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Abstract. In 2017, Aggarwal, Joux, Prakash, and Santha proposed an
innovative NTRU-like public-key cryptosystem that was believed to be
quantum resistant, based on Mersenne prime numbers q = 2N − 1. After
a successful attack designed by Beunardeau, Connolly, Géraud, and Nac-
cache, the authors revised the protocol which was accepted for Round 1
of the Post-Quantum Cryptography Standardization Process organized
by NIST. The security of this protocol is based on the assumption that a
so-called Mersenne Low Hamming Combination Search Problem (MLH-
CombSP) is hard to solve. In this work, we present a reduction of MLH-
CombSP to Integer Linear Programming (ILP). This opens new research
directions for assessing the concrete robustness of such cryptosystem. In
particular, we uncover a new family of weak keys, for whose our attack
runs in polynomial time.
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1 Introduction

In [1], Aggarwal, Joux, Prakash, and Santha introduced a new public-key encryp-
tion scheme similar to the NTRU cryptosystem [2] that employs the properties
of Mersenne numbers.

A Mersenne number is an integer q = 2N − 1 so that N is prime. One can
associate to each element in the ring Zq a binary string representing 0 ≤ a < q
of the class [a] ∈ Zq. The secret key is a pair of elements F and G ∈ Zq with

Hamming weight h <
√

N/10. Let R be chosen at random from Zq; the public
key is given by the pair (R, T ≡ RF +G mod q). The security assumption (and
the mathematical problem that supports the robustness of this cryptosystem) is
that it is hard to recover F and G, knowing only R and T . This assumption is
called Mersenne Low Hamming Combination Search Problem (MLHCombSP).

The version in [1] is the second iteration of the cryptosystem, first presented
in [3]. The security assumptions were based on a problem similar to MLH-
CombSP and called Mersenne Low Hamming Ratio Search Problem (MLHRa-
tioSP). That system has been successfully attacked by Beunardeau et al. in [4].
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The attack is performed via a series of calls to an SVP-oracle. Its complexity has
been estimated by de Boer et al. in [5]. They also showed that a Meet-in-the-
Middle attack is possible using locality-sensitive hashing, which improves upon
brute force. However, Beunardeau et al. attack turned out to be the most effec-
tive of the two. After the publications of these works, Aggarwal et al. revised
the protocol [1] to prevent the above attacks from being effective against the
full-scale cipher.

This protocol has been accepted to the Round 1 of the Post-Quantum Cryp-
tography Standardization Process organized by NIST. However, it does not ap-
pear among the proposals for Round 2.

1.1 Our Contribution/Outline

In this work we present a non-trivial reduction of the underlying mathemati-
cal problem of [1] to a relatively low-dimensional Integer Linear Programming
(ILP) instance. The secret key is a solution of the resulting ILP instance with
probability p, that depends on the size of F and G.

In section 2, we introduce notation and related work. Furthermore, we recap
the Beunardeau et al. attack against [3] with a generalization to the MLH-
CombSP. Section 3 describes our reduction together with the success probabil-
ity analysis. There, we describe a variation in the description of the ILP to be
solved, that allows some flexibility for the attacker. In particular, one can per-
form a trade-off between the success probability of the attack and the dimension
of the resulting ILP. The application of this trade-off is shown by two examples.
In section 4, we describe a new family of weak keys (F,G) and the probability
of such a pair to appear. These keys are characterized by a long sequence of
zeros in their bit-wise representation. The family is obtained by performing two
independent rotations on F and G. After these rotations, F and G become small
and easy to recover. In this way the size of the set of the weak keys increases.
For example, for N = 1279 and h = 17 (parameters used in [4]), a random key is
weak in the sense of Beunardeau et al. with probability ∼ 2−34. In what follows,
we estimate that a random key is weak with probability ∼ 2−11.

2 Preliminaries

Definition 1 Let N be a prime number and let q = 2N − 1. Then q is called a
Mersenne number. If q is also prime, then it is called Mersenne prime number.

Let seqN : {0, ..., q − 1} → {0, 1}N be the map which associates to each A
the corresponding N -bits binary representation seqN (A) with most-significant
bit to the left.

