypt messages
in either direction: StAEclient and StAEserver. This corresponds to an advantage
advsAEStAEclient

+ advsAEStAEserver
. Taking account of all possible instances adds a factor

q2 · nC · nS.
Therefore, the advantage of an adversary in winning the CS experiment is

bounded by

advCSP ≤ q2 · nC · nS
(
advsAEStAEclient

+ advsAEStAEserver
+ 2advPRFAES

)
+ advEAP

4.2 Meeting 3-ACCE Security

As seen in Section 2.2, and also exhibited by Theorem 2, the genuine Lo-
RaWAN 1.1 protocol suffers from several flaws that forbid from concluding re-
garding its security. In particular, the (too) short size of several parameters
(notably the size µ of the MAC output) provides useless security bounds in The-
orem 2. Therefore, we modify LoRaWAN 1.1 the following way.

– We demand that the size µ of the MAC output be high enough so that the
security bounds advEAP and advCSP be tight.

– We slightly change the behaviour of the JS as follows14: the JS verifies en-
tirely the Join Request message (including the ED counter cntE), and the
RekeyInd message. It sends the session keys sk to the NS only if the RekeyInd
message is valid. This change aims at precluding an attack that allows the
adversary to trivially win the EA experiment. Indeed, if JS does not verify
the RekeyInd message, this means that it accepts as soon as it sends the
Join Accept message. Yet, the JS has no guarantee that the ED successfully
completes the protocol (it is enough for the adversary to drop or alter the
Join Accept message in order for the ED to not accept).

14 The components surrounded with brackets in Figure 7 depict these additional oper-
ations.
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– The genuine LoRaWAN specification states that ED must send a RekeyInd
message to NS as long as it does not receive a RekeyConf response. We
demand that ED send only one message. Firstly in order to clearly sepa-
rate the pre-accept and post-accept phases. Secondly, because sending mul-
tiple RekeyInd messages allows the adversary to trivially win the EA ex-
periment. Indeed, the adversary has to merely forbid NS from receiving the
first RekeyInd message, and this breaks the transcript equality. Finally, this
change also reduces the surface of the “Encrypted message forgery” attack
described in Section 2.2.

– We require that all entities implement version 1.1 (including NS) so that
no fallback15 to LoRaWAN 1.0 be possible (and the vulnerabilities of that
version [4] be avoided).

Hence our adapted version of LoRaWAN 1.1 fulfills the structure of protocol Π,
and the protocol PLoRaWAN is 2-ACCE-secure.

Now we define the companion security protocol P ′LoRaWAN that is used
between NS and JS. As explained in Section 2.3, the careful choice of this protocol
is crucial to the overall security of a LoRaWAN network. Indeed, the theoretical
attack described in Section 2.3 illustrates that choosing an unreliable protocol as
P ′LoRaWAN drastically weakens the security of LoRaWAN, independently of the
security of the LoRaWAN cryptographic functions, and how well protected the
master keys are. Therefore, we define the protocol P ′LoRaWAN to be TLS 1.2 [20]
in DHE, or RSA mode, with mutual authentication, and instantiated with AEAD
encryption schemes such as AES-GCM, AES-CCM [40], or ChaCha20-Poly1305
[44]. TLS 1.2 is known to be 2-ACCE-secure [30, 32]. Alternatively, P ′LoRaWAN

can be defined as TLS 1.3 [45] in (EC)DHE mode, with mutual authentication.
We recall that TLS 1.3 uses only AEAD encryption schemes. TLS 1.3 is proved
to be 2-AKE-secure [23]. Although this result applies to an earlier draft of the
protocol, we may reasonably assume that the final version also guarantees 2-AKE-
security. Since AEAD encryption schemes are used, this implies 2-ACCE-security
for TLS 1.3.

Combining all the above with Theorem 1, we obtain the 3-ACCE-security of
our adapted version of LoRaWAN 1.1.

5 Conclusion

Using a provable security approach, we have provided the first analysis of Lo-
RaWAN 1.1, a dedicated IoT protocol that aims at replacing the previous 1.0
version currently deployed worldwide. We have described several theoretical at-
tacks against LoRaWAN 1.1, and enlightened, in particular, that the security
of LoRaWAN 1.1 crucially depends on the companion security protocol (unde-
fined by the specification) that is used between two of the parties. A theoretical
attack illustrates that exploiting weaknesses of this additional protocol allows

15 Falling back to version 1.0 is what an ED in version 1.1 must do, per specification,
when it faces an NS in version 1.0 (see Section 2.2).
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breaking LoRaWAN 1.1, independently of the security of the LoRaWAN core
cryptographic functions. This also shows that analysing such a 3-party protocol
requires a suitable security model that incorporates all its subtleties, and makes
explicit the security requirements.

Consequently, we have extended the notion of 3-ACCE-security to provide
a general framework that captures the security properties a 3-party protocol
should guarantee, and allows assessing its security. We have described such a
generic protocol provably secure in our model. Applying these results, we have
proposed a slightly modified version of LoRaWAN 1.1 with stronger security
properties, formally proved it to be secure in our security model, and described
how to concretely instantiate it. This version implies to increase the size of sev-
eral parameters, and to slightly change the behaviour of some entities involved
in the protocol.

This work contributes to the field of the 3-party protocols and their security
models. As the theoretical attacks we have exhibited against LoRaWAN 1.1 il-
lustrate, these protocols require a careful cryptographic analysis against strong
threat models. It will hopefully help analyse and better understand the security
of multi-party protocols which reflect the growing complexity of the communi-
cations and interactions as the IoT arises.
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32. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA
in the standard model. Cryptology ePrint Archive, Report 2013/367 (2013),
http://eprint.iacr.org/2013/367

33. Krawczyk, H.: SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) Advances in Cryp-
tology – CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 400–
425. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2003).
https://doi.org/10.1007/978-3-540-45146-4 24

34



34. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology –
CRYPTO 2013, Part I. Lecture Notes in Computer Science, vol. 8042, pp. 429–
448. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013).
https://doi.org/10.1007/978-3-642-40041-4 24

35. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007: 1st International
Conference on Provable Security. Lecture Notes in Computer Science, vol. 4784,
pp. 1–16. Springer, Heidelberg, Germany, Wollongong, Australia (Nov 1–2, 2007)

36. LoRa Alliance Technical Committe Regional Parameters Workgroup: LoRaWAN
1.1 Regional Parameters (January 2018), LoRa Alliance, rev. B

37. LoRa Alliance Technical committee: Technical Recommendations for Preventing
State Synchronization Issues around LoRaWAN 1.0.x Join Procedure (August
2018), LoRa Alliance, version 1.0.0

