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Abstract. Solving linear systems of equations is a universal problem. In
the context of secure multiparty computation (MPC), a method to solve
such systems, especially for the case in which the rank of the system is
unknown and should remain private, is an important building block.
We devise an efficient and data-oblivious algorithm (meaning that the
algorithm’s execution time and branching behavior are independent of
all secrets) for solving a bounded integral linear system of unknown rank
over the rational numbers via the Moore–Penrose pseudoinverse, using
finite-field arithmetic. I.e., we compute the Moore–Penrose inverse over a
finite field of sufficiently large order, so that we can recover the rational
solution from the solution over the finite field. While we have designed
the algorithm with an MPC context in mind, it could be valuable also in
other contexts where data-obliviousness is required, like secure enclaves
in CPUs.
Previous work by Cramer, Kiltz and Padró (CRYPTO 2007) proposes a
constant-rounds protocol for computing the Moore–Penrose pseudoinverse
over a finite field. The asymptotic complexity (counted as the number of
secure multiplications) of their solution is O(m4 + n2m), where m and n,
m ≤ n, are the dimensions of the linear system. To reduce the number
of secure multiplications, we sacrifice the constant-rounds property and
propose a protocol for computing the Moore–Penrose pseudoinverse over
the rational numbers in a linear number of rounds, requiring only O(m2n)
secure multiplications.
To obtain the common denominator of the pseudoinverse, required for
constructing an integer-representation of the pseudoinverse, we generalize
a result by Ben-Israel for computing the squared volume of a matrix.
Also, we show how to precondition a symmetric matrix to achieve generic
rank profile while preserving symmetry and being able to remove the
preconditioner after it has served its purpose. These results may be of
independent interest.
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1 Introduction

Motivated by the goal of performing elementary statistical tasks such as linear
regression securely, we revisit the topic of secure linear algebra. In this paper,
“securely” refers to secure multiparty computation (MPC) [14], however, our results
might be of use in other settings as well, for example, for mitigating certain
side-channel attacks in trusted execution environments in CPUs.

Secure linear algebra goes back to the work of Cramer and Damg̊ard [12],
who proposed constant-rounds MPC protocols for various basic tasks in linear
algebra. In that paper, as well as in later papers in the same line of work, like
[15,23,27,31], the focus is on linear algebra over a finite field.

Our goal is to obtain, in an “MPC-friendly” way, an (approximate) solution
to a linear system over the real numbers. In this paper we choose to approximate
real arithmetic by (exact) rational arithmetic, or, in fact, integer arithmetic, using
appropriate scaling. Our main reason behind this choice is the close connection
between the finite field Fp = Z/pZ (where p is prime) and integer arithmetic, since
we target MPC schemes that offer finite-field arithmetic. Hence, the protocols
that we propose in this paper will employ finite-field arithmetic as a tool, rather
than as a goal. We note that there are various papers targeting the same problem
that explore other choices, such as secure fixed-point arithmetic (see, e.g., [18,29])
or secure floating-point arithmetic (e.g., [7]).

In an earlier joint work with Blom and Schoenmakers [6], we focused on the
case of solving full-rank systems. In this paper, we focus on the more general
case of solving linear systems whose rank is unknown. Also, we would like to
obtain meaningful solutions in case the system is over- or underdetermined.
The Moore–Penrose pseudoinverse gives natural solutions in both cases: in the
overdetermined case, which is the relevant case for linear regression, it yields the
least-squares solution; in the underdetermined case it gives the minimum-norm
solution. Another application of the Moore–Penrose pseudoinverse is to compute
the condition number of a matrix that is not, or not-necessarily, invertible.

Concretely, given a matrix A with integral elements of unknown rank, we
propose a protocol for computing the Moore–Penrose pseudoinverse over the
rational numbers in a linear number of rounds. The computational complexity,
counted as the number of secure multiplications, is O(m2n), where m and n,
m ≤ n, are the dimensions of the system. In multiplicative-linear-secret-sharing-
based MPC schemes, such as Shamir’s scheme, we may count a secure inner
product as a single secure multiplication; in that case the complexity reduces to
O(mn).

It should be rather easy to implement our protocol in any finite-field-based
arithmetic secret-sharing MPC framework; beyond elementary finite-field arith-
metic our protocol merely requires secure subprotocols for sampling (public)
random elements, performing a zero test on a secret-shared field element, comput-
ing the reciprocal of a secret-shared field element, and computing the determinant
of an invertible secret-shared matrix.
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Circumventing Rational Reconstruction. It is well known that one can perform
(bounded) rational arithmetic via arithmetic in Fp, essentially as follows: (i)
represent the rational inputs as finite-field elements, i.e., an input of the form
a/b, for integers a and b and such that |a|, |b| ≤

√
p/2, is encoded as the element

x = a ·b−1 ∈ Fp, (ii) perform the computation in integer arithmetic modulo p, (iii)
reconstruct the numerators and denominators of the results of the computation,
elementwise, in the following manner. Let y ∈ Fp be an output of the computation,

that corresponds to the fraction c/d for integers c and d. Then, if |c|, |d| ≤
√
p/2,

we can uniquely reconstruct c and d from y by reducing the two-dimensional
lattice basis {(p, 0), (y, 1)} using the Lagrange–Gauss algorithm, in the sense that
the reduced basis will contain the vector (c, d). This reconstruction procedure is
known as rational reconstruction (see, e.g., [37]).

An important drawback of the use of rational reconstruction in our scenario is
that we essentially would need to double the bit-length of the finite field modulus
p to guarantee unique reconstruction, compared to a route without rational
reconstruction (for more details, see Figure 1). Because arithmetic in a larger
finite field is computationally more expensive, we would like to avoid the use of
rational reconstruction.