Let us consider an integer 0 ≤ B < q, seqN maps [B] ∈ Zq to the N -bits
binary representation of B. We define the Hamming weight w(B) of B as the
Hamming weight of seqN (B), i.e. the number of 1s in seqN (B).
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Lemma 1 Let k ≥ 0 be a positive integer, let A be an N -bits number, and let
q = 2N − 1. Then seqN (2kA mod q) corresponds to a rotation of seqN (A) of
k positions to the left and seqN (2−kA mod q) corresponds to a rotation of k
positions to the right.

Proof. We prove it by induction on k. Write seqN (A) = (AN−1, ..., A1, A0),
where AN−1 is the most significant bit of A. Then we can represent A as

A = AN−1 · 2N−1 + ...+A1 · 2 +A0.

If we multiply A by 2 modulo q we obtain

2 ·A ≡ AN−1 · 2N +AN−2 · 2N−1 + ...+A1 · 22 +A0 · 2 mod q

≡ AN−2 · 2N−1 + ...+A1 · 22 +A0 · 2 +AN−1 mod q.

Then seqN (2 · A) = (AN−2, ..., A0, AN−1), i.e. the left rotation of 1 position
of seqN (A).
By inductive hypothesis, seqN (2k ·A) corresponds to the left rotation of k posi-
tions of seqN (A), then seqN (2k+1 · A) = seqN (2 · 2k · A) corresponds to the left
rotation of one position of seqN (2k ·A), that is the left rotation of k+1 positions
of seqN (A). The case right rotations of seqN (A) follows trivially.

The security of the Aggarwal et al. cryptosystem [1] relies on the assumption
that the following two problems are hard to solve.

Mersenne Low Hamming Ratio Search Problem Let q = 2N − 1 be a
Mersenne prime number, h < N an integer, F and G two integers chosen at
random from the set of N -bit numbers with Hamming weight h. Let H < q be
the non-negative integer such that

H ≡ F

G
mod q. (1)

The Mersenne Low Hamming Ratio Search Problem (MLHRatioSP) is to find
(F,G) given h and H.

Mersenne Low Hamming Combination Search Problem Let q = 2N − 1
be a Mersenne prime number, h < N an integer, R a random N -bit number, and
F,G integers chosen at random from the set of N -bits numbers with Hamming
weight h. Let T < q be the non-negative integer such that

RF +G ≡ T mod q. (2)

The Mersenne Low Hamming Combination Search Problem (MLHCombSP) is
to find (F,G) given h and the pair (R, T ).

In [3], the authors suggest to choose N and h to be such that
(
N−1
h−1

)
≥ 2λ

and 4h2 < N , for a desired λ-bit security level. After the publications of the
attacks by Beunardeau et al. [4] and De Boer et al. [5], the authors revised the
choice of the parameters to be such that h = λ and 10h2 < N , see [1].
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2.1 Previous Attacks

Brute force attack In [3], Aggarwal et al. showed that a brute force attack to
the MLHRatioSP would require

(
N−1
h−1

)
trials. One assumes that one of the two

secret numbers, say F , has a 1 in the most significant bit (condition that can
be obtained by a rotation of seqN (F )). Then one should check, for every N -bits
number with 1 as most significant bit and weight h, whether the correspond-
ing G through relation (1) has weight h. This approach does not apply to the
MLHCombSP, which instead requires

(
N
h

)
trials.

Meet-in-the-Middle attack De Boer et al. [5] showed that a Meet-in-the-Middle
attack to MLHRatioSP is possible using locality-sensitive hashing with complex-

ity Õ
(√(

N−1
h−1

))
on classical computers and Õ

(
3

√(
N−1
h−1

))
on quantum comput-

ers.

Weak Keys and Lattice attack Following the parameters’ setting in [3], Beu-
nardeau et al. found a weak key attack to the MLHRatioSP for the case when
both F and G happen to have bits set to 1 only in their right halves, i.e.
F,G <

√
2N [4]. This event happens with probability approximately 2−2h, for

h << N .
Following the above idea, Beunardeau et al. also presented a more general

attack to the MLHRatioSP which consists of guessing a decomposition of F and
G into windows of bits such that all the ‘1’s are “close” to the right-most bit
of such windows. Then F and G can be recovered through a lattice reduction
algorithm such as LLL [6]. Even if Beunardeau et al. showed that this attack
practically hits the security estimations in [3], they did not present any clear
asymptotic analysis of its complexity. However, de Boer et al. [5], computed the
complexity of this attack.