38. Lundgren, L.: Taking over the world through MQTT – Aftermath. Black Hat USA
(2017)

39. Mason, J., Watkins, K., Eisner, J., Stubblefield, A.: A natural language approach
to automated cryptanalysis of two-time pads. In: Juels, A., Wright, R.N., Vimer-
cati, S. (eds.) ACM CCS 06: 13th Conference on Computer and Communications
Security. pp. 235–244. ACM Press, Alexandria, Virginia, USA (Oct 30 – Nov 3,
2006). https://doi.org/10.1145/1180405.1180435

40. McGrew, D.: An Interface and Algorithms for Authenticated Encryption.
https://tools.ietf.org/html/rfc5116 (January 2008), RFC 5116

41. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the
TLS handshake protocol. In: Pieprzyk, J. (ed.) Advances in Cryptology –
ASIACRYPT 2008. Lecture Notes in Computer Science, vol. 5350, pp. 55–
73. Springer, Heidelberg, Germany, Melbourne, Australia (Dec 7–11, 2008).
https://doi.org/10.1007/978-3-540-89255-7 5

42. Naylor, D., Schomp, K., Varvello, M., Leontiadis, I., Blackburn, J., López, D.R.,
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A Extended Security Proof for the 3-party Protocol Π

In this section, we give a proof of Theorem 1. We proceed through a sequence
of games [10,49] between a challenger and an adversary A.

A.1 Entity Authentication

Let advEAΠ,X be the probability that an X adversary succeeds, with X ∈ {E,N, J},
where E, N, J indicate respectively a party from E , N , J . We have that advEAΠ ≤
advEAΠ,E + advEAΠ,N + advEAΠ,J.

ED adversary. Let Ei be the event that the adversary succeeds in making
an instance maliciously accept during Game i, where the instance is of a party
Pi ∈ E .

Game 0. This game corresponds to the EA-security game of the 3-party protocol
Π described in Section 3.3 when the adversary targets an ED. Therefore we have
that

Pr[E0] = advEAΠ,E

Game 1. In this game, the challenger aborts the experiment if he does not guess
which party Pi ∈ E the instance that will maliciously accept belongs to, and the
corresponding partner-party Pk ∈ J . Therefore

Pr[E1] = Pr[E0]× 1

nE · nJE

where nE is the number of parties in E and nJE ≤ nJ is the number of parties in
J that can be partnered with a party in E .

Game 2. Now the party Pi ∈ E and its party partner Pk ∈ J are fixed. We want
to rule out the event that there is no unique instance of some party in N that
is partnered (i.e., shares the same session identifier sid) with some instance πni
of the party Pi ∈ E .
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If the adversary succeeds in forging valid Join Accept and RekeyConf mes-
sages, this implies (in particular) that there is no such instance of some party of
N that is partnered with πni (in addition, this implies that there is no instance of
Pk that has computed the Join Accept message). Therefore we want to preclude
such an event. Forging these messages corresponds to the advantage advEAP,client for
a client adversary of breaking the EA-security of the protocol P . Note however
that precluding such a forgery does not imply the existence of a unique instance
πuj ∈ Pj .Instances for some party Pj ∈ N that is partnered with πni . Indeed there
is, in this execution of the 3-party protocol Π, other means to rule out the ex-
istence of such an instance. Nonetheless, ruling out the forgery of a Join Accept
message implies necessarily the existence of an instance π`k ∈ Pk.Instances that
computes that message. Therefore we have

Pr[E1] ≤ Pr[E2] + advEAP,client

Game 3. Now we want to rule out the event that the adversary gets from Pk
valid parameters with respect to P (Join Accept message, session keys sk) so
that the adversary be able to reply to Pi without any party of N being involved.

But first we add an abort rule. In this game, the challenger aborts the ex-
periment if she does not guess which party Pj ∈ N is partnered with Pk with
respect to protocol P ′. Therefore

Pr[E3] = Pr[E2]× 1

nN

Game 4. In this game, the challenger aborts the experiment if an adversary
succeeds in impersonating Pj to Pk. This implies an adversary able to break the
EA-security of P ′ when targeting the server side. Therefore

Pr[E3] ≤ Pr[E4] + advEAP ′,server

Game 5. So far, we have ruled out the non-existence of an instance πuj ∈
Pj .Instances that is involved in the execution of P with πni . Therefore, πni re-
ceives the Join Accept message sent by πuj upon reception of the Join Request
message sent by πni (recall that we have ruled out the forgery of such a message
in Game 2). Therefore the only way to have πni .sid 6= πuj .sid is if πni and πuj do
not share the same RekeyInd or RekeyConf message. This implies either forging
a RekeyInd message, or getting the suitable keys, transmitted by Pk to Pj , in
order to compute a RekeyInd or a RekeyConf message. We can reduce these
events to the channel security with respect to P on the one hand, and to the
channel security with respect to P ′ on the other hand.

Therefore, in this game, the challenger aborts the experiment if πuj ever re-
ceives a valid RekeyInd message but πni has not output that message, or if πni
receives a valid RekeyConf message but πuj has not computed it. We have

Pr[E4] ≤ Pr[E5] + advCSP + advCSP ′
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To this point, the execution of P between πni and πuj is correct. Hence πuj is
the unique instance such that πni .sid = πuj .sid.

We also have that π`k computes the Join Accept message, hence the existence
of that instance. In addition, πni uses the Join Accept message computed by π`k,
due to Game 2. Reciprocally, π`k uses the Join Request message computed by πni
(because πuj receives correctly that message from πni , and no impersonation of

Pj to Pk takes place). Therefore both instances πni and π`k use the same inputs
and the same permutation to compute the P session keys. Hence the output is
equal. That is π`k.km = πni .ck. Therefore, to that point, the adversary has no
chance of winning the experiment. That is

Pr[E5] = 0

Collecting all probabilities from Game 0 to Game 5, we have that

advEAΠ,E = Pr[E0]

= nE × nJE × Pr[E1]

≤ nE · nJE
(

Pr[E2] + advEAP,client

)
= nE · nJE

(
nN · Pr[E3] + advEAP,client

)
≤ nE · nJE

(
nN ·

(
Pr[E4] + advEAP ′,server

)
+ advEAP,client

)
≤ nE · nJE

(
nN ·

(
Pr[E5] + advCSP + advCSP ′ + advEAP ′,server

)
+ advEAP,client

)
= nE · nJE

(
nN ·

(
advCSP + advCSP ′ + advEAP ′,server

)
+ advEAP,client

)
NS adversary. Let us consider the winning conditions (a) and (b) of an

NS adversary. Let pa (resp. pb) the probability that the adversary wins through
condition (a) (resp. condition (b)). We have that advEAΠ,N ≤ pa + pb. We first
consider a sequence of changes related to condition (a).

Let Eai be the event that the adversary succeeds in making an instance
maliciously accept during Gamea i through condition (a), where the instance
parent is in N .

