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Abstract. Using modular addition as a source of nonlinearity is fre-
quently used in many symmetric-key structures such as ARX and Lai–
Massey schemes. At FSE’16, Fu et al. proposed a Mixed Integer Linear
Programming (MILP)-based method to handle the propagation of differ-
ential trails through modular additions assuming that the two inputs to
the modular addition and the consecutive rounds are independent. How-
ever, this assumption does not necessarily hold. In this paper, we study
the propagation of the XOR difference through the modular addition at
the bit level and show the effect of the carry bit. Then, we propose a more
accurate MILP model to describe the differential propagation through
the modular addition taking into account the dependency between the
consecutive modular additions. The proposed MILP model is utilized to
launch a differential attack against Bel-T-256, which is a member of the
Bel-T block cipher family that has been adopted recently as a national
standard of the Republic of Belarus. In particular, we employ the con-
cept of partial Differential Distribution Table to model the 8-bit S-Box
of Bel-T using a MILP approach in order to automate finding a differen-
tial characteristic of the cipher. Then, we present a 4 1

7
-round (out of 8)

differential attack which utilizes a 3-round differential characteristic that
holds with probability 2−111. The data, time and memory complexities
of the attack are 2114 chosen plaintexts, 2237.14 4 1

7
-round encryptions,

and 2224 128-bit blocks, respectively.

Keywords: Differential cryptanalysis ·MILP ·Modular Addition ·ARX
· Bel-T

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [4], is one
of the most powerful attacks that are used to evaluate the security of symmetric-
key primitives. For an n-bit primitive, the crucial step of the differential attack
is to find a distinguisher (∆P → ∆C) where an XOR difference of two plaintexts
(∆P ) gives, after some rounds, another XOR difference (∆C) with probability
higher than 2−n, independent of the secret key. Using this distinguisher, a key
recovery attack can be performed by appending (prepending) some rounds after
(before) the distinguisher and guessing the round keys.
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Different optimization techniques such as Mixed Integer Linear Programming
(MILP) attracted the attention of many cryptanalysis researchers. The first at-
tempt to utilize MILP technique in symmetric-key cryptanalysis was developed
by Mouha et al. [17] in which they applied a MILP technique to prove security
bounds against both differential and linear cryptanalysis. Later, Cui et al. [6]
proposed a MILP model for both impossible differential and zero-correlation at-
tacks. Sasaki and Todo [19] developed a new search tool for impossible differential
using MILP. Recently, Xiang et al. [25] defined systematic rules for constructing
integral distinguishers using MILP. Then, Sun et al. complemented this work
by handling ARX-based ciphers (modulo operations) [21] and ciphers with non-
bit-permutation linear layer [22]. One of the downsides of these MILP models
was the inability to efficiently describe the Difference Distribution Table (DDT)
of large (8-bit) S-boxes which was tackled by Abdelkhalek et al. [2]. Regarding
ARX-based block ciphers, Fu et al. [10] represented the conditions developed
by Lipmaa and Moriai [15] (hereafter referred to as Lipmaa’s conditions) by a
set of MILP constraints in order to automate the search for the best differential
trail through the modular addition. In this representation, the authors assume
that the two inputs to modular addition and the consecutive component of the
cipher’s round function are independent. However, this assumption is very often
not satisfied, especially with round functions that have two or more consecutive
modular operations, see [24]. In the same context, Leurent [14] provides a tool
based on finite state machines to automate the search for differential character-
istics through the modular addition considering the constraints due to several
consecutive bits of the modular addition inputs. However, the complexity of this
analysis is linear in the number of states, and the number of states can be ex-
ponential in the size of the system, which according to the authors, makes this
approach suitable only to study systems with a limited number of states.

In this work, we revisit the conditions stated by Lipmaa and Moriai [15] to
verify the possibility of an XOR difference of two inputs of addition modulo 2n

to produce a specific XOR difference at the output. In particular, we deduce the
conditions on the bits of the inputs and the output of addition modulo 2n that
have to be satisfied in order to propagate an XOR difference of the inputs to
a particular XOR difference at the output. Using these conditions, we describe
some examples showing that using Lipmaa’s conditions with the independence
assumption between the consecutive components of a block cipher is not enough
to ensure the validity of the derived differential characteristic. To address this
problem, we propose a new MILP model considering the dependency between
two or more successive modular additions.

To illustrate the effectiveness of our approach, we apply our method to attack
the block cipher Bel-T, which is a family of block ciphers that has been approved
as the national standard of the Republic of Belarus [1], formerly known by its
Russian name Belorussia. The Bel-T family includes three block ciphers, de-
noted as Bel-T-k, all of them have the same block size of 128 bits and a variable
key length (k) of 128, 192 or 256 bits. The designers of Bel-T combined a Lai-
Massey scheme [12] with a Feistel network [9] to build a complex round function
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with 7 S-box layers per round. The round function is iterated 8 times to con-
struct the whole cipher. Concretely, we employ our MILP approach beside a
Hamming weight-based partial DDT to search for a differential distinguisher for
Bel-T. Then, we mount a 41

7 -round differential attack on round-reduced Bel-T-
256 which, up to our knowledge, is the best published attack against this cipher
in the single-key setting. Moreover, we show that the Bel-T block cipher is not
a Markov cipher [13] i.e., the validity of the differential characteristic depends
on the used secret key. In this context, we also provide a systematic method to
define the set of keys that can be attacked using our differential characteristic.

Few cryptanalysis results on Bel-T block ciphers have been published in-
cluding fault-based attacks [11] and the related-key differential attack on round-
reduced Bel-T-256 [3]. Recently, ElSheikh et al. [8] presented two integral attacks
on (3 2

7 and 3 6
7 )-round reduced Bel-T-256 in the single-key setting. It should be

noted that in the related-key differential attack presented in [3] , the modular
addition is modeled using the method proposed by Fu et al. [10] with the inde-
pendency assumption. We verified the distingusiher presented in [3] and found
it to be invalid as it involves two modular additions that share the same input
and have conflicting condition. Table 1 contrasts our attack with the integral
attacks in [8].

The rest of this paper is organized as follows. In Section 2, we briefly re-
visit the XOR differential characteristic of modular addition. The developed
MILP-based method, which is used to search for the differential characteristic,
is explained in Section 3. In Section 4, we describe how we apply the new MILP
model to find a differential distinguisher for Bel-T. Then, the details of our at-
tack are presented in Section 5. Finally, the paper is concluded in Section 6.