In [6], a key trick for obtaining the inverse of an invertible integer matrix
B over the rational numbers from the corresponding inverse over the finite
field Fp without requiring rational reconstruction, was to form the integer-valued
adjugate matrix by multiplying B−1 by detB. In a similar spirit, we compute the
pseudoinverse A† over the finite field Fp and identify the conditions under which
it corresponds to the pseudoinverse over the rational numbers. Essentially, this
comes down to choosing p sufficiently large; see Section 4.2. We can then obtain
an integer representation of the pseudoinverse by forming the pair (dA†, d), where
dA† is an integer matrix containing the numerators of the pseudoinverse and d is
the common denominator of the pseudoinverse, which coincides with the squared
volume of A [4], which we write as (volA)2. Figure 1 illustrates our approach
and compares it to the alternative route of rational reconstruction.

Although taking the square of the volume is rather excessive in certain cases
(for example, the magnitude of the common denominator of B−1, for any invertible
matrix B, equals |detB| = volB), it is essentially the price we have to pay for
not knowing whether we are dealing with such a special case.

Computing the Pseudoinverse and Its Common Denominator. To compute the
Moore–Penrose pseudoinverse of A obliviously, we first compute a reflexive gen-
eralized inverse of the symmetric product AATAAT by means of block-recursive
elimination. We then compute the Moore–Penrose pseudoinverse from this gener-
alized inverse.

Regarding the common denominator, Springer computes (volA)2 via an
integer-preserving rank decomposition [36]. To circumvent the need for construct-
ing such a rank decomposition, we seek a simpler alternative. Ben-Israel gives a
method for computing (volA)2 that requires an orthonormal basis for the left
nullspace of A [4]. Although an orthonormal basis might not even exist over
a finite field, we can easily construct a matrix K whose columns span the left
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A ∈ Zm×n Ã ∈ Fm×np

A† ∈ Qn×m Ã† ∈ Fn×mp

dA† ∈ Zn×m dÃ† ∈ Fn×mp

mod p

π Pseudoinverse

d d

id

(a) Our approach. The map d represents
scalar multiplication by d = (volA)2

and id represents the identity map. The
solutions dA† and dÃ† coincide, pro-
vided that p is chosen large enough, i.e.,
according to Lemma 5.

A ∈ Zm×n Ã ∈ Fm×nq

A† ∈ Qn×m Ã† ∈ Fn×mq

mod q

π Pseudoinverse

ν

(b) Approach using rational reconstruc-
tion. The map ν represents the element-
wise rational reconstruction procedure.
All reconstructed fractions will be in
lowest terms (numerator and denomi-
nator have no common nontrivial fac-
tors). There is, however, a price to be
paid, in that q ≥ 2p2. Also, the map ν
(the Lagrange–Gauss algorithm) is not
“MPC-friendly”.

Fig. 1: Comparison between our approach and the approach via rational recon-
struction. In the diagrams, the map π : Qm×n → Qn×m, A 7→ A† applies the
Moore–Penrose inverse over the rationals.

nullspace of A. We generalize Ben-Israel’s result so that we can compute (volA)2

from A and K.

Preconditioning for Computing Pseudoinverses. As noted above, we will compute
the Moore–Penrose inverse via a generalized inverse that is obtained using block-
recursive elimination.

Deterministic elimination algorithms typically employ pivoting to avoid prob-
lems like division by zero. Pivoting involves searching for and applying suitable
row and/or column swaps prior to each elimination step. In secure computation,
however, we aim to avoid pivoting because searching for particular elements and
applying data-dependent row and column swaps, obliviously, is expensive (in a
computational- and round-complexity sense).

An MPC-friendly alternative is to transform the matrix to be eliminated into
an equivalent matrix for which the elimination procedure will succeed without any
pivoting ; this approach is called preconditioning. In case of Gaussian elimination,
for example, the condition of generic rank profile3 guarantees that pivoting can
be omitted. As we prove in this paper, generic rank profile is also a sufficient
condition for correctness of the particular block-recursive elimination algorithm
that we use.

When dealing with a square, full rank matrix B over a finite field F with
large order, one way to achieve generic rank profile with high probability is by
pre-multiplying B by a preconditioner matrix R that is chosen uniformly at
random from the set of all invertible matrices having the same size as B. When

3 A matrix A of rank r has generic rank profile if and only if all upper-left square
submatrices of A up to dimension r × r are invertible.
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computing the inverse of RB, we can apply the rule (RB)−1 = B−1R−1, which
we will refer to as the reverse order law for matrix inversion, to show that the
inverse of the preconditioner can easily be removed by post-multiplying by R.
For a matrix A with arbitrary rank r, pre-multiplying by a randomly chosen
invertible matrix R (of appropriate size) is not sufficient for achieving generic
rank profile; we additionally need to mix A’s columns by multiplying A by a
preconditioner matrix from the right.

A major problem that arises when trying to remove a preconditioner when
computing the pseudoinverse, is that the reverse order law for pseudoinverses does
not hold in general [19,20]. In particular, unfortunately, we have that (LAR)†

does not necessarily equal R†A†L† for invertible preconditioner matrices L and
R. Hence, we cannot simply extract A† from (LAR)† like we could do above
for B−1. We circumvent this problem by applying the preconditioner only to
AATAAT and removing the preconditioner immediately after computing the
reflexive generalized inverse, for which the reverse-order law does hold.

An additional constraint in our setting where we apply preconditioning to
AATAAT, rather than to A directly, is that the preconditioner should preserve
symmetry, since the symmetry property enables significant computational savings
during elimination. A preconditioner for this particular scenario seems to be
lacking in the literature. We resolve this by proving that the preconditioner
X 7→ UXUT for a uniformly random matrix U fulfills all our constraints.