Gamea 0. This game corresponds to the EA-security game of the 3-party protocol
Π described in Section 3.3 when the adversary targets NS, and tries to win
through condition (a). Therefore we have that

Pr[Ea0 ] = pa

Gamea 1. In this game, the challenger stops the experiment if she does not
guess which party Pj ∈ N and its partner-party Pi ∈ E the adversary targets.
Therefore

Pr[Ea1 ] = Pr[Ea0 ]× 1

nE · nN
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Gamea 2. Now the parties Pj ∈ N and its partner-party Pi ∈ E are fixed.
In this game, the challenger aborts the experiment if the adversary succeeds

in forging valid Join Request and RekeyInd messages, hence impersonates Pi
to Pj . This event corresponds exactly to the event that an adversary against
the EA-security of the protocol P wins when the server side is targeted. The
advantage of such an event is advEAP,server. Therefore

Pr[Ea1 ] ≤ Pr[Ea2 ] + advEAP,server

Gamea 3. So far the parties Pi and Pj are fixed. Moreover, due to Gamea 2, for
any instance πuj ∈ Pj .Instances such that πuj .α = 1 and πuj .pid = Pi, there is an
instance πni ∈ Pi.Instances that is involved in the protocol Π (i.e., at least this
instance computes a Join Request message) under the assumption that the run
of protocol P ′ between Pj and some party in J that is the intended partner of Pi
is executed honestly. However, precluding the adversary to break the EA-security
of P when the server side is targeted does not imply in general the existence of
such an instance πni ∈ Pi.Instances. Indeed, the only cryptographic operation
that πuj does in order to accept is verifying the RekeyInd message with keys that
it does not even compute but receives from some party in J . Therefore, if the
adversary, on the one hand, succeeds in sending keys sk of his choice to Pj , he
can, on the other hand, provide a consistent RekeyInd message (computed under
sk), bringing Pj to accept although no party in E is actually involved. This is
possible either if the adversary impersonates to Pj some party in J , or if the
adversary forges a valid P ′ application message (carrying the keys sk chosen by
her). We preclude such events in the subsequent sequence of games.

But, before considering this case, the challenger aborts the experiment if he
does not guess which party Pk ∈ J is the intended partner of Pi (during the
execution of protocol P ). There is nJ parties in J . However each party in E may
communicate with a limited number of parties in J . That number is nJE ≤ nJ.
Therefore we have that

Pr[Ea3 ] = Pr[Ea2 ]× 1

nJE

Gamea 4. In this game we want to preclude the impersonation of Pk to Pj .
Therefore, the challenger aborts if an adversary succeeds in making Pj accept
with Pk as its purported partner. Therefore

Pr[Ea3 ] ≤ Pr[Ea4 ] + advEAP ′,client

Gamea 5. Now we want to preclude the possibility for the adversary to forge a
valid P ′ application message. This event can be reduced to the channel security
with respect to P ′. Therefore we have

Pr[Ea4 ] ≤ Pr[Ea5 ] + advCSP ′
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Gamea 6. So far we have ruled out the possibility for the adversary to forge
valid Join Request and RekeyInd messages. Therefore, if πuj does not receive
these genuine messages from an instance πni , this means that πuj accepts because
it has been provided with the necessary material (i.e., some keys and a RekeyInd
message consistent with these keys). However we have also ruled out the possibil-
ity for the adversary to make πuj accept such a material (in Gamea 5). Therefore
πni and πuj share these two messages.

Since no impersonation of Pk takes place (Gamea 4), there exists an in-
stance π`k ∈ Pk.Instances that receives the Join Request message sent by πni and
forwarded by some instance πvj ∈ Pj .Instances, and computes the Join Accept

message. π`k sends to πvj (hence to πuj ) the Join Accept message and the P session
keys. πuj correctly receives these data because we have ruled out an imperson-
ation of Pk to Pj , and a forgery of a P ′ application message intended to Pj .
Therefore πuj .ck = π`k.km.

If πni does not use the same Join Accept message, it computes different P
session keys (because the key derivation function is a permutation). These keys
are used by πni to compute the RekeyInd message it sends. Since πuj accepts by
assumption, this implies that either the adversary provides to πuj some alter-
native valid RekeyInd message, or the RekeyInd message computed by πni with
different keys is correctly verified by πuj using other keys. But this is ruled out in

Gamea 2. Therefore, πni receives necessarily the Join Accept message sent by π`k.
Since the Join Accept message is shared (in addition to the Join Request and
RekeyInd messages) by πni and πuj , the only way to have that πni .sid 6= πuj .sid is
if the RekeyConf message sent by πuj is not the one received by πni . This implies
either a forgery of such a message, or the ability of an adversary to get the keys
used to compute a RekeyConf message (that is the session keys sk sent by π`k to
πvj (hence to πuj ) through the secure channel provided by P ′).

Therefore, in this game, the challenger aborts the experiment if either event
happens. We can reduce the first event to the channel security with respect to
P , and the second event to the channel security with respect to P ′. Hence

Pr[Ea5 ] ≤ Pr[Ea6 ] + advCSP + advCSP ′

To this point, we have that πni .sid = πuj sid. Moreover, due to the EA-security
of P , πni is the unique instance that shares the same sid with πuj . Therefore, the
adversary has no chance of winning the experiment through condition (a). That
is

Pr[Ea6 ] = 0
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Collecting all the probabilities from Gamea 0 to Gamea 6, we have that

pa = Pr[Ea0 ]

= nE · nN · Pr[Ea1 ]

≤ nE · nN
(

Pr[Ea2 ] + advEAP,server

)
= nE · nN

(
nJE · Pr[Ea3 ] + advEAP,server

)
≤ nE · nN

(
nJE ·

(
Pr[Ea4 ] + advCSP ′

)
+ advEAP,server

)
≤ nE · nN

(
nJE ·

(
Pr[Ea5 ] + advEAP ′,client + advCSP ′

)
+ advEAP,server

)
≤ nE · nN

(
nJE ·

(
Pr[Ea6 ] + advCSP + advCSP ′ + advEAP ′,client + advCSP ′

)
+ advEAP,server

)
= nE · nN

(
nJE ·

(
advCSP + advEAP ′,client + 2advCSP ′

)
+ advEAP,server

)
Now let Ebi be the event that the adversary succeeds in making an instance

accept maliciously during Gameb i through condition (b), where the parent in-
stance is in N .

