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Abstract. Secure multiparty computation (MPC) has been repeatedly
optimized, and protocols with two communication rounds and strong
security guarantees have been achieved. While progress has been made
constructing non-interactive protocols with just one-round of online com-
munication (i.e., non-interactive MPC or NI-MPC), since correct evalua-
tion must be guaranteed with only one round, these protocols are by their
nature vulnerable to the residual function attack in the standard model.
This is because a party that receives a garbled circuit may repeatedly
evaluate the circuit locally, while varying their own inputs and fixing the
inputs of others to learn the values entered by other participants. We
present the first MPC protocol with a one-round online phase that is se-
cure against the residual function attack. We also present rigorous proofs
of correctness and security in the covert adversary model, a reduction
of the malicious model that is stronger than the semi-honest model and
better suited for modeling the behaviour of parties in the real world, for
our protocol. Furthermore, we rigorously analyze the communication and
computational complexity of current state of the art protocols which re-
quire two rounds of communication or one round during the online-phase
with a reduced security requirement, and demonstrate that our protocol
is comparable to or outperforms their complexity.

Keywords: Non-Interactive MPC · Communication round complexity ·
Trusted hardware

1 Introduction

Secure multiparty computation (MPC) is formally defined as functionality that
allows a group of parties to jointly compute a function over their inputs, while
keeping those inputs private. Two conditions must be satisfied: Correctness
(the correct value must be computed from the given inputs) and Security (no
information about the function’s inputs should be gleaned after computation,
other than the output). One of the primary tools for achieving this goal is the
garbled circuit [36], where one party (the sender) encrypts a Boolean circuit and
then assigns two randomly generated strings (labels) to each wire in the circuit:
one each for 0 and 1. The sender also encrypts the output entry for each of the
circuit’s gate’s truth tables so that the table can only be decrypted if a receiving
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party has the correct two input labels. A great deal of work has been invested
into extending and optimizing MPC protocols to build more secure, efficient, and
scalable MPC systems [27,37].Generally, modern MPC protocols are divided into
three phases: the function-independent preprocessing phase, where parties do not
need to know their inputs or the function to be computed, the function-dependent
preprocessing phase, where parties know the function, but do not know their
inputs, and the online phase, where parties evaluate the agreed function over
their respective inputs [34].

Great progress has been made improving the computational complexity of
these systems, but it is only recently that researchers have started to investigate
improving these protocols’ communication round complexity, or the minimum
number of sets of parallel messages sent between parties in the protocol. For
example, if during a protocol party A must wait to receive a message from party B
before sending a followup message back to party B, we would consider this to be a
two-round protocol. Note that in many cases, especially when MPC is conducted
over the Internet, communication round complexity is the primary bottleneck,
as network latency slows the delivery of packets necessary for continuing the
protocol [5]. This problem becomes worse when parties are geographically distant,
and is currently a major obstacle preventing MPC from being deployed in a
global setting [35]. For several years, the total number of rounds needed has
continued to decrease. To the best of our knowledge, the most efficient known
protocols that satisfy security requirements in the standard model require two
rounds of online communication [6, 11–13,16,24,32].

In an effort to further reduce the number of rounds of communication, there
has been a movement among MPC researchers to construct non-interactive MPC
protocols (NI-MPC) which only require one-round of online communication
[4, 19–21]. Clearly, this would have many practical benefits, since it would allow
participants in the protocol to immediately terminate communication as soon
as they received the needed response from other participants, and not waste
energy and other resources maintaining an Internet connection while awaiting
further messages. However, all NI-MPC protocols with a one-round online phase
are vulnerable to the residual function attack, and thus cannot guarantee input
privacy of participants under the standard security model [26]. In this attack,
because correct evaluation must be guaranteed with only one round, the party
that receives a garbled circuit should be able to repeatedly evaluate the circuit
locally on different inputs while fixing the inputs of others until they learn the
values inputted by other participants.

Existing works [4, 20,22] choose to relax the security of the standard model,
and define a new model of security that allows adversaries to learn nothing more
than what can be discovered via this attack, which they define as the “best-
possible security” for any given set of corrupted parties. Intuitively, this means
that the adversary is prevented from learning more than they can via the residual
function attack, as this is, practically speaking, the most meaningful security that
can be achieved in the standard model given the one-round constraint. In more
formal terms, they assert that if the evaluator colludes with a set of corrupted
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parties, denoted T , it is allowed to learn the value of the original function on
the honest parties inputs combined with every possible choice of inputs from set
T . As long as nothing more than that is learned, their relaxed security model
defines that the protocol is secure.