Interestingly, and unlike Gaussian elimination, when working over the real
or complex numbers, the particular block-recursive algorithm that we use for
computing the reflexive generalized inverse does not even require its input to have
generic rank profile, hence no preconditioning is needed in this case. Nonetheless,
in fields with positive characteristic, the condition emerges from the phenomenon
of self-orthogonality.

1.1 Related Work

Cramer, Kiltz and Padró [15] propose a constant-rounds protocol for securely
computing the Moore–Penrose pseudoinverse over a finite field. Their approach
is to first compute the characteristic polynomial of the Gram matrix ATA, from
which they then compute the rank of A (via a technique by Mulmuley [28]) as
well as the pseudoinverse of A (via the Cayley–Hamilton theorem).

An important theme in [15] is to ensure that A (and AT) are suitable, which
guarantees, informally speaking, that certain subspaces that are orthogonal
over a field with characteristic zero, remain orthogonal over fields with positive
characteristic. In our work, where we focus on the setting where the modulus
(hence the field’s characteristic) is chosen sufficiently large, existence of the
pseudoinverse is guaranteed by a result in [2]. (We state this result in the next
section.) Nonetheless, as described in the previous section, we do take special
precautions, namely, applying preconditioning, to avoid problems related to
working over a field with positive characteristic when computing a reflexive
generalized inverse.

5



For an m × n matrix where m ≤ n, the complexity (number of secure
multiplications) of Cramer et al.’s solution is O(m4 + n2m). Our solution, albeit
not constant-rounds, has complexity O(m2n), and even O(mn) when assuming
availability of a “cheap inner product”, where the hidden constants in the Big-Oh
of our solution are single-digit integers. By “cheap inner product”, we mean that
an inner product between two vectors of the same but arbitrary length has the
same communication and round complexity as a single secure multiplication. It
is possible to perform multiplication of an m× ` matrix by an `×n matrix using
no more than mn “cheap inner products”. Because the coefficients of the result
matrix may all be mutually independent, it is reasonable to take the complexity
of such a matrix product to be equal to mn.

We leave it to further research to compare the practical performance of
our method to that of [15] in various application scenarios (i.e., various matrix-
dimension regimes, network latency, bounded computational resources and storage
space, etc.).

Relation to the LEU Decomposition. An earlier work by the authors [10] proposes
to use Malaschonok’s LEU decomposition [24] for solving linear systems of
unknown rank in the context of secure computation. (Note that [10] does not
deal with the problem of computing the Moore–Penrose pseudoinverse.) Our
new protocol Pseudoinverse is superior to the LEU -decomposition-based protocol
from [10]; in terms of round complexity, O(m) versus O(m1.59), as well as in
terms of the asymptotic computational complexity, O(m2) versus O(m2 logm)
secure inner products for a square m×m matrix.

2 Preliminaries

Secret Sharing and Secure Computation. Let Fp = Z/pZ, where p is prime. We
use F to denote an arbitrary field. We assume the use of an MPC protocol
based on arithmetic secret-sharing over Fp. Our protocols will inherit the security
properties (passive vs. active) from the underlying MPC protocol and of the
subprotocols invoked by our protocol. The notation JxK represents an element
x ∈ Fp that is secret-shared among the parties in the MPC protocol. Notation for
secure arithmetic then follows naturally, for example, JcK← JaK + JbK describes
the addition of a and b where the result is stored in a new secret-shared element
c, and JdK ← JaKJbK describes an invocation of the multiplication protocol to
securely compute the product of a and b and store the result in d. For arbitrary
integer matrices A and B, the notation JAK expresses that all elements of A are
secret-shared over Fp, and JAK+JBK and JAKJBK represent secure matrix addition
(which coincides with elementwise addition) and secure matrix multiplication,
respectively. Our protocols assume the availability of subprotocols for securely
sampling private as well as public random field elements (e.g., [13]), denoted as

JaK $← Fp and a
$← Fp respectively, for securely inverting a field element (see

[3]), and for performing a secure zero test [16, 30]. The latter two are denoted as
protocols Reciprocal and IsZero, respectively. We require protocol Reciprocal to
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be secure for all nonzero inputs (i.e., the protocol is allowed to leak information
when run on a secret share of zero). Protocol IsZero returns J1K if its argument
equals zero and returns J0K otherwise.

Generalized Inverses. A generalized inverse of a matrix A is a matrix X associated
to A that exists for a class of matrices larger than the class of invertible matrices,
shares some properties with the ordinary inverse, and reduces to the ordinary
inverse when A is non-singular. In this paper, we classify generalized inverses
using the following four properties, also known as the Penrose equations:

(1)AXA = A, (2)XAX = X, (3) (AX)T = AX, (4) (XA)T = XA.

The matrix X that satisfies all four Penrose equations for a given matrix A
is called the Moore–Penrose pseudoinverse, or simply pseudoinverse of A, which
we denote as A†. The Moore–Penrose inverse of A over F exists if and only if
rank(AAT) = rank(ATA) = rankA [32, Thm 1], and if it exists it is unique.
We will also focus on generalized inverses of A which only satisfy equations
(1) and (2); such generalized inverses are called reflexive generalized inverses
and we denote any reflexive generalized inverse of A by A−. Note that reflexive
generalized inverses are not necessarily unique. For an extensive treatment of
generalized inverses, the reader is referred to [5].

For a square matrix A partitioned as

A =

(
E F
G H

)
(5)

such that E is square, A/E denotes the generalized Schur complement

A/E = H −GE−F.

Submatrices, Their Determinants and Rank Properties. For any n ∈ N, we write
[n] for the set {1, . . . , n}. For any m× n matrix A and index sets I ⊂ [m] and
J ⊂ [n], [A]I,J denotes the determinant of the submatrix of A obtained by
selecting all rows in I and all columns in J . Furthermore, A[k] denotes the
leading principal submatrix of order k, i.e., the matrix obtained by taking the
first k rows and first k columns of A, and we use [A]k as shorthand for [A][k],[k],
i.e., the leading principal minor of order k. Thus, it holds that detA[k] = [A]k.