Gameb 0. This game corresponds to the EA-security game of the 3-party protocol
Π described in Section 3.3 when the adversary targets NS, and tries to win
through condition (b). Therefore we have that

Pr[Eb0] = pb

Gameb 1. In this game, the challenger aborts the experiment if he does not guess
which party Pj ∈ N and partner-party Pk ∈ J the adversary targets. Therefore

Pr[Eb1] = Pr[Eb0]× 1

nN · nJ

Gameb 2. Now the parties Pj ∈ N and Pk ∈ J are fixed.
The only cryptographic operation that πvj does in order to accept is verify-

ing the RekeyInd message with keys sk that it does not compute but receives
allegedly from Pk. Therefore, if the adversary, on the one hand, succeeds in send-
ing to πvj keys sk of her choice, she can, on the other hand, provide a consistent
RekeyInd message (computed under sk), bringing πvj to accept although no party
in J (neither in E) is actually involved. This is possible either if the adversary
impersonates Pk to Pj , or if the adversary forges a valid P ′ application message
(intended to Pj). We can reduce both events to the channel security with respect
to P ′. Therefore we have

Pr[Eb1] ≤ Pr[Eb2] + advCSP ′

Gameb 3. In this game we want to preclude the impersonation of Pk to Pj .
Therefore, the challenger aborts if an adversary succeeds in making Pj accept
with Pk as its purported partner. Therefore

Pr[Eb2] ≤ Pr[Eb3] + advEAP ′,client
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Gameb 4. Since no impersonation of Pk to Pj takes place, there is an instance
π`k ∈ Pk.Instances that computes the Join Accept message and the P session
keys sk upon reception of the Join Request message forwarded by πvj . Moreover
πvj .α = 1 and we have ruled out the forgery of a P ′ application message (intended
to Pj). Therefore, necessarily πvj receives a Join Accept message and session keys

sk, and these messages are computed by π`k.
Now, the only reason why the transcript of the messages exchanged between

πvj and π`k may differ (i.e., πvj .sid 6= π`k.sid) is that π`k receives a P ′ application
message (carrying a Join Request or a RekeyInd message) different than the
one sent by πvj . This implies the ability to forge a valid P ′ application message

intended to π`k (i.e., with different P ′ session keys than the ones used in the
opposite direction). Hence, in this game, the challenger aborts the experiment if
π`k ever receives a valid P ′ application message but that message is not computed
by πvj . We can reduce this event to the channel security with respect to P ′. We
have

Pr[Eb3] ≤ Pr[Eb4] + advCSP ′

So far, we have shown that for any instance πvj ∈ Pj .Instances such that

πvj .α = 1 and πvj .pid = Pk, there exists an instance π`k ∈ Pk.Instances such that

π`k.sid = πvj .sid. Moreover, the EA-security of P ′ implies that π`k is the unique
instance of Pk that shares with πvj the P ′ handshake messages. This guarantees

that the whole transcript of the P ′ messages is shared only by πvj and π`k. That

is, π`k is the unique instance of Pk such that πvj .sid = π`k.sid.

Gameb 5. In this game, the challenger aborts the experiment if she does not
guess which party Pi ∈ E presumably computes the Join Request received by
Pj . Therefore

Pr[Eb5] = Pr[Eb4]× 1

nEJ

where nEJ
≤ nE is the number of EDs that can be partnered with a given JS.

Gameb 6. In this game, the challenger aborts the experiment if Pj ever receives
a valid Join Request message but no instance of Pi has computed that message.
Therefore

Pr[Eb5] ≤ Pr[Eb6] + Pr[forgery of Join Request] ≤ Pr[Eb6] + pjr

Gameb 7. So far there is an instance πni ∈ Pi.Instances that computes the Join
Request message received by Pj . Due to Gameb 2, this message is received by
π`k.16 Therefore both instances πni and π`k use the same Join Request message
(and the same derivation function) in order to compute the P session keys.
Furthermore, the P session keys computed by π`k are received by πvj (because
a forgery of a P ′ application message intended to Pj has been ruled out in
Gameb 2). That is πvj .km = π`k.km. The only reason why πni and π`k would not

16 Pk is identified in this Join Request message. That is πn
i .pid = Pk.

42



compute the same P session keys is if they do not use the same Join Accept
message.

Therefore, in this game, the challenger aborts the experiment if πni ever
receives a valid Join Accept message but Pj has not sent it. Therefore we have

Pr[Eb6] ≤ Pr[Eb7] + Pr[forgery of Join Accept] ≤ Pr[Eb7] + pja

To this point, πni and π`k use the same Join Request and Join Accept mes-
sages, and the same permutation to compute the P session keys. Hence πni .ck =
π`k.km = πvj .km. Therefore, the adversary has no chance of winning the experi-
ment through condition (b). That is

Pr[Eb7] = 0

Collecting all the probabilities from Gameb 0 to Gameb 7, we have that

pb = Pr[Eb0]

= nN · nJ · Pr[Eb1]

≤ nN · nJ
(

Pr[Eb2] + advCSP ′

)
≤ nN · nJ

(
Pr[Eb3] + advEAP ′,client + advCSP ′

)
≤ nN · nJ

(
Pr[Eb4] + advCSP ′ + advEAP ′,client + advCSP ′

)
= nN · nJ

(
nEJ
· Pr[Eb5] + advEAP ′,client + 2advCSP ′

)
≤ nN · nJ

(
nEJ

(
Pr[Eb6] + pjr

)
+ advEAP ′,client + 2advCSP ′

)
≤ nN · nJ

(
nEJ

(
Pr[Eb7] + pjr + pja

)
+ advEAP ′,client + 2advCSP ′

)
= nN · nJ

(
nEJ

(pjr + pja) + advEAP ′,client + 2advCSP ′

)
Therefore we have that

advEAΠ,N ≤ pa + pb

≤ nE · nN
(
nJE ·

(
advCSP + 2advCSP ′ + advEAP ′,client

)
+ advEAP,server

)
+nN · nJ

(
nEJ

(pjr + pja) + advEAP ′,client + 2advCSP ′

)
≤ nE · nN · advEAP,server + (nE + 1) · nN · nJ ·

(
advEAP ′,client + 2advCSP ′

)
+nE · nN · nJ

(
pjr + pja + advCSP

)
because nEJ

≤ nE, and nJE ≤ nJ.

JS adversary. Let Ei be the event that the adversary succeeds in making
an instance accept maliciously during Game i, where the instance parent is in
J .
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Game 0. This game corresponds to the EA-security game of the 3-party protocol
Π described in Section 3.3 when the adversary targets JS. Therefore we have
that

Pr[E0] = advEAΠ,J

Game 1. In this game, the challenger aborts the experiment if he does not guess
which party Pk ∈ J the instance that will maliciously accept belongs to, and
the corresponding partner-party Pj ∈ N . Therefore

Pr[E1] = Pr[E0]× 1

nJ · nN

Game 2. Now the party Pk ∈ J and its partner-party Pj ∈ N are fixed. We
want to rule out the event that there is no unique instance of Pj that is partnered
(i.e., shares the same session identifier sid) with any instance π`k of Pk that ends
in accepting state.