This paper aims to design an NI-MPC scheme constructed with only one
communication round in the online phase without sacrificing security or privacy.
Achieving this goal is challenging, because any MPC protocol with only one
communication round in the standard model is vulnerable to the residual function
attack described above. We address this by building our protocol using secure
functionality available in trusted hardware (e.g., TPM and Intel SGX). The
TPM is a mature cryptoprocessor technology that has existed for over a decade
and has been internationally standardized by the ISO, and Intel SGX is a set
of instructions that protect application code and data from being disclosed or
modified. Both types are widely available in consumer and enterprise systems.
For the purposes of our protocol, we use various secure functionalities including a
monotonic counter, binding, sealing, and remote attestation. Monotonic counters
enable us to only permit certain steps of our protocol to be executed a finite
number of times. Combining this with binding and sealing will limit the users’
ability to perform arbitrary evaluation for launching the aforementioned residual
function attack. We also make use of remote attestation to verify the integrity of
the protocol. All functions are available in both TPM and Intel SGX.

Although there has been some controversy over the use of a TPM, which we
address in a later section, TPMs are rapidly becoming a major part of the digital
security and privacy ecosystem, having been deployed in hundreds of millions
of devices and on almost all commercial PCs and servers [1]. The Intel SGX is
a newer development, but it is maintained and supported by Intel, making it
credible and trusted hardware for practical purposes.

We have the following contributions in this paper.

1. We propose the first NI-MPC protocol that is secure under standard security
models even though there is only one communication round in the online
phase.

2. We provide a comprehensive analysis of existing state-of-the-art MPC schemes
which require two rounds of communication or one-round during the online-
phase and demonstrate that our NI-MPC protocol is comparable to or
outperforms their asymptotic complexity.

3. We prove that our NI-MPC protocol is secure by showing simulation-based
security under standard models.

2 Related Work

Since BMR [3], there have been many advances made in improving the round
complexity of MPC using garbled circuits. [29] combines the BMR protocol
with the SPDZ protocol [10] to achieve a twelve-round protocol given certain
assumptions concerning the adversary, which was later improved to six rounds
after modifying the protocol to use SHE instead of SPDZ [30]. Later, [19]
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were able to achieve a four-round MPC protocol under standard polynomial-
time hardness assumptions by utilizing a black-box proof of security. This was
later combined with tamper-proof hardware tokens to achieve a three-round
protocol [26]. Following this work, [5] presented a four-round protocol that can
be optimized to three or two rounds after performing several precomputations.

Recently, there has been much interest in constructing two-round MPC
protocols, as this was shown in [24] to be necessary to securely compute certain
common functionalities. [11] achieved the first two-round MPC scheme by relying
on indistinguishability obfuscation, but later this assumption was reduced to
witness encryption [16]. Following this work, two-round protocols were achieved
in [32] based on the learning with errors assumption (LWE), in [6] based on the
DDH assumption, and in [13] based on bilinear maps, after using ideas from [9].
Currently, the protocol with the best known communication round complexity
which makes the least assumptions is [14], which notably achieves a two-round
protocol by only relying on oblivious transfer (OT). This protocol was later made
more efficient by minimizing the number of public key operations required, but
it still requires two communication rounds [12].

However, there has been less work constructing protocols with a one-round
online phase. “One-round” protocols for the two-party setting [28] and the mobile
agents setting [8] have been constructed, but their “one round” refers to sending
two messages back and forth (i.e., one round of exchange), so these protocols
would be categorized as a two-round protocol with the current round definition.

Recently, there has been an interest in constructing Non-Interactive MPC
(NI-MPC) protocols that have only one round of communication, but use a weaker
security model that tolerates the residual function attack. [4] was the first to
initiate study in this area, and notably achieved protocols for several special use
cases such as group products, symmetric functions, etc. Later, [21] robustly studied
the setting of NI-MPC to develop a unified framework for studying secure multi-
party computation (MPC) under restricted interaction patterns, and went on to
build more efficient NI-MPC protocols. These techniques were later improved [23]
to concretely improve the communication and computational complexity of NI-
MPC, after further developing a theory of the best-possible information theoretic
security that could be achieved in this setting. This theory showed that for NI-
MPC, since the communication strings for each player in a particular evaluation
depend on each other, an adversary can prevent any simulator from generating
views computationally indistinguishable from those in a real execution of the
protocol by performing the attack. This makes proving security impossible for NI-
MPC under standard security definitions using simulation proofs. Recently, [20]
also proposed a protocol that notably achieved NI-MPC without the commonly
assumed correlated randomness at the expense of relying on fully homomorphic
encryption, which negatively impacts its overall efficiency. A summary of our
comparison of different protocols is presented in Tables 1 and 2.1

1 Note that the notation O(1λ) is used commonly in the literature to indicate the
complexity grows linearly with respect to the security parameter [6, 12–14,16,32].



