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Abstract

Decision making tasks carried out by the usage of deep neural networks are success-
fully taking over in many areas, including those that are security critical, such as health-
care, transportation, smart grids, where intentional and unintentional failures can be
disastrous. Edge computing systems are becoming ubiquitous nowadays, often serving
deep learning tasks that do not need to be sent over to servers. Therefore, there is a
necessity to evaluate the potential attacks that can target deep learning in the edge.

In this work, we present evaluation of deep neural networks (DNNs) reliability
against fault injection attacks. We first experimentally evaluate DNNs implemented
in an embedded device by using laser fault injection to get the insight on possible
attack vectors. We show practical results on four activation functions, ReLu, softmax,
sigmoid, and tanh. We then perform a deep study on DNNs based on derived fault
models by using several different attack strategies based on random faults. We also
investigate a powerful attacker who can find effective fault location based on genetic
algorithm, to show the most efficient attacks in terms of misclassification success rates.
Finally, we show how a state of the art countermeasure against model extraction attack
can be bypassed with a fault attack. Our results can serve as a basis to outline the
susceptibility of DNNs to physical attacks which can be considered a viable attack
vector whenever a device is deployed in hostile environment.

1. Introduction

With the success of deep learning (DL) and machine learning (ML) across domains,
their combination with edge based computing is driving new innovation. This has also

Email addresses: xiaolu.hou@stuba.sk (Xiaolu Hou), jbreier@jbreier.com (Jakub Breier),
djap@ntu.edu.sg (Dirmanto Jap), ma.lei@acm.org (Lei Ma), sbhasin@ntu.edu.sg (Shivam Bhasin),
yangliu@ntu.edu.sg (Yang Liu)



motivated the rise of so called TinyML1 TinyML refers to ML and DL models which
are optimised and shrunk to fit and bring artificial intelligence into small devices and
tiny hardware like embedded systems. These devices are being designed to be used
in many areas of the industry and in everyday life, including tasks which require high
level of security. Therefore, it is important to assess the available threat vectors that
could compromise the integrity of the results.

In this work, we focus on a class of physical attacks known as fault attacks, which
have become a reality owing to decreasing price and expertise required to mount such
attack [22]. Fault attacks are active attacks on a given implementation which try to
perturb the internal software/hardware computations by external means. Embedded
systems deployed on the edge become a prime target owing to easy physical access
and must be tested against such vulnerabilities. The adversary uses methods like volt-
age glitches, electromagnetic pulses, or laser injection to introduce perturbations for
various purposes, ranging from erroneous computation, denial of service etc. Such at-
tacks are commonly used for mounting secret key recovery attacks in cryptography or
for violating/bypassing security checks [25]. In this paper, we analyze deep learning
under fault attacks.

Deep learning is a family of neural networks composed of an input layer, three or
more hidden layers and an output layer. Based on the internal structure, several candi-
dates exist like multi-layer perceptron (MLP), convolutional neural networks (CNNs),
recurrent neural networks (RNNs) etc. These are popularly known as deep neural net-
works (DNN). While each of these architectures has unique functions, we focus on
activation functions which remain common across architectures and are an important
part of the algorithm to obtain non-linear behaviors [20]. These commonly used acti-
vation functions are: softmax, ReLu, sigmoid and tanh. Studying these functions under
fault attacks allows deriving general conclusions on susceptibility of deep learning to
fault attacks.

We implemented the most common activation functions used across DNNs on a
low-cost microcontroller (often used in IoT). Next, we performed practical laser fault
injection using a near-infrared diode pulse laser to inject faults during the processing
of activation function. With fault models, derived from practical fault injection, we
analyze in detail the susceptibility of DNN against such attacks. The primary goal of
the performed attacks is to achieve miss-classification during the testing phase, thus
forcing the network to report an incorrect label for a given input. In the hindsight, the
achieved miss-classification can jeopardize the functioning of DNN-based paradigms
like smart city, affecting the reliability of the whole application.

Extensive studies have been performed on adversarial attacks, that crafts the input
data with little perturbation to fool deep learning systems [21, 23, 39, 13, 12, 11, 41] by
miss-classification. In our study we explore practical (physical) fault injection on deep
neural network, where we focus on attacking the DNNs itself instead of creating input
data to fool DNNs like adversarial attack does. We evaluate different ways of selecting
neurons to fault, from random selection to optimized method using a genetic algorithm.
Our results indicate that in some cases, a relatively small number of faulted neurons (≈

1tinyML Foundation. tinyml summit, 2019. URL https: //www.tinymlsummit.org/.
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10%) can already present a high risk of misclassification (≈ 70%). Our attack re-
quires a whitebox access to the neural network. This means that the attacker knows the
internal structure of the neural network and also the model parameters. This is a rela-
tively practical scenario as many optimized models are made public (e.g. Resnet [42],
GoogLeNet [38], . . . ). However, there are so-called model extraction attacks which can
be applied in blackbox setting to get the model parameters and therefore allow white-
box access for the attacker [40, 35]. While there are several countermeasures against
model extraction, we additionally show how a fault attack can be applied to bypass one
type of such countermeasure.