Let A be a matrix of rank r. We say that a matrix A has generic rank profile
[21] if for all k ∈ [r], it holds that A’s leading principal minor of order k is
nonzero.

Let A be partitioned as in (5). If detE 6= 0, then Schur’s determinant formula
asserts that

detA = det(E) det(A/E) = det(E) det(H −GE−1F ).

A direct consequence of [25, Thm 19] is that

rankA ≥ rankE + rank(A/E).

Hence, if A has generic rank profile and E has at least dimension r × r where
r = rankA, then A/E is the null matrix.
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The Volume of a Matrix. For any matrix A with rank r and nonzero singular
values σ1, . . . , σr, its volume is defined as volA =

∏r
i=1 σi. Note that this def-

inition implies that we define the volume of the zero matrix to be one, which
will be convenient for our purpose but deviates from Ben-Israel’s definition of
matrix volume for this special case [4]. A matrix over an integral domain has
a pseudoinverse if and only if its squared volume is a unit (i.e., an invertible
element) of the integral domain [2]. The fact that, for any matrix A ∈ Rm×n, the
singular values of AAT are the squares of the singular values of A leads to the
following equation:

vol(AAT) = (volA)2, (6)

which holds over an arbitrary field. In case A is a square nonsingular matrix,
i.e., m = n and detA 6= 0, its volume coincides with the absolute value of its
determinant:

volA = |detA|. (7)

Combining the two preceding equations gives

(volA)2 = det(AAT), (8)

in the case that rankA = m.

3 Block-Recursive Elimination

In this section we present ObliviousRGInverse, our oblivious protocol for computing
a reflexive generalized inverse of any symmetric matrix over Fp that has generic
rank profile. Although we could easily devise a protocol that also works for
non-symmetric matrices, we deliberately restrict to symmetric matrices, for the
following two reasons: (i) by doing so, we achieve a significant computational
saving (essentially a factor of two); and (ii) for our application we anyway only
need to compute a reflexive generalized inverse of a symmetric matrix.

First, we define the extended reciprocal of an element c ∈ F as zero if c = 0 and
c−1, i.e., the (ordinary) reciprocal, otherwise. Note that the reflexive generalized
inverse of a 1× 1 matrix is equal to the 1× 1 matrix containing the extended
reciprocal of its only coefficient. ScalarRGInverse is a secure protocol for computing
the extended reciprocal.

Protocol 1 ScalarRGInverse(JaK)
1: JzK← IsZero(JaK)
2: return Reciprocal(Ja+ zK)− JzK

ObliviousRGInverse is given as Protocol 2. On line 4, the partitioning is done
such that E and G are square and their dimensions differ by at most one.
We remark that the side notes with label “symmetric” in ObliviousRGInverse
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Protocol 2 ObliviousRGInverse(JAK)
1: if n = 1 then
2: return ScalarRGInverse(Ja1,1K)
3: else

4:

(
JEK JF K
JFTK JGK

)
← JAK . split as evenly as possible

5: JXK← ObliviousRGInverse(JEK)
6: JXF K← JXKJF K
7: JG− FTXF K← JGK− JFTKJXF K . symmetric
8: JY K← ObliviousRGInverse(JG− FTXF K)
9: JXFY K← JXF KJY K

10: JX +XFY FTXK← JXK + JXFY KJXF KT . symmetric

11: return

(
JX +XFY FTXK −JXFY K
−JXFY KT JY K

)

indicate that the resulting matrix is symmetric, which is to be exploited in an
implementation.

It is easy to see that protocol ObliviousRGInverse is oblivious: it only branches
on the dimensions of the matrix, which are considered public, and otherwise
only performs elementary arithmetic operations, and calls to secure subprotocols
(including recursive calls to itself).

3.1 Correctness Analysis

Rohde [35] shows that a reflexive generalized inverse A− of a symmetric, positive-
semidefinite matrix over the real numbers4

A =

(
E F
FT G

)
(9)

can be expressed in Banachiewicz–Schur form as

A− =

(
E− + E−FS−FTE− −E−FS−

−S−FTE− S−

)
, (10)

where E− is a reflexive generalized inverse of E and S− is a reflexive generalized
inverse of S = G− FTE−F . This form allows for a block-recursive algorithm for
computing the reflexive generalized inverse over the real numbers. As proved by
Marsaglia and Styan, the correctness of Rohde’s result over an arbitrary field
depends on the following additional condition.

Lemma 1 ([26], statement tailored to our needs). Over an arbitrary field,
Equation (10) is a reflexive generalized inverse of A if and only if

rankA = rankE + rankS, (11)

4 Rohde [35] actually shows his result for complex matrices, but for our purposes it is
more convenient to state his result for real matrices.
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or, equivalently, the following three conditions are satisfied simultaneously
(I − EE−)F (I − S−S) = 0 (12)

(I − SS−)FT(I − E−E) = 0 (13)

(I − EE−)FS−FT(I − E−E) = 0, (14)

where E− and S− are reflexive generalized inverses of E and S = A/E respec-
tively.

Lemma 2. Over an arbitrary field, a sufficient condition for Equation (10) to
be a reflexive generalized inverse of a symmetric matrix A is that A has generic
rank profile.

Proof. We partition A as in Equation (9) arbitrarily but such that E is square.
Now we can make a case distinction on E: (i) E is invertible. Then E− coincides
with the ordinary inverse and it immediately follows that (I − EE−) = (I −
E−E) = 0, thus satisfying (12)–(14) from Lemma 1.