NI-MPC with Trusted Hardware against Residual Function Attacks 5

Table 1. Comparison of Existing Two-round MPC and our Protocol

Paper Computation Complexity Communication Complexity Assumptions

[16] O((DL)ω) where L is the
circuit depth, D is the di-
mension parameter of the
matrix, and ω >= 2.3727
is the matrix multiplication
exponent

O(qλ) where q is the size of
the input, and λ is the secu-
rity parameter

Honest majority, a
broadcast channel,
point-to-point chan-
nels, and witness
encryption

[6] O(M/δ) where M is an up-
per bound on the difference
between inputs and δ is an
upper bound on the error
probability

O(S)+poly(λ) where S is the
size of the circuit and λ is the
security parameter

DDH Assumption,
multiple servers,
and Public Key
Infrastructure

[12] O((nSλ)k) where n is the
number of parties, S is the
size of the circuit, λ is the
security parameter, and k
is constant

O(1λ) +Ω(S) where λ is the
security parameter and S is
the size of the circuit

2-round OT

[14] O((nλ)k) where n is the
number of parties, λ is the
security parameter, and k
is constant

O(1λ) where λ is the security
parameter

2-round OT

[32] O((DL)ω) where L is the
depth of the circuit, D is
the dimension parameter
of the matrix, and ω >=
2.3727 is the matrix multi-
plication exponent

O(Smλ)k where k is a con-
stant, S is the size of the in-
put, m is the size of the out-
put, and λ is the security pa-
rameter

CRS model, broad-
cast channel, LWE,
and NIZKs

[13] O((nSλ)k) where n is the
number of parties, S is the
size of the circuit, λ is the
security parameter, and k
is constant

O(1λ) + Ω(S) where λ is the
security parameter and S is
the size of the circuit

Standard Bilinear
Map Assumptions

[11] O((DL)ω) where L is the
depth of the circuit, D is
the dimension parameter
of the matrix, and ω >=
2.3727 is the matrix multi-
plication exponent

O(Sλ) where S is the size of
the input, and λ is the secu-
rity parameter

Indistinguishability
obfuscation, CCA-
secure public key
encryption, NIZKs,
and 1 honest party

Ours O(n2S) where n is the num-
ber of parties and S is the
size of the circuit

O(1λ) where λ is the security
parameter

Trusted Hardware

3 Preliminaries

Both TPM and Intel SGX are equipped with the secure functionalities we need
for constructing NI-MPC schemes that are secure under a standard (i.e., not
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Table 2. Comparison of Existing NI-MPC and our Protocol

Paper Computation Complexity Communication Complexity Assumptions

[4] Polynomial in the commu-
nication complexity

O(nt) where n is the number
of parties and t is a constant
0 ≤ t ≤ n

Correlated random-
ness

[23] O(
(
n
n/2

)
n) where n is the

number of parties
O(nsA) where n is the num-
ber of parties, s is a random
vector in field F k where k is
a constant, and A is the num-
ber of AND gates

One-way functions
for reusable corre-
lated randomness
and non-interactive
key exchange for PKI
setup

[21] O(2n) where n is the num-
ber of parties

O(n2n) where n is the num-
ber of parties

Fully homomorphic
encryption and indis-
tinguishibility obfus-
cation for general cir-
cuits

[20] O((DL)ω) where L is the
depth of the circuit, D is
the dimension parameter
of the matrix, and ω >=
2.3727 is the matrix multi-
plication exponent

O(Smλ)k where k is a con-
stant, S is the size of the in-
put, m is the size of the out-
put, and λ is the security pa-
rameter

PKI and a common
random string

Ours O(n2S) where n is the num-
ber of parties and S is the
size of the circuit

O(1λ) where λ is the security
parameter

Trusted Hardware

* Ours is the only scheme secure against residual function attacks under standard security models.

relaxed) security model. We chose to rely on the TPM in this paper for the
implementation, because of its availability. Almost all laptops and desktops are
equipped with a TPM, and it is even compatible with embedded systems. Because
our scheme relies on the functionality, rather than the hardware itself, it can be
implemented using Intel SGX as well.