Organization. The rest of the paper is organized as follows. Section 2 provides the
necessary background on laser fault injection and activation functions of neural net-
works. Section 3 presents the details of the experiment, with the explanations of the
effect of faults on activation functions. These findings are applied on full DNN in Sec-
tion 4. An attack strategy based on findings from genetic algorithm is presented in
Section 5. Section 6 discusses how fault attack can be applied to bypass PRADA [26],
a countermeasure against model extraction attacks. Section 8 concludes this paper and
provides a motivation for follow up work.

2. Background

In this section, we recall basic concepts of deep neural networks, activation func-
tions and fault injection attacks.

2.1. Deep Neural Networks

Artificial neural networks (ANNs) are computing units designed on basis of bio-
logical neural networks. ANN is a network of interconnected nodes or neurons where
a signal is transmitted from input neurons towards output neurons. Arranged in lay-
ers, each neuron computes an output based on sum of (weighted) inputs from other
neurons, followed by a non-linear function. The weights are determined during the
training process. The non-linear layer function, also known as the activation function,
is what gives an ANN its power to learn and classify difficult problems. A simple ANN
can be composed of an input layer, one hidden layer and an output layer. To train the
network, the backpropagation algorithm is used, which is a generalization of the least
mean squares algorithm in the linear perceptron. Backpropagation is used by the gra-
dient descent optimization algorithm to adjust the weight of neurons by calculating the
gradient of the loss function [32].

Deep neural networks (DNNs) are fairly new variants of ANNs with three or more
hidden layers. DNNs have become realistic with the latest advances in computing
power, thanks to high performance graphical processing units (GPU). Several variants
of DNN exist, including multi-layer perceptron (MLP), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), etc. Owing to the deep architecture, they
have shown great success across domains – the most prominent being image classifi-
cation, with the biggest ones composed of as many as 152 layers (Resnet [42]).

As it was pointed out in [34], in case of large neural networks, there are many nodes
that do not contribute to the neural network function. However, there are some nodes
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which are crucial for correct functionality and if these are faulted, it can result in a
failure.

2.2. Activation Functions

The activation functions we consider are the following: softmax, ReLu, sigmoid
and tanh [20].

Softmax is normally used as the activation function for output layer. It takes a
vector x as input, ith entry of the output gives the probability of a given input belonging
to class i:

softmax(x)i =
exp(xi)∑
j exp(x j)

, (1)

where exp is the exponentiation function with base e.
In modern neural networks, the default recommendation for activation function is

the rectified linear unit or ReLu defined as follows:

ReLu(x) = max{0, x}. (2)

It is a piecewise linear function which preserves properties that make the optimization
of linear model easy.

Before the introduction of ReLu, commonly used activation functions are logistic
sigmoid activation function

sigmoid(x) =
1

1 + exp(−x)
, (3)

and hyperbolic tangent function

tanh(x) =
2

1 + exp(−2x)
− 1. (4)

The sigmoid function is normally used to introduce non-linearity in the model. A
reason for its popularity comes from the simple equation between its derivative and
itself

sigmoid′(x) = sigmoid(x)(1 − sigmoid(x)).

However, sigmoid functions become insensitive to inputs with large absolute values.
In such cases, the hyperbolic tangent activation function is used as an alternative.

2.3. Fault Injection Attacks

Fault injection attacks are a popular physical attack vector used against crypto-
graphic circuits [5]. By changing intermediate values during the cryptographic algo-
rithm execution, they can efficiently provide information on secret values, helping to
recover the secret key in just a few encryptions [6, 7, 10]. Normally, the secret key
recovery would require infeasible amount of computing time. Similarly, these attacks
can be used against verification circuits, such as PIN verification on a smartcard, where
a comparison function can be skipped and grant access to a malicious user [19].
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When it comes to fault injection techniques, there are several options one can use,
mostly depending on the adversary budget and expertise [4]. The most basic meth-
ods include variations in voltage or clock signal, allowing disturbance of instruction
sequences in microcontrollers [3]. Electromagnetic fault injection allows more precise
location targeting, enabling faults in memories [27, 33]. Laser fault injection is the
most precise from commonly used techniques, being capable of flipping single bits [2].

Up to date, to the best of our knowledge, only [30] describes fault injection attack
on neural networks. In their paper, they only provide a white box attack on deep neural
network through software simulation, while observing the changes in the output after
introducing faults in the network’s values. However, they do not provide insight on
practicality of such attack. Whether such attacks could also be applied physically re-
mained an open problem. Therefore, in our paper, we experimentally show what types
of faults are achievable in practice and we further use this information to develop a
realistic attack on DNNs.