In [1], the authors stated that the above attack likely generalizes to the
MLHCombSP case. Building directly on the work presented in [5], we show in
the next subsection that this is true. However we refer the reader to [4] and [5]
for a more detailed description.

2.2 The Beunardeau et al. attack on MLHCombSP

Since F is taken at random among the N -bits numbers with Hamming weight
h, w.h.p. the ‘1’ valued bits of seqN (F ) do not appear in big clusters along
the N possible positions. One then computes an interval-like partition P of
{0, . . . , N − 1} at random, i.e. each set of P is of the form {a, a+1, . . . , b− 1, b},
with 0 ≤ a < b < N . Let all ‘1’ valued bits of seqN (F ) fall in the right-half
of one of the sets of P. Then, each set of P corresponds to a binary substring
of seqN (F ), corresponding in turn to a “small” number. Therefore, the array of
these numbers can be seen as a representation of F .

Let P = {P1, .., Pk} and Q = {Q1, ..., Ql} be two interval-like partitions
of {0, ..., N − 1} and (R, T ) ∈ Z2

q be public parameters of an MLHCombSP
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instance. Let pi, qi be the smallest elements of Pi, Qi respectively. We consider
the following integer lattice.

LP,Q,R,T =

(x1, ..., xk, y1, ..., yl, u) | R ·
k∑

i=1

2pi · xi +

l∑
j=1

2qi · yi − uT ≡ 0 mod q


The above defined lattice LP,Q,R,T has volume det(LP,Q,R,T ) = q and rank

d = k+ l+ 1. Let (F,G) ∈ Z2
q be such that w(F ) = w(G) = h and RF +G ≡ T

as in a MLHCombSP instance. Define the vector

s = (f1, ..., fk, g1, ..., gl, 1) ∈ LP,Q,R,T ,

where 0 ≤ fi < 2|Pi| and 0 ≤ gj < 2|Qj | are the unique natural numbers such

that
∑k

i=1 fi · 2pi = F and
∑l

j=1 gj · 2qj = G, where | · | denotes the cardinality
operator. One wishes to find the vector s by a lattice reduction algorithm applied
to LP,Q,R,T .

The lattice LP,Q,R,T is very similar to the one defined in [5] for the MLHRa-
tioSP and their success probability analysis of the attack holds for this case too.
Therefore the following conclusions follow directly from the work of de Boer et
al.

Given two partitions P and Q of {0, ..., N −1} with block size at least N/d+
Θ(logN), where d = k+ l+1 with k = |P | and l = |Q|. The success probability
of finding the vector s ∈ LP,Q,R,T using a SVP-oracle is 2−2h+o(1).

Remark 1 The above attack is actually a simplified version of the attack of
Beunardeau et al. Indeed, a more general attack can be made by considering the
variation of partition sizes and the fraction of each partition block. This variant
of the attack has success probability 2−(2+δ)h+o(1), for some small constant δ > 0
[5].

Remark 2 In practice, instead of an SVP-oracle, the LLL algorithm [6] which
has polynomial complexity is used. This decreases the overall complexity of the
attack, but the success probability is decreased too [5].

The above attack was made against the parameters setting contained in the
first version of Aggarwal et al. work. However, as already mentioned, in the
most recent version of their work the authors revisited the protocol in order to
withstand it.

2.3 Integer Linear Programming

An Integer Linear Programming (ILP) problem in his canonical form is defined
as follows. Given a matrix A ∈ Qm×n and two vectors c ∈ Qn and b ∈ Qm,
minimize (or maximise) the quantity

cTx
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subject to 
Ax ≤ b,

x ≥ 0,

x ∈ Zn

The number n is called the dimension of the ILP. An ILP-oracle is an oracle
that solves any ILP instance.

Solving a general ILP is proved to be NP-hard [7]. Nevertheless, understand-
ing the complexity of specific families of ILP problems is not an easy task: it can
widely vary from case to case [8]. For example, when the problem can be reduced
to a simple Linear Programming problem, it is proved that it has polynomial
complexity [9]. H. Lenstra also provided a polynomial algorithm for certain ILP
problems [10].

Nowadays there exists families of ILP solving algorithms, for example Branch
and Bound [11], Lagrange relaxation [12], Column Generation [13], and the Cut-
ting Planes [14], whose implementations [15, 16] are able to solve in practice
relatively challenging instances.