Table 1: Attack results on Bel-T-256

Model Attack #Rounds Data Time Memory Reference

Single Key
Integral

3 2
7

213 2199.33 - [8]

3 6
7

233 2254.61 - [8]

Differential 4 1
7

2114 2237.14 2224 Sec. 5

2 XOR-Differential Characteristics of Modular Addition

Definition 1. Let α, β and γ be fixed n-bit XOR differences. The XOR-differential
probability (DP) of addition modulo 2n (xdp+) is the probability with which α
and β propagate to γ through the modular addition operation, computed over all
pairs of n-bit inputs (x,y):

xdp+(α, β → γ) = 2−2n ×#{(x, y) : ((x⊕ α)� (y ⊕ β))⊕ (x� y) = γ}.
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Lipmaa and Moriai [15] stated the following two conditions that have to be
satisfied in order for the XOR input differences (α, β) to propagate to an output
difference (γ) through the addition modulo 2n:

1. The bit-wise XOR of the least significant bit of the inputs and output differ-
ences must be 0, i.e., α0 ⊕ β0 ⊕ γ0 = 0 which is equivalent to γ0 = α0 ⊕ β0.

2. If the three bits αi, βi, and γi are equal, then the XOR of the subsequent bits
αi+1, βi+1, and γi+1 must equal these bits as well, i.e., αi+1⊕βi+1⊕ γi+1 =
αi = βi = γi for 0 ≤ i ≤ n− 2.

If these two conditions above are satisfied, then the probability of the differential
characteristic (xdp+) can be calculated as:

xdp+(α, β → γ) = 2−
∑n−2

i=0 ¬eq(αi,βi,γi)

where ¬eq is 0 when (αi, βi, γi) are the same, and 1 otherwise. By using these
conditions, we can determine if a differential characteristic (α, β → γ) is a valid
one or not. For example, the characteristic (α, β → γ) = (0001, 0001→ 0001) is
impossible because it breaks the first condition.

In the remaining of this section, we show our interpretation of these two
conditions by deriving the relationship between the input and output differences
at the bit level.

Let x = (xn−1, xn−2, . . . , x1, x0)1, y = (yn−1, yn−2, . . . , y1, y0), and z =
(zn−1, zn−2, . . . , z1, z0) be n-bit vectors where z = x� y. Then, zi can be itera-
tively expressed as follows:

z0 = x0 ⊕ y0 ⊕ c0, c0 = 0, (1)

zi+1 = xi+1 ⊕ yi+1 ⊕ ci+1, ci+1 = xiyi ⊕ xici ⊕ yici ∀i = 0, 1, . . . , n− 2. (2)

It is obvious that the Lipmaa’s conditions are based on equations (1) and
(2). Consider that we have two pairs (x,x∗) and (y,y∗) such that ∆x =
x ⊕ x∗, and ∆y = y ⊕ y∗. The relation between the XOR input differences
∆x, ∆y and the XOR output difference ∆z = z ⊕ z∗ can be derived as follows:
Let ∆x = (δxn−1, δxn−2, . . . , δx1, δx0), ∆y = (δyn−1, δyn−2, . . . , δy1, δy0), and
∆z = (δzn−1, δzn−2, . . . , δz1, δz0) be the XOR difference where δxi = xi ⊕ x∗i ,
δyi = yi⊕y∗i , and δzi = zi⊕z∗i , respectively. The Lipmaa’s first condition comes
from equation (1) in which δz0 = δx0 ⊕ δy0 ⊕ δc0, but δc0 = 0 as c0 = c∗0 = 0.
Therefore, for (∆x, ∆y → ∆z) to be a possible differential characteristic, the
relation (δz0 = δx0 ⊕ δy0) must be satisfied.

For given input and output differences at two successive bits ((δxi, δyi, δzi)
and (δxi+1, δyi+1, δzi+1)), we can use equation (2) to calculate the XOR differ-
ence at the carry bit δci+1 using the following two equations:

δci+1 = ci+1 ⊕ c∗i+1

= xiyi ⊕ xici ⊕ yici ⊕ x∗i y∗i ⊕ x∗i c∗i ⊕ y∗i c∗i , (3)

δci+1 = δzi+1 ⊕ δxi+1 ⊕ δyi+1 (4)

1 We use little-endian representation where x0 is the least significant bit.
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To have a valid differential characteristic, the value of δci+1 evaluated from these
two equations must be consistent. For example, if we have δxi = δyi = δzi = 0,
this implies that δci = 0, i.e., if x∗i = xi, y

∗
i = yi, z

∗
i = zi then c∗i = ci. Therefore,

from equation (3), δci+1 = 0. Consequently, δzi+1⊕δxi+1⊕δyi+1 = 0 must hold
with probability 1.

As another example, let us consider the following XOR differences: δxi =
δyi = 0, and δzi = 1, this implies that δci = 1, i.e., if x∗i = xi, y

∗
i = yi and

z∗i = z̄i then c∗i = c̄i where z̄i, c̄i are the bit-wise NOT of zi, ci, respectively. As a
result, the value of δci+1 from equation (3) will depend on the relation between
xi and yi as follows: δci+1 = xi ⊕ yi. If δci+1 is 0, then the condition xi = yi
must be satisfied. In this case, from equation (2), the output bit zi will equal to
ci and the carry bit ci+1 will be equal to xi.

By iterating over all possible values of δxi, δyi, δzi and δci+1, we can drive
the conditions on the bits xi, yi, zi, ci and ci+1 to have a valid differential char-
acteristic. We summarize these conditions in Table 2, in which the condition
column is divided into three sub-columns: the first one is the direct condition
similar to the one we derived in the previous examples. The second and third
sub-columns are the values of zi and ci+1 in case the direct condition, the first
sub-column, is satisfied.

It should be noted that Lipmaa’s second condition is specified by the first
two rows and last two rows of Table 2, i.e., if δxi, δyi and δzi are equal, then
δci+1 = δzi+1 ⊕ δxi+1 ⊕ δyi+1 has to equal them.

a

b

d

e

g

a

b d
g e

I II

Fig. 1: Examples of Incompatible Conditions

2.1 Examples of Incompatible Conditions

In this section, we show some examples in which using Lipmaa’s conditions with
the independency assumption between the consecutive components of the block
cipher is not enough to ensure the validity of the differential characteristic.