2.4. Difference from Adversarial Learning
A huge amount of research is undergoing towards adversarial learning [31]. It basi-

cally involves constructing special inputs which are capable of confusing the machine
learning models, often leading to output misclassification. In this work, we explore
an alternate avenue to arrive at the same but by different means. The proposed fault
attacks target the implementation of the DNN, particularly the critical activation func-
tion to achieve misclassification without any perturbation of the input. Depending on
the application scenario and adversary model, one attack might be more suited than the
other.

3. Practical DNN attack feasibility analysis

In this part we first show the practical laser fault attack setup in Section 3.1. In
Section 3.2 we show the possible fault attacks on activation functions that we have
discovered with practical experiments. In Section 4, those attacks will be used for
simulating missclassification attacks on MNIST DNNs.

3.1. Attack Equipment Setup
The main component of the experimental laser fault injection station is the diode

pulse laser. It has a wavelength of 1064 nm and pulse power of 20 W. This power is
further reduced to 8 W by a 20× objective lens which reduces the spot size to 15×3.5
µm2.

As the device under test (DUT), we used ATmega328Pmicrocontroller, mounted on
Arduino UNO development board. The package of this chip was opened so that there
is a direct visibility on a back-side silicon die with a laser. The board was placed on
an XYZ positioning table with the step precision of 0.05 µm in each direction. A trigger
signal was sent from the device at the beginning of the computation so that the injec-
tion time could be precisely determined. After the trigger signal was captured by the
trigger and control device, a specified delay was inserted before laser activation. Laser
activation timing was also checked by a digital oscilloscope for a greater precision. Our
setup is depicted in Figure 1.
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Figure 1: Experimental laser fault injection setup.

3.2. DNN Activation Function Fault Analysis

To evaluate different activation functions, we implemented three simple 3-layer
neural networks with sigmoid, ReLu and tanh as the activation function for the second
layer respectively. The activation function for the last layer was set to be softmax. The
neural networks were implemented in C programming language, which were further
compiled to AVR assembly and uploaded to the DUT.

We surrounded the activation functions in the second layer with a trigger signal that
raised a voltage on a selected Arduino board pin to 5 V, helping us to determine the
proper laser timing.

As instruction skip/change is one of the most basic attacks on microcontrollers,
with high repeatability rates [10], we aimed at this fault model in our experiments. The
microcontroller clock is 16 MHz, one instruction takes 62.5 ns. Some of the activation
functions took over 2000 instructions to execute. To check what are the vulnerabilities
of the implementations, we have carefully varied the timing of the laser glitch from
the beginning until the end of the function execution so that every instruction would be
eventually targeted.

Please note that we used a single fault adversarial model, meaning that exactly
one fault was injected during one activation function execution. We consider an attack
is successful for a given input data if the output classification is different from the
classification obtained by the original network. And we refer to such a successful
attack as misclassification.

After we observed a successful missclassification, we determined the vulnerable
instructions by visual inspection of the compiled assembly code and by checking the
timing of the laser in that particular fault injection instance. Area of the chip vulnerable
to these disturbances is depicted in Figure 2. The chip area is 3×3 mm2, while the
area sensitive to laser is ≈ 70×100 µm2. With a laser power of 4.5% we were able
to disturb the algorithm execution, when tested with reference codes. More details on
the behavior on this particular microcontroller under laser fault injection can be found
in [10] while the sample preparation and guidance on the laser experiments is provided
in [8].

In this exploratory study, we implemented a random neural network, consisting of
3 layers, with 19, 12, and 10 neurons in input layer, hidden layer, and output layer,
respectively. Our fault attack was always targeting the computation of one of the ac-
tivation functions in hidden layer. In the following, we will explain the experimental
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Figure 2: Area plot depicting successful instruction skip experiments.

results on different activation functions in detail.
ReLu. This function is implemented by a following code in C:

if (Accum > 0) {
HiddenLayerOutput[i] = Accum;}

else {
HiddenLayerOutput[i] = 0;}

where i loops from 1 to 12 so that each loop gives one output of the hidden layer. Accum
is an intermediate variable that stores the input of activation function for each neuron.