3.1 GNIOT for Non-interactivity and Covert Security

To achieve a protocol with a one-round online phase, our protocol relies on a
special Oblivious Transfer (OT) called Generalized Non-Interactive Oblivious
Transfer (GNIOT), proposed in [18], which makes use of the monotonic counter.
Traditional OT allows a sender to safely transfer one of potentially many pieces
of information to a recipient, but the sender cannot determine which piece was
transferred. This idea was first proposed by Rabin in 1981 [33] for the two-party
case, but in the years following has been extended to support multiple parties,
and transferring more than one piece of information [7]. Traditional OT requires
two or more communication rounds, but GNIOT requires just one round for the
multiparty case.
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Besides, with GNIOT, users are unable to receive more than one valid input
for each input wire, making it impossible for malicious users to publish messages
with fake inputs to others while locally evaluating the circuit with true inputs.

3.2 Justification of Using TPMs

TPMs have been underutilized when designing cryptographic protocols, due to
impressions that they are insecure, an undesirable assumption to make, or simply
too difficult to use [1]. TPMs have gained a reputation of being insecure, partially
due to notable security breaches of TPM 1.2 [15]. However, a new and patched
version (TMP 2.0) was released in 2015 with an updated specification that avoids
the shortcomings of its predecessor. In 2017, an attack was reported against TPM
2.0, but this attack was only successful against an improperly implemented code
library developed by Infineon , and did not exploit any underlying weakness in
the TPM 2.0 specification itself. There are no known threats against the TPM
2.0.

While standard algorithmic assumptions (DDH, LWE, etc.) are preferable,
since they do not impose hardware requirements, certain functionality cannot
be supported in the standard model without relying on secure hardware. We
argue it is worthwhile to make this assumption to support the computation of
many useful functions in certain settings, e.g., where a one-round online phase
is desirable, if there are no known alternatives. Some of the functionality that
cannot be supported without relying on secure hardware include: unconditional
and non-interactive secure computation for one-time programs against malicious
adversaries, interactive secure computation from stateless tokens based on one-
way UC-secure functions, and program obfuscation from stateless tokens against
malicious adversaries [17].

3.3 Definitions

Adversary Model When considering weaknesses in our protocol, we consider
three types of adversarial behavior: a semi-honest adversary, covert adversary,
and fully malicious adversary. A semi-honest adversary will not deviate from
behavior prescribed by the protocol, though they may carry out local computation
to attempt to gain information about other parties’ private inputs. The semi-
honest attacker model provides only weak guarantees of security (though in some
situations more realistic), but allows more efficient cooperation. Conversely, a
fully malicious adversary may deviate from a protocol in any way, and may
attempt to carry out a wide range of malicious behavior. This behavior may
include gaining information about other parties’ private inputs, giving incorrect
information to other parties, or even preventing the completion of the protocol.
A protocol robust against fully malicious adversaries provides a strong security
guarantee, but may be less efficient and more complex.

When discussing the security of our scheme, we use the covert adversary
model as described in [2] to model users. Under the covert adversary model,
while adversaries may behave in a fully malicious manner, they will refrain from
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deviating from the protocol if such an action would probably be noticed by other
parties. In other words, a covert adversary will be only honest-but-curious unless
they are likely to be able to behave maliciously with only a small chance of being
detected.

Note that NI-MPC protocols cannot achieve active security against fully
malicious adversaries as a result of the non-interactivity. Because each party
sends all of their messages to the other parties in one round, if a malicious party
chooses to send malformed data to other parties, the honest parties will not
become aware of this until after they have sent their messages. In this way, the
adversary can recover all of the data needed to complete the protocol successfully
while preventing others from having access to enough valid data needed to
complete the protocol. For our protocol, we thus find it most salient to consider
the case where the computing parties may be covert adversaries and a trusted
garbler is semi-honest. (If the trusted garbler is not semi-honest, then it becomes
impossible to guarantee the security or correctness of the protocol.)

Simulation Correctness and Security We define correctness and security as
a simulation as is commonly done in the literature [6, 12–14,16,32] so that we
can use simulation based proof techniques later in Section 6. Note that because
this is a protocol, and not an encryption scheme, techniques such as proving
IND-CCA or IND-CPA do not directly demonstrate the security of the entire
protocol.