Example 1: Consider the two cascaded modular operations shown in Figure
(1.I) and the following XOR differences:

∆a = 00000001 g = a� b e = g � d

∆b = 00000000 ∆g = 00001111 ∆d = 00000000 ∆e = 00001101
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Table 2: Relation between δxi, δyi, δzi and δci+1

δzi δyi δxi δci δci+1 Condition

0 0 0 0 0 No condition

0 0 0 0 1 Invalid

0 0 1 1 0 xi = c̄i zi = ȳi ci+1 = yi = z̄i

0 0 1 1 1 xi = ci zi = yi ci+1 = xi = ci

0 1 0 1 0 yi = c̄i zi = x̄i ci+1 = xi = z̄i

0 1 0 1 1 yi = ci zi = xi ci+1 = yi = ci

0 1 1 0 0 xi = ȳi zi = c̄i ci+1 = ci = z̄i

0 1 1 0 1 xi = yi zi = ci ci+1 = xi = yi

1 0 0 1 0 xi = yi zi = ci ci+1 = xi = yi

1 0 0 1 1 xi = ȳi zi = c̄i ci+1 = ci = z̄i

1 0 1 0 0 yi = ci zi = xi ci+1 = yi = ci

1 0 1 0 1 yi = c̄i zi = x̄i ci+1 = xi = z̄i

1 1 0 0 0 xi = ci zi = yi ci+1 = xi = ci

1 1 0 0 1 xi = c̄i zi = ȳi ci+1 = yi = z̄i

1 1 1 1 0 Invalid

1 1 1 1 1 No condition

When looking at each modular addition operation individually, each one sat-
isfies the Lipmaa’s conditions and holds with probability 2−4. Assuming indepen-
dency, the whole differential characteristic should hold with probability 2−8, how-
ever, it is actually an impossible characteristic. To explain, using Table 2, we can
show that if the characteristic holds for the first operation, g = (gn−1, · · · , g1, g0)
will have a specific pattern (g1 = g0) due to the carry effect. On the other hand,
the characteristic will hold for the second modular addition if g has a specific
pattern (g1 = ḡ0), also due to the carry effect.

To further explain this carry effect, consider for the first operation the differ-
ences of the first three bits (δg0, δb0, δa0) = (1, 0, 1), (δg1, δb1, δa1) = (1, 0, 0) and
(δg2, δb2, δa2) = (1, 0, 0). We access Table 2 twice with (δzi, δyi, δxi, δci, δci+1)
= (δg0, δb0, δa0, δc0, δc1) = (1,0,1,0,1) where the carry δc0 = δg0⊕δb0⊕δa0 and
the carry δc1 = δg1⊕δb1⊕δa1, and with (δzi, δyi, δxi, δci, δci+1) = (δg1, δb1, δa1,
δc1, δc2) = (1,0,0,1,1) where the carry δc2 = δg2⊕δb2⊕δa2. From the first access,
we get the following condition:

b0 = c̄0 ⇒ g0 = ā0 and c1 = a0 = ḡ0 (5)

And from the second access, we get the condition:

a1 = b̄1 ⇒ g1 = c̄1 and c2 = c1 = ḡ1 (6)
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From equation (5), if the characteristic is valid for the first bit, the carry
bit c1 will equal to ḡ0. Also, if the characteristic is valid for the second bit, the
same carry bit c1 will have a relation with g1 as determined by equation (6).
By combining these two relations, we prove that the output g has the pattern
(g1 = g0).

Using the same methodology, we can also prove that the characteristic will
hold for the second operation if the input g has the pattern (g1 = ḡ0) which
contradicts with the output of the first operation. All these patterns have also
been verified experimentally.

Example 2: Let us consider another ordering of two modular operations as
shown in Figure (1.II) and the following XOR differences:

∆a = 00001111 g = a� b e = a� d

∆b = 00000001 ∆g = 00010000 ∆d = 00000001 ∆e = 00000000

Again, the two operations individually satisfy the Lipmaa’s conditions. How-
ever, the first operation requires the input a to be in a specific pattern (a0 =
a1 = a2 = a3) and the second operation requires the input a to be in another
contradicting pattern (a0 = a1 = a2 = ā3).

3 New MILP Model for Differential Characteristics of
Modular Addition

Fu et al. [10] represent Lipmaa’s conditions by a set of MILP constraints in order
to automate the search for the best differential trail through the modular addi-
tion. As explained in the previous section, Lipmaa’s conditions are not enough
to ensure the validity of the derived differential characteristic especially when
the block cipher structure has two or more consecutive modular additions. We
propose a more accurate MILP model to automate the search for differential
characteristics through modular additions taking into account the dependency
between two consecutive modular additions that put more constraints on the
values of input and output bits.

In order to represent the relation between two consecutive bits i and i − 1
on a variable x, we define a new variable called x⊕i = xi ⊕ xi−1 which can take
a value of {0, 1, ?}; it is set to 0 if the condition xi = xi−1 is required and set to
1 if the condition xi = x̄i−1 is required. Also, x⊕i can be kept undetermined (?)
which means it can be 0 or 1 if there is no restriction on the relation between xi
and xi−1.

Evaluation of (z⊕i , y
⊕
i , x

⊕
i ) for a modular addition. The relation between

the bits xi and xi−1, for the input x in a modular addition comes through the
carry bit ci. Therefore the variable x⊕i can be evaluated as:

x⊕i = (xi ⊕ ci)⊕ (ci ⊕ xi−1)
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where xi ⊕ ci and ci ⊕ xi−1 can take a value of {0, 1, ?} like x⊕i and the bit-wise
XOR of ? with any value equals to ?. Based on Table 2, the values of (xi⊕ci) and
(ci ⊕ xi−1) reflect the situation where there are conditions that should be satis-
fied to get the XOR differences (δzi, δyi, δxi, δci+1) and (δzi−1, δyi−1, δxi−1, δci),
respectively. Thus, the values of (z⊕i , y

⊕
i , x

⊕
i ) will be determined based on the

XOR differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1). We develop Algorithm
1 to determine these values. The input of our proposed algorithm is a general-
purpose data structure dictionary D which is obtained by reformatting the valid
rows in Table 2 where the relations between the current bits (z, y, x) with the cur-
rent carry bit c and the subsequent carry bit c+1 are derived from the condition
column in Table 2 and indexed by the value of the XOR difference of these bits,
see Table 3. The output of Algorithm 1 is the truth table T of (z⊕i , y

⊕
i , x

⊕
i ) as a

function of the possible XOR differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1).
Out of 27 = 128 values of these bits, there are only 98 values that can be used
as possible differences. Table 4 shows part of the derived truth table T.