The assembly code inspection showed that the result of successful attack was exe-
cuting the statement after else such that the output would always be 0. The correspond-
ing assembly code is as follows:

1 ldi r1, 0 ;load 0 to r1
2 cp r1, r15 ;compare MSB of Accum to r1
3 brge else ;jump to else if 0 >= Accum
4 movw r10, r15 ;HiddenLayerOutput[i] = Accum
5 movw r12, r17 ;HiddenLayerOutput[i] = Accum
6 jmp end ;jump after the else statement
7 else: clr r10 ;HiddenLayerOutput[i]= 0
8 clr r11 ;HiddenLayerOutput[i]= 0
9 clr r12 ;HiddenLayerOutput[i]= 0

10 clr r13 ;HiddenLayerOutput[i]= 0
11 end: ... ;continue the execution

where each float number is stored in 4 registers. For example, Accum is stored in regis-
ters r15,r16,r17,r18 and HiddenLayerOutput[i] is stored in r10,r11,r12,r13.
Line 4,5 executes the equation HiddenLayerOutput[i] = Accum.

The attack was skipping the “jmp end” instruction that would normally avoid the
part of code setting HiddenLayerOutput[i] to 0 in case Accum > 0. Therefore, such
change in control flow renders the neuron inactive no matter what is the input value.
Sigmoid. This function is implemented by a following code in C:
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Target activation function Relation between y and y′

ReLu y′ = 0
sigmoid y′ = 1 − y

tanh y′ = −y

Table 1: Relation between correct output y and faulted output y′ when a single fault is injected in target
activation function

HiddenLayerOutput[i] = 1.0/(1.0 + exp(-Accum));

After the assembly code inspection, we observed that the successful attack was taking
advantage of skipping the negation in the exponent of exp() function, which compiles
into one of the two following codes, depending on the compiler version:

A) neg r16 ;compute negation r16
B) ldi r15, 0x80 ;load 0x80 into r15

eor r16, r15 ;xor r16 with r15

Laser experiments showed that both neg and eor could be skipped, and therefore,
significant change to the function output was achieved.
Hyperbolic tangent. This function is implemented by a following code in C:

HiddenLayerOutput[i] = 2.0/(1.0 + exp(-2*Accum)) - 1;

Similarly to sigmoid, the experiments showed that the successful attack was exploiting
the negation in the exponential function, leading to an impact similar to sigmoid.
Softmax. In case of softmax function, we were unable to obtain any successful mis-
classification. There were only two different outputs as a result of the fault injection:
either there was no output at all, or the output contained invalid values. This lack of
valid output prevented us to do further fault analysis to derive the actual fault model
that happened in the device. Therefore, a thorough analysis of softmax behavior under
faults would be an interesting topic for the future work. Another line of future work
would be to analyze bit flip attacks [2]. The first application of such attack would be
to target IEEE 754 floating point representation that is used for storing the weights.
The representation follows 32-bit pattern (b31...b0): 1 sign bit (b31), 8 exponent bits
(b30...b23) and 23 mantissa (fractional) bits (b22...b0). The represented number is given
by (−1)b31 × 2(b30...b23)2−127 × (1.b22...b0)2. A bit flip attack on the sign bit or on the ex-
ponent bits would make significant influence on the weight. Another application of bit
flip attack would be to fault interconnecting weights, resulting to incorrect input to the
next layer. We leave both directions for future investigation as they are out of scope for
the current work.

If we let y and y′ denote the correct and faulted output of the target activation func-
tion, the relation between y and y′ is summarized in Table 1. For further illustration,
the graph of original and faulted activation functions is depicted in Figure 3.

4. Application to DNN

The results from previous section aiming at single functions can be directly used
to alter the behavior of a neural network. In this section we extend the attack to a
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Figure 3: (a) Sigmoid, (b) Hyperbolic tangent, and (c) ReLu functions. Blue lines indicate original function,
red lines indicate faulted ones.

full network, while targeting several function computations at once with a multi-fault
injection model. When it comes to deep neural networks, there are three possible places
to introduce a fault:

• Input layer – such fault would be identical to introducing a change at the input data.
Therefore, it is of little interest, since it would be normally easier for the attacker
to directly alter the input data rather than injecting precise faults with an expensive
equipment.

• Hidden layer(s) – since the structure of the hidden layer is normally unknown to the
attacker, she cannot easily predict the outcome of the fault injection. However, she can
still achieve the missclassification, although not necessarily to the class she decides.
Therefore, such attack might be interesting in case the attacker does not care about
the outcome class as long as it is different from the correct outcome.

• Output layer – normally, softmax is the function of choice for the output layer. Ac-
cording to our results, introducing a meaningful fault into softmax is harder compared
to other functions. However, as we discussed, in case the attacker can alter registers
storing the floating point data, she can easily missclasify the outcome to a chosen
class, making it a very powerful attack model.

Deciding on what layer to attack, it makes sense to inject the fault as close to the output
layer as possible to make the impact highest. Therefore, for our case, the attacker
injects faults into the last hidden layer of the network, targeting multiple activation
function computations.

In the following we consider DNNs severed for classification purposes and the
activation function of the output layer is sofmax. We further assume the output layer is
dense and the goal of the attacker is to misclassify an input. In Section 4.1 we discuss
the possible strategies of an attacker. In Section 4.2 we present the evaluation results
using the strategies on a sample DNN.