(ii) E is not invertible. Since A has generic rank profile, it then immediately
follows that rankA = rankE and furthermore that rankS = 0, thus satisfying
(11). ut

Lemma 3. For any m × n matrix A over an arbitrary field, any k such that
A[k] is invertible, and any i such that 0 ≤ i ≤ min(m,n)− k it holds that

A[k+i]/A[k] = (A/A[k])[i].

Proof. Let

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

where A11 = A[k] is an invertible k × k matrix and A22 is an i× i matrix. Then

(A/A[k])[i] =

((
A22 A23

A32 A33

)
−
(
A21

A31

)
A−111

(
A12 A13

))
[i]

= A22 −A21A
−1
11 A12

= A[k+i]/A[k]. ut

Corollary 1. Protocol ObliviousRGInverse, when run on a symmetric matrix A
over Fp having generic rank profile, correctly computes a reflexive generalized
inverse.

Proof. For the base case, we have already argued correctness of the extended
reciprocal near the beginning of Section 3. For the recursive step applied to A,
note that for an arbitrary partitioning but such that E is a k × k matrix for
some integer k, it is easy to see that E is symmetric and has generic rank profile.
Correctness then follows from Lemma 2.
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We prove that S is symmetric and has generic rank profile by distinguishing
two cases. If E is not invertible, then rankA = rankE and S is necessarily
the (square) null matrix, which is symmetric and has generic rank profile. Oth-
erwise, E is invertible and S = A/E = G − FTE−1F , which is clearly sym-
metric. For generic rank profile, we can apply Schur’s determinant formula to
the leading principal minors of A: for any i such that 0 ≤ i ≤ rankA − k we
have 0 6= det(A[k+i]) = det(E) det(A[k+i]/E). Then, applying Lemma 3 gives
det(A[k+i]/E) = det((A/E)[i]) 6= 0, i.e., A/E has generic rank profile. In both
cases, correctness now follows from Lemma 2. ut

Remark 1. We have proved that generic rank profile is sufficient for correctness—
we did not prove that this condition is necessary. This leaves open the possibility
that a weaker condition on the input matrix (weaker than generic rank profile)
would suffice for correctness of ObliviousRGInverse. In the next section we will
compute (AATAAT)−, from which we construct A†. To ensure the correctness of
ObliviousRGInverse we will actually randomize its input, AATAAT, so that it has
generic rank profile with high probability and then undo the randomization on
the result. One might raise the question whether choosing the modulus p large
enough to guarantee the existence of A†, could immediately guarantee correctness
of ObliviousRGInverse without requiring AATAAT to have generic rank profile.
We do not address this question, as our randomization technique suffices and
introduces only minimal overhead.

3.2 Complexity Analysis

We first state the complexity (number of secure operations) of protocol Oblivious-
RGInverse when run on a square matrix whose dimensions are a power of two.

Proposition 1. Protocol ObliviousRGInverse, when run on an m × m matrix
over Fp, where m = 2k for integer k, requires 3

2m(m − 1) + 1
2m log2m secure

inner products and m invocations of ScalarRGInverse.

Proof. Correctness of Proposition 1 is easily proved using induction on k. In
the base case, k = 0, protocol ObliviousRGInverse simply invokes ScalarRGInverse
once.

As induction hypothesis, suppose the proposition holds for some m = 2k,
where k is integer. Then protocol ObliviousRGInverse, when run on a 2m× 2m
matrix over Fp, performs 2 invocations of OblivousRGInverse on m×m matrices,
which requires 3m(m− 1) +m log2m secure inner products and 2m invocations
of ScalarRGInverse per the induction hypothesis. The protocol further performs
four matrix-matrix products of m × m matrices. Two of these products are
symmetric, so these products can be performed using 3m2 + m secure inner
products. The total number of secure inner products required is therefore equal to
6m2−2m+m log2m = 6m2−3m+m log2(2m) = 3

2 (2m)(2m−1)+ 1
2 (2m) log2(2m)

and the number of invocations of ScalarRGInverse is 2m. ut

11



If the dimensions of the matrix, m, are not a power of two, it is not always
possible to divide the matrix evenly in step 4 of the protocol. In these cases the
number of secure inner products required is slightly greater than the number
stated in Proposition 1. For general dimensions, we prove the following proposition.
We note that this bound is not tight.

Proposition 2. Protocol ObliviousRGInverse, when run on an m × m matrix
over Fp, requires fewer than 3

2m(m − 1) + m log2m secure inner products and
exactly m invocations of ScalarRGInverse.

We also express the complexity of protocol ObliviousRGInverse in terms of
elementary secure multiplications, for MPC schemes for which the “cheap inner
product” is not available. Note that the bound given here is exact if we assume
the näıve algorithm for matrix multiplication. A more advanced algorithm would
result in sub-cubic, but still super-quadratic complexity.

Proposition 3. Protocol ObliviousRGInverse, when run on an m × m matrix
over Fp, requires at most 1

2m
3 + 1

2m
2 −m secure multiplications and exactly m

invocations of ScalarRGInverse.

The proofs of Proposition 2 and 3 can be found in the appendix.

4 Computing the Moore–Penrose Pseudoinverse

We will compute the Moore–Penrose pseudoinverse using a formula (see, e.g.,
[34, p. 207]) that computes A† in terms of a reflexive generalized inverse:

A† = AT(AATAAT)−AAT. (15)

Before proposing our protocol Pseudoinverse, we deal with three remaining ques-
tions, namely how to compute the common denominator, how to choose an
appropriate modulus, and how to reliably compute (AATAAT)−, as AATAAT

does not necessarily have generic rank profile, which is required by protocol
ObliviousRGInverse for correctness.

