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Abstract. Cryptographic anonymous credential schemes allow users to
prove their personal attributes, such as age, nationality, or the validity
of a ticket or a pre-paid pass, while preserving their privacy, as such
proofs are unlinkable and attributes can be selectively disclosed. Re-
cently, Chase et al. (CCS 2014) observe that in such systems, a typical
setup is that the credential issuer also serves as the verifier. They in-
troduce keyed-verification credentials that are tailored to this setting.
In this paper, we present a novel keyed-verification credential system
designed for lightweight devices (primarily smart cards) and prove its
security. By using a novel algebraic MAC based on Boneh-Boyen signa-
tures, we achieve the most efficient proving protocol compared to existing
schemes. To demonstrate the practicality of our scheme in real applica-
tions, including large-scale services such as public transportation or e-
government, we present an implementation on a standard, off-the-shelf,
Multos smart card. While using significantly higher security parameters
than most existing implementations, we achieve performance that is more
than 44 % better than the current state-of-the-art implementation.

1 Introduction

Using cryptographic credentials, users can anonymously prove the ownership
of their personal attributes, such as age, nationality, sex or ticket validity. In
the recent two decades, many proposals for anonymous credential schemes have
been published. Starting with the fundamental works of Chaum [24], Brands [12],
Camenish and Lysyanskaya [18], until recent schemes [23, 1, 35, 28, 4], researchers
try to find a scheme that fulfills all requirements on privacy, is provably secure
and is so efficient that it can be implemented on constrained devices. While
there are schemes that fulfill all the requirements and can be implemented on
PC and smartphone platforms, existing schemes deployed on smart cards are
still not sufficiently fast for many applications, such as e-ticketing and eIDs. Yet,
smart cards are the most appropriate platform for storing and proving personal
attributes in everyday life, due to their size, security and reliability.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
030-22312-0
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There are two major reasons why we lack practical implementations of anony-
mous credentials on smart cards. First, the complexity of asymmetric crypto-
graphic algorithms used in anonymous credentials is quite high even for mod-
ern smart cards. Second, modern cryptographic schemes, including anonymous
credentials, are mostly based on operations over an elliptic curve, while most
available smart cards do not provide API for these operations. Particularly, the
very popular operation of bilinear maps is still unsupported on this platform
and simple operations, such as EC point scalar multiplication and addition, are
significantly restricted.

In this paper, we address both these concerns: First, we propose a novel
keyed-verification anonymous credential scheme that is designed to allow for
smart card implementations. Our scheme has the most efficient proving algo-
rithm to date and requires only operations that are available on existing off-
the-shelf smart cards. Second, we present the implementation of our anonymous
credential scheme that is 44 % - 72 % faster than the current state-of-the-art
implementation, while even providing a higher security level.

1.1 Related Work

Cryptographic anonymous credential schemes were first defined by the seminal
works of Chaum [24], Brands [12] and Camenisch and Lysyanskaya [18]. The
schemes were gradually improved by adding revocation protocols [19, 16], using
more efficient algebraic structures [35, 20] and developing security models and
formal proofs [17]. Idemix [22] and U-Prove [33] are the examples of the most
evolved schemes aiming for a practical use. Recently, a new approach to obtain
more efficient anonymous credential schemes was proposed. Chase et al. [23] ar-
gue that in many scenarios where anonymous credentials could be deployed, the
issuer of the credential will also serve as the verifier. This means that the verifier
possesses the issuer key, which can be leveraged to obtain more efficient anony-
mous credential schemes tailored to setting. They formally define these so-called
Keyed-Verification Anonymous Credentials (KVAC) and propose two instantia-
tions. Barki et al. [3] propose a new KVAC scheme which is currently the most
efficient: Proving posession of a credential with u hidden attributes costs u+ 12
exponentiations. Couteau and Reichle [25] construct a KVAC scheme with pre-
sentation cost 2u+ 3 exponentiations in a 2048-bit group, which is less efficient,
but works in the standard model. Some of the new constructions were already
implemented on the PC platform with promising results [29, 35]. Yet, the imple-
mentations on the smart card platform are available only for the former schemes
that are based on traditional, rather inefficient modular structures [31, 39, 34,
8]. Furthermore, most implementations use only 1024-bit RSA groups that are
considered insufficient by today’s standards [38]. Implementations with higher
security parameters [4, 1, 3, 5] either need distribution of computation to another
device (usually a mobile phone) or use a non-standard proprietary API for EC
operations and rely on pre-computations (which is impossible in crucial applica-
tions like e-ticketing and eID where the card is inactive and starts only for the
attribute presentation). Regarding speed, the best-performing implementation
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of Idemix by the IRMA project [39] is able to compute the unlinkable attribute
proof in at least 0,9 seconds, which is not convenient for time-critical applica-
tions where the proof should be presented in less than 500 ms. Currently, there
is no cryptographic proposal and its implementation that would realize unlink-
able anonymous credentials on the smart card platform with performance and
security parameters necessary for a practical deployment.