3 ILP Reduction

Let R, T be two random elements of Z∗
q . We define the map φ : Zq → Zq

sending X 7→ −RX+T . Any point on the graph of φ, namely {(X,φ(X))}X∈Zq
,

satisfying the condition that both coordinates have Hamming weight equal to
h is a solution to the MLHCombSP. We denote such condition as the graph
condition.

We notice that φ is bijective, for it is the combination of two bijective func-
tions (i.e. multiplication times a nonzero element of a field and sum with an
element of the underlying group). This means that for any subset U ⊆ Zq, the
restriction φ|U is injective. Hence, | Im(φ|U )| = |U|.

Let V be another subset of Zq, and assume that φ behaves like a random
bijection from Zq to itself. The probability that a random element of Im(φ|U ) is

in V is given by |V|
2N−1

. Hence the expected size of Im(φ|U ) ∩ V is given by the
mean of the Hypergeometric distribution [17] in |U| draws, from a population of
size 2N − 1 that contains |V| objects that yield a success. That is:

E(| Im(φ|U ) ∩ V|) = |U||V|
2N − 1

. (3)

Remark 3 The expectation (3) is obtained assuming that φ is a random bi-
jection of Zq. We verified experimentally that this is accurate also for φ(X) =
−RX + T .
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Let U ,V ⊂ Zq be such that F ∈ U and G ∈ V. Then, (F,G) is a solution of
the system of constraints 

T −Rx ≡ y mod q,

x ∈ U ,
y ∈ V.

(4)

For every fixed instance of x ∈ {0, . . . , q−1} , there is exactly one a ∈ Z that
satisfies 0 ≤ T + aq−Rx < q. It is possible to represent (4) in terms of integers:

T + qa−Rx = y,

x ∈ U ,
y ∈ V.

(5)

Assume that U = {lx3 , lx3 +1, . . . ,ux3 −1,ux3} and V = {ly, ly +1, . . . ,uy −1,uy},
for some integers lx3 ,ux3 , ly,uy < q, and that F ∈ U and G ∈ V. Assume also
that (5) has a unique solution. Then, one can use an ILP solver to recover (F,G)
from the following ILP instance. Minimize the quantity in the integer variables
x1, x2, x3, y:

Tx1 + qx2 −Rx3 + 0y (6)

with constraints 
y = Tx1 + qx2 −Rx3,

x1 = 1,

lx3 ≤ x3 ≤ ux3 ,

ly ≤ Tx1 + qx2 −Rx3 ≤ uy .

(7)

Note that y is a redundant variable because it is set to be integer by default (T, q
and R are integers) and it takes the value of the minimized quantity. Therefore
the ILP (6) with constraints (7) has dimension 3.

Remark 4 Our approach consists of looking for settings where the ILP has only
one solution. For this reason, one can use any linear combination of the variables
x1, x2, x3, y in (6) to define the quantity to minimize.

Finding good choices on U and V (i.e. small and containing F and G with
high probability) is, in general, a difficult task. One can exploit the fact that
F has weight exactly h to establish the following ILP problem in the integer
variables x1, x2, x3, n1, . . . , nN , y:

Tx1 + qx2 −Rx3 + 0n1 + · · ·+ 0nN + 0y, (8)

with constraints 

y = Tx1 + qx2 −Rx3,

x1 = 1,

x3 =
∑N

i=1 ni2
i−1,

0 ≤ ni ≤ 1, for i = 1, . . . , N∑N
i=1 ni = h,

ly ≤ y ≤ uy .

(9)
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Using these constraints results in having U of size |U| =
(
N
h

)
. On the other hand,

the dimension of the ILP to be solved increased from 3 to N +3 (the variable y
is redundant). In subsection 3.1, we show how to obtain a trade-off between the
number of variables of the ILP to be solved or the size of U .

3.1 Merging Bits

To reduce the number of variables of the ILP (8), one can merge more than
one bit within each variable ni. Consider the 2s-ary representation of x3 =∑⌈N/s⌉

i=1 2s(i−1)ni. For s = 2, each ni can assume values in {0, 1, 2, 3} and the total
weight of x3 varies between h and 2h, as we prove in Proposition 1. Compared
to the setting in (8) and (9), this results in an increase of the size of U , and
decrease of the number of variables: from N + 3 to ⌈N/2⌉+ 3.