The non-existence of an instance πvj ∈ Pj .Instances that is presumably part-

nered with π`k implies that a server adversary successfully breaks the EA-security
of P ′. Therefore, in this game, the challenger aborts the experiment if the adver-
sary succeeds in breaking the EA-security of P ′ when the server side is targeted.
Hence we have that

Pr[E1] ≤ Pr[E2] + advEAP ′,server

Game 3. So far, the EA-security of P ′ ensures that πvj is the unique instance

to share the handshake messages related to P ′ exchanged with π`k. However,
in order for π`k to accept π`k has to receive in addition valid Join Request and
RekeyInd messages (carried in P ′ application messages). In turn, π`k sends P ′

application messages carrying a Join Accept message and session keys sk. This
implies necessarily that πvj is the unique instance such that π`k.sid = πvj .sid unless
one of these P ′ application messages is forged by an adversary.

Therefore, in this game, the challenger aborts the experiment if the adversary
succeeds in forging P ′ application messages. We reduce this (in)ability to the
channel security with respect to P ′. Therefore

Pr[E2] ≤ Pr[E3] + advCSP ′

Game 4. Now, for each instance π`k ∈ Pk.Instances such that π`k.α = 1, there is
a unique instance πvj ∈ Pj .Instances such that π`k.sid = πvj .sid.

In this game, the challenger aborts the experiment if she does not guess which
party Pi ∈ E has presumably triggered the execution of protocol P (i.e., has
computed the Join Request and RekeyInd messages intended to Pk). Therefore

Pr[E4] = Pr[E3]× 1

nEJ
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Game 5. Now the party Pi ∈ E that presumably computes the messages with
respect to protocol P is fixed.

The non-existence of an instance πni ∈ Pi.Instances that computes the Join
Request message forwarded by πvj to π`k implies a forgery. Therefore, in this

game, the challenger aborts the experiment if π`k receives a valid Join Request
message but no instance of Pi has output that message. Therefore

Pr[E4] ≤ Pr[E5] + Pr[forgery of Join Request] ≤ Pr[E5] + pjr

Game 6. To this point the adversary is unable to forge a Join Request message
(Game 5) and cannot impersonate Pj to Pk (Game 2). This implies that π`k uses
necessarily the Join Request message computed by πni . Hence πni .ck 6= π`k.km
necessarily implies that πni and π`k do not use the same Join Accept message.

Hence, in this game, the challenger aborts the experiment if πni ever receives
a Join Accept message but π`k has not computed such a message. Therefore we
have

Pr[E5] ≤ Pr[E6] + Pr[forgery of Join Accept] ≤ Pr[E6] + pja

To this point, if πni verifies correctly the Join Accept message it receives, it
holds necessarily that this message is computed by π`k upon reception of a Join
Request presumably sent by πni . Moreover we have also ruled out the event of a
Join Request forgery. Therefore the only way πni verifies correctly the Join Ac-
cept it receives is if that message is computed by π`k upon reception of the Join
Request message sent by πni . Therefore, we have necessarily that π`k.km = πni .ck
(i.e., both instances compute the same P session keys because they use the same
inputs, and the same derivation function).

Hence, up to this point, the adversary has no chance of winning the experi-
ment. That is

Pr[E6] = 0

Collecting all the probabilities from Game 0 to Game 6, we have that

advEAΠ,J = Pr[E0]

= nJ · nN · Pr[E1]

≤ nJ · nN
(

Pr[E2] + advEAP ′,server

)
≤ nJ · nN

(
Pr[E3] + advCSP ′ + advEAP ′,server

)
= nJ · nN

(
nEJ
· Pr[E4] + advCSP ′ + advEAP ′,server

)
≤ nJ · nN

(
nEJ

(Pr[E5] + pjr) + advCSP ′ + advEAP ′,server

)
≤ nJ · nN

(
nEJ

(Pr[E6] + pjr + pja) + advCSP ′ + advEAP ′,server

)
= nJ · nN

(
nEJ

(pjr + pja) + advCSP ′ + advEAP ′,server

)
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Therefore, we have

advEAΠ ≤ advEAΠ,E + advEAΠ,N + advEAΠ,J

≤ nE · nJE
(
nN ·

(
advCSP + advCSP ′ + advEAP ′,server

)
+ advEAP,client

)
+nE · nN

(
nJE ·

(
advCSP + 2advCSP ′ + advEAP ′,client

)
+ advEAP,server

)
+nN · nJ

(
nEJ

(pjr + pja) + advEAP ′,client + 2advCSP ′

)
+nJ · nN

(
nEJ

(pjr + pja) + advCSP ′ + advEAP ′,server

)
≤ nE · nN · nJ

(
2advCSP + 3advCSP ′ + 2pjr + 2pja + advEAP ′,client + advEAP ′,server

)
+nE

(
nJ · advEAP,client + nN · advEAP,server

)
+nN · nJ

(
3advCSP ′ + advEAP ′,client + advEAP ′,server

)
because nEJ

≤ nE, and nJE ≤ nJ.

A.2 Channel Security

Let advCSΠ be the advantage of the adversary in winning the channel security
experiment. Let Ei be the event that the adversary wins in Game i, and advi =
Pr[Ei]− 1

2 .

Game 0. This game corresponds to the channel security game described in Sec-
tion 3.3. Therefore

Pr[E0] =
1

2
+ adv0 =

1

2
+ advCSΠ

Game 1. In this game, the challenger proceeds as in the previous game but aborts
and chooses a bit b uniformly at random if there exists an oracle of some party
in E ∪N ∪J that accepts maliciously. In other words, in this game we make the
same modifications as in the games performed during the entity authentication
proof. Hence we have

adv0 ≤ adv1 + advEAΠ

Game 2. In this game, the challenger aborts the experiment if she does not guess
the three parties involved in the session. Therefore

adv2 ≥ adv1 ×
1

nE · nN · nJ
because nJE ≤ nJ, and nEJ

≤ nE.
Let πni , πuj , πvj , and π`k be the four instances sharing the same bid, with

πni .parent ∈ E , πuj .parent = πvj .parent = Pj ∈ N , and π`k.parent = Pk ∈ J , such
that, in the one hand, πni and πuj are partnered (πni .sid = πuj .sid), and, in the

other hand, πvj and π`k are partnered (πvj .sid = π`k.sid).
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Game 3. In this game, the challenger aborts the experiment if the adversary
is able to find πvj .b or π`k.b (that is if the adversary wins the experiment when
targeting the NS-JS link). We can reduce such an event to the channel security
with respect to P ′. Therefore

adv2 ≤ adv3 + advCSP ′

Game 4. Now, the adversary can try to target πni or πuj (i.e., the ED-NS link).
In order to be successful, the adversary can first try to get the P session keys
(sk) sent by Pk to Pj (the parent of πvj ) through the secure channel provided
by the protocol P ′. We can reduce this possibility to the channel security with
respect to P ′. Therefore

adv3 ≤ adv4 + advCSP ′

Game 5. Now the only remaining possibility in order for the adversary to be
successful is breaking the channel security with respect to P . The inability of
an adversary in breaking the channel security with respect to P relies implicitly
on the inability of such an adversary in distinguishing the corresponding session
keys sk from random. These session keys are also sent by Pk to Pj through
the secure channel provided by P ′. That channel guarantees real-from-random
indistinguishability for the plaintexts. Indeed the security of this channel relies
upon the underlying encryption function. The latter guarantees left-or-right se-
curity when keyed with the session keys, and the left-or-right security notion
is equivalent to the real-from-random notion [5]. Hence the real-from-random
indistinguishability for the plaintexts with respect to P ′.