MILP constraints for Modular Addition. To automate the process of
the search for the differential characteristic using MILP technique, we have to
transform the truth table T into a set of linear constraints. To this end, we repre-
sent the rows of T combined with the value of ¬eq(δzi, δyi, δxi) as a set of points
in 11-dimensional binary vector space by substituting ? with all possible values
e.g., the row (0010010??1) associated with ¬eq(0, 0, 1) = 1 will be described
by 4 binary vectors: (00100100011, 00100100111, 00100101011, 00100101111).
After this step, we have 640 binary vectors which have a convex hull. We use
the inequality generator() function in Sage2 to obtain the H-Representation
which is a set of linear inequalities that describe the vectors of this convex hull.
We can use this set of inequalities as MILP constraints to present the possible
XOR differences in two successive bits (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi) and the
carry of the third bits (δci+1) combined with the conditions on the value of these
bits represented as (z⊕i , y

⊕
i , x

⊕
i ). In our case, the number of generated inequali-

ties is 313, which is very large to be handled by any MILP optimizer. Therefore,
we employ the Greedy algorithm proposed by Sun et al. in [23] to reduce this
set to only 24 inequalities. In order to link the current bit with the following
bits, we encoded equation (4), which is a bit-wise XOR of three inputs and one
output, by 8 linear inequalities utilizing the truth table of the bit-wise XOR
and inequality generator() function in Sage. In this manner, we have repre-
sented the relation between three successive bits using 24 + 8 = 32 inequalities
and this representation is repeated for i = 1, 2, . . . , n − 2. In order to complete
the MILP modeling for the modular addition, we describe the condition on the
first bit (i = 0) δz0⊕δy0⊕δx0 = 0 associated with ¬eq(δz0, δy0, δx0) by 4 linear
inequalities. Accordingly, we can represent the difference propagation through
the addition modulo 2n taking into account the relation between the value of
two successive bits using 32× (n− 2) + 4 inequalities. The objective function of

2 http://www.sagemath.org/

http://www.sagemath.org/
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the MILP optimizer would minimize
∑n−2
i=0 ¬eq(δzi, δyi, δxi), which denotes the

log2 probability of the underlying characteristic.

Algorithm 1: Truth table generator

Input : The Dictionary D.
Output: The truth table T of (z⊕i , y

⊕
i , x

⊕
i ) as a function of the possible XOR

differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1)
begin

T = ∅
for 27 possible values of (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1) do

δci−1 ← δzi−1 ⊕ δyi−1 ⊕ δxi−1

δci ← δzi ⊕ δyi ⊕ δxi
if (δzi−1, δyi−1, δxi−1, δci−1, δci) in D.keys AND (δzi, δyi, δxi, δci, δci+1)
in D.keys then

RCarry1 ← D[(δzi, δyi, δxi, δci, δci+1)][0]
RCarry2 ← D[(δzi−1, δyi−1, δxi−1, δci−1, δci)][1]
(z⊕i , y

⊕
i , x

⊕
i )← RCarry1⊕ RCarry2

T← T ∪ {(δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1, z
⊕
i , y

⊕
i , x

⊕
i )}

end

end
return T

end

4 Application on Bel-T

4.1 Bel-T Specification

Since the official Bel-T specification is available only in Russian, we rely on the
English version of the specification that is provided by Jovanovic and Polian,
who presented fault-based attacks on the Bel-T block cipher family [11]. Bel-T
has a 128-bit block size and a variable key length of 128, 192 or 256 bits. The
128-bit plaintext P is split into 4 32-bit words, i.e., P = A0

0||B0
0 ||C0

0 ||D0
0. The

round function of Bel-T consists of 7 S-box layers in which a 32-bit mapping
function (Gr) is combined with one or two modulo operations as illustrated in
Fig. 2. Then, this round function is repeated 8 times for all versions of Bel-T. The
function Gr (G-box) maps a 32-bit word w = w1||w2||w3||w4, with wi ∈ {0, 1}8,
as follows: Gr(w) = (H(w1)||H(w2)||H(w3)||H(w4)) ≪ r. Here, H is an 8-bit
S-box and ≪ r denotes left shift rotation by r positions (r ∈ {5, 13, 21}). The
specification of the 8-bit S-box can be found in [11].

Key Schedule. In all versions of Bel-T, the 128-bit plaintext block P is en-
crypted using a 256-bit encryption key denoted as K1|| . . . ||K8, where Ki is a
32-bit word for 1 ≤ i ≤ 8. The encryption key is distributed among the round
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Table 3: The dictionary D.

D.keys D[∗][0] D[∗][1]

δz δy δx δc δc+1 c⊕(z,y,x) c+1⊕(z,y,x)

0 0 0 0 0 (? , ? , ?) (? , ? , ?)

0 0 1 1 0 (? , ? , 1) (1 , 0 , ?)

0 0 1 1 1 (? , ? , 0) (? , ? , 0)

0 1 0 1 0 (? , 1 , ?) (1 , ? , 0)

0 1 0 1 1 (? , 0 , ?) (? , 0 , ?)

0 1 1 0 0 (1 , ? , ?) (1 , ? , ?)

0 1 1 0 1 (0 , ? , ?) (? , 0 , 0)

1 0 0 1 0 (0 , ? , ?) (? , 0 , 0)

1 0 0 1 1 (1 , ? , ?) (1 , ? , ?)

1 0 1 0 0 (? , 0 , ?) (? , 0 , ?)

1 0 1 0 1 (? , 1 , ?) (1 , ? , 0)

1 1 0 0 0 (? , ? , 0) (? , ? , 0)

1 1 0 0 1 (? , ? , 1) (1 , 0 , ?)

1 1 1 1 1 (? , ? , ?) (? , ? , ?)

Table 4: Part of the truth table T.

δzi−1 δyi−1 δxi−1 δzi δyi δxi δci+1 z
⊕
i y⊕i x⊕i

....

0 0 1 0 0 1 0 ? ? 1

0 0 1 0 0 1 1 ? ? 0

0 0 1 0 1 1 0 0 ? ?

0 0 1 0 1 1 1 1 ? ?

0 0 1 1 0 1 0 ? 0 ?

0 0 1 1 0 1 1 ? 1 ?

0 1 0 0 1 0 0 ? 1 ?

0 1 0 0 1 0 1 ? 0 ?

0 1 0 0 1 1 0 0 ? ?

0 1 0 0 1 1 1 1 ? ?

0 1 0 1 1 0 0 ? ? 0

0 1 0 1 1 0 1 ? ? 1

0 1 1 0 0 1 0 ? ? 1

0 1 1 0 0 1 1 ? ? 0

0 1 1 0 1 0 0 ? 1 ?

0 1 1 0 1 0 1 ? 0 ?

0 1 1 0 1 1 0 0 ? ?