1.2 Our Contribution

We propose a novel cryptographic scheme for anonymous attribute-based cre-
dentials that is designed primarily for smart cards. It provides all necessary
privacy-protection features, i.e., the anonymity, unlinkability, untraceability and
selective disclosure of attributes. The scheme is based on our original algebraic
MAC that makes its proving protocol very efficient. The computational com-
plexity of our proving protocol is the lowest from related schemes (only u + 2
scalar multiplications to present an attribute ownership proof) and we need only
basic arithmetic operations that are already provided by existing smart cards’
APIs. We present the results of the full implementation of our proving proto-
col that is faster by at least 44 % than the state-of-the-art implementation. By
reaching the time of 366 ms including overhead, which is required for proving
personal attributes on a 192-bit EC security level, we argue that the anonymous
credentials are finally secure and practical even for time-critical and large-scale
applications like eIDs, e-ticketing and mass transportation.

2 Preliminaries

2.1 Notation

We describe (signature) proof of knowledge protocols (SPK) using the efficient
notation introduced by Camenisch and Stadler [21]. The protocol for proving
the knowledge of discrete logarithm of c with respect to g is denoted as SPK{α :
c = gα}. The symbol ”:” means ”such that” and |x| is the bitlength of x. The
symbol H denotes a secure hash function. We write a ←$ A when a is sampled
uniformly at random from A. Let GroupSetup(1κ) be an efficient algorithm that
generates a group G = 〈g〉 of prime order q, such that |q| = κ. Let e denote a
bilinear map.

2.2 Weak Boneh-Boyen Signature

We recall the weak Boneh-Boyen signature scheme [11], which is existentially
unforgeable against a weak (non-adaptive) chosen message attack under the q-
SDH assumption.

Setup: On input security parameter τ , generate a bilinear group (q,G1,G2,
GT , e, g1, g2) ← G(1τ ). Take x ←$ Zq, compute w = gx2 , and output sk = x
as private key and pk = (q,G1,G2,GT , g1, g2, e, w) as public key.
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Sign: On input message m ∈ Zq and secret key sk, output σ = g
1

x+m

1 .

Verify: On input the signature σ, message m, and public key pk, output 1 iff
e(σ,w) · e(σm, g2) = e(g1, g2) holds.

2.3 Algebraic MACs

Compared to traditional Message Authentication Codes (MACs), algebraic MACs
can be efficiently combined with zero knowledge proofs. In terms of security, alge-
braic MACs [23] are no different from traditional MACs. A MAC scheme consists
of algorithms (Setup,KeyGen,MAC,Verify). Setup sets up the system parameters
par that are given as implicit input to the other algorithms. KeyGen creates
a new secret key, MAC(sk,m) computes a MAC on message m, and Verify is
used to verify MACs. We recall the security definitions due to Dodis et al. [26]
and slightly strengthened by Chase et al. [23], and require completeness and
unforgeability under chosen message and verification attack (uf-cmva).

Definition 1. A MAC scheme (Setup,KeyGen,MAC,Verify) is complete if the
following probability is negligible in κ for all messages m:

Pr
[
Verify(sk,m, σ) = 0 | par←$ Setup(1κ),

(ipar, sk)←$ KeyGen(par), σ ←$ MAC(sk,m)
]
.

Definition 2. A MAC scheme (Setup,KeyGen,MAC,Verify) is (t, ε, qMAC, qVerify)-
unforgeable under chosen message and verification attack if there exists no ad-
versary A running in time t making at most qMAC MAC queries and at most
qVerify Verify queries, for which the following probability is at least ε:

Pr
[
Verify(sk,m∗, σ∗) = 1 ∧m∗ 6∈ Q | par←$ Setup(1κ),

(ipar, sk)←$ KeyGen(par), (σ∗,m∗)←$ AO
MAC(sk,·),OVerify(sk,·,·)

(par, ipar)
]
.

3 Our Algebraic MAC

This section describes our novel algebraic MAC scheme MACwBB, which is based
on the weak Boneh-Boyen signature. It works in a prime order group and can
MAC vectors of n messages #»m = (m1, . . . ,mn), with mi ∈ Z∗q , using the tech-
nique due to Camenisch et al. [14] to extend the Boneh-Boyen signature to
multiple messages. The scheme is composed of the following algorithms.

Setup(1κ): Output par = (G, g, q)← GroupSetup(1κ).