Therefore, in this game we add an abort rule. The challenger aborts the ex-
periment if an adversary succeeds in distinguishing plaintexts (sent through the
channel provided by P ′) from random. Therefore

adv4 ≤ adv5 + advCSP ′

Now the only possibility for the adversary to be successful is to break the CS-
security with respect to P . That is

adv5 ≤ advCSP

Collecting all the probabilities from Game 0 to Game 5, we have that

advCSΠ = adv0

≤ adv1 + advEAΠ
= nE · nN · nJ · adv2 + advEAΠ

≤ nE · nN · nJ
(
adv3 + advCSP ′

)
+ advEAΠ

≤ nE · nN · nJ
(
adv4 + 2advCSP ′

)
+ advEAΠ

≤ nE · nN · nJ
(
adv5 + 3advCSP ′

)
+ advEAΠ

≤ nE · nN · nJ
(
advCSP + 3advCSP ′

)
+ advEAΠ
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B Extended Security Proof for PLoRaWAN in LoRaWAN
1.1

In this section, we give a proof of Theorem 2. We consider the ACCE security
model [30, 32], and define the entity authentication and the channel security
experiments accordingly.

Entity Authentication. Let advEAP be the probability that the adversary wins
the entity authentication game. Let advEAP,client bounds the probability that a

client (ED) adversary succeeds, and advEAP,server bounds the probability that a

server (NS-JS) adversary succeeds. We have that advEAP ≤ advEAP,client + advEAP,server.

Client adversary. Let Ei be the event that the adversary succeeds in mak-
ing a client instance accept maliciously during Game i.

Game 0. This game corresponds to the EA game of the 2-party protocol P when
the client side is targeted. Thus we have

Pr[E0] = advEAP,client

Two different clients (EDs) cannot share the same transcript because they
will at least differ with the client identifiers. On the client side, each session is
individualised with the parameters idE , idJ , cntE (they appear in clear in the
first message sent by the client). On the server side, each session is individualised
with the parameters idJ , idE , cntJ . The Join Accept message sent by a server
instance cannot repeat unless a collision appears in the function AES−1(MK1, ·).
An adversary can then try to forge a valid Join Accept message. This will be
handled in the successive experiments described below.

Game 1. In this game, the challenger tries to guess which client instance πsi will
be the first instance to accept maliciously. If the guess is wrong, then the game
is aborted. Hence

Pr[E1] = Pr[E0]× 1

q · nC
where nC is the number of client parties, and q the number of instances per
party.

Game 2. In this game we replace the KDFmk function used by πsi to compute the
keyMK3 with a random function FKDFmk

MK1
. We do the same for any server instance

that uses the KDFmk function with the same master key MK1 as πsi in order to
compute MK3. We use the fact that the master key MK1 is uniformly drawn
at random. Therefore distinguishing Game 1 and Game 2 implies an algorithm
able to distinguish the KDFmk function from a random function. Hence

Pr[E1]− Pr[E2] ≤ advPRFKDFmk = advPRFAES
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Game 3. In this game we replace the MAC function used by πsi to verify the Join
Accept message (verification of τJ) with a random function FMAC

MK3
. We do the

same for any server instance that uses the MAC function with the same master
key MK3 as πsi in order to compute τJ . Since MK3 ← FKDFmk

MK1
(idE), we use the

fact that the key MK3 is uniformly drawn at random. Therefore distinguishing
Game 2 and Game 3 implies an algorithm able to distinguish the MAC function
from a random function. Hence

Pr[E2]− Pr[E3] ≤ advPRFMAC

Game 4. The server instance computes the Join Accept message as Join Accept =
AES−1(MK1, cntJ‖idN‖prms‖τJ). In this game we replace the AES decryption
function used by the server instance with a random permutation PermMK1

.
Moreover if a client instance uses the same master key MK1 to “decrypt” the
Join Accept message, then we replace the AES encryption function with the in-
verse permutation Perm−1MK1

. We use the fact that MK1 is uniformly drawn at
random. Therefore distinguishing Game 3 and Game 4 implies an algorithm able
to distinguish AES−1(MK1, ·) from a random permutation. Hence

Pr[E3]− Pr[E4] ≤ advPRPAES

Game 5. In this game, we want to ensure that the client instance πsi receives
exactly the Join Accept message computed by some other uncorrupted instance
that has received the first message sent by πsi . Therefore, we add an abort rule.
The challenger aborts the experiment if πsi ever receives a Join Accept mes-
sage but no server instance having a matching conversation to πsi has output
that message. After receiving the Join Accept message the client makes two
verifications: τJ and cntJ . In order to accept the message as valid, both verifi-
cations must be correct. Let us assume that the adversary be able to compute
Join Accept ← PermMK1(cntJ‖idN‖prms‖τ̃) for some value τ̃ and a correct
value cntJ . Due to Game 3, τJ ← FMAC

MK3
(idJ‖cntE‖cntJ‖idN‖prms) is computed

by the client by evaluating a truly random function that is only accessible to the
client instance and to the server instance knowing which master key MK3 to
use. Therefore the probability of the adversary to provide a correct value τ̃ (i.e.,
the probability that τ̃ = τJ) is at most 2−µ. Moreover the adversary provides
some value as the Join Accept message (and not PermMK1

(cntJ‖idN‖prms‖τ̃)).
Hence the probability that τ̃ is valid when the adversary picks a Join Accept
message at random is not greater than 2−µ.