....

keys as shown in Table 5. The encryption key is extracted from the master key
as follows:

– Bel-T-256: the encryption key is identical to the master key.
– Bel-T-192: the master key is formatted as K1|| . . . ||K6 and K7,K8 are set

to K7 := K1 ⊕K2 ⊕K3 and K8 := K4 ⊕K5 ⊕K6.
– Bel-T-128: the master key is formatted as K1|| . . . ||K4 and K5,K6,K7,K8

are set to K5 := K1, K6 := K2, K7 := K3 and K8 := K4.

4.2 MILP-based Search for Differential Characteristic of Bel-T

To search for differential characteristics in a block cipher using MILP, the dif-
ference propagation through its components is described using a set of linear
constraints. In Bel-T, this means generating a set of linear inequalities to de-
scribe how an XOR difference would propagate through a bit-wise XOR, an ad-
dition/subtraction modulo 232, and an 8-bit S-box. As the difference propagates
with probability through the non-linear components, its associated probability
is incorporated in the corresponding linear inequalities. The objective function
of the MILP model would be to maximize this probability, which we do by
minimizing the negative of the base-2 logarithm of this probability.
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Fig. 2: Bel-T round function. ⊕,�,� denote bit-wise XOR, arithmetic addition and
subtraction modulo 232 respectively, and (i)32 denotes the round number represented
as 32-bit word.

Table 5: Encryption Key schedule of Bel-T, where i and K7i+j denote the round
number and the round key, respectively.

i K7i+1 K7i+2 K7i+3 K7i+4 K7i+5 K7i+6 K7i+7

0 K1 K2 K3 K4 K5 K6 K7

1 K8 K1 K2 K3 K4 K5 K6

2 K7 K8 K1 K2 K3 K4 K5

3 K6 K7 K8 K1 K2 K3 K4

4 K5 K6 K7 K8 K1 K2 K3

5 K4 K5 K6 K7 K8 K1 K2

6 K3 K4 K5 K6 K7 K8 K1

7 K2 K3 K4 K5 K6 K7 K8

Bit-wise XOR. If δxi, δyi and δzi represent the bit-level differences, then the
difference propagation through the bit-wise XOR operation δxi ⊕ δyi = δzi can
be represented by 5 linear inequalities [23]. Using the truth table of the XOR
operation, these can be further reduced to the following 4 linear inequalities:

δxi+δyi−δzi ≥ 0, δxi−δyi+δzi ≥ 0, −δxi+δyi+δzi ≥ 0, −δxi−δyi−δzi ≥ −2.

Modular Addition and Subtraction. We use the new MILP model described
in Section 3 to propagate the input differences (∆x, ∆y) to an output difference
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(∆z) through the addition modulo 232 such that x � y = z using 32×(32−2)+
4 = 964 inequalities. Since the subtraction modulo 2n, x � y = z is equivalent
to x = y � z, the difference propagation through modular subtraction can be
described in a similar way as that used to describe modular addition.

Modular Addition with a Secret Key. The Bel-T round function encom-
passes a modular addition with a secret key which has zero difference in a single-
key differential attack. This operation can then be expressed as x� k = z and
the differential characteristic as (∆x, 0) → ∆z. Therefore, the difference prop-
agation through this operation can be described in a similar way as that used
to describe modular addition by inserting 32 more constraints to explicitly set
∆y = 0. The number of required constraints will be 964 + 32 = 996 . Indeed, we
can improve this description by decreasing the number of MILP constraints to
roughly half as follows. We repeat the steps described in Section 3 using the rows
of the truth table T that have δyi−1 = δyi = 0 and also δyi+1 = 0. Consequently,
the number of MILP constraints decreases to (13 + 4)(32− 2) + 2 = 512.

8-bit S-box. Using the Sage inequality generator() function to model the
DDT of an 8-bit S-box is computationally infeasible. Therefore, the use of MILP
to search for differential characteristics was restricted to block ciphers that do
not include 8-bit S-boxes. Abdelkhalek et al. [2] have put forward an approach
to model the DDT of an 8-bit S-box efficiently. First, the DDT is split into
several tables corresponding to unique probability values. After assigning binary
variables to each unique probability value, these binary variables are represented
as Boolean functions in the input and output difference bits, i.e., each Boolean
function is 1 when the input difference is propagated to the output difference
with the corresponding probability value, and 0 otherwise. Next, the Quine-
McCluskey algorithm [18,16] was used to transform the Boolean functions to
their reduced Product of Sum (PoS) which can then be described by a set of linear
inequalities. To describe the deterministic propagation of the zero-difference, an
additional binary variable was used as a sort of flag, i.e., when it is 0, the S-
box is inactive and therefore both the input and output differences are set to
0. When it is 1, the S-box is active and one probability value along with input
difference and corresponding output difference are chosen. As in ARX block
ciphers, the probability of the differential characteristic gets lower when more
bits are active, we decided to follow the approach in [3] in which we do not use the
high probability entries in the DDT, but rather the entries with low Hamming
weight in the input and output differences. Throughout our experiments, we have
limited the Hamming weight of the input and output difference not to exceed 3.
However, the partial DDT was still too large to be handled directly using the
inequality generator() function and hence we augmented our approach with
the approach proposed by Abdelkhalek et al. for handling the DDT of large
S-boxes to describe the partial DDT using linear inequalities. Based on our
implementation, 1, 660 linear inequalities are needed to describe this Hamming
weight-based partial DDT.
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Lai-Massey Scheme. Since the Lai-Massey scheme is invertible, the following
constraints are added to our model to enforce the output of the Lai-Massey
scheme (Bi4, C

i
2) to be non-zero when its input (Bi1, C

i
1) is non-zero, see Fig. 2.

n−1∑
j=0

Bi1,j +

n−1∑
j=0

Ci1,j + LMi ≥ 1,

n−1∑
j=0

Bi4,j +

n−1∑
j=0

Ci2,j + 2n× LMi ≤ 2n,

n−1∑
j=0

Bi1,j +

n−1∑
j=0

Ci1,j + 2n× LMi ≤ 2n,

n−1∑
j=0

Bi4,j +

n−1∑
j=0

Ci2,j + LMi ≥ 1.

In these constraints, LMi is a dummy binary variable. If the input difference
is zero, the first equation enforces LMi to be 1 which enforces the output differ-
ence to be zero in the second equation. If the input difference is non-zero, the
third equation enforces LMi to be 0 which enforces the output difference to be
non-zero in the fourth equation.