4.1. Algorithms for attacking the last hidden layer
We model the last two layers of a DNN as follows: let x denote the output of

the last hidden layer and let W and B denote the matrix of weights and the vector of
bias weights for output layer. Let z denote the input of softmax function. Suppose
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there are m neurons in the last hidden layer and n neurons in the output layer. Let Wk,
k = 1, 2, . . . , n be the columns of W. Then the output is given by

outputi =
exp(zi)∑n

j=1 exp(z j)
=

exp(xWi + Bi)∑n
j=1 xW j + B j

, i = 1, 2, . . . , n.

The final classification is given by ` such that maxi outputi = output`. For any sequence
of z j, j = 1, 2, . . . , n, we have

max
i

outputi = max
i

exp(zi)∑n
j=1 exp(z j)

=
maxi exp(zi)∑n

j=1 exp(z j)
=

exp
(
max

i
zi

)
∑n

j=1 exp(z j)
.

Hence the output classification is equal to ` such that maxi zi = z`.
The attacker injects faults in the computation of the activation functions for neu-

rons in the last hidden layer and gets a faulted x′. Correspondingly we have a faulted
vector z′. Thus, for a given input with correct classification `, the goal of misclassifi-
cation is equivalent to: achieve z′ such that there exists j with z′j > z′` or z′j − z′` > 0.
Consequently, an input can be misclassified if and only if

(x′W j + B j) − (x′W` + B`) > 0
(xW j + B j + (x′ − x)W jk) − (xW` + B` + (x − x)W`k) > 0

xW j + B j − xW` − B` + (x′ − x)(W jk −W`k) > 0
z j − z` + (x′ − x)(W jk −W`k) > 0

z j − z` +
∑
x′k,xk

(x′k − xk)(W jk −W`k) (5)

Algorithm 1 gives matrix A such that A[k][ j] = (x′k−xk)(W jk−W`k) and diagonal matrix
D whose diagonal is given by x′ − x.
Single fault strategy. When a single fault model is considered, x and x′ only differs in
one entry, say xk. Equation (5) becomes

z j − z` + (x′k − xk)(W jk −W`k) > 0 (6)

For a given DNN and target input, Algorithm 2 outputs k, the neuron to attack so that a
misclassification can be achieved. Line 2 calculates the matrix A with column i given
by Wi − W`. Depending on the activation function, x′ is related to x as described in
Table 1. After line 13, the (k, j)−entry of matrix A is given by (x′k − xk)(W jk − W`k).
Line 15 checks if Equation (6) is satisfied for any j, k. If it can be satisfied for some
k, j, the target input can be misclassified with a fault attack on neuron k.

For multiple fault model, a natural strategy is random faults, i.e. random number
of neurons in the last hidden layers are faulted. Here we provide another strategy which
utilizes the information of weights and bias of the last layer.
Multiple faults strategy. For a target input with correct class `, we aim to find a list of
neurons to attack so that the probability of class ` in the output will be reduced. Details
are given in Algorithm 3.
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Algorithm 1: Calculation of matrix A
Input : W: matrix of weights for the last layer with columns W1,W2, . . . ,Wn; B vector

of bias weights for the last layer; `: the correct class of target input; x: output
of the last hidden layer for target input; activation function: ReLu, sigmoid or
Tanh.

Output: Matrices A,D.
1 for i = 1, 2, . . . , n do
2 A[i] = Wi −W`;

3 if activation function is ReLu then
4 for k = 1, 2, . . . ,m do
5 x′[i] = 0;

6 if activation function is sigmoid then
7 for k = 1, 2, . . . ,m do
8 x′[i] = 1 − x[i];

9 if activation function is Tanh then
10 for k = 1, 2, . . . ,m do
11 x′[i] = −x[i];

12 D = diagonal matrix with diagonal x′ − x;
13 A = DA;
14 return A,D;

4.2. Evaluation of a sample DNN

To test how our attack can influence a real-world DNN, we trained and evaluated
different DNNs with the attack strategies described above. The attack vectors consid-
ered are as described in Section 3.2. We have selected a popular MNIST dataset [28].
The training of DNNs was accomplished using Keras (ver.2.1.6) [14] and Tensorflow
libraries (ver.1.8.0) [1]. The structures of the DNNs are detailed in Table 2. For each
target function (ReLu, sigmoid and tanh), 10 DNNs with different number of neurons
(n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500) in hidden layer 4 were evaluated.
We used a partially fixed structure of DNN in order to study the effects of fault attacks
on different activation functions. The prediction accuracy we obtained is summarized
in Table 3. The accuracy shows that although the DNNs we choose are relatively sim-
ple, their accuracy is comparable with the state of the art. Success rates are calculated
for 800 random inputs.