KeyGen(par): Choose xi ←$ Z∗q for i = (0, . . . , n). Output secret key sk =
(x0, . . . , xn) and public issuer parameters ipar ← (X0, . . . , Xn) with Xi =
gxi .
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MAC(sk, #»m): Let sk = (x0, . . . , xn) and #»m = (m1, . . . ,mn). Compute σ =

g
1

x0+
∑n

i=1
mixi and auxiliary information σxi

← σxi for i = (1, . . . , n).4 Out-
put the authentication code (σ, σx1

, . . . , σxn
).

Verify(sk, #»m,σ): Let sk = (x0, . . . , xn) and #»m = (m1, . . . ,mn). Output 1 iff
g = σx0+

∑n
i=1mixi .

Unforgeability of our MAC scheme holds under the SCDHI assumption,
which is a variation of the SDDHI assumption [15].

Theorem 1. Our MAC scheme is unforgeable, as defined in Definition 2, under
the SCDHI assumption. More precisely, if n-SCDHI is (t, ε)-hard, then our MAC
scheme is (t, ε)-unforgeable.

We formally prove Theorem 1 in Appendix B. We introduce the SCDHI problem
in Appendix A and prove its hardness in generic groups in Theorem 3.

4 Keyed-Verification Anonymous Credential Scheme

We construct our keyed-verification anonymous credential (KVAC) scheme us-
ing the algebraic MAC scheme presented in Section 3 above. Unlike traditional
anonymous attribute-based credential schemes (ABCs), the verifier needs to
know the secret keys to be able to verify user’s attributes in keyed-verification
anonymous credential schemes. This feature is particularly convenient for sce-
narios where attribute issuers are the same entities as attribute verifiers. The
mass transportation settings is an example of such a scenario because the trans-
portation authority both issues and checks the tickets and passes. The KVAC
scheme supports all the standard privacy-enhancing features of ABC schemes,
such as anonymity, unlinkability, untraceability, and selective disclosure of at-
tributes, and is compatible with major credential schemes [22, 33] and standard
revocation schemes [18, 13].

4.1 Definition of Keyed-Verification Anonymous Credential
Schemes

A KVAC scheme consists of algorithms (Setup,CredKeygen, Issue,Obtain,Show,
ShowVerify)5 that are executed by users and an issuer who also serves as a verifier.

Setup(1k) takes as input the security parameter and outputs the system param-
eters par. We assume that par is given as implicit input to all algorithms.

4 Note that the the auxiliary information σxi can be omitted as they are not required
for verification. However, in our keyed verification credentials, it will turn out that
adding these values will make credential presentation more efficient.

5 Note that Chase et al. [23] define BlindIssue and BlindObtain, but as we do not
show efficient algorithms for blind issuance, we omit them from the definition here.
Instead, we define Obtain, which lets a user check that a credential is indeed valid
using only the public issuer parameters.
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User Verifier
〈mi〉ni=1, σ, 〈σxi〉ni=0, D G, g, q 〈xi〉ni=0, D, 〈mi〉i∈D

nonce←$ Zqnonce←−−−−−−−−−−−−−−−−−−−−−
r, ρr, ρmi6∈D ←

$ Zq
σ̂ ← σr

t←
∏
i6∈D σ

ρmi
·r

xi gρr

c← H(D, 〈mi〉i∈D, t, σ̂, par, ipar, nonce)
sr ← ρr + cr
〈smi ← ρmi − cmi〉i6∈D σ̂, t, sr, 〈smi〉i6∈D−−−−−−−−−−−−−−−−−−−−−−−→ Check σ̂ 6= 1G

c← H(D, 〈mi〉i∈D), t, σ̂, par, ipar, nonce)

Check t
?
= gsr · σ̂−c·x0+

∑
i6∈D(xi·smi

)−
∑

i∈D(xi·mi·c)

Fig. 1: Definition of the Show and ShowVerify algorithms of our KVAC scheme.

CredKeygen(par) outputs a issuer secret key sk and issuer parameters ipar.
Issue(sk , (m1, . . . ,mn)) takes as input the issuer secret key and attribute values

(m1, . . . ,mn) and outputs a credential cred. The issuance of attributes must
be done over a secure channel (as the attributes and private AMAC are
sent between the user and issuer) and the credential should be stored on a
tamper-proof device (we use a smart-card).

Obtain(ipar, cred, (m1, . . . ,mn)) lets a user verify a credential by giving as input
the public issuer parameters, the credential and the attribute values.

Show(ipar, cred, (m1, . . . ,mn), φ) ↔ ShowVerify(sk , φ) is an interactive algo-
rithm. The user runs Show on input the public issuer parameters, the cre-
dential, the attribute values and attribute predicate, and the verifier runs
ShowVerify on input the issuer secret key and the attribute predicate, which
will output 1 iff it accepts the credential presentation.