Example 1 Let F = (00010011) and h = 3. By merging bits in pairs and
assuming the ILP gives the correct solution, one gets n1 = (00), n2 = (01),
n3 = (00), n4 = (11). The total sum results in n1 + n2 + n3 + n4 = 4 ≤ 2h = 6.

Using this method, it is possible to merge an arbitrary number of bits to-
gether. Let S = ⌈N/s⌉. Consider the following system of linear inequalities.

T + aq −Rx = y,

2h − 1 ≤ y ≤ 2N − 2N−h,

x =
∑S

i=1 2
s(i−1)ni,

0 ≤ ni ≤ 2s − 1, for 1 ≤ i ≤ S,

h ≤
∑S

i=1 ni ≤ 2s−1h.

(10)

We prove in Proposition 1 that a solution (X,φ(X)) satisfying the graph con-
dition is also a solution to the system of inequalities (10) and, therefore, it can
be obtained via an ILP-oracle. Generally, choosing larger s implies a decrease of
the probability that the ILP-oracle will return the correct solutions because the
number of solutions satisfying the conditions increase.

Proposition 1 Let F,G ∈ Zq such that φ(F ) = G and the Hamming weight
of seqN (F ) is h. Then there exists an integer solution (x, y, a, n1, . . . , nS) that
solves the system (10), with x = F and y = G .

Proof. The first equation and the first inequality of (10) are satisfied by the
definition of φ and by the fact that y is of weight h. The second equation and
the second inequality represent the fact that we are writing x in base 2s. Hence
the only remaining thing to prove is that the last inequality holds.

Let F = F02
0+ . . .+FN−12

N−1. We notice that ni =
∑s−1

j=0 F(i−1)s+j2
j . For

the fact that
∑N−1

i=0 F (i) = h, we conclude that

S∑
i=1

ni =

S∑
i=1

s−1∑
j=0

F(i−1)s+j2
j ≥

S∑
i=1

s−1∑
j=0

F(i−1)s+j = h.
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We prove the second inequality by induction on h. For h = 1, ni is a string
of weight 1 of s bits. That is at most 2s−1.

Assuming that the inequality holds for h − 1. If ni ≤ 2s−1 for every i, the
inequality is satisfied. Hence we assume that there exists one j for which nj >
2s−1. This means that the Hamming weight of seqs(nj) ≥ 2. Then one gets:∑

i

ni ≤ 2s +
∑
i ̸=j

ni.

The sum of the Hamming weights of seqs(nj), j ̸= i is at most h−2. By inductive
hypothesis, it follows that∑

i

ni ≤ 2s + 2s−1(h− 2) = 2s−1h.

The following Proposition determines the size of U that one obtains from
considering the constraints in (10).

Proposition 2 Let U be the set containing all 0 ≤ F < q, whose 2s-ary
representation F =

∑S
i=1 ni2

i−1 satisfies 0 ≤ ni < 2s, for 1 ≤ i ≤ S and

h ≤
∑S

i=1 ni ≤ 2s−1h. Then

|U| =
2s−1h∑
d=h

l2s(S, d),

where lt(n, d) is the number of integer solutions to z1 + . . .+ zn = d, 0 ≤ zi < t.

Proof. Let d be one of the values of
∑S

i=1 ni. For each d, we consider all the
possible configurations of n1, . . . , nS . Since each of these is bounded by 2s − 1,
the number of legitimate configurations is l2s(S, d).

Examples

In Table 3.1 and Table 3.2 we report the dimensions of the ILP instances, for
two concrete parameter choices, resulting when varying s. For each case, we give
the success probability of the attack that is computed as follows. Consider the
set

V = {2h − 1, 2h, . . . , 2N−t − 2N−t−h},

with t satisfying log2(|U|) ≤ t, and U constructed as in Proposition 2 so that
it contains F by default. Since log2(|V|) < N − t, we have that |U||V| < 2N .
Therefore, because of the estimation in (3), if G ∈ V, then we expect (10) to have
a unique solution with x = F and y = G. In this case, the private key (F,G)
can be successfully retrieved with a query to an ILP-oracle and, therefore, the
success probability of the attack is the probability that G ∈ V.

Let EG be the number of ‘0’ valued bits before the first ‘1’ in seqN (G). One
wants to compute the probability that, for a fixed s, log2(|U|) ≤ EG. The random
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variable EG is distributed according to the negative hypergeometric distribution
[18]:

Pr(EG = t) =

(
N−t−1
N−t−h

)(
N

N−h

) .