Definition 1 (Correctness). An MPC scheme π for a class of functions F is
said to correctly compute F among players if, for any f ∈ F and for any set of
inputs X := (x1, · · · , xn) in the domain of f where the i-th player Pi controls
xi, all players receive f(X) from the scheme with a probability not less than
1− negl(λ) for some negligible function negl(·) and the security parameter λ.

Definition 2 (Security). An MPC scheme π for a class of functions F is
said to be secure for F against covert adversary if, for any f ∈ F and for any
probabilistic polynomial time adversary A controlling a subset A of all players,
there exists a probabilistic polynomial-time simulator S such that for any set of
inputs X := (x1, · · · , xn) in the domain of f where the i-th player Pi controls xi,

{S(f(X), A, {xj | Pj ∈ A})}λ
c≡ {ViewρA(X)}λ

where
c≡ refers to computational indistinguishability, λ is the security parameter,

and ViewπA(X) represents the messages received by members of A during the
execution of protocol π and any cheating by a covert adversary can be detected
with significant probability.

4 High-Level Description of Our Protocol

Figure 1 in Section 5 presents a formal description of the proposed protocol.
We provide a high level description here. Our protocol relies on the monotonic
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counter functionality, a secure functionality that stores a non-negative integer
which can only be read from or incremented [1]. With this, along with binding
and sealing, we can limit the user’s access to a public/private key pair stored on
the trusted hardware to a finite number of times, after which the ability of users
to make use of the keys to perform an action is revoked [26]. We also make use of
the remote attestation functionality implemented with the Attestation Identity
Key (AIK) in TPM. AIK is a special-purpose TPM-resident cryptographic key
used to provide platform authentication and verify that users have not performed
unauthorized changes to the software. By querying the TPM, we can certify that
the software currently running on the device is in the presence of a cryptographic
key that came from an identifiable piece of hardware that will function correctly.
In the event this certification fails, we can deny a malicious party’s access. Note
that such a functionality is available in Intel SGX as well.

We assume that the parties have access to trusted hardware which supports
a monotonic counter, and have agreed on the circuit to be evaluated C (we will
say the circuit has N input wires). We denote the number of parties as n (we
sometimes refer generally to party Pi for i ∈ [1, n). To participate in our protocol,
each party queries the on-board trusted hardware to generate a public/private
key pair (Kpi

, Ksi) stored in the secure memory that can only be used Wi times
where Wi will denote the number of input wires a party controls. This behaviour
can be enforced using the TPM by assigning an upper bound to the cryptographic
keys that depends on the monotonic counter.

Each time the keys are used, the monotonic counter is incremented, but after
the counter exceeds the assigned bound, users will no longer be able to use the
keys. To certify that these keys were generated correctly, each party certifies it
did not tamper with the key generation process by broadcasting a certification
using the TPM’s AIK of the public key. A semi-honest garbler also creates a
symmetric key R(i). After generating the garbled circuit, for each party Pi the
garbler encodes both of Pi’s possible inputs as wire labels (we work with Boolean
circuits, so these labels correspond to 0 or 1) for each wire w ∈ Wi and encrypts
using the symmetric key. Note that to an adversary, the wire labels appear to be
random strings whose length is proportional to the security parameter, so the
adversary cannot evaluate the garbled circuits without retrieving the correct keys
from the TPM. The garbler then proceeds to split the symmetric key R(i) into
Wi secret shares. Following this, each encoded input is paired with a secret share
of R(i) as a tuple, referred to as an intermediate ciphertext. This intermediate
ciphertext is encrypted using the public key Kpi

. Then each respective Pi’s
encrypted intermediate ciphertexts are then broadcast to them.

Because the number of decryptions permitted using the public key is equal to
the number of input wires of the garbled circuit, due to the monotonic counter,
each party can only decrypt one possible input for each wire. This means that
no party can decrypt both encoded inputs corresponding to 0 and 1 for a wire
and perform the residual function attack described above, as this will use up a
decryption that they need to recover the input to one of the remaining input
wires. They can only decrypt one encoded input per wire or they will be unable to
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complete the protocol. After decrypting the encrypted intermediate ciphertexts,
the parties can locally combine the secret shares to recover the symmetric key
R(i) that was used to encrypt the encoded inputs to the circuit and recover
the wire labels. Since the wire labels reveal nothing about a party’s choice of
input, they can be sent to the other parties, and be used by each party to locally
evaluate the circuit to receive the output.