4.2 Our KVAC Scheme Based on MACwBB

In this section, we present our novel KVAC scheme that uses MACwBB as intro-
duced in Section 3. Our scheme certifies attributes in Z∗q and is parametrized
by n, the amount of attributes in a credential. We describe our scheme using
selective disclosure as attribute predicates, i.e., a predicate φ can be seen as a
set D ⊆ {1, . . . , n} containing the indices of the disclosed attributes and the
attribute values of the disclosed attributes 〈mi〉i∈D. On a high level, we follow
the approach from Chase et al [23] and build our KVAC scheme from our alge-
braic MAC presented in Section 3 and zero knowledge proofs. One novel trick
allows us to strongly improve the efficiency of our scheme. Instead of computing
a standard noninteractive Schnorr-type proof of knowledge, we use the fact that
the verifier knows the secret key. This allows us to omit elements that the verifier
can compute by itself and saves the prover a lot of work.
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We note that our Issue algorithm does not support the efficient issuance of
committed attributes, i.e., the blind issuance. This feature is useful in applica-
tions where a user needs to transfer his attributes among credentials or needs to
get issued attributes that are only private to him. However, we consider these
scenarios rare in targeted applications such as e-ticketing, mass transportation
and loyalty cards. Furthermore, if the issuance of committed attributes is nec-
essary, it can be done by employing Paillier encryption [32], as is shown in [6].

Setup(1k): Output par = (G, g, q)← GroupSetup(1κ).

CredKeygen(par): Run (sk , ipar) ← MACwBB.KeyGen(par) and output sk and
ipar.

Issue(sk , (m1, . . . ,mn)): Run (σ, 〈σxi〉ni=0) ← MACwBB.MAC(sk , (m1, . . . ,mn)).
Next, provide a proof that allows a user to verify the validity of the creden-
tial: π ← SPK{(x0, . . . , xn) :

∧n
i=0 σxi

= σxi ∧Xi = gxi}. Output credential
cred← (σ, 〈σxi

〉ni=0, π).

Obtain(ipar, cred, (m1, . . . ,mn)): Parse ipar as (X0, . . . , Xn) and parse cred as
(σ, 〈σxi〉ni=0, π). Check that σx0 ·

∏n
i=1 σ

mi
xi

= g and verify π with respect to
ipar and σ.

Show(ipar, cred, (m1, . . . ,mn), (D, 〈mi〉i∈D)): In credential presentation, we want
to let the user prove posession of a valid credential with the desired at-
tributes. On a high level, we want to prove knowledge of a weak Boneh-
Boyen signature, so we can apply the efficient proof due to Arfaoui et al. [2]
and Camenisch et al. [13], by extending it to support a vector of messages:
Take a random r ←$ Z∗q and let σ̂ ← σr and σ̂xi

← σ r
xi

for i = 0, . . . , n, and
prove

SPK{(〈mi〉i 6∈D, r) : σ̂x0

∏
i∈D

σ̂ mi
xi

= gr
∏
i6∈D

σ̂−mi
xi
}.

The verifier simply checks that the σ̂xi
values are correctly formed and ver-

ifies the proof.
While this approach is secure and conceptually simple, it is not very efficient.
We now present how we can construct a similar proof in a much more efficient
manner. The key observation is that the user does not have to compute
anything that the verifier, who is in possession of the issuer secret key sk ,
can compute. This means we can omit the computation of the σ̂xi

values
and define Show as follows. Randomize the credential by taking a random
r ← Z∗q and setting σ̂ ← σr. Take ρr, ρmi6∈D ←$ Zq and compute

t =
∏
i 6∈D

σ
ρmi
·r

xi gρr , c← H(D, 〈mi〉i∈D), t, σ̂, par, ipar, nonce),

and let sr = ρr + cr, 〈smi
= ρmi

− cmi〉i 6∈D. Send (σ̂, t, sr, 〈smi
〉i 6∈D) to the

verifier.
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ShowVerify(sk , (D, 〈mi〉i∈D)): The verifier running ShowVerify will receive (σ̂, t,
sr, 〈smi

〉i 6∈D) from the user. It recomputes

c← H((m1, . . . ,mn), (D, 〈mi〉i∈D), t, σ̂, par, ipar, nonce)

and checks

t
?
= gsr · σ̂−c·x0+

∑
i6∈D(xi·smi

)−
∑

i∈D(xi·mi·c).

Output 1 if valid and 0 otherwise. The Show and ShowVerify algorithms are
depicted in Fig. 1.

Theorem 2. Our keyed-verification credential scheme is secure following the
definition by Chase et al. [23] (ommitting the blind issuance), under the n-
SCDHI assumption (as defined in Definition 3) in the random oracle model.

We formally prove Theorem 2 in Appendix C.