For multiple fault model, we evaluated the DNNs with number of faults equal to
10, 20, 30, 40, 50 percent of the number of neurons in hidden layer 4. The simulation
results for targeting activation function being ReLu, Sigmoid and tanh are presented in
Figures 4, 5 and 6 respectively.

Overall, it can be concluded that in case of sigmoid and tanh, if the attacker wants
to have a reasonable success rate (>50%), she should inject faults in at least 40% of
the neurons using multiple faults strategy in the chosen layer. But for ReLu, when the
number of neurons is big, the DNN becomes more resistant to fault attacks.

The results also show that sigmoid and tanh functions follow the same trend, which
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Algorithm 2: Single fault strategy
Input : A:obtained from Algorithm 1; z: input of softmax function.
Output: True/False indicating if an attack exists or not; k s.t. the input can be

misclassified with fault attack on neuron k.
1 for k = 1, 2, . . . ,m do
2 for j = 1, 2, . . . , n, j , ` do
3 if z j − z` + A[k][ j] > 0 then
4 output k;
5 return True;

6 return False;

Algorithm 3: Multiple faults strategy
Input : D: obtained from Algorithm 1; W`: the `th column of W; M: number of faults.
Output: indices: a list of neurons to attack.

1 indices= [];
2 B = DW`;
3 for k = 1, 2, . . . ,m do
4 if B[k][ j] < 0 then
5 add k to indices;
6 if length of indices== M then
7 return indices;

8 return indices;

is caused by the same type of fault as explained in the previous section – skipping the
negation in the exponentiation function.

5. Genetic algorithm for attacking the whole DNN

A natural question to ask is “what if we assume the attacker can target any neurons
in the whole DNN?”, and “how many neurons does she need to attack to achieve a
certain percentage of misclassification?”

To find answer these questions, we analyzed three different DNNs with structures
given in Table 4, where the target activation functions are ReLu, Sigmoid, tanh, re-
spectively. Similarly to Section 4.2, the DNNs were trained using Keras (ver 2.1.6.) on
MNIST dataset. The training and testing accuracies are summarized in Table 5. The
aim of the experiment was to check the effect on the DNN when a certain percentage
of neurons is attacked. For this purpose, we have adopted the genetic algorithm to help
in searching for the vulnerable collections of neurons in a given DNN.

Genetic Algorithm (GA) is a computational intelligence heuristic algorithm nor-
mally used for optimization problems, based on the concept of natural selection. For
optimization problems with large search space, it is often a preferable choice compared
to brute-force search, since it can help to reduce the search time for finding the solution.
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Figure 4: Target activation function – ReLu.
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Figure 5: Target activation function – Sigmoid.
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Figure 6: Target activation function – tanh.
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Layer No. of neurons Activation function
Input layer 784 -

Hidden layer 1 500 ReLu
Hidden layer 2 500 ReLu
Hidden layer 3 500 ReLu
Hidden layer 4 n target activation function
Output layer 10 Softmax

Table 2: Structure of the DNN used in evaluations.

Target ReLu
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.2 99.2 99.4 98.8 99.1 99.0 99.2 98.4 98.9 99.1
Test. Acc. 97.4 97.9 98.0 97.4 97.7 97.5 97.8 97.3 97.5 98.0

Target sigmoid
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.2 99.0 99.3 99.0 99.3 99.3 99.4 99.1 99.3 99.4
Test. Acc. 98.0 97.7 98.0 97.6 98.1 98.0 98.0 97.7 98.1 98.0

Target tanh
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.0 99.0 98.2 99.1 99.1 99.3 99.0 98.9 99.2 98.9
Test. Acc. 98.0 97.5 97.8 97.8 97.8 98.0 97.6 97.7 98.1 97.4

Table 3: Training/testing accuracy of DNNs used in evaluation.

Though it does not guarantee finding a perfect solution, it is an alternative approach that
finds a good enough solution, while saving the computational resources significantly.
GA itself has been applied as well for fault attacks problems, for example, to search
for optimal experiment parameters for fault injection [36].

Typically, the standard GA method is to assign fitness values for each individuals
within the search space. A population of these individuals is initialized randomly ac-
cording to the specification for the population. For each generation (or iteration), the
algorithm selects better individuals and removes the worse ones, while combining dif-
ferent individuals using crossover algorithm to generate new ones. The evaluation is
performed according to the fitness function defined, and the aim is to find an individual
which could optimize the fitness value in the search space. Normally, to avoid converg-
ing to local optima, a mutation function is introduced by randomly changing parts of
the new individuals.