Note that NI-MPC protocols cannot achieve active security against fully
malicious adversaries as a result of their non-interactivity as described above,
because all parties send all of the data the other parties need to complete the
protocol in one round simultaneously. The best that can be achieved is covert
security, which models the situation where malicious adversaries are willing to
cheat only if they are not caught. In our protocol, if an adversary sends malformed
data to another honest party, the honest party will be unable to finish evaluating
the circuit, but because all data sent can be traced back to the sending party
with significant probability. The honest party will know who acted maliciously,
and notify the other participating parties of the bad behaviour.

5 Our Protocol

Our protocol employs the following algorithms as building blocks: gen, enc pub,
enc sec, dec pub, dec sec, and garble. Any algorithms that have the described
input/output can be adopted.

– gen(λ) −→ R,Kp,Ks: this is an algorithm that takes the security parameter
λ as input and outputs a symmetric key R and a public/private key pair
(Kp, Ks). For example, RSA/ECC or AES key generation algorithms.

– enc pub(Kp,X ) −→ PKKp(X ): this is a public key encryption algorithm
that takes public key Kp and plaintext X as input and returns ciphertext
PKKp(X ). For example, RSA or ECC encryption algorithms.

– enc sec(R,X ) −→ SKR(X ): this is a symmetric key encryption algorithm
that takes symmetric key R and plaintext X as input and returns ciphertext
SKR(X ). For example, the AES encryption algorithm.

– dec pub(Ks,PKKp(X )) −→ X : this is a public key decryption algorithm
that takes private key Ks and ciphertext PKKp(X ) as input and returns
plaintext X . For example, the RSA or ECC decryption algorithms.

– dec sec(R,SKR(X )) −→ X : this is a decryption algorithm that takes sym-
metric key R and ciphertext SKR(X ) as input and returns plaintext X . For
example, the AES decryption algorithm.

– garble(C) −→ GC: this is a circuit garbling algorithm that takes as input a
circuit C and returns a garbled circuit GC. For example, a garbling algorithm
or related software tools (i.e. Frigate [31]) from the survey [25] may be used.

Our protocol is described in detail in Figure 1. Note that in the preprocessing
phase, ordinarily our protocol would be vulnerable to the residual function attack,
as an adversary could hypothetically decrypt more than one ciphertext pair
(Cw,0, Cw,1) associated with an input wire to recover its associated symmetric
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key and gain access to both wire labels. This would allow them to evaluate the
function repeatedly over both inputs while fixing the input of others, until they
learn the values inputted by other participants. However, because the number
of decryptions of the ciphertexts Cw,0 or Cw,1 is limited with the monotonic
counter in the trusted hardware, if they attempt to perform more decryptions
than specified for the circuit, they will be unable to access enough shares of the
symmetric key to later recover R(i) and complete the protocol. As a result, the
residual function attack is blocked. Also, note that only steps 2 and 4 of the
initialization phase and step 1 of the online phase require a communication round.
However, the communication in the initialization phase only needs to occur once
during setup. After this, communication only occurs during the online phase for
each iteration of the protocol.

6 Proofs

6.1 Proof of Correctness and Security

Simulation Correctness Our protocol π correctly computes Boolean circuits
as defined in Definition 1.

Proof. Recall that the circuit C is agreed upon prior to beginning the protocol.
We note first that if the parties use their TPMs exactly as described in the
protocol, they will use gen to generate a Wi-time use count limited key pair
(Kpi

, Ksi). The parties will later send their Kpi
to the “separate” garbler. (This

step is verified during attestation as described in Figure 1.) The garbler is semi-
honest, so they must correctly use the garbling function garble to convert the
ordinary circuit C to a corresponding garbled circuit GC whose inputs map
correctly to the corresponding outputs of the original circuit. Following this,
the garbler takes the input wire labels xw,(0,1) corresponding to wires controlled

by Pi and must encrypt them with symmetric key R(i) using enc sec, which is
enc sec(xw,(0,1)) = SKR(i)(xw,(0,1)). Then, the garbler must use the function
enc pub to encrypt the wires with Pi’s public key Kpi

along with a perfectly secret

share (e.g. Shamir’s) of symmetric key R(i) corresponding to the wire w, which is