4.3 Efficiency

Our Show and ShowVerify algorithms were designed to be efficient enough to
run on smart cards. We avoided computing bilinear pairings due to their com-
putational cost and the lack of support on existing smart cards. The use of the
second most expensive operation, the exponentiation (or scalar multiplication of
EC points respectively), is reduced to a minimum. Our proving algorithm, the
part of the protocol we envision being executed on a smart card, only requires
u+ 2 exponentiations, where u is the number of undisclosed attributes.

Table 1 compares the efficiency of our Show protocol to existing KVAC
schemes [23, 4], well-known anonymous credential schemes U-Prove [33] and
Identity Mixer [22], and a recent scheme by Ringers et al. [35]. Idemix takes
place in the RSA group, meaning that the exponentiations are much more ex-
pensive than exponentiations in a prime order group. U-Prove lacks the unlinka-
bility property. Compared to MACBB, our scheme requires only 2 exponentiations
without hidden attributes, whereas MACBB requires 12, showing that especially
for a small number of undisclosed attributes, our scheme is significantly faster
than MACBB.

Table 1: Comparison of presentation protocols of credential schemes.
Exp. prime Exp. RSA Unlink. MAC Security

U-Prove [33] u+ 1 0 7 7 -
Idemix [22] 0 u+ 3 3 7 sRSA [36]
Ringers et al. [35] n+ u+ 9 0 3 7 whLRSW [40]
MACDDH [23] 6u+ 12 0 3 3 DDH [9]
MACGGM [23] 5u+ 4 0 3 3 GGM [37]
MACBB [4] u+ 12 0 3 3 q-sDH [10]
NIKVAC [25] 2u+ 3 0 3 3 GGM+IND-CPA
This work u+ 2 0 3 3 n-SCDHI (Def. 3)
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5 Implementation Results

There are many cryptographic schemes for anonymous attribute-based creden-
tials available. Nevertheless, the smart card implementations are only very few
[31, 39, 27] and not practically usable as they use only small insecure security
parameters to be able to achieve reasonable speed. Particularly, only 1024-bit
RSA or DSA groups are used. That is considered insecure for any practical
deployment today.

The Show and ShowVerify algorithms of our scheme were implemented using
a standard NIST P-192 curve [30] on the Multos ML3 smart card. Only standard
Multos API and free public development environment (Eclipse IDE for C/C++
Developers, SmartDeck 3.0.1, MUtil 2.8) were used. For terminal application,
Java BigInteger class and BouncyCastle API were used. We compare our results
(blue and orange) with the state-of-the-art results of Vullers and Alpár (VA) [39]
(black and white) for different numbers of attributes stored and disclosed in Fig.
2. We note that our implementation uses significantly higher security parameters
(1024-bit used by Vullers and Alpár vs. 1776-bit DSA group equivalent according
to [38] used by us). The algorithm time (blue) tells the time necessary to compute
all algorithms on the card. The overhead time (orange) adds time necessary to do
all the supporting actions, mainly establishing the communication with a reader
connected to PC and transferring APDUs. All results are arithmetic means of
10 measurements in milliseconds. Compared to VA’s implementation of Idemix,
our implementation of all proving protocol algorithms on the card is at least
44% faster in all cases, see Fig. 2 for details.

In the case of only 2 attributes stored on the card, our scheme is by 72 %
faster than VA’s implementation. The card needs only 211 ms to compute the
ownership proof for disclosed attributes. The total time of around 360 ms neces-
sary for the whole proof generation on the card including communication with
and computations on a terminal (standard PC, Core i7 2.4 GHz, 8 GB RAM)
makes the implementation suitable also for time-critical applications like public
transportation and ticketing. We also evaluated our scheme using an embedded
device (Raspberry Pi 3) instead of the PC as a terminal. Even in that case the
total time including overhead was below 450 ms. Based on our benchmarks, we
expect that increasing security parameters to the 256-bit EC level would cost
acceptable 15 % - 20 % in performance.

Our implementation is artificially limited to 10 attributes per a user, but the
smart card’s available memory resources (approx. 1.75 KB RAM and 7.5 KB
usable EEPROM) would allow storing upto 50 attributes on a single card.

6 Conclusion

Practical anonymous credential schemes are only very few, with implementations
on smart cards either too slow or providing insufficient security levels. Our ap-
proach to address this problem was twofold: 1) to propose a novel cryptographic
scheme that is more efficient than all comparable schemes and formally prove its
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Fig. 2: Speed of our proving protocol compared to Vullers and Alpár (VA) imple-
mentation [39]. Blue - our algorithm time, orange - our total time with overhead,
verticals - VA algorithm time and horizontals - VA total time with overhead.

security; and 2) to develop a software implementation that is significantly faster
than existing implementations, although they use lower security parameters. By
achieving these results, we hope that we get privacy-enhanced authentication
closer to practical applications.