In our experiment, we use DEAP [17] for the GA implementation. DEAP is an
evolutionary algorithm library in Python. Since we are using Keras for our DNN im-
plementation, DEAP can be easily adopted and integrated for the experiments. Our
GA follows a standard structure as shown in Algorithm 4. Here we explain how each
component of GA was implemented:
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Algorithm 4: Genetic Algorithm (GA) for attacking the whole DNN
Input : DNN structure, noOfFaults: number of faults, noGen: number of generation
Output: indices: a list of neurons to attack.

1 P = Generate Population(noOfFaults);
2 Evaluate(P);
3 for i in range(noGen) do
4 Crossover(P);
5 Mutation(P);
6 Evaluate(P);
7 Selection(P);

8 return the best individual in P;

• Individual: Each individual is generated as a binary vector whose length is
the number of neurons in the hidden layers of the neural network. For DNNs we
evaluated (see Table 4), each individual has length 800. As we consider faults to
be inserted randomly in the hidden layers, we do not differentiate to which layer
the faulted neuron belongs, that is why the individual is of vector shape. A 0 in
index i would indicate the ith neuron is not attacked and a 1 in index j would
indicate the jth neuron will be attacked. Naturally, The number of 1s is equal to
the number of faults allowed.

• Fitness function: The fitness of an individual is the corresponding mis-
classification rate – more precisely, we calculate the percentage of misclassified
image by faulting the network according to the fault model represented by the
individual.

• Population: In our experiments, we set size of population to be 200 and num-
ber of generations to be 120. These numbers were selected for practical reasons,
as higher values would yield impractical computation times.

• Selection The selection of next generation follows tournament selection with
tournament size 3.

Regarding the crossover and mutation, we followed the selection guidelines stated
in [16]. In general, it is advised to select lower values for these parameters in case
of binary values.

• Crossover: For each pair of individuals in the population, the crossover rate
is set to be 0.78. This value is relatively high because of the size of the search
space in our problem – crossover handles the exploration part of the GA, which
means searching through the available space [43]. The offsprings are obtained
by performing two-point crossover.

• Mutation: Mutation is performed in order to avoid falling for local minima
in the search space. In this experiment, flip bits are used for mutation. The
mutation rate was chosen to be 0.05. We chose a relatively low mutation rate to
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Layer No. of neurons Activation function
Input layer 784 -

Hidden layer 1 200 target activation function
Hidden layer 2 200 target activation function
Hidden layer 3 200 target activation function
Hidden layer 4 200 target activation function
Output layer 10 Softmax

Table 4: Structure of the DNN used in evaluation for attacking the whole network.

Activation function Training Accuracy Test Accuracy
ReLu 99.9 98.7

Sigmoid 99.3 97.6
tanh 99.9 98.1

Table 5: Training/test accuracy of DNNs used in evaluation for attacking the whole network.

avoid reducing the algorithm to a random search, but significant enough to get a
good convergence.

In each generation, new individuals have to be checked to ensure that they satisfy the
constraint in the original problem, namely, the number of 1s is equal to number of faults
allowed. We include this constraint in the evaluation step – we penalize the outliers by
assigning zero score, to exclude them from the next generation.

Figure 7 shows the success rate of misclassification when the neurons are selected
by using GA, compared to random selection. It shows that especially in case of Sig-
moid and ReLu, careful choice of which neurons to fault can increase the success rate
significantly. To summarize, the result can be improved up to 62% in case of ReLu,
31% in case of Sigmoid, and 20% in case of tanh.

6. Attack on PRADA Countermeasure

In many cases, the model parameters are kept confidential as training models re-
quire computing resources and training data. The trained model is thus considered
an intellectual property of the organization that has developed it. As a result, several
attacks that recover these parameters, called model extraction attacks [40, 35] were
proposed. Naturally, another branch of research that provides protection against the
model extraction has emerged. In this section we show how fault attack can be used
to bypass a countermeasure, entitled PRADA [26], so that existing attacks can be car-
ried out to extract the model. PRADA is among the state of the art countermeasures
preventing most commonly known model extraction attacks.

PRADA [26] is a model extraction attack detection method proposed in 2019. This
detection method analyzes a distribution of consecutive queries and it considers the
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Figure 7: Evaluation results using genetic algorithm (GA) to select neurons versus random selection.

queries as malicious if the distribution deviates from a normal distribution. Once ma-
licious queries are detected, the authors propose to return wrong predictions instead
of the correct ones. For our attack, we follow their public implementation2, where
once malicious queries are detected, the neural network model randomly returns one of
the first three classes with the highest probabilities. The random selection was imple-
mented by shuffling the top three classes. To show the behavior of the countermeasure
on embedded devices, we implemented PRADA in C code suitable for running on Ar-
duino platform.