enc pub(SKR(i)(xw,(0,1)),R
(i)
w ) = PKKpi(SKR(i)(xw,(0,1)), R

(i)
w ). The garbler

then must broadcast this ciphertext as Cw,(0,1) to party Pi along with the garbled
circuit GC. Note that some index information is encoded into the ciphertext so
the recieving Pi will know which ciphertext corresponds to the boolean value 0 or
1. Because of the monotonic counter, the number of decryptions permitted using
the public key is equal to the number of input wires of the garbled circuit, and
each party can only decrypt one possible input for each wire. After receiving all
ciphertexts Cw,(0,1), Pi chooses to decrypt the finite number they are permitted,
that correspond to their desired input of 0 or 1 for each wire w using dec pub,

which is dec pub(Cw,(0,1)) = (SKR(i)(xw,(0,1)),R
(i)
w ). From here Pi can combine

the shares of R(i)
w to recover R(i) and use dec sec to decrypt SKR(i)(xw,(0,1)) and

correctly recover the proper wire label as dec sec(SKR(i)(xw,(0,1))) = xw,(0,1).
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Our Protocol π

Initialize: Given the security parameter 1λ, this phase distributes garbled circuit
GC and ciphertext pair Cw,(0,1) corresponding to each wire controlled by each
player.
Preprocess: This phase can be run in advance of the online phase. All players
Pi run this phase along with the garbler G. Note steps 2 and 4 require one round
each but this is a one time cost.

1. Each Pi calls gen and queries the TPM to generate a Wi time use count
limited public/private key pair (Kpi

, Ksi) where Wi is the number of input
wires Pi controls for circuit C.

2. Each Pi certifies its Kpi
by using an Attestation Identity Key via a Trusted

Platform Module, and broadcasts Kpi
.

3. The semi-honest garbler G, which is “separate” from the function evaluation,
takes the previously agreed upon circuit C, calls garble, and computes a
corresponding garbled circuit GC.

4. Using GNIOT, for every player Pi with Wi input wires and public key Kpi
,

the semi-honest garbler G calculates a symmetric cipher key R(i) and splits
R(i) into Wi shares R(i)

w for w ∈ [Wi]. Let the labels in the garbled circuit
GC of an input wire w ∈ [Wi] be called xw,0 and xw,1 for the Boolean values
0 and 1 respectively. The garbler then calls enc sec to encrypt the each label
and enc pub to encrypt each tuple of an encrypted label and a secret share,
and computes and broadcasts Cw,0 = PKKpi(SKR(i)(xw,0), R(i)

w ) and Cw,1
= PKKpi(SKR(i)(xw,1), R(i)

w ) for all w ∈ Wi.

Online: This phase communicates all parties’ inputs to each individual party. All
players Pi run this phase. Note this step requires one round.

1. Each Pi decrypts either Cw,0 or Cw,1 (for w ∈ [Wi]) using their private key Ksi

stored on their TPM to get intermediate ciphertexts Tw,0 = ( SKR(i)(xw,0),

R(i)
w ) or Tw,1 = ( SKR(i)(xw,1), R(i)

w ), as part of the GNIOT, by calling
dec pub.

2. Then Pi extracts eachR(i)
w which are then recombined to recover the symmetric

key R(i).
3. Then R(i) is used to decrypt either SKR(i)(xw,0) or SKR(i)(xw,1), by calling

dec sec, based on the choice of Pi to recover either xw,0 or xw,1, and complete
the GNIOT.

4. The parties broadcast their chosen xw,0 or xw,1 to each party but the semi-
honest garbler (wire labels appear as random strings to an adversary).

Evaluate (offline): This phase evaluates the garbled circuit. All players Pi run
this phase locally.

1. Each party Pi inputs one of xw,0 or xw,1 for w ∈ [Wi] into the garbled circuit
GC to reveal the output and return the plaintext circuit output.

2. Parties learn a specific input is corrupted when they input the xw,0 or xw,1

they receive from an adversarial party A to a wire A owns and evaluation fails
for that wire. When this happens, they all abort the protocol and broadcast a
notification to all other parties the xw,0 or xw,1 from A was corrupted.

Fig. 1. Our MPC protocol that evaluates a Boolean circuit among n players.
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Then, as long as the garbler properly generated the garbled circuit GC, we know
that Pi can input all xw,(0,1) into GC to recover the circuit’s output.