Our future steps, besides further optimization, are the integration with a
suitable revocation scheme (e.g., [13]) and implementation and benchmarks on
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higher security levels, hopefully on a wider range of smart cards, if they become
available on the market.
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A The Strong Computational DH Inversion Problem

We define the Computational Diffie-Hellman Inversion Problem, which is a com-
putational variant of the SDDHI problem [15].

Definition 3 (n-Strong Computational Diffie-Hellman Inversion Prob-
lem (SCDHI)). Let Obb(·) on input (m1, . . . ,mn) ∈ Z∗q

n add (m1, . . . ,mn) to

Q and output g1/(x0+
∑n

i=1 ximi). Let Odhi(·) on input h output hxi . Define the
advantage of A as follows.

Advn−SCDHI (A) = Pr
[
(G, g, q)← GroupSetup(1κ), (x0, . . . , xn)←$ Z∗q

n+1,

(y,m∗1, . . . ,m
∗
n)← AO

bb(·),Odh0 (·),...,Odhn (·)(g) : y = g
1

x0+
∑n

i=1
xim
∗
i ∧(m∗1, . . . ,m

∗
n /∈ Q

]
.

SCDHI is (t, ε)-hard if no t-time adversary has advantage at least ε.

Theorem 3. The n-SCDHI problem is hard in the generic group model. More
precisely, an adversary working in a generic group of order q with advantage ε
requires time Ω( 3

√
ε · q).

Proof. This proof is inspired by a proof due to Camenisch et al. [15], who prove
similar but slightly different statements in the generic group model. Consider an
algorithm B that interacts with A as follows. B maintains a list of pairs L =
{(Fi, ξi) : i = 0, . . . , τ − 1}, representing the mapping between representations
of group elements and their corresponding exponents as rational functions, i.e.,
fractions where both the numerator and denominator are a polynomial over
variables representing the secret signing key (x0, . . . , xn).

It initializes the lists with L = {(F0 = x0, ξ0)} and initializes τ ← 1. The
adversary A is initialized with (ξ0). A’s queries to perform the group operation,
queries to oracles Obb(·), and queries to Odhi(·), are handled as follows.

Group Operation: Given two elements ξi, ξj and i, j < τ , and a bit selecting
multiplication or division, B computes Fτ ← Fi ± Fj , where the operation
depends on the operation selection bit. If Fτ = Fl for some l < τ , set ξτ ← ξl,
otherwise set ξτ to a string in {0, 1}∗ distinct from all previous ξ values. Add
(Fτ , ξτ ) to L. Return ξτ to A and increment τ by one if a new element was
added.

Queries to Obb: On input (m1, . . . ,mn) ∈ Z∗q
n, let Fτ ← 1

X0+
∑
Ximi

. If Fτ =

Fl for some l < τ , set ξτ ← ξl, otherwise set ξτ to a string in {0, 1}∗ distinct
from all previous ξ values. Add {(Fτ , ξτ )} to L. Return ξτ toA and increment
τ by one if a new element was added.
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Queries to Odhi : On input ξj , let Fτ ← Xi · Fj . If Fτ = Fl for some l < τ , set
ξτ ← ξl, otherwise set ξτ to a string in {0, 1}∗ distinct from all previous ξ
values. Add {(Fτ , ξτ )} to L. Return ξτ to A and increment τ by one if a new
element was added.

After making oracle queries, A outputs (ξi,m
∗
1, . . . ,m

∗
n), with i < τ . Observe

that the representations of all group elements have form

F = α+

n∑
i=0

∑
j

βi,jx
j
i +

∑
k

γk
x0 +

∑n
l=1 xlmk,l

,

where A controls the constants α, βi,j , γi. This shows that A cannot output a
group element with Fi = 1

x0+
∑n

k=1 xim∗i
.

Only now, we take (x0, . . . , xn) ←$ Z∗q and evaluate all functions. We must
show that B had simulated the operations and oracles correctly.

First, if A makes a Obb query or chooses an output with message m1, . . . ,mn

but x0 +
∑n
i=1 ximi = 0, the simulation simulated incorrectly. As the xi values

are chosen randomly after the mi values were chosen, this probability is 1
q−1 per

query, and in total at most t
q−1 for an adversary running in time t.

Next, the simulation considers values with distinct polynomials to be dis-
tinct group elements, but after choosing concrete x0, . . . , xn, distinct polyno-
mials might evaluate to the same point, meaning the simulation was incorrect:
the simulator either gave distinct representations for a single group element, or
incorrectly rejected the forgery.