4.3 3-round Differential Characteristic

Using the above derived MILP model of the different components of the Bel-T,
we are able to build a model of the whole round of Bel-T using 55, 641 linear
inequalities and 2, 647 binary variables. Then, we used the Gurobi3 optimizer on
a server of two Xeon Processors E5-2697 (2 × 12 = 24 cores in total) with 125
GB RAM to search for a differential characteristic of Bel-T. Consequently, we
found a 2-round differential characteristic with probability 2−54 after about 4.5
hours. We use this characteristic as an initial solution for the optimizer in order
to extend the characteristic to 3 rounds. After running the search process for 36
days, we were not able to find a 3-round differential characteristic better than
the one that holds with probability 2−111. The 3-round differential characteristic
we use in our attack is shown in Fig. 3 in which 0 denotes a 32-bit difference
of all zeros, ei, ei−j and ei,j,k,··· denote 32-bit difference of all 0’s and 1 at bit i,
bits i to j, and bits i, j, k, · · · , respectively.

4.4 Validity of The Differential Characteristic

In this section, we show that Bel-T block cipher is not a Markov cipher and
the differential characteristic depends on the used secret key. Consequently, we
propose a systematic way to obtain the ratio of the keys that can be attacked
using our distinguisher.

3 http://www.gurobi.com/

http://www.gurobi.com/
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Fig. 3: 3-round Differential Characteristic of Bel-T with Probability 2−111. 0 denotes
a 32-bit difference of all zeros, ei, ei−j and ei,j,k denote a 32-bit difference of 0’s and 1
at bit i, bits i to j, and bits i, j, and k, respectively
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Recall that a Markov cipher [13] is an iterated block cipher in which the
probability of the difference e.g., the XOR difference through the individual
operations of the round function is independent of the corresponding plaintext
values of its input, if the round keys applied to each round are independent
and chosen in a uniformly random manner. In the case of Bel-T, the secret
key is mixed via modular addition operations, therefore the XOR difference
propagation through these operations is probabilistic and depends on the used
key. Additionally, the hypothesis of independent round keys does not hold due
to the simple key schedule of Bel-T. Moreover, there are many two or more
successive modular additions, which are not independent as shown in Section 2.
For these reasons, we can conclude that Bel-T is not a Markov cipher.

Since the secret key is mixed via modular addition operations, Bel-T is not
a key-alternating cipher [7] and the probability of the XOR difference of these
modular operations may drop to zero due to the used key [5] and we therefore
cannot use our distinguisher in this case. In the remaining of this section, we
obtain the ratio of the keys (valid keys) which we can use the distinguisher with.
We define the S-box layer to include the modular addition with a key followed
by the G-box mapping (Gr). We consider a 32-bit key as an invalid key when
the probability of the XOR difference through its S-box layer drops to zero
independent of the other input of the modular addition.

Let us consider, e.g., the S-box layer of K2 in round 0 (see Fig. 3) in which
the key K2 has a specific value k, Z = X � k and W = G21(Z) where ∆X =
∆Z = 0x00001000, ∆k = 0x00000000 and ∆W = 0x00000008. Therefore, we
are looking for the values of k that cannot give the output difference ∆W for
any value of X.

For each value of k, we can exhaustively search over all possible values of the
pair (X, X ⊕∆X) to check if there is a value of X that leads to the output dif-
ference ∆W . If there is no such value, we consider k as invalid. The complexity
of search for all possible values of K2 will be roughly O(264) which is computa-
tionally hard because we will repeat this search for all modular additions with
keys.

Alternatively, we can obtain from Table 2 that the condition k12 = c12, where
k12 and c12 are the bit number 12 of the key and the carry respectively, is the
only constraint that has to be checked to verify whether the key k is an invalid
key or not. Also from the DDT of the G-box, the second byte of Z (bits from
Z8 to Z15) in hexadecimal has to be one of {0x02, 0x12, 0x4C, 0x5C} to satisfy
the output difference ∆W . Accordingly, the following constraints have to be
satisfied:

k12 = c12, Z8 = 0, Z13 = 0, Z15 = 0, Z̄9 = Z10 = Z11 = Z14.

For each value of k, there is a value X that gives Z8 = 0 with probability 1
because there are no conditions on k nor Z from bit 0 to 7. Given this fact and
by using equations (1) and (2), we can prove that the carry bits c9 = c10 =
c11 = c12 = 0 if the key bits k8 = 1 and k9 = k10 = k11 = 0 independently
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of the corresponding bits of X. Therefore, if the key bit k12 = 1, the condition
k12 = c12 will be impossible. As a result, if the key k has the pattern k8 = k12 = 1
and k9 = k10 = k11 = 0, it will be an invalid key irrespective of the value X
due to the contradiction between the two constraints Z8 = 0 and k12 = c12. We
can manually search for such patterns but this process is very difficult, time-
consuming, and error-prone.

Observation 1 Consider a modular addition z = x� y where the bit zi has a
specific value. Then, the carry bit cj (for j > i) depends on the input bits from
i to j − 1 and is independent of the input bits from 0 to i− 1.

The dependency between a carry bit cj and the input bits from 0 to j − 1 is
due to the carry chain (see equation 2). If we know that the output bit zi has
a specific value, we can evaluate the carry bit ci as ci = zi ⊕ xi ⊕ yi instead of
evaluating it using the value of xi−1, yi−1 and ci−1. Thus, the carry chain and
dependency are broken. Back to our example, given that Z8 = 0, the carry bit
c12 will depend on the bits from 8 to 11 of the inputs X and k based on the
observation. Therefore, considering the key k as an invalid will depend on its
bits from 8 to 12. In general, given a key k, if we exhaustively search over all
possible values of the pair (X, X ⊕∆X) and there is no value X that can lead
to the difference ∆W , then the byte of the key containing the conditional bits
is the reason for invalidating ∆W . We therefore can repeat the search for all
possible value of these bytes. Consequently, the exhaustive search complexity in
our example will be reduced roughly to O(240) which is feasible.

The above approach can be generalized to determine the set of the byte values
K leading to invalid keys as shown in Procedure (Obtain Invalid Key Set).

Table 6 summarizes the ratio of valid keys of each key Ki that has conditions
in our distinguisher. It should be noted that the key K2 is used in two rounds
but the bytes that have the conditions are in different positions. Accordingly,
the total ratio of the valid keys can be evaluated as the multiplication of all
ratios of the valid keys which will be 2−3.8 corresponding to 2252.2 keys. In
order to validate this result, we have experimentally verified the differential
characteristic. In particular, we have opted the first four S-box layers of the
differential characteristic of probability 2−24 (see Fig. 3) and have found that
the experimental probability matches on average the theoretical one for 4426 of
10000 randomly generated keys. Comparing with Table 6, this ratio is very close
to the ratio of the valid keys for this part of the distinguisher.