Simulation Security Assuming |C| = O(log λ), all parties use the TPM as
the protocol describes, the public key and symmetric key encrypted ciphertexts
supported by the TPM are indistinguishable, players properly perform attestation
with their keys, and the semi-honest, noncolluding garbler correctly garbles
circuits, our protocol π securely computes Boolean circuits as defined in Definition
2.

Proof. Without loss of generality, assume the adversary controls the first m < n
variables, where n is the total number of variables. We show that a proba-
bilistic polynomial time simulator can generate an entire simulated view, given
y = f(z1, · · · , zm, zm+1, · · · , zn) and z1, · · · zm for an adversary indistinguishable
from the view an adversary sees in a real execution of the protocol. Note the
simulator is able to find z′m+1, · · · , z′n such that y = f(z1, · · · , zm, z′m+1, · · · , z′n)
in polynomial time since |C| = O(log λ). Besides this, it follows the protocol as
described in Figure 1, pretending to be the honest players. Note that in any world,
the adversary can only evaluate what can be evaluated when other players’ input
is fixed (denoted as intended evaluation point hereafter), because the adversary
can only access the wire labels for the intended evaluation point. Now the simu-
lator S generates a view indistinguishable from that of a real execution, since
all parameters broadcast i.e. Kpi

, C′w,(0,1), x
′
w,(0,1) are indistinguishable from the

corresponding ones in the real protocol i.e., Kpi
, Cw,(0,1), xw,(0,1) as they are gen-

erated identically and have the exact same distribution. However, note that each
party broadcasts its x′w,(0,1) to all other parties in participating in the protocol. If

a covert adversary transmits corrupted x′w,(0,1) to other players, the other parties

will know precisely which x′w,(0,1) caused the protocol to abort, because during

evaluation of the circuit the protocol can verify whether a x′w,(0,1) corresponds
to a valid wire label for the wires of the circuit. Which wires are owned by which
parties agreed upon beforehand, and so because all data sent can be traced back
to the sending party who owns the wire, the honest party will know who cheated
with significant probability. Recall from the protocol, every ciphertext C′w,(0,1)
is either opened or unopened. By the assumption of the security of the public
key encryption provided by the TPM, unopened C′w,(0,1) are indistinguishable.
Recall that Kpi

is only usable Wi times due to the monotonic counter. If the
value of Wi is correctly calculated beforehand, each party will only be able to
decrypt one intermediate ciphertext for each input wire w ∈ Wi. Decrypting
gives us the inner encryptions of wire labels SKR(i)(xw,(0,1))

′ and R′
i. Note all

R′
i are generated at random and will have the same random distribution as Ri.

By the assumption of the security of the underlying symmetric key protocol, the
encryptions of wire labels in both worlds will be indistinguishable from random,
and thus indistinguishable from each other. Additionally, the wire labels of both
worlds will also be indistinguishable by the assumption that the garbler correctly
garbled the circuits and the fact that we chose inputs that give the same output.
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This demonstrates that for the class of all functions F , our protocol is secure
against covert adversaries A since:

{S(f(X), A, {xj | Pj ∈ A})}λ
c≡ {ViewπA(X)}λ

Therefore, the adversary cannot distinguish between real and simulated executions
and our protocol securely computes Boolean circuits as defined in Definition 2.

7 Conclusions and Future Work

This paper demonstrates the first MPC scheme constructed with one commu-
nication round in the online phase that does not sacrifice security or privacy
and can be proven secure in the standard model. Previous protocols subject to
this one-round constraint in the standard model were vulnerable to the residual
function attack, where a party that receives a garbled circuit may repeatedly
evaluate the circuit locally while varying their own inputs and fixing the input
of others to learn the values entered by other participants. We overcome this
problem by building our protocol using a secure hardware primitive, specifically
a Trusted Platform Module (TPM), a mature cryptoprocessor technology. We
rigorously analyzed the communication and computational complexity of cur-
rent state of the art protocols which require two rounds of communication or
one-round during the online-phase with a reduced security requirement, and
demonstrated that our protocol is comparable to or outperforms their complex-
ity. Also, we provided rigorous proofs of correctness and security in the covert
adversary model for our protocol. We are actively developing an implementation
of the algorithms in our NI-MPC scheme with Microsoft’s TPM 2.0 Simula-
tor, and the MPIR, OpenSSL, and TPM.CPP libraries. Our code is available
at https://github.com/Ryan-Karl/one_round_mpc_with_tpm. We hope that
this further improves the viability of MPC as a practical solution for facilitating
private communication, especially in global environments.
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