The difference between F and F ′ can be written as

F − F ′ = α+

n∑
i=0

qDH∑
j=1

βi,jx
j
i +

qbb∑
k=1

γk
x0 +

∑n
l=1 xlmk,l

,

for an adversary making at most qDH queries to the Diffie-Hellman oracles and
making at most qbb Obb queries. B simulated incorrectly if we have two distinct
functions F and F ′ in L such that

F − F ′ = α+

n∑
i=0

qDH∑
j=1

βi,jx
j
i +

qbb∑
k=1

γk
x0 +

∑n
l=1 xlmk,l

= 0 .

We can rewrite this toα+

n∑
i=0

qDH∑
j=1

(βi,jx
j
i )

 qbb∏
k=1

(x0+

n∑
l=1

xlmk,l)+

qbb∑
k=0

γk

qbb∏
k′=1,k 6=k′

(x0+

n∑
l=1

xlmk′,l) = 0 .

For an adversary running in time t, we have qDH +qbb ≤ t, so this is a polynomial
of degree at most t, so the probability it evaluates to zero is t

q−1 . Summing
over all pairs of functions and using τ ≤ t, we can bound the probability of a

simulation error at (t)3

q−1 . Adding the probability of a division by zero, we have an
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overall probability of a simulation error ε ≤ t
q−1 +(1− t

q−1 ) (t)3

q−1 . Using t < (q−1),

we can simplify to ε ≤ t
q−1 + (t)3

q−1 = O((t)3/q), from which the bounds of the
lemma follow.

B Security of Our MAC Scheme

We now prove Theorem 1.

Proof. Reduction B assumes for contradiction a (t, ε)-MAC-forger A and uses it
to break the n-SCDHI problem.
B receives the group description par = (G, g, q) from the SCDHI game, and

runs A on input par. B answers A’s OMAC queries on (m1, . . . ,mn) by setting
σ ← Obb(m1, . . . ,mn) and setting σxi

← Odhi(σ) for i = 1, . . . , n, and outputting
(σ, σx1

, . . . , σxn
). B answers A’s OVerify queries on (m1, . . . ,mn, σ) by checking

g
?
= Odh0(σ) ·

∏n
i=1Odhi(σmi).

As this simulation is perfect, with probability ε A outputs MAC forgery
(σ∗, (m∗1, . . . ,m

∗
n)) such that it made no MAC query on (m∗1, . . . ,m

∗
n). This

means that B can submit (σ∗, (m∗1, . . . ,m
∗
n)) to the SCDHI game to win with

probability ε. Observe that the runtime of B is approximately the runtime of A,
as B only makes oracle queries, showing that B (t, ε)-breaks n-SCDHI, contra-
dicting the (t, ε)-hardness of n-SCDHI.

C Security of Our Keyed-Verification Credentials

C.1 Formal Security Model

Here we recall the definition of security of keyed-verification credentials, as de-
fined by Chase et al. [23]. The definition of security considers the setting without
blind issuance, meaning that the issuer sees all the attribute values. They later
show how to extend to include blind issuance, but in this definition of security
we limit ourselves to open issuance. We consider security properties correctness,
unforgeability, anonymity, and key-parameter consistency.

Definition 4. Let Φ be the set of statements supported by a credential system,
and U be the universe of attribute sets. Then a keyed-verification credential sys-
tem (CredKeygen, Issue,CredVerify,Show,ShowVerify) is correct for Φ, U , if for
all (m1, . . . ,mn) ∈ U , for all κ,

Pr
[
par←$ Setup(1κ), (ipar, sk)←$ CredKeygen(par),

cred←$ Issue(sk, (m1, . . . ,mn)) : CredVerify(sk, (m1, . . . ,mn) = 0)
]

= 0 ,

and for all φ ∈ Φ, (m1, . . . ,mn) ∈ U such that φ(m1, . . . ,mn) = 1, for all κ,

Pr
[
par←$ Setup(1κ), (ipar, sk)←$ CredKeygen(par), cred←$ Issue(sk, (m1, . . . ,mn)),

Show(ipar, cred, (m1, . . . ,mn), φ)↔ ShowVerify(sk, φ)→ b : b = 0
]

= 0 .
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Definition 5. A keyed-verification credential system (CredKeygen, Issue,CredVerify,
Show,ShowVerify) is (t, ε, qH)-unforgeable there exists no adversary A, running
in time t and making at most qH random oracle queries, for which the following
probability is at least ε:

Pr
[
par←$ Setup(1κ), (ipar, sk)←$ CredKeygen(par),

(st, φ)←$ A(par, ipar)O
Issue(sk,·),OShowVerify(sk,·)

,A(st)↔ ShowVerify(sk, φ)→ b : b = 1,

with (∀(m1, . . . ,mn) ∈ Q,φ(m1, . . . ,mn) = 0
]
.