In Table 3.1 and Table 3.2 the success probability and the number of ILP
variables, computed as ⌈N/s⌉+3, are presented for a variety of s1. We notice that
the parameters in Table 3.1 violate the guidelines given in [1]. These corresponds
to the parameters choice of the first iteration of the protocol [3], and are the ones
attacked by Beunardeau et al. [4].

s Probability of success Number of variables in ILP

1 2−2.56 1282

2 2−3.97 643

3 2−6.13 430

4 2−9.13 323

5 2−12.94 259

6 2−17.33 217

7 2−21.73 186

8 2−26.07 163

9 2−30.47 146

10 2−34.06 131
Table 3.1. parameters: N = 1279 and h = 17

Remark 5 It is possible to increase the probability of success by taking into
consideration the fact that G has weight h too. In this case, one would need to
add more constraints to the set V, as done for the set U , resulting in an increase
of the number of ILP variables.

Remark 6 The approach can be easily adjusted in order to solve the MLHRa-
tioSP by taking T = 0.

4 A new family of weak keys

In [4], a family of weak keys was introduced for the MLHRatioSP. Those were
the ones for which all the ‘1’ valued bits appeared in the right halves of seqN (F )

1 The redundant variable y is not taken into account when computing the number of
ILP variables.
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s Probability of success Number of variables in ILP

1 2−1.36 1282

2 2−1.78 643

3 2−2.80 430

4 2−4.29 323

5 2−6.26 259

6 2−8.64 217

7 2−11.18 186

8 2−13.71 163

9 2−16.27 146

10 2−18.42 131
Table 3.2. parameters: N = 1279 and h = 11

and seqN (G). As noted in [1], one can break keys in this family by performing
a rational reconstruction [19] of the quotient H defined by (1). A key in this
family appears with probability approximately 2−2h. Many keys which have a
long sequence of zeros in the middle of their bit-sequence representation are not
considered as weak keys in [4]. However, we show that this is a weakness that
can be exploited.

Let u, v ≥ 0 be two integers. The following transformation

(2(u−v)R)(2vF ) + 2uG ≡ 2uT mod q (11)

gives a new instance of the MLHCombSP where the binary representation of
the public values R and T are rotated by u − v and u positions respectively.
The secret values F and G are rotated by v and u positions. In practice, the
transformation 11 allows us to rotate the binary representation of F and G by
multiplying R and T times powers of 2. We will say that F is minimized by u
rotations if

2uF mod q = min
0≤ũ<N
ũ∈N

2ũF mod q.

In particular, the binary representation of 2uF has its longest sequence of con-
secutive zeros arranged to the left.

Our attack targets keys for which F and G contain long sequences of zeros
in their binary representations. The approach consists of minimizing through
rotations F and G using (11), then defining an ILP problem as in (6) with
exceptionally tight bounds so that the solution is unique.

Assume F and G have been minimized already as much as possible through
rotations, and let EF and EG be respectively the length of the largest sequences
of consecutive zeros of F andG. In this case, one can set V = {2N−EG−1, 2N−EG−1+
1, . . . , 2N−EG −1} so that |V| = 2N−EG−1. Let U ⊂ Fq be such that |U| < 2EG+1

and F ∈ U . Then, because of estimation (3), there is only one expected solution
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to the system of constraints:
T −Rx ≡ y mod q,

x ∈ U ,
y ∈ V.

(12)

and this solution is x = F , y = G with high probability. Once found, one
can rotate back the solutions to retrieve the original pair. More in general, one
expects a unique solution when EF + EG ≥ N , and this can be retrieved by
solving an ILP instance with only three variables.

Let A be a random positive N -bits integer such that w(A) = h, and let
EA be the length of the longest sequence of zeros in its binary representation
considering rotations. Let k ≤ N−h be a positive integer. Our goal is to evaluate
the probability

Pr(EA = k). (13)

Computing the exact probability (13) involves a recursive formula and it is hard
in practice. For this reason, we used the following approximation. Consider the
set of tuples

Ωh,N =

{
(a1, a2 . . . , ah)|a1 ≥ ai ≥ 0 for i > 0,

h∑
i=1

ai = N − h

}
.