4.1 Computing the Common Denominator

Over the rational numbers, a common denominator d such that dA† is integer-
valued if A is integer-valued is d = (volA)2 [36, Satz 10]. The squared volume is
minimal in the sense that there exist matrices for which it is the smallest possible
common denominator.

If we would have an orthonormal basis for the left or right nullspace of A,
then we could use [4, Thm. (4.1)] to compute (volA)2 directly. An orthonormal
basis does not necessarily exist over an arbitrary field. Instead, we generalize
[4, Thm. (4.1)] by relaxing the requirements on the nullspace basis.

12



Lemma 4. Let A ∈ Fm×k be a matrix of rank r. Let B ∈ Fm×` be a matrix
of rank m − r such that its columns are orthogonal to the columns of A, i.e.,
BTA = 0. Then,

det(AAT +BBT) = (volA)2(volB)2.

Proof. Note that AAT +BBT =
(
A B

) (
A B

)T
. Because the columns of A are

orthogonal to those of B, the matrix
(
A B

)
has rank r+ (m− r) = m and hence

det(
(
A B

) (
A B

)T
) = (vol

(
A B

)
)2 = (volA)2(volB)2,

where the first equality holds by equation (8), and the second equality is [4,
Example 5.1]. ut

Theorem 1. Let A ∈ Fm×n be a matrix of rank r. Let K = I −AA† ∈ Fm×m.
Then,

(volA)2 = det(AAT +K).

Proof. By property (3) of the pseudoinverse, we have that K = KT. This fact, and
property (1) of the pseudoinverse imply that KKT = KK = K and KTA = 0,
i.e., K is idempotent and its columns are orthogonal to the columns of A.

Combining equation (6) with the fact that K is idempotent and symmetric
gives us that volK = vol(KKT) = (volK)2. Since the volume of a matrix is
nonzero, we conclude that volK = 1.

Orthogonality of the columns of K and A implies that rankK ≤ m− r and

rankK = rank(I −AAT) ≥ rank I − rank(AAT) = m− r

follows from subadditivity of matrix rank. Applying Lemma 4 gives us

det(AAT +K) = det(AAT +KKT) = (volA)2(volK)2 = (volA)2. ut

4.2 Bound on the Modulus

Springer [36] has proved the following upper bound on the magnitudes of the
numerators and the common denominator of the pseudoinverse. Choosing p larger
than twice this bound will guarantee that: (i) d = (volA)2 is an invertible element
in Fp, which is a necessary and sufficient condition for existence of A† over Fp [2]
(see also Section 2), and (ii) that the pair (dA†, d) over Fp coincides with (dA†, d)
over Z (see Lemma 5 below), and (iii) that the product AATAAT occurring in
Equation (15) has the same rank as A (which we will need in Theorem 2, and
note that (iii) is implied by applying (i) to the upcoming Proposition 4).

Lemma 5 ([36, Satz 12]). Let N0 = (volA)2 and Z0 = (zij) ∈ Zm×n be an
integer matrix of rank r such that A† = 1

N0
Z0. Let µ = min(m,n). Then,

max(|N0|,max
i,j
|zij |) ≤ max

(
‖A‖2rF
rr

,
‖A‖2r−1F√
rr(r − 1)r−1

)
, (16)
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and

max(|N0|,max
i,j
|zij |) ≤ max

(
‖A‖2µF
µµ

,
‖A‖2µ−1F√
µµ(µ− 1)µ−1

)
, (17)

where ‖A‖F =
√∑

ij |aij |2 is the Frobenius norm of A.

Remark 2. In a setting in which the rank r is unknown, one would use (17).

For our construction, we further require that

rank(AATAAT) = rankA. (18)

This requirement holds unconditionally over fields of characteristic zero, but not
necessarily over finite fields. Nonetheless, as we show below, it turns out that
existence of the Moore–Penrose inverse already implies (18).

Proposition 4. Let A be an arbitrary matrix over F. The Moore–Penrose inverse
of A exists if and only if

rank(AATAAT) = rankA.

Proof. Recall from Section 2 that the Moore–Penrose inverse exists over F if and
only if rank(AAT) = rank(ATA) = rankA. Note that

rank(AATAAT) = rankA =⇒ rankA = rank(AAT) = rank(ATA),

so we only have to prove the converse.
Let A = VW be a rank decomposition of A, i.e., V and W have full column-

rank and full row-rank, respectively. Over an arbitrary field, a rank decomposition
exists but is not necessarily unique; see, e.g., [33]. Then,

rankA = rank(AAT) = rank(VWWTV T) =⇒ rank(WWT) ≥ rankA,

and similarly,

rankA = rank(ATA) = rank(WTV TVW ) =⇒ rank(V TV ) ≥ rankA.

Also note that both WWT and V TV have dimension r × r with r = rankA,
therefore, they are invertible. We now write AATAAT in terms of V and W , and
multiply by V T from the left and by V from the right, by which we obtain:

V TAATAATV = (V TV )(WWT)(V TV )(WWT)(V TV ),

the rank of which bounds rank(AATAAT) from below.
Thus, rank(AATAAT) = rankA, if and only if rankA = rank(AAT) =

rank(ATA). ut
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4.3 Symmetric Preconditioning

A preconditioner is a mapping A 7→ h(A) for matrices A from a given class,
where the goal is to achieve a certain property, either with certainty or with high
probability. This property is typically an input condition from some computational
technique. For a more elaborate and formal introduction into preconditioning
we refer to [11]. Here, we restrict to preconditioners for achieving generic rank
profile for symmetric matrices of the form A = BBT over an arbitrary field of
positive characteristic.