Definition 6. A keyed-verification credential system (CredKeygen, Issue,CredVerify,
Show,ShowVerify) is anonymous if for all PPT adversaries A, there exists an ef-
ficient algorithm SimShow such that for all κ, for all φ ∈ Φ and (m1, . . . ,mn) ∈ U
such that φ(m1, . . . ,mn) = 1, and for all par ←$ Setup(1κ) and all (ipar, sk) ←$
CredKeygen(par), for all cred such that CredVerify(sk, (m1, . . . ,mn), cred) = 1:

Show(ipar, cred, (m1, . . . ,mn), φ)↔ A→ st ≈ SimShow(ipar, sk, φ) ,

i.e., the adversary’s view given the proof can be simulated by SimShow given only
φ and a valid secret key corresponding to ipar.

Definition 7. A keyed-verification credential system (CredKeygen, Issue,CredVerify,
Show,ShowVerify) is key-parameter consistent if for any PPT adversary A, the
probability that A given par←$ Setup(1κ) can produce (ipar, sk1, sk2) with sk1 6=
sk2 such that (ipar, sk1) and (ipar, sk2) are both in the range of CredKeygen(par)
is negligible in κ (where the probability is taken over the choice of par and the
random coins of A).

C.2 Proof of Theorem 2

We now formally prove that our keyed-verfication credential scheme is secure.
The scheme supports selective disclosure, meaning that φ ∈ Φ describes indices
of disclosed attributes D, and the attribute values mi for i ∈ D. The attribute
set U is (m1, . . . ,mn), where mi ∈ Z∗q .

Lemma 1. Our KVAC scheme is correct, as defined in Definition 4.

Proof. This follows directly from the completeness of our MAC scheme and the
completeness of the zero knowledge proofs.

Lemma 2. Our KVAC scheme is (t, ε, qH)-unforgeable, as defined in Defini-
tion 5, if the n-SCDHI problem is (2t, ε′)-hard, where ε′ = ε · ( ε

qH
− 1

q ).

Proof. Assume for contradiction a (t, ε, qH)-forger A. We prove this lemma by
contstructing a reduction B that attacks the n-SCDHI problem. B receives
paramters par = (G, g, q) from the SCDHI game and computes ipar = (X0, . . . , Xn),
using Odhi(g) to compute Xi. It invokes A on input (par, ipar). B answers
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A’s Issue queries on message (m1, . . . ,mn) by setting σ ← Obb(m1, . . . ,mn),
σxi
← Odhi(σ) for i = 1, . . . , n, and simulates the proof π by programming the

random oracle.
B answers A’s ShowVerify queries by using the Diffie-Hellman oracles to com-

pute σ̂i = σ̂xi for i = 0, . . . , n, computes c← H(D, 〈mi〉i∈D), t, σ̂, par, ipar, nonce)

and checks t
?
=

∏
i 6∈D σ̂

smi
xi gsr · (σ̂x0

∏
i∈D σ̂

mi
xi

)−c.
As the simulation is perfect, with probability ε A wins the unforgeability

game by running a ShowVerify sending σ̂, 〈σ̂xi
〉ni=1, t, sr, 〈smi

〉i6∈D to the verifier,
proving it possessess attributes 〈mi〉i∈D without having made a Issue query on
inputs containing those attributes. By applying the forking lemma [7], we can
extract the witness r and the hidden attributes mi from the zero-knowledge
proof using rewinding, such that we have σ = g1/(x0+

∑n
i=1mixi) for σ ← σ̂1/r.

By the bounds of the forking lemma, this attacker forges a MAC with probability
ε′ = ε · ( ε

qH
− 1

q ) running in time 2t.

Lemma 3. Our KVAC scheme is anonymous, as defined in Definition 6, in the
random oracle model.

Proof. We define SimShow(ipar, sk, (D, 〈mi〉i∈D)) as follows. It takes random
σ̂ ←$ G and simulates the corresponding zero knowledge proof by taking sr, smi

for i 6∈ D, and c all uniformly at random in Zq. It computes

t← gsr · σ̂−c·x0+
∑

i6∈D(xi·smi
)−

∑
i∈D(xi·mi·c) .

Then, it programs the random oracle such that c = H(D, 〈mi〉i∈D), t, σ̂, par, ipar, nonce).
Clearly, the output of SimShow is equally distributed to the output from the real
prover.

Lemma 4. Our KVAC scheme is key-parameter consistent, as defined in 7.

Proof. CredKeygen outputs sk = (x0, . . . , xn) ∈ Z∗q and ipar = (X0, . . . , Xn)
with Xi = gxi . As we are working in a prime order group, every element has a
unique discrete logarithm, so there is a unique sk corresponding to every ipar.