Due to Game 4, the client instance computes from Perm−1MK1
(Join Accept)

some value cntJ , that is by evaluating a truly random permutation that is only
accessible to the client instance and to the server instance knowing which master
key MK1 to use. Let β be the bit length of the cntJ parameter: there are 2β

possible values for cntJ . Each new session triggers a new value cntJ . Therefore
the number of remaining correct values for cntJ is 2β − u ≤ 2β − 1 at the u-th
session. Hence the probability that cntJ is correct is at most (2β − 1)/2β at any
session. Since both conditions (correctness of τ̃ and cntJ) have to be verified, we
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have that

Pr[E4]− Pr[E5] ≤ 2−µ × 2β − 1

2β

Game 6. In this game we replace the KDFa function used by πsi to compute
Ke
a with a random function FKDFa

MK2
. We do the same for any server instance

that uses the KDFa function with the same master key MK2 as πsi in order to
compute Ke

a. We use the fact that the master key MK2 is uniformly drawn at
random. Therefore distinguishing Game 5 and Game 6 implies an algorithm able
to distinguish the KDFa function from a random function. Hence

Pr[E5]− Pr[E6] ≤ advPRFKDFa = advPRFAES

Game 7. So far, the only possibility for the adversary to win is forging a Rekey-
Conf message so that the two instances do not share the same sid. Therefore we
add an abort rule. In this game, the challenger aborts if the client instance πsi ever
receives a valid message RekeyConf but there exists no server instance having
a matching conversation to πsi (i.e., sharing the same transcript of exchanged
messages so far) that has output that message.

The keys Ke
c , Ki2

c , and (optionally) Ke
a are used to compute the RekeyConf

message. Ke
c , Ki2

c are output by the KDFc function, and Ke
a is output by KDFa.

In Game 2, the KDFc = KDFmk = AES(MK1, ·) function has been replaced with
a truly random function FKDFmk

MK1
that is only accessible to the client instance and

to the server instance knowing which master key MK1 to use. In Game 6, the
KDFa = AES(MK2, ·) function has been replaced with a truly random function
FKDFa
MK2

that is only accessible to the client instance and to the server instance

knowing which master key MK2 to use. Therefore, the keys Ke
c , Ki2

c , and Ke
a

are uniformly drawn at random. Hence, we can reduce the forgery of a Rekey-
Conf message to the sAE-security of the StAEserver function used to compute that
message. Therefore

Pr[E6]− Pr[E7] ≤ advsAEStAEserver

To that point the only way for an adversary to make πsi accept maliciously is
to send a RekeyConf message different from all the messages sent by all the server
instances, such that RekeyConf is valid. However, in such a case the challenger
aborts. Therefore

Pr[E7] = 0

50



Collecting all probabilities from Game 0 to Game 7, we have that

advEAP,client = Pr[E0]

= q · nC · Pr[E1]

≤ q · nC
(

Pr[E2] + advPRFAES

)
≤ q · nC

(
Pr[E3] + advPRFMAC + advPRFAES

)
≤ q · nC

(
Pr[E4] + advPRPAES + advPRFMAC + advPRFAES

)
≤ q · nC

(
Pr[E5] + 2−µ(1− 2−β) + advPRPAES + advPRFMAC + advPRFAES

)
≤ q · nC

(
Pr[E6] + advPRFAES + 2−µ(1− 2−β) + advPRPAES + advPRFMAC

+advPRFAES

)
≤ q · nC

(
Pr[E7] + advsAEStAEserver

+ 2−µ(1− 2−β) + advPRPAES + advPRFMAC

+2advPRFAES

)
= q · nC

(
advsAEStAEserver

+ 2−µ(1− 2−β) + advPRPAES + advPRFMAC + 2advPRFAES

)
Server adversary. Let Ei be the event that the adversary succeeds in mak-

ing an server instance accept maliciously during Game i.

Game 0. This game corresponds to the EA game of the 2-party protocol P when
the server side is targeted. Thus we have

Pr[E0] = advEAP,server

Game 1. In this game, the challenger tries to guess which server instance πtj will
be the first instance to accept maliciously. If the guess is wrong, then the game
is aborted. Hence

Pr[E1] = Pr[E0]× 1

q · nS
where nS is the number of server parties, and q the number of instances per
party.

Game 2. In this game we replace the MAC function used by the server instance
πtj to verify the first message from the client instance (verification of τE) with

a random function FMAC
MK1

. We do the same for any client instance that uses the
MAC function with the same master key MK1 as πtj in order to compute τE .
We use the fact that the key MK1 is uniformly drawn at random. Therefore
distinguishing Game 1 and Game 2 implies an algorithm able to distinguish the
MAC function from a random function. Hence

Pr[E1]− Pr[E2] ≤ advPRFMAC
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Game 3. In this game, the challenger aborts if the server instance πtj ever receives
a valid message Join Request = idJ‖idE‖cntE‖τE but there is no client instance
that has output the message. Due to Game 2, τE ← FMAC

MK1
(idJ‖idE‖cntE) is

computed by evaluating a truly random function that is only accessible to the
server instance and the client instance knowing the key MK1 to use. Therefore
the probability of the adversary to provide a correct value τE is at most 2−µ.
Therefore

Pr[E2]− Pr[E3] ≤ 2−µ

Game 4. In this game we replace the KDFn function used by the server instance
πtj to compute Ke

c , Ki1
c and Ki2

c with a random function FKDFc
MK1

. We do the same
for any client instance that uses the KDFn function with the same master key
MK1 as πtj in order to compute Ki1

c and Ki2
c . We use the fact that the master

key MK1 is uniformly drawn at random. Therefore distinguishing Game 3 and
Game 4 implies an algorithm able to distinguish the KDFn function from a
random function. Therefore

Pr[E3]− Pr[E4] ≤ advPRFKDFc = advPRFAES

Game 5. In this game we replace the KDFa function used by πtj to compute

Ke
a with a random function FKDFa

MK2
. We do the same for any client instance

that uses the KDFa function with the same master key MK2 as πtj in order
to compute Ke

a. We use the fact that the master key MK2 is uniformly drawn
at random. Therefore distinguishing Game 4 and Game 5 implies an algorithm
able to distinguish the KDFa function from a random function. Hence

Pr[E4]− Pr[E5] ≤ advPRFKDFa = advPRFAES

Game 6. In this game, the challenger aborts if the server instance πtj ever receives
a valid message RekeyInd but there exists no client instance having a matching
conversation to πtj (i.e., sharing the same transcript of exchanged messages so

far) that has output that message. The keys Ke
c , Ki1

c , Ki2
c , and (optionally) Ke

a

are used to compute the RekeyInd message. Since the keys Ke
c , Ki1

c , Ki2
c , and

Ke
a are uniformly drawn at random, due to Game 4 and Game 5, we can reduce

the possibility of forging a RekeyInd message to the sAE-security of the StAEclient

function used to compute the message. Hence

Pr[E5]− Pr[E6] ≤ advsAEStAEclient

To that point, the only way for an adversary to make the server instance πtj
accept maliciously is to send a RekeyInd message different from all the messages
sent by all the client instances, such that RekeyInd is valid. However, in such a
case, the challenge aborts. Therefore Pr[E6] = 0.
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Collecting all the probabilities from Game 0 to Game 6, we have that

advEAP,server = Pr[E0]

= q · nS · Pr[E1]