5 Differential Attack on 41
7
-Round Reduced Bel-T-256

In this section, we present a differential attack on 4 1
7 -round reduced Bel-T-256 by

appending one round and one S-box layer on the above derived differential distin-
guisher as illustrated in Fig. 4. Our differential characteristic ends at A3

0, B
3
0 , C

3
0

and D3
0 with values e11,20,23,25,28,31, e25,31, e5 and e11,29,31, respectively. There-

fore, by propagating the differences at A3
0 and D3

0 through the S-box layers, we
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Procedure Obtain Invalid Key Set

Input : ∆X,∆W
Output: K
begin

K = ∅
Determine PosOfBytes and NBytes which are the position and the number
of bytes that have XOR difference in ∆X

for 28×NBytes possible values of Bytes do
Generate k randomly such that the concatenation of the bytes in the
position PosOfBytes has the value Bytes

invalid = True
for 232 possible values of X do

if G(X � k)⊕G((X ⊕∆X)� k) = ∆W then
invalid = False
break

end

end
if invalid then

K← K ∪ {Bytes}
end

end
return K

end

Table 6: Ratio of valid keys

Round Key Ratio of valid keys

0

K1 136/256

K2 216/256

K6 129/256

2

K2 216/256

K3 144/256

K4 228/256

K5 192/256

Table 7: The difference at the points used
in the attack

Point label The difference in Binary

A3
0 10010010 10010000 00001000 00000000

B3
0 10000010 00000000 00000000 00000000

C3
0 00000000 00000000 00000000 00100000

D3
0 10100000 00000000 00001000 00000000

B3
1 ???00000 000????? ???????? ????????

C3
1 ???????? ???????? ???00000 000?????

obtain the corresponding 32-bit difference at B3
1 and C3

1 . Table 7 summarizes
the difference in Binary at some points that we will use during the attack. Our
attack has two phases: pre-computation phase and an online phase.

5.1 Pre-computation Phase

In this phase, we create 4 hash tables (H1, H2, H3, H4) corresponding to the
S-box layers shown in Fig. 4 as follows:
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H1 : For all 25×32=160 possible values of x,∆x, y,∆y and K2, we obtain the
corresponding values of z and ∆z such that z = y � G13(x �K2). If the value
of ∆z is equal to the difference at D3

0, we store the values of K2 and z in the
hash table H1 indexed by the values of x,∆x, y and ∆y. The probability that
the value of ∆z is equal to the difference at D3

0 is equal to 2−32. Therefore, Table
H1 has on average 2160 × 2−32 = 2128 entries. As a result, we have, on average,
2128

24×32 = 1 value for K2 per row.

H2 : For the value of ∆x equal to the difference at D3
0 and all 224 possible

value of ∆y in form of the difference at C3
1 combined with all 23×32=96 possible

values of x, y and K7, we obtain the corresponding values of z and ∆z such
that z = y ⊕G21(x�K7). Then, we store the value of K7 in the hash table H2

indexed by the values of x, y and ∆y, if the value of ∆z is equal to the difference
at C3

0 which has a probability equal to 2−24. Therefore, Table H2 has on average

296+24 × 2−24 = 296 entries. Thus, we have, on average, 296

22×32+24 = 28 value for
K7 per row.

H3 : For all 224 possible value of ∆x in form of the difference at B3
1 combined

with all 24×32=128 possible values of x, y,∆y andK8, we obtain the corresponding
values of z and ∆z such that z = y �G13(x�K8). If the value of ∆z is in the
form of the difference at A3

0, we store the values of K8 and z in the hash table
H3 indexed by the values of x,∆x, y and ∆y. The probability that the value of
∆z is in the form of the difference at A3

0 is equal to 2−32. Therefore, Table H3

has on average 2128+24 × 2−32 = 2120 entries. As a result, we have, on average,
2120

23×32+24 = 1 values for K8 per row.

H4 : Initialize a hash table of 23×32+24=120 rows with binary value 0. Then,
for the value of ∆x equal to the difference at A3

0 and all 224 possible values
of ∆y in the form of the difference at B3

1 combined with all 23×32=96 possible
values of x, y, and K6, we obtain the corresponding values of z and ∆z such
that z = y ⊕G5(x�K6). If the value of ∆z is equal to the difference at B3

0 , we
store a binary value 1 in the hash table H4 indexed by the values of x, y,∆y and
K6. Here, the binary values 1 and 0 denote a valid entry and an invalid entry.
The probability of finding a valid entry in H4, equivalent to the probability that
the value ∆z is equal to the difference at B3

0 , is equal to 2−24. Consequently, we
have one valid entry for every 224 accesses to H4.

Table 8 summarizes the time and memory complexities of the pre-computation
phase. It should be noted that the memory required by the tables H1 and H4 can
be slightly reduced to 2128.51 and 2119.01 32-bit words respectively, if we store
only the valid candidates of K2 and K6 based on the ratio of the valid keys form
Table 6.

5.2 Online Phase

In this phase, we collect a set of plaintext/ciphertext pairs. Then, we utilize the
pre-computation tables and key guessing to obtain right candidate keys and then
recover the correct master key.
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Table 8: The time and memory complexities of the pre-computation phase

Table
Time

(S-box layer Encryption)
Memory

(32-bit word)

H1 2160 2160 × 2−32 × 2 = 2129

H2 2120 2120 × 2−24 × 1 = 296

H3 2152 2152 × 2−32 × 2 = 2121

H4 2120 2120 §

Data Collection. We select a set of 2m 128-bit plaintexts that can take any
arbitrary values then we compute another set of 2m plaintexts by XORing each
plaintext in the first set with the input of the differential distinguisher (i.e.,
A0

0||B0
0 ||C0

0 ||D0
0). After that, we query the encryption oracle and compute the

corresponding ciphertext difference. Here, we use 2m+1 plaintexts to generate
2m plaintext/ciphertext pairs satisfying the input difference of our differential
distinguisher (the value of m will be determined below).

Key Recovery. We first prepare 27×32 = 2224 counters corresponding to the
2224 keys involved in the analysis. After that, for each ciphertext pair in 2m pairs
obtained in the data collection phase, we apply the following procedure:

1. Guess K4 and partially decrypt the ciphertext to get the value and the
difference at C3

2 . The average number of keys suggested by a pair after this
step is 232.