To ensure correctness of protocol ObliviousRGInverse, we need a preconditioner
with the following three properties:

(i) achieves generic rank profile with high probability;
(ii) preserves symmetry, i.e., h(A) is symmetric;
(iii) is removable. Informally speaking, this means that the preconditioner can be

efficiently removed once “it has done its job”. Formally, a preconditioner is
removable with respect to computing a reflexive generalized inverse if there
exists an efficiently computable mapping g such that g(h(A)−) ∈ A−, where
A− denotes the set of reflexive generalized inverses of A.

Although several preconditioners for achieving generic rank profile have been
proposed in the literature, we are not aware of an existing result that covers all of
the above properties simultaneously. For example, the Toeplitz preconditioner by
Kaltofen and Saunders [22] fails to satisfy (ii), and the diagonal preconditioner
proposed in [17] (combined with a suitable linear-independence preconditioner,
see [11]) fails to satisfy (iii).

In this section we will show that for a symmetric matrix A, the preconditioner
h(A) = UAUT with U a uniformly random (invertible) matrix is sufficient for
satisfying (i)–(iii). It is easy to see that (ii) holds. We prove property (i) in
Theorem 2 and (iii) in Lemma 8.

Lemma 6 (Schwartz–Zippel). Let g ∈ F[x1, . . . , xn] be a nonzero polynomial
of total degree d ≥ 0 over a field F. Let S ⊆ F and let α1, . . . , αn be chosen
independently and uniformly at random from S. Then,

Pr[g(α1, . . . , αn) = 0] ≤ d

|S|
.

Lemma 7 (See, e.g., [8, Lem. 2-(iii)]). The probability that a uniformly
random matrix U ∈ Fm×m is invertible equals

Pr(detU 6= 0) =

m∏
k=1

(
1− |F|−k

)
.

Theorem 2. Let A ∈ Fm×n be arbitrary, let r be the rank of A and let AAT

have the same rank as A. Let U ∈ Fm×m be chosen uniformly at random. Then,
the probability that U is invertible and UAATUT has generic rank profile is

Pr
U

(
detU 6= 0 ∧ [UAATUT]k 6= 0 ∀k ∈ [r]

)
> 1− r(r + 1) + 2

|F|
.
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Proof. We view U = (ui,j) as a polynomial matrix with ui,j as indeterminates.
For every 1 ≤ k ≤ r, we apply the Cauchy–Binet formula to obtain an expression
for the leading principal minor of order k of the matrix UAATUT, which is a
polynomial in the variables ui,j , where we let K = [k],

fk(u1,1, . . . , ui,j , . . . , um,m) = [UAATUT]K,K

=
∑
I⊂[m]
|I|=k

[UA]K,I [ATUT]I,K =
∑
I⊂[m]
|I|=k

(
[UA]K,I

)2

=
∑
I⊂[m]
|I|=k

( ∑
J⊂[m]
|J |=k

[U ]K,J [A]J ,I

)2
.

It follows immediately from the structure of this formula that the total degree of
fk is 2k.

Let us now prove that none of the polynomials fk for all 1 ≤ k ≤ r is equal
to the zero polynomial. Because AAT is symmetric, there exists an invertible
matrix S = (si,j) such that SAATST = Λ where Λ = diag(λ1, . . . , λr, 0, . . . , 0)
with λi 6= 0 for all 1 ≤ i ≤ r [1, Thm. 6]. Hence,

fk(s1,1, . . . , si,j , . . . , sm,m) =

k∏
i=1

λi 6= 0 ∀k ∈ [r].

The Schwartz–Zippel lemma asserts that Pr[fk(U1,1, . . . , Um,m) = 0] ≤ 2k
|F| , where

the Ui,j represent the elements of U when viewed as (uniformly random and
independent) random variables. Hence, by applying the union bound over k we
obtain

Pr[f1(U) 6= 0 ∧ · · · ∧ fr(U) 6= 0] ≥ 1−
∑r
k=1 2k

|F|
= 1− r(r + 1)

|F|
.

Combining this bound with that of Lemma 7 gives

Pr
U

( detU 6= 0 ∧ [UAATUT]k 6= 0 ∀k ∈ [r])

≥
m∏
k=1

(
1− |F|−k

)
− r(r + 1)

|F|
>
|F| − 2

|F| − 1
− r(r + 1)

|F|
> 1− r(r + 1) + 2

|F|
,

where we used that

m∏
k=1

(1− xk) >

∞∏
k=1

(1− xk) = 1− x1 − x2(1− x1)− x3(1− x1)(1− x2)− . . .

> 1−
∞∑
k=1

xk.

With xk = |F|−k, we get that
∏m
k=1

(
1− |F|−k

)
> 1− (|F| − 1)−1. ut
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We now prove that the preconditioner h(A) = UAUT with invertible U is
removable.

Lemma 8. Let A be a matrix over F and let A− denote the set of reflexive
generalized inverses of A. Let U be an invertible matrix over F and let Y =
(UAUT)− be a reflexive generalized inverse of UAUT. Then, UTY U ∈ A−.

Proof. Given the Penrose equations (1) and (2) for Y , we need to show that the
Penrose equations (1) and (2) hold for A−. Since U is invertible,

A(UTY U)A = U−1(UAUT)Y (UAUT)(UT)−1 = U−1(UAUT)(UT)−1 = A.

Furthermore,

(UTY U)A(UTY U) = UTY (UAUT)Y U = UTY U. ut

4.4 Construction

Our protocol Pseudoinverse, on input of a secret-shared matrix JAK ∈ Fm×np , com-

putes the pair (JA†K, J(volA)2K) and is given as Protocol 3. Protocol Pseudoinverse
makes use of a secure subprotocol Determinant for computing the determinant
of an invertible matrix in Fm×mp in secret-shared form. A possible instantiation
of Determinant can be found in [12], where it is called protocol Π0. See also [6],
which slightly modifies this protocol to reduce its randomness complexity.