≤ q · nS
(

Pr[E2] + advPRFMAC

)
≤ q · nS

(
Pr[E3] + 2−µ + advPRFMAC

)
≤ q · nS

(
Pr[E4] + advPRFAES + 2−µ + advPRFMAC

)
≤ q · nS

(
Pr[E5] + 2advPRFAES + 2−µ + advPRFMAC

)
≤ q · nS

(
Pr[E6] + advsAEStAEclient

+ 2advPRFAES + 2−µ + advPRFMAC

)
= q · nS

(
advsAEStAEclient

+ 2advPRFAES + 2−µ + advPRFMAC

)
Therefore we have that

advEAP ≤ advEAP,client + advEAP,server

≤ q · nC
(
advsAEStAEserver

+ 2−µ(1− 2−β) + advPRPAES + advPRFMAC + 2advPRFAES

)
+q · nS

(
advsAEStAEclient

+ 2advPRFAES + 2−µ + advPRFMAC

)
≤ q

[
nS · advsAEStAEclient

+ nC · advsAEStAEserver
+ (nC + nS)

(
advPRFMAC + 2advPRFAES

)
+nC · advPRPAES + 2−µ

(
nC(1− 2−β) + nS

)]
In addition, we have also

Pr[forgery Join Request] ≤ pjr = advPRFMAC + 2−µ

Pr[forgery Join Accept] ≤ pja = advPRFAES + advPRFMAC + advPRPAES + 2−µ(1− 2−β)

Channel Security. Let advCSP be the advantage of the adversary in winning
the channel security experiment against an instance of some client or server
party. That is advCSP =

∣∣Pr[πsi .b = b]− 1
2

∣∣, where (πsi , b) is the tuple output by
the adversary when it terminates the CS game. Let Ei be the event that the
adversary wins in Game i, and advi = Pr[Ei]− 1

2 .

Game 0. This game corresponds to the CS game of the 2-party protocol P .
Therefore

Pr[E0] =
1

2
+ advCSP =

1

2
+ adv0

Game 1. In this game, the challenger aborts and chooses a bit b uniformly at
random if there exists an instance of some client or server party that accepts
maliciously. Hence we have

adv0 ≤ adv1 + advEAP
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Game 2. So far, for any client instance πsi (resp. server instance πsi ), ending in
accepting state, there is a unique server instance πtj (resp. client instance πtj)
that is partnered with πsi .

In this game, the challenger aborts the experiment if she does not guess which
instance is targeted by the adversary. Therefore

adv2 = adv1 ×
1

q2 · nC · nS

So far, the adversary knows the instance he targets. That is he knows the
indices i, s corresponding to some client or server party, and its instance πsi .

Game 3. In this game we replace the KDFc function used to compute the session
keys Ke

c , Ki1
c , Ki2

c with a random function FKDFc
MK1

. We replace also the KDFa

function used to compute the session key Ke
a with a random function FKDFa

MK2
.

We do the same for any instance that uses the functions KDFc with the same
master key MK1, and KDFa with the same master key MK2 as πsi in order
to compute these session keys. We use the fact that the master keys MK1 and
MK2 are uniformly drawn at random. Therefore distinguishing Game 2 and
Game 3 implies an algorithm able to distinguish the functions KDFc and KDFa
from random functions. Therefore

adv2 ≤ adv3 + advPRFKDFc + advPRFKDFa = adv3 + 2advPRFAES

Game 4. In this game we construct an adversary Bclient (resp. Bserver) against
the sAE-security of the underlying authenticated encryption scheme used by the
client (resp. server) to encrypt and MAC the messages. We use the fact that a
random function FKDFc

MK1
is used to compute the session keys Ke

c , Ki1
c , Ki2

c , and a

random function FKDFa
MK2

is used to compute the session key Ke
a. Therefore these

keys are random. The adversary Bclient (resp. Bserver) is built on an adversary
Aclient (resp. Aserver) able to win the CS experiment against a client (resp. server)
instance. Bclient (resp. Bserver) forwards any Encrypt(πsi , ∗) query to Encrypt(∗),
and sends the response to Aclient (resp. Aserver). It forwards any Decrypt(πtj , ∗)
query to Decrypt(∗), and sends the response to Aclient (resp. Aserver). Otherwise
Bclient (resp. Bserver) behaves as the challenger in Game 3. Therefore we have

adv4 = adv3

If Aclient (resp. Aserver) outputs a tuple (πsi , b), then Bclient (resp. Bserver) for-
wards b to its sAE challenger. Otherwise Bclient (resp. Bserver) flips a bit at random
and sends it to its challenger. The probability for Bclient (resp. Bserver) to find the
correct value b is at least the probability for Aclient (resp. Aserver) to win the CS
experiment. Moreover, by assumption, the advantage of an attacker in breaking
the sAE-security of the authenticated encryption scheme is at most advsAEStAEclient

(resp. advsAEStAEserver
). Hence

adv4 ≤ advsAEStAEclient
+ advsAEStAEserver
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Collecting all the probabilities from Game 0 to Game 4, we have that

advCSP = adv0

≤ adv1 + advEAP
= q2 · nC · nS · adv2 + advEAP

≤ q2 · nC · nS
(
adv3 + 2advPRFAES

)
+ advEAP

= q2 · nC · nS
(
adv4 + 2advPRFAES

)
+ advEAP

≤ q2 · nC · nS
(
advsAEStAEclient

+ advsAEStAEserver
+ 2advPRFAES

)
+ advEAP

C sAE Security in LoRaWAN 1.1

Here we give a sketch proof of the sAE-security of the AEAD functions StAEclient

and StAEserver used in LoRaWAN 1.1.
Bellare et al. [7] show that the Encrypt-then-MAC (EtM) construction is

IND-CCA and INT-CTXT if the underlying symmetric encryption function is
IND-CPA and the underlying MAC function is SUF-CMA. Moreover, Rogaway et
al. [47] show that an AEAD encryption scheme that is IND-CCA and INT-CTXT
provides AE-security. In addition, the CTR mode is proved IND-CPA by Bellare
et al. [5] under the assumption that the block cipher is a good PRF. Iwata et
al. [29] show that CMAC is SUF-CMA if the underlying block cipher is a good
PRP. Finally we recall that the AEAD encryption schemes used in LoRaWAN 1.1
follow the EtM paradigm. One, StAEserver used to encrypt downlink messages, is
composed of AES-CTR and a tweaked version of AES-CMAC. The second AEAD
scheme, StAEclient used to encrypt uplink messages, is composed of AES-CTR,
and a concatenated hash combiner made with a tweaked version of AES-CMAC.
Moreover a monotonically increasing counter (embedded in each frame’s header)
is used to compute the encryption keystream, and involved in the MAC compu-
tation. Hence the sAE-security of the AEAD functions StAEclient and StAEserver.
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