2. Access the hash table H1 to get, on average, 1 value of K2 and D3
0.

3. Guess K6 and partially decrypt the ciphertext to get the value and the
difference at A3

3. The average number of keys suggested by a pair after this
step will increase to 264.

4. Guess K3 and partially decrypt the ciphertext combined with the value and
the difference from the previous step to get the value and the difference at
B3

4 . The average number of keys suggested by a pair after this step is 296.
5. Recall that B3

1 = B3
4 �G21(B3

1 �C
3
1 �K1)⊕ (3)32 and C3

1 = C3
2 �G21(B3

1 �
C3

1 �K1)⊕ (3)32. Hence B3
1 �C

3
1 = B3

4 �C
3
2 . Therefore, by guessing K1, we

can deduce G21(B3
1�C

3
1�K1) = G21(B3

4�C
3
2�K1) and then use the values

obtained in steps 1 and 4 to compute the value and the difference at B3
1 and

C3
1 and discard the key if the differences are not in the required form. This

step filters out the suggested keys by 216. Thus, the average number of keys
suggested by a pair after this step is 2112.

6. Use the values and the differences form steps 3 and 5 to access the hash table
H3 and get, on average, 1 values of K8 and A3

0.
7. Access the hash table H4 using the previously guessed value of K6 in step 3

and the values and the differences from steps 5 and 7 to check if it is a valid

§ For simplicity, we store the binary values 0 and 1 as 32-bit words.
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Fig. 4: 4 1
7
-Round Attack on Bel-T-256

entry or not. This step will filter out the suggested keys by 224. Thus, the
average number of keys suggested by a pair after this filtration will be 288.

8. Use the value from step 2 combined with the value and the difference from
step 5 to access the hash table H2 and get, on average, 28 value of K7.
Consequently, the average number of keys suggested by a pair after this
procedure will be increased to 296. Thus, we increment the corresponding
296 counters.

After repeating the above procedure for 2m pairs, we select the key corre-
sponding to the highest counter as a 224-bit right key. After that, we recover
the 256-bit master key by testing the 224-bit right key along with the remaining
232 values for K5 using 2 plaintext/ciphertext pairs.

Table 9 summarizes the above steps, whereas the second column presents the
average number of keys suggested by a pair after each step. The third and fourth
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columns present the time complexity of each step in form of memory accesses
and single S-box layer encryption in terms of m.

Table 9: Key recovery process of the attack on 4 1
7
-round Bel-T-256

Step # of suggested keys by a pair
Time Complexity

32-bit word memory Access S-box layer Encryption

1 232 - 2m × 232 × 2 = 2m+33

2 232 × 1 = 232 2m × 232 × 2 = 2m+33 -

3 232 × 232 = 264 - 2m × 264 × 2 = 2m+65

4 264 × 232 = 296 - 2m × 296 × 2 = 2m+97

5 296 × 232 × 2−16 = 2112 - 2m × 2128 × 2 = 2m+129

6 2112 × 1 = 2112 2m × 2112 × 2 = 2m+113 -

7 2112 × 2−24 = 288 2m × 2112 × 1 = 2m+112 -

8 288 × 28 = 296 2m × 296 × 1 = 2m+96 -

5.3 Attack Complexity and Success Probability

In this section, we present the complexity analysis of our attack in order to
determine the required number of chosen plaintexts and the memory required
to launch this attack. Also, we compute the success probability of the attack.
Finally, we calculate its time complexity to compare our attack against the
exhaustive search attack.

Data Complexity. For the differential attack to succeed with a high proba-
bility, we have to determine an appropriate value for the number of required
plaintext/ciphertext pairs. To do so, we utilize the concept of signal-to-noise
ratio (S/N) [4], which is calculated using the following formula:

S/N =
2k × p
α× β

where k is the number of key bits involved in the analysis, p is the probability
of the differential characteristic, α is the number of guessed keys by a pair,
and β is the ratio of the pairs that are not discarded. In our analysis, k =
224, p = 2−111, α = 296 from table 9, and β = 1. Therefore, we have S/N =
2224×2−111

296×1 = 217. Due to this high S/N , we can use the recommendation of Biham
and Shamir [4] that 3 ∼ 4 right pairs are sufficient enough to mount a successful
differential attack. Therefore, we select the number of plaintext/ciphertext pairs
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(2m) equal to 4 × p−1 = 2113. Consequently, the data complexity will be 2114

chosen plaintexts.

According to [20] and due to the high S/N , the success probability of the
attack (Ps) can be calculated as Ps ≈ Φ(

√
p× 2m) where Φ is the cumulative

distribution function of the standard normal distribution. Therefore, our differ-
ential attack will succeed with probability Ps ≈ 0.9772.

Time Complexity. During the attack procedure, we make 32-bit word mem-
ory accesses in some steps and partially decrypt single S-box layers in other
steps. Each S-box layer can be considered as a 32-bit big S-box with one or
two modulo operations. Therefore, the time of single S-box layer will be slightly
higher than the time of 32-bit word memory access. For simplicity, we assume
that the time of 32-bit word memory access is the same as the time of a single S-
box layer lookup which is roughly equal to 1

7 of the time of one round encryption.

From Table 8, the time complexity of the pre-computation phase is dominated
by the time required to construct the hash table H1 which is equal to 1

7 ×
1
4 1

7

×2160 ≈ 2155.14 4 1
7 -round encryptions. Similarly, from Table 9, the dominant

part of the time complexity in the online phase comes from steps 5 which is
1
7 ×

1
4 1

7

× (2m+129) = 2m+124.14 4 1
7 -round encryptions. Therefore, the total time

complexity of the online phase will be 2113+124.14 + 2 × 232 = 2237.14 4 1
7 -round

encryptions.

Memory Complexity. The memory complexity of the pre-computation phase
can be determined from Table 8 in which we need 2129 + 296 + 2121 + 2120 ≈ 2129

32-bit word = 2127 128-bit blocks of memory. During the online phase, we have
prepared 2224 counters corresponding to 2224 keys involved in the analysis. Since
the upper limit of each counter depends on the number of plaintext/ciphertext
pairs (2m = 2113), we can declare each counter as an unsigned 128-bit integer
variable. Consequently, we need 2224 128-bit blocks of memory in total.

6 Conclusion

In this paper, we studied the propagation of the XOR difference through mod-
ular addition. We showed that the independency assumption between two or
more consecutive modular addition operations does not necessarily hold, and we
constructed a more accurate MILP model for the differential trail through the
modular addition taking into account the dependency between the consecutive
modular additions. Then, we utilized the developed MILP model to automate
the search process for the differential characteristics for Bel-T cipher. Up to the
authors’ knowledge, this is the best published theoretical attack against Bel-T-
256 in the single-key setting.
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