Protocol 3 Pseudoinverse(JAK)
1: if m > n then
2: return Pseudoinverse(JAKT)T

3: JAATK← JAKJAKT . symmetric
4: JAATAATK← JAATKJAATK . symmetric

5: U
$← Fm×mp

6: JXK← UTObliviousRGInverse(UJAATAATKUT)U
7: JXAATK← JXKJAATK
8: JA†K← JATKJXAATK
9: JKK← I − JAATKJXAATK . symmetric; in parallel with JA†K

10: JdK← Determinant(JAATK + JKK)
11: return (JA†K, JdK)

We note that the rank of A is given by Tr(AA†) [9]. It can be computed
obliviously in Pseudoinverse as JrK = m− Tr(JKK).

Corollary 2. Protocol Pseudoinverse, when run on an arbitrary m× n matrix
over Fp, correctly computes the Moore–Penrose pseudoinverse with probability at
least

Pr(success) ≥
[
1− m(m+ 1) + 2

|F|

]
· PDeterminant,

where PDeterminant denotes the success probability of protocol Determinant.

17



4.5 Complexity Analysis

Proposition 5. Protocol Pseudoinverse, when run on an arbitrary m×n matrix
over Fp, requires mn+ 5

2m
2 + 3

2m secure inner products (or: m2n+ 5
2m

3 + 3
2m

2

secure multiplications), one invocation of protocol Determinant on a symmetric
m×m matrix and one invocation of ObliviousRGInverse on a symmetric m×m
matrix.

Protocol Determinant, instantiated as in [6], when invoked on a m×m matrix,
requires secure sampling of m2 random elements, and performing 2m2 +m− 1
secure inner products (or: 4

3m
3 + 2

3m− 1 secure multiplications) and m2 open
operations.

The field inversion technique from Bar-Ilan and Beaver [3] requires secure
sampling of one random element and one secure multiply-and-open operation.

Subprotocol IsZero can be instantiated with the probabilistic secure zero test
from Nishide and Ohta [30]. This secure zero test is constant round and requires
2κ secure multiplications, 4κ secure multiply-and-open operations and secure
sampling of 5κ random elements, where κ is a security parameter and the protocol
may fail with probability 2−κ + 1/p.

Corollary 3. Protocol Pseudoinverse, when run on an arbitrary m × n ma-
trix over Fp, with protocol Determinant instantiated as in [6], requires in total
nm+6m2+o(m2) secure inner products (or: nm2+ 13

3 m
3+o(m3) secure multipli-

cations), m2 public random elements, m2 private random elements, m2 openings,
m secure zero tests and m secure field inversions.

If protocols IsZero and Reciprocal are instantiated as the probabilistic zero test
from [30] and as in [3], respectively, the m secure zero tests and field inversions
require O(κm) secure multiplications, random elements and openings.

Remark 3. It is straightforward to adapt Protocol 3 such that in line 8 it computes
the vector A†b instead of the matrix A†, i.e., directly solving the linear system
Ax = b for the vector x. By replacing line 8, in case m ≤ n, with the two
lines JXAATbK ← JXAATKJbK and JA†bK ← JATKJXAATbK, one can avoid the
matrix-matrix product that gives rise to the mn term. Namely, the complexity
(number of secure inner products) becomes O(n+m2). If m > n, then we would
transpose the system to be solved: xTAT = bT. In this case, line 8 would be
replaced by two secure products in which the matrix is multiplied from the left by
the vector and this would result in a complexity of O(n2) secure inner products.
Note, however, that this adaptation imposes an additional constraint on the size
of the modulus; the field should now be large enough to uniquely represent the
coefficients of the vector dA†b.
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A Proofs of Proposition 2 and 3

The proof is by complete induction. It is clear that the number of invocations
of ScalarRGInverse required when ObliviousRGInverse is run on an m×m matrix
is equal to m. Let D(m) denote the number of secure inner products required
to run protocol ObliviousRGInverse on an m×m matrix. Similarly, let M(m) be
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the number of secure multiplications required, in case a “cheap inner product” is
not available. Then, we have to show that

D(m) <
3

2
m(m− 1) +m log2m; and (19)

M(m) ≤ 1

2
m3 +

1

2
m2 −m. (20)

Inspection of the protocol shows that

D(1) = 0;

D(2k) = 2D(k) + 3k2 + k; and (21)

D(2k + 1) = D(k) +D(k + 1) + 3k2 + 4k + 1, (22)

where we distinguish between even (m = 2k) and odd (m = 2k + 1) dimensions.
Similarly, for M(m), we have

M(1) = 0;

M(2k) ≤ 2M(k) + 3k3 + k2; and (23)

M(2k + 1) ≤M(k) +M(k + 1) + 3k3 +
11

2
k2 +

5

2
k. (24)

The inequalities in (23) and (24) can be replaced with equalities in case the näıve
algorithm for matrix multiplication is used.

In the base case m = 1, the propositions clearly hold. Assume the propositions
hold for all m′ < m. Then for odd m = 2k + 1 substitution of (19) in (22) yields

D(2k + 1) <
3

2
m(m− 1) + k + 1 + k log2 k + (k + 1) log2(k + 1)

=
3

2
m(m− 1) + log2

(
kk(k + 1)k+12k+1

)
<

3

2
m(m− 1) + (2k + 1) log2(2k + 1),

where the last inequality follows from monotonicity of the logarithm and from
the following inequality:

2k+1kk(k + 1)k+1 = 21−k(2k + 1− 1)k(2k + 1 + 1)k(k + 1)

= 21−k((2k + 1)2 − 1)k(k + 1)

< 21−k(2k + 1)2k(k + 1)

< (2k + 1)2k+1.

For the case of even m, Proposition 2 follows immediately by substituting
equation (19) in (21). Similarly, Proposition 3 follows from the substitution of
(20) in (23) and (24).
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