The idea of the defense mechanism is realized by the following Python code:

res = shuffle_max_logits(logits, 3) if attacker_present else logits

where logits contains the correct output and shuffle_max_logits(logits: np.ndarray,
n: int) is a function that shuffles the n largest entries of logits and returns the
shuffled array. The corresponding C code in our implementation is as follows

1 if (attacker_present) {
2 shuffle_max_logits(res,3);
3 }

Below we state the AVR assembly for the previous statement in C. Please note that
register r16 contains the value of attacker_present:

1 ldi r17, 0x01 ;load 1 to r17
2 cp r16, r17 ;compare r16 and r17
3 breq shuffle_max_logits ;jump to shuffle_max_logits if they are equal

We note that an instruction skip on line 3 can skip the function call to the function
shuffle_max_logits. In this case even if attacker is detected, the logit values will
not be shuffled and we can bypass the countermeasure completely. Given the execution

2https://github.com/SSGAalto/prada-protecting-against-dnn-model-stealing-attacks
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Strategy Attack target No. of faults Precision
Single fault Last layer 1 exact

Random fault Last layer multiple random
Multiple fault Last layer multiple exact

Genetic algorithm Full network multiple exact

Table 6: Similarities and differences of proposed attack strategies.

delay of target neural network is orders of magnitude higher than the triggering rate
of the laser injection system, the fault can target each execution individually with near
perfect repetition rate.

7. Discussion, Analysis and Limitations

The presented study shows possibilities of causing misclassifications on neural net-
works with three major activation functions. It has to be noted that these attacks as-
sume a relatively strong adversary model – the attacker has to be able to physically
tamper with the device to flip the bits either in memory or during the activation func-
tion execution. Compared to traditional adversarial attacks [39], which focus on input
perturbations, fault attack is relatively harder to perform. On the other hand, standard
protection techniques would check the integrity of the input and therefore, would miss
the perturbations that happen during the computation. Also, in case the input is stored
somewhere for further checking in case the model fails, it is easy to identify the stan-
dard adversarial attacks additionally, but in case the model fails due to a fault attack,
there will not be any evidence.

We have presented four attack strategies: single fault, random fault, multiple fault
and selection of faulted neurons with the genetic algorithm. The similarities and differ-
ences of those strategies are summarized in Table 6.

In terms of the attack target, the first three strategies focus on attacking the last
layer of a neural network and the last strategy can be applied to the whole network.
Thus, the attack with the genetic algorithm explores more vulnerable spots in the neu-
ral network and provides better security analysis of the network.
The single fault strategy only requires one fault, which makes it easier to perform com-
pared to the other strategies.
Based on the analyzed attack strategies, we can further differentiate the attacker’s abil-
ities into two classes: (1) capable of randomly targeting neurons and (2) capable of
selectively targeting neurons in the network. Random fault strategy falls in the first
class and the other three strategies fall within the second class. While the first class
can be achieved relatively easily once the device is in possession of the adversary, for
example by underpowering the device or by electromagnetic emanations, the second
class requires internal knowledge of the network structure and the timing information
on when the individual neurons are executed.

In the area of open problems and suggestions for future work, we believe there are
two promising directions: (1) focusing on optimizing the number of faults to achieve
the misclassification, and (2) finding a stealthy and possibly even remote way to cause
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faults. The optimization of the number of faults has already gained interest in the
AI security community [24]. In the paper, they study the degradation of the network
caused by fault attacks and try to find a single bit flip which causes the biggest drop in
the accuracy. However, as the number of parameters is normally huge and the number
of bits which form these parameters is even larger, we believe these results can be still
improved.

Regarding the stealthy and remote way to cause faults, the rowhammer-based ap-
proaches seem like the best option at the moment, although their practicality can be
argued. Memory manufacturers react quickly to remove the erroneous behavior of
their chips, so every time there is a modification to the chips, a slightly different tech-
nique has to be developed. To the best of our knowledge, the current state-of-the-art
rowhammer attack can target DDR4 memory chips [18].

8. Conclusion and Future Work

In this paper, we evaluated reliability of activation functions of deep neural net-
works implemented in embedded devices against laser fault injection. With these re-
sults, we simulated various scenarios on how the entire network can be affected in case
multiple neurons are targeted during one execution. With the help of genetic algo-
rithm, we managed to achieve high misclassification rates (≈ 70%) with a relatively
low number of faulted neurons (10%). Additionally, we show that with a relatively
simple instruction skip attack, one can skip a countermeasure against model extraction
attack.

In the future, it would be interesting to look at fault injection countermeasures
that would fit implementations of neural networks on embedded devices. There are
already techniques available that correct non-malicious alterations of the processed
values in DNN (due to environmental conditions) [29]. However, countermeasures
against malicious adversaries still need to be developed, similarly to the area of applied
cryptography [9, 37, 15]. As cryptography normally works on byte values and neural
networks require floating point values, it is necessary to find adjustments to existing
fault protection techniques.
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