One can use the elements of Ωh,N to represents the distribution of zeros in
seq(A) after the best rotational shift (the one that minimizes A). In particular,
a1, a2, ..., ah represents the length of each sequence of consecutive zeros as follows

0...0︸︷︷︸
a1 times

1 0...0︸︷︷︸
a2 times

1 ... 1 0...0︸︷︷︸
ah times

1.

Note that a1 ≥ ai, for i > 1, ensures that we are considering already the best
shift possible.

Proposition 3 Let (a1, a2, ..., ah) be chosen uniformly at random from Ωh,N .
Then

Pr(a1 = k) =
lk+1(h− 1, N − h− k)∑N−h
i=0 li+1(h− 1, N − h− i)

, (14)

where lt(n, d) is the number of integer solutions to z1 + . . .+ zn = d, 0 ≤ zi < t.

Proof. Let A : Ωh,N → Z be the function that maps (a1, a2, ..., ah) to a1. For
0 ≤ k ≤ N − h, A−1

h,N (k) is the subset of Ωh,N containing the tuples of the form

(k, a2, . . . , ah) under the condition that aj ≤ k for every j and that
∑h

j=2 aj =
N − h− k. The number of such tuples is lk+1(h− 1, N − h− k).

We verified experimentally that the above model approximates well (13).
Proposition 3 allowed us to discover a new family of weak keys, namely, pairs
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(F,G) such that EF + EG ≥ N . We used (14) to derive the following formula

Pr(EF+EG ≥ N) ≈
2(N−h)∑
a=N

a∑
k=0

lk+1(h− 1, N − h− k)la−k+1(h− 1, N − h− k)(∑N−h
i=0 li+1(h− 1, N − h− i)

)2 .

Note that EG and EF are upper bounded by N − h, and their lower bound
is N/h − 1 if h divides N , ⌊N/h⌋ otherwise. For N = 1279 and h = 17, the
expected length of the longest sequence of zeros is approximately 256. For these
parameters, there is approximately one key every 211 with EF + EG ≥ N , and
such keys are weak as explained below. This improves upon Beunardeau et al.
work for which 1 over 234 keys is weak.

Let CILP be the cost of solving a system with 3 variables and unique solution
as in (12). To retrieve the key, one must perform up to N2 rotations to find the
one that minimizes F and G. Since EF is unknown, for each rotation, one makes
a query to the ILP-oracle for every possible value EF = k can take. One must
try up to N − h− ⌊N/h⌋+ 2 possible k to find a unique solution to (12), where
U = {2h − 1, 2h, . . . , 2N−k − 2N−k−h} and V = {2h − 1, 2h, . . . , 2k − 2k−h}. The
overall cost is (N − h− ⌊N/h⌋+ 2)N2CILP < N3CILP .

H. Lenstra introduced an algorithm [10] that solves the decisional ILP prob-
lem with a fixed number of variables in polynomial time in the size of the problem
input. This problem consists in deciding whether there exists a solution to the
ILP instance satisfying the constraints or not. One can use a branch and bound -
like approach in combination with Lenstra’s algorithm to solve our ILP instances
in 3 variables. In particular, one may split U in two subsets U1 and U2, and apply
Lenstra’s algorithm to decide which one contains the (unique) solution. Assume
this is U1. Then, one applies the same procedure to U1 and so on. It takes log(|U|)
steps to isolate and find the solution of the ILP instance. The overall cost CILP

is therefore polynomial in N .

5 Conclusions and Future Work

This work introduces techniques to reduce the MLHCombSP to ILP. In Section
3, we show how to make a trade-off between the success probability of retrieving
the private key via an ILP-oracle query and number of variables of the resulting
ILP problem. In general, it is not easy to determine the complexity of an ILP
instance. Unlike Linear Programming, the dimension of ILP is not determinant
in establishing whether an instance is feasible or not to solve [20]. Therefore
the size of the ILPs emerging from the reduction in Section 3 is not necessarily
related to their hardness. Unfortunately, the vast majority of the ILP solvers
available does not support big numbers arithmetic. This prevented us from per-
forming noteworthy experiments (N > 60) on this reduction. With a dedicated
implementation, it could be possible to perform such experiments and obtain
empirical hints about the complexity of these ILP instances.

In Section 4, we introduce a new family of weak keys for which a key-recovery
attack runs in polynomial time by solving ILP instances with only 3 variables
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and only one expected solution. In particular, this family is significantly larger
than the family of weak keys discovered by Beunardeu